电动机的几个启动方式
直流电机的启动方法
直流电机的启动方式:
1.直接合闸起动。
直接合闸起动就是将电动机直接接入到额定电压的电源上启动。
由于电动机所加的是额定电源,而电动机开始接通电源瞬间电枢不动,电枢反电动势E。
为零,所以启动时电流很大。
启动时电动机最大电流为正因为电动机启动电流很大,所以启动转矩大,电动机启动迅速,启动时间短。
不过,电动机一旦开始运转,电枢绕组就有感应电动势产生,且转数越高,电枢反电动势就越大。
随着电动机转数上升,电流迅速下降,电磁转矩也随之下降。
当电动机电磁转矩与负载阻力转矩相平衡时,电动机的启动过程结束而进人稳定运行状态。
直接合闸起动的优点是不需其他设备,操作简便;缺点是启动电流大。
它只适用于小型电动机,如家用电器中的直流电机。
2. 串电阻起动
串电阻起动就是在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。
串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。
3.降电压起动。
降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。
各种启动方式的特点
各种启动方式的特点低压电工2016-07-10 06:08原创作者:晓月池塘基础知识/各种启动方式的特点常见电动机启动方式有以下几种:1.全压直接启动;2.自耦减压起动;3.Y-Δ起动;4.软起动器;5.变频器启动。
目前软启动器和变频器启动为市场发展的潮流。
当然也不是必须要使用软启动器和变频器启动,以成本和适用性为主要参考,下面简要介绍各种启动方式的特点。
1全压直接起动:图一在电网容量和负载两方面都允许全压直接起动的情况下,可以考虑采用全压直接起动。
主要用于小功率电动机的起动,从节约电能的角度考虑,大于11kw的电动机不宜用此方法。
直接启动的优点是所需设备少,启动方式简单,成本低。
电动机直接启动的电流是正常运行的5倍左右,经常启动的电动机,提供电源的线路或变压器容量应大于电动机容量的5倍以上不经常启动的电动机,向电动机提供电源的线路或变压器容量应大于电动机容量的3倍以上。
这一要求对于小容量的电动机容易实现,所以小容量的电动机绝大部分都是直接启动的,不需要降压启动。
对于大容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强大的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网稳定运行不利,所以大容量的电动机和不能直接启动的电动机都要采用降压启动。
2自耦减压起动:图二图三利用自耦变压器的多抽头减压,既能适应不同负载起动的需要,又能得到更大的起动转矩,是一种经常被用来起动较大容量电动机的减压起动方式。
它的最大优点是起动转矩较大,当其绕组抽头在80%处时,起动转矩可达直接起动时的64%,启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可以用交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺点是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
电动机启动方式的选择-解析
电动机启动方式的选择-解析电动机启动方式的选择-解析电机启动方式的选择笼型感应电动机全压起动的优点,用简便计算及列表方法表示全压起动时配电系统的压降,并对全压起动和各种降压起动的特点进行分析比较,以便选择,同时对风机、水泵的起动转矩作了简要分析? 笼型感应电动机全压起动星三角换接起动自耦变压器降压起动起动电流起动转矩,工业与民用建筑中的水泵与风机常采用笼型感应电动机拖动,恰当的选择其起动方式,具有重要的意义。
笼型感应电动机的起动方式分为全压起动、降压起动、变频起动等,现对各种起动方式的特点进行简要分析,以利选择1 全压起动1.1 全压起动的优点及允许全压起动的条件全压起动是最好的起动方式之一,它是将电动机的定子绕组直接接入额定电压起动,因此也称为直接起动。
全压起动具有起动转矩大、起动时间短、起动设备简单、操作方便、易于维护、投资省、设备故障率低等优点。
为了能够利用这些优点,目前设计制造的笼型感应电动机都按全压起动时的冲击力矩与发热条件来考虑其机械强度与热稳定性。
所以,只要被拖动的设备能够承受全压起动的冲击力矩,起动引起的压降不超过允许值,就应该选择全压起动的方式。
有人误认为降压起动比全压起动好,将15kW的电动机未经计算就采用了降压起动方式,因而降低了起动转矩,延长了起动时间,使电动机发热更加严重,且设备复杂,投资增加,这是一个误区,应当引起重视。
尤其是消防泵等应急设备希望起动快,故障少,凡能采用全压起动者,均不应采用降压起动?全压起动的缺点是起动电流大,笼型感应电动机的起动电流一般为额定电流5~7倍,如果电动机的功率较大,达到可与为其供电的变压器容量相比拟时,电动机的起动电流将会引起配电系统的电压显著下降,影响接在同一台变压器或同一条供电线路上的其他电气设备的正常工作,因此在设计规范中,对电动机起动引起配电系统的压降有明确规定。
交流电动机起动时,其端子上的计算电压应符合下列要求(1)电动机频繁起动时,不宜低于额定电压的90%,电动机不频繁起动时,不宜低于额定电压85%(2)电动机不与照明或其他对电压波动敏感的负荷合用变压器,且不频繁起动时,不应低于额定电压80%(3)当电动机由单独的变压器供电时,其允许值应按机械要求的起动转矩确定?对于低压电动机,还应保证接触器线圈的电压不低于释放电压。
电动机顺序启动逆序停止
电动机顺序启动、逆序停止电路顺序启动、逆序停止控制电路是在一个设备启动之后另一个设备才能启动运行的一种控制方法,常用于主辅设备之间的控制,如图当辅助设备的接触器KM1启动之后,主要设备的接触器KM2才能启动,主设备KM2不停止,辅助设备KM1也不能停止。
工作过程:1、合上开关QF使线路的电源引入。
2、按下按钮SB1,接触器KM1线圈得电吸合,主触点闭合辅助设备运行,并且KM1辅助常开触点闭合实现自保持。
3、按下按钮SB2,接触器KM2线圈得电吸合,主触点闭合主电机开始运行,并且KM2的辅助常开触点闭合实现自保持。
4、KM2的另一个辅助常开触点将SB5短接,使SB5失去控制作用,无法先停止辅助设备KM1。
5、停止时只有先按下SB6按钮,使KM2线圈失电辅助触点复位(触点断开),SB5按钮才起作用。
6、主电机的过流保护由FR2热继电器来完成。
7、辅助设备的过流保护由FR1热继电器来完成,但FR1动作后控制电路全断电,主、辅设备全停止运行。
安装调试步骤:1、检查电器元件检查按钮、接触器触头表面情况;检查分合动作;测量接触器线圈电阻;观察电机接线盒内的端子标记。
2、按图接线先分别用黄、绿、红三种颜色的导线接主电路。
辅助电路按接线图的线号顺序接线。
注意主电路各接触器触点间的连接线,要认真核对。
3、线路检查及试车(1)线路的检查一般用万用表进行,先查主回路,再查辅助电路。
分别用万用表测量各电器与线路是否正常。
也可以用试电笔检查该有电的地方是否有电。
(2)试车经上述检查无误后,检查三相电源,合上QF进行试车。
常见故障:1、KM1不能实现自锁分析处理:KM1的常开辅助接点接错 2、不能顺序启动,KM2可以先启动分析处理:KM2先启动说明KM2的控制电路有电,KM2不受KM1控制而可以直接启动。
检查KM1的常开触头是否连接到KM2线圈的得电回路。
3、不能逆序停止,KM1能先停止分析处理:KM1能停止这说明SB1起作用,并接的KM2常开接点没起作用。
电动机的5种启动方式(图文)
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
软启动,变频器,减压启动综合分析
价格问题自然是变频器最贵,Y-Δ、自耦减压启动相对便宜。对于 投入较小的项目,经济性就会成为首选; 可控问题 Y-Δ、自耦减压启动简单,但仅仅只是启动。但在自动化程度高的 场合,估计就会使用得较少,甚至软起也少。而通过变频器调控 电机,包括转速、电压等就远不是减压启动、软启动所能比拟的。 所以变频器在大型或自动化程度高的生产线就是首选了。
这是利用了可控硅的移相调压 原理来实现电动机的调压起动,主 要用于电动机的起动控制,起动效 果好但成本较高。因使用了可控硅 元件,可控硅工作时谐波干扰较大, 对电网有一定的影响。
另外电网的波动也会影响可控 硅元件的导通,特别是同一电网中 有多台可控硅设备时。因此可控硅 元件的故障率较高,因为涉及到电 力电子技术,因此对维护技术人员 的要求也较高适用于无载或者轻载起动的场合。并且同任何别的减压 起动器相比较,其结构最简单,价格也最便宜。
除此之外,星三角起动方式还有一个优点,即当负载较轻时, 可以让电动机在星形接法下运行。此时,额定转矩与负载可以匹 配,这样能使电动机的效率有所提高,并因之节约了电力消耗。
软启动,变频器,减压启动综合分析
组网通讯 变频器本身可以通过自身集成的或扩展的通讯口实现 网络监控。软起还能做一些监控,但要实现电机的实时监控,也 是减压启动、软启动所不能比拟的。 维护方面 由于Y-Δ、自耦减压启动本身就比较简单,自然维护 起来也最简单。我其实很反对使用软起,如果不选择变频器,肯 定会直接选择Y-Δ或自耦减压启动。
电动机常用的启动方法
电动机常用的启动方法
电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法、变频启动法等。
1. 直接启动法
直接启动法是最简单、最常见的电动机启动方法。
即将电动机直接连接到电源,通过闭合启动电机的电源开关来完成启动。
这种方法适用于起动转矩小、机械负载较小的电动机。
2. 自耦变压器启动法
自耦变压器启动法是使用自耦变压器来降低电动机启动时的电压,以减小启动电流并提高电动机的转矩。
自耦变压器启动法适用于起动转矩较大、起动时需限制电流的电动机。
3. 星三角启动法
星三角启动法是将电动机启动时的绕组连接方式从星型切换到三角形,以降低启动时的电流,减小电动机起动时对电网的影响。
星三角启动法适用于起动转矩较大的电动机。
4. 电阻启动法
电阻启动法是通过在电动机绕组中串联电阻,降低电动机的起动电压,以减小启动时的电流和起动转矩,保护电动机和负载设备。
适用于起动转矩较大、负载设
备对起动电流敏感的电动机。
5. 变频启动法
变频启动法是通过变频器来调整电源频率,通过改变电动机的转速来改变电动机的转矩和起动特性。
变频启动法适用于需要控制电动机启动转矩和速度的场合,如需要在启动过程中缓慢加速和平稳运行的电动机。
总结来说,电动机常用的启动方法有直接启动法、自耦变压器启动法、星三角启动法、电阻启动法和变频启动法。
不同的启动方法适用于不同的电动机起动特性和负载要求。
需要根据具体的工作需求和负载情况选择最合适的启动方法,以保障电动机的正常运行和负载设备的安全运行。
电动机的启动方式与起动装置选择研究
电动机的启动方式与起动装置选择研究电动机是现代工业中最常见的一种驱动设备,它能将电能转化为机械能,广泛应用于各个领域。
电动机的启动方式以及起动装置的选择对电动机的运行效果、工作寿命以及能源利用效率等方面都具有重要影响。
因此,研究电动机的启动方式与起动装置选择是提高电动机性能的关键之一。
一、电动机的启动方式电动机的启动方式主要有直接启动、自耦启动、星三角启动、变压器启动和电阻启动等。
1. 直接启动直接启动是指将电动机直接连接到电源,通过开关控制电动机启动。
这种启动方式简单方便,但启动电流大,容易造成电网压降和电动机设备损坏。
2. 自耦启动自耦启动通过降低电动机接线装置的电压,从而降低电动机的启动电流。
这种启动方式能减少启动电流对电网压降的影响,但启动转矩较小。
3. 星三角启动星三角启动是一种较为常用的启动方式,它通过启动器将电动机的绕组连接在星形和三角形两种不同的接线方式下,实现启动和正常运行之间的切换。
这种启动方式适用于中小型电动机,能够减小启动电流,但启动转矩也较小。
4. 变压器启动变压器启动通过变压器将电动机供电电压降低到其额定电压的一部分,从而降低启动电流。
这种方式适用于大型电动机,能够减少对电网的冲击,但成本较高。
5. 电阻启动电阻启动通过在电动机转子绕组中串联电阻来降低电动机的起动电流。
这种启动方式适用于大型电动机,能够控制电动机的启动转矩和电流,但能效较低。
二、起动装置选择研究起动装置的选择对电动机的启动方式以及启动效果起着关键性作用。
根据电动机功率、负载特性以及启动要求等方面的不同,可以选择不同的起动装置。
1. 直接启动器直接启动器适用于功率较小、负载较轻的电动机。
它结构简单,操作方便,但对电网冲击较大。
2. 自耦变压器启动器自耦变压器启动器适用于负载特性较重、启动转矩要求较高的电动机。
它通过变压器来降低电动机的启动电流,保护电动机和电网免受大电流的冲击。
3. 软起动器软起动器是一种采用电子器件控制的起动装置,适用于对电动机启动过程中起动转矩和电流有严格要求的情况。
电动机的启动方式与起动器选择
电动机的启动方式与起动器选择电动机是现代社会中非常常见的一种电气设备,广泛应用于各个领域,如工业生产、交通运输、农业等。
而电动机的启动方式和起动器选择直接关系到电动机的性能和使用效果。
本文将探讨电动机的几种启动方式和对应的起动器选择,以帮助读者更好地理解和应用电动机。
一、电动机的启动方式1. 直接启动直接启动是电动机最简单、最常见的启动方式之一。
它的原理是电动机直接将电能转化为机械能,从而使电动机启动。
直接启动适用于小功率电动机,因为小功率电动机通常只需要短时间的加速和启动。
直接启动的优点是结构简单、成本低,但缺点是启动时电流峰值较大,对电网冲击较大。
2. 步进启动步进启动是通过逐渐增加电动机的起动线圈来实现电动机的启动。
可以根据电动机的负载情况和启动要求来调整步进启动的步进程度。
步进启动的优点是可以减小启动过程中的启动电流,避免电动机和电网的冲击,提高电动机的使用寿命。
但步进启动的缺点是启动过程时间较长。
3. 磁阻启动磁阻启动是通过在电动机的转子上加装磁阻器,改变电动机的转矩特性,实现电动机的启动。
磁阻启动适用于大功率电动机,因为大功率电动机的启动电流较大,需要通过加装磁阻器来实现缓慢启动,以减小对电网的冲击。
磁阻启动的优点是启动电流小,启动过程平稳,但缺点是成本较高,在实际应用中需谨慎选择。
二、起动器的选择起动器是用来控制电动机启动和停止的装置,通常由接触器、断路器和保护装置组成。
根据电动机的启动方式和使用要求,可以选择合适的起动器来实现电动机的安全启动和停止。
1. 直接启动器直接启动器适用于小功率电动机的直接启动方式。
它包括一个接触器和断路器,通过手动或自动控制,将电能直接输送给电动机,实现电动机的启动和停止。
直接启动器的优点是结构简单、使用方便,但缺点是适用范围有限。
2. 自动起动器自动起动器适用于中、大功率电动机及需要较长启动时间的电动机。
自动起动器包括接触器、断路器、保护装置和计时器等,通过设定启动时间和启动过程中的电流变化,控制电能的逐步输入,实现电动机的平稳启动和停止。
220V交流单相电机启动方式和接线图
220V交流单相电机启动方式和接线图220V交流单相电机起动方式第一种,分相起动式,如图1所示,系由辅助起动绕组来辅助启动,其起动转矩不大。
运转速率大致保持定值。
主要应用于电风扇,空调风扇电动机,洗衣机等电机。
第二种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
起动绕组不参与运行工作,而电动机以运行绕组线圈继续动作,如图2。
第三种,电机静止时离心开关是接通的,给电后起动电容参与起动工作,当转子转速达到额定值的70%至80%时离心开关便会自动跳开,起动电容完成任务,并被断开。
而运行电容串接到起动绕组参与运行工作。
这种接法一般用在空气压缩机,切割机,木工机床等负载大而不稳定的地方。
如图3。
带有离心开关的电机,如果电机不能在很短时间内启动成功,那么绕组线圈将会很快烧毁。
电容值:双值电容电机,起动电容容量大,运行电容容量小,耐压一般大于400V。
正反转控制:图4是带正反转开关的接线图,通常这种电机的起动绕组与运行绕组的电阻值是一样的,就是说电机的起动绕组与运行绕组是线径与线圈数完全一致的。
一般洗衣机用得到这种电机。
这种正反转控制方法简单,不用复杂的转换开关。
图1,图2,图3,正反转控制,只需将1-2线对调或3-4线对调即可完成逆转。
对于图1,图2,图3,的起动与运行绕组的判断,通常起动绕组比运行绕组直流电阻大很多,用万用表可测出。
一般运行绕组直流电阻为几欧姆,而起动绕组的直流电阻为十几欧姆到几十欧姆。
图1 电容运转型接线电路图2 电容起动型接线电路图3 电容启动运转型接线电路(双值电容器)图4 开关控制正反转接线图5 交流220v电动机接线图。
机电测试题及答案
机电测试题及答案一、选择题1. 电动机的启动方式主要有哪几种?A. 直接启动B. 星-三角形启动C. 自耦变压器启动D. 所有以上答案:D2. 下列哪种传感器不属于机电一体化系统中的传感器?A. 温度传感器B. 压力传感器C. 光敏传感器D. 声音传感器答案:D二、填空题1. 机械传动中,_________是将旋转运动转换为直线运动的机构。
答案:滑块机构2. 伺服电机的控制方式主要有_________和_________两种。
答案:开环控制;闭环控制三、简答题1. 简述什么是机电一体化系统,并举例说明其应用。
答案:机电一体化系统是指将机械技术、电子技术、计算机技术等多种技术有机结合在一起的系统,它能够实现对机械设备的精确控制和智能化管理。
例如,数控机床就是一种典型的机电一体化系统,它通过计算机控制实现对机床的精确操作。
2. 描述一下什么是PLC,并说明其在工业自动化中的作用。
答案:PLC(Programmable Logic Controller)即可编程逻辑控制器,是一种用于工业自动化控制的电子设备。
它能够接收输入信号,执行用户编写的控制程序,然后输出控制信号,以实现对机械设备的自动控制。
在工业自动化中,PLC用于实现生产线的自动化控制,提高生产效率和产品质量。
四、计算题1. 已知一个直流电机的额定功率为10kW,额定转速为1500rpm,求其额定转矩。
答案:首先,我们需要使用公式 \( T = \frac{9550 \times P}{n} \) 来计算转矩,其中 \( T \) 是转矩(Nm),\( P \) 是功率(kW),\( n \) 是转速(rpm)。
将已知数值代入公式,我们得到:\[ T = \frac{9550 \times 10}{1500} = 6.366 \text{Nm} \]五、论述题1. 论述现代机电一体化技术在智能制造中的应用及其重要性。
答案:现代机电一体化技术在智能制造中的应用极为广泛,它通过集成传感器、执行器、控制器等设备,实现了对生产过程的实时监控和精确控制。
电机的五种启动方式
电机的五种启动方式
电机的五种启动方式包括:
1.全压直接启动:在电网容量和负载两方面都允许全压直接启动的情况下,可
以考虑采用全压直接启动。
这种方式操作控制方便,维护简单,且成本较低,主要用于小功率电动机的启动。
2.自耦减压启动:利用自耦变压器的多抽头减压,既能适应不同负载启动的需
要,又能得到更大的启动转矩,是一种经常被用来启动较大容量电动机的减压启动方式。
3.Y-Δ启动:对于正常运行的定子绕组为三角形接法的鼠笼式异步电动机来说,
如果在启动时将定子绕组接成星形,待启动完毕后再接成三角形,就可以降低启动电流,减轻对电网的冲击。
这样的启动方式称为星三角减压启动,或简称为星三角启动(Y-Δ 启动)。
4.软启动器:利用可控硅的移相调压原理来实现电动机的调压启动,主要用于
电动机的启动控制,启动效果好但成本较高。
5.变频器:是现代电动机控制领域技术含量最高、控制功能最全、控制效果最
好的电机控制装置,它通过改变电网的频率来调节电动机的转速和转矩。
在实际应用中,应根据电机的具体参数、使用环境、负载大小和需求来选择合适的启动方式。
电机星三角启动、软启动与变频
电机软启动与变频软起动器实际上是一个晶闸管交流调压器。
改变晶闸管的触发角,就可调节晶闸管调压电路的输出电压。
在整个起动过程中,软起动器的输出是一个平滑的升压过程(且可具有限流功能),直到晶闸管全导通,电机在额定电压下工作。
“软启动”不仅能够大幅度减轻传动系统本身所受到的启动冲击,延长关键零部件的使用寿命,同时还能大大缩短电动机启动电流的冲击时间,减小对电动机的热冲击负荷及对电网的影响,从而节约电能并延长电动机的工作寿命。
此外,通过使用“软启动”技术,在电动机的选型上将可以选用容量较小的电动机,因而也能够减少不必要的设备投资运用串接于电源与被控电机之间的软起动器,控制其内部晶闸管的导通角,使电机输入电压从零以预设函数关系逐渐上升,直至起动结束,赋予电机全电压,即为软起动,在软起动过程中,电机起动转矩逐渐增加,转速也逐渐增加。
软起动一般有下面几种起动方式。
(1)斜坡升压软起动。
这种起动方式最简单,不具备电流闭环控制,仅调整晶闸管导通角,使之与时间成一定函数关系增加。
其缺点是,由于不限流,在电机起动过程中,有时要产生较大的冲击电流使晶闸管损坏,对电网影响较大,实际很少应用。
(2)斜坡恒流软起动。
这种起动方式是在电动机起动的初始阶段起动电流逐渐增加,当电流达到预先所设定的值后保持恒定(t1至t2阶段),直至起动完毕。
起动过程中,电流上升变化的速率是可以根据电动机负载调整设定。
电流上升速率大,则起动转矩大,起动时间短。
该起动方式是应用最多的起动方式,尤其适用于风机、泵类负载的起动。
(3)阶跃起动。
开机,即以最短时间,使起动电流迅速达到设定值,即为阶跃起动。
通过调节起动电流设定值,可以达到快速起动效果。
(4)脉冲冲击起动。
在起动开始阶段,让晶闸管在级短时间内,以较大电流导通一段时间后回落,再按原设定值线性上升,连入恒流起动。
电机的启动分全压启动和降压启动笼型电机的降压启动有电阻降压、自耦降压,星-三角转换、无触点降压启动。
三相异步电动机的6种启动方法选择与比较
三相异步电动机的6种启动方法选择与比较1、直接启动直接启动的优点是所需设备少,启动方式简单,成本低。
电动机直接启动的电流理论上来说,只要向电动机提供电源的线路和变压器容是正常运行的 5 倍左右,量年夜于电动机容量的 5 倍以上的,都可以直接启动。
这一要求关于小容量的电动机容易实现,所以小容量的电机绝大部分都是直接启动的,不需要降压启动。
关于年夜容量的电动机来说,一方面是提供电源的线路和变压器容量很难满足电动机直接启动的条件,另一方面强年夜的启动电流冲击电网和电动机,影响电动机的使用寿命,对电网不利,所以年夜容量的电动机和不能直接启动的电动机都要采用降压启动。
直接启动可掖棵胶木开关、铁壳开关、空气开关(断路器)等实现电动机的近距离操作、点动控制,速度控制、正反转控制等,也可掖棵限位开关、交流接触器、时间继电器等实现电动机的远距离操作、点动控制、速度控制、正反转控制、自动控制等。
2、用自偶变压器降压启动采用自耦变压器降压启动,电动机的启动电流及启动转矩与其端电压的平方成比例降低,相同的启动电流的情况下能获得较大的启动转。
如启动电压降至额定电压的65%,其启动电流为全压启动电流的42%,启动转矩为全压启动转矩的42%。
自耦变压器降压启动的优点是可以直接人工操作控制,也可掖棵交流接触器自动控制,经久耐用,维护成本低,适合所有的空载、轻载启动异步电动机使用,在生产实践中得到广泛应用。
缺陷是人工操作要配置比较贵的自偶变压器箱(自偶补偿器箱),自动控制要配置自偶变压器、交流接触器等启动设备和元件。
3、Y-△降压启动定子绕组为△连接的电动机,启动时接成Y,速度接近额定转速时转为△运行,采用这种方式启动时,每相定子绕组降低到电源电压的58%,启动电流为直接启动时的33%,启动转矩为直接启动时的33%。
启动电流小,启动转矩小。
Y-△降压启动的优点是不需要添置启动设备,有启动开关或交流接触器等控制设备就可以实现,缺陷是只能用于△连接的电动机,x大型异步电机不能重载启动。
电机启动方式及运行注意事项
• (1)电机一般设计在海拔不超过1000m,环境空气温度 不超过40℃的地点运行。 • (2)电机在额外电压变化±5%以内时,可以按额定定率 连续运行。如果电压变动超过±5%时,则应按制造厂的规 定或试验结果限制负载。 • (3)运行中电机的温升应遵照制造厂的规定,缺乏此相 资料时,可参照表1-1的规定。 • (4)对短时定额的电机,其各部分的温升限值允许较表12中规定的数值提高10K。 • (5)滑动轴承的容许温度为80℃(油温不高于65℃时)。 滚动轴承的容许温度为95℃(环境温度不超过40℃)。 • 7、电机的允许振动值(双振幅)见表1-2
二、电机在运行中的注意事项
• 起动前操作人员检查: • 1、电动机及所带设备上确认无人工作、电机机身 干净整洁、周围区域内无杂物(编织袋、塑料 袋等易堵住电机风道的物品)。 • 2、有条件的尽量盘动联轴器,确认电机与所带设 备转动无卡涩现象。 • 3、将现场控制电机的主令控制器(开关)置于 “运行”位置。 • 4、对于有DCS控制的泵机,现场需要开机时,开 机前要与DCS中控室联系,要求DCS解除锁停, 得到中控室确认后方可启动电机。
• 4、变频器 变频器是现代电动机控制领域技术含量最高,控 制功能最全、控制效果最好的电机控制装置,它 通过改变电网的频率来调节电动机的转速和转矩。 因为涉及到电力电子技术,微机技术,因此成本 高,对维护技术人员的要求也高,因此主要用在 需要调速并且对速度控制要求高的领域。
各种启动方式的比较
• 5、电动机原则上不允许带负荷起动,特别是风机、 水泵等重载设备,虽然有些电机带负载也能启动, 但是启动时间长、启动电流大,容易引起电机保 护器误动作,因此操作人员起动此类设备时一定 要将负载脱开。(如启动水泵要先将出口阀门关 闭,并打开进口阀门。将电机在轻载状态下启动 后,再平稳的打开出口阀门,同时观测运行电流 和转速声音,监视起动过程,发现异常立即停止 运行,并通知维修人员进行检查)。
7.5kw三相异步电动机三角形接法启动电流
一、概述7.5kw三相异步电动机是工业生产中常见的一种电动机类型,其启动过程中会有启动电流的问题。
本文将围绕7.5kw三相异步电动机的三角形接法启动电流展开讨论。
二、三相异步电动机启动方式1. 直接启动方式直接启动是最简单的启动方式,将电动机的三相线直接接入电源,通过启动按键来启动电动机。
但是直接启动方式会造成很大的启动电流冲击,对电网和电动机本身都会产生一定的影响。
2. 星角启动方式星角启动是通过切换电动机端子的接线方式来减小启动电流,先将电动机三相线接成星形,启动后再切换为三角形接法。
这种启动方式可以减小启动电流,但是切换方式相对复杂。
三、三角形接法启动电流计算根据电动机的额定功率和额定电压可以计算出电动机的额定电流,一般情况下启动电流会是额定电流的数倍。
对于3相异步电动机启动电流的计算一般使用下列公式:I = (7.5 × 1000 × 4) / (1.73 × 380) ≈ 40 A四、启动电流对电网和电机的影响1. 对电网的影响启动电流大会对电网产生较大的冲击,可能引起瞬时过载甚至跳闸,对电网运行造成不利影响。
2. 对电机的影响大电流通过电动机时会导致电动机绕组温升迅速增加,加速绕组老化,造成电机寿命缩短,同时也会给电机的其它零部件带来一定的冲击负荷。
长期以来,启动电流大会对电机的正常运行产生负面影响。
五、减小启动电流的方法1. 使用软启动器软启动器通过控制电动机的电压和频率来逐步提升电动机的转速,从而减小启动电流。
软启动器简单易用,对电网和电机都有保护作用。
2. 使用变频器变频器是一种能够根据需要调节电动机转速的设备,通过调节电压和频率使得电动机在启动时可以减小启动电流。
变频器的使用不仅可以减小启动电流,还可以根据实际需要调节电动机的转速,提高设备的运行效率。
六、结论在实际生产中,7.5kw三相异步电动机的三角形接法启动电流是一个需要重视的问题,对于减小启动电流可以通过软启动器和变频器等设备进行有效控制,既可以保护电网,又可以延长电机的使用寿命,对于提高生产效率具有积极的意义。
星角启动工作原理
星角启动工作原理
星角启动是一种常见的电动机启动方式,其工作原理主要涉及以下几个方面:
1. 直接启动:星角启动最基本的原理是利用电动机的定子绕组与转子短接的作用来产生高起动转矩。
在启动时,电动机的定子绕组通过星形连接器与电源相连,电动机的转子则处于短接状态。
当电源加电后,电流会经过定子绕组流入转子,由于转子的高电阻特性,电流的通过会使得定子产生旋转磁场。
这个旋转磁场会与转子短接产生的感应磁场相互作用,产生转矩,从而使电动机启动。
2. 星角切换:在星角启动过程中,电动机起始时处于星形连接状态,此时电动机转子的每相绕组被并联连接。
随着电动机的转速逐渐增加,当达到一定程度后,需要切换为三角形连接状态。
切换的目的是为了降低电动机的电流,提高启动过程中的效率。
切换方式一般通过空气开关或电磁开关来实现,将定子绕组重新连接为三角形结构。
3. 启动电流和转矩:星角启动相比其他启动方式有较大的启动电流和起动转矩。
在启动过程中,由于定子与转子之间存在感应作用,电流的通过使得电动机的转子受到转矩的作用,从而产生启动转矩。
启动过程中的电流较大主要是由于定子与转子之间的高电阻特性,当转速达到一定程度后,电动机转矩逐渐减小,电流也开始下降。
综上所述,星角启动的工作原理是通过电动机的定子绕组与转
子的短接状态来产生启动转矩,然后通过星角切换,将电动机连接为三角形结构以降低启动电流。
这种启动方式适用于一些功率较小的电动机,但也存在一定的劣势,如启动冲击大、起动时间长等。
电动机控制线路中的典型环节包括多选题
电动机控制线路一、概述电动机控制线路是指用于控制电动机运行的电路系统。
它包括多个典型环节,每个环节都起着重要的作用。
本文将对电动机控制线路的典型环节进行详细探讨。
二、典型环节电动机控制线路的典型环节包括以下几个方面:1. 电源供应电源供应是电动机控制线路的基础环节。
电动机通常需要使用交流或直流电源供电。
在电动机控制线路中,需要选择合适的电源类型和电压等级,以满足电动机的运行要求。
2. 电动机保护电动机保护是确保电动机正常运行和延长电动机寿命的重要环节。
常见的电动机保护措施包括过载保护、短路保护、过压保护、欠压保护等。
这些保护装置可以监测电动机的运行状态,并在出现异常情况时采取相应的措施,以防止电动机损坏。
3. 电动机启动电动机启动是将电动机从停止状态转变为运行状态的过程。
常见的电动机启动方式包括直接启动、自耦变压器启动、星三角启动和变频启动等。
不同的启动方式适用于不同类型的电动机和不同的运行要求。
4. 电动机速度调节电动机速度调节是根据实际需求改变电动机转速的过程。
常见的电动机速度调节方式包括调节电源电压、调节电动机绕组接线、采用变频器等。
通过调节电动机转速,可以满足不同的负载要求和工作条件。
5. 电动机制动电动机制动是将电动机从运行状态转变为停止状态的过程。
常见的电动机制动方式包括电阻制动、反接制动和回馈制动等。
不同的制动方式适用于不同类型的电动机和不同的制动要求。
6. 电动机遥控电动机遥控是通过信号传输设备对电动机进行遥控操作的过程。
常见的电动机遥控方式包括有线遥控和无线遥控。
通过遥控操作,可以方便地控制电动机的启停、转向和转速等。
三、电动机控制线路的设计要点设计电动机控制线路时,需要考虑以下几个要点:1. 选择合适的电动机控制器根据电动机的类型和运行要求,选择合适的电动机控制器。
电动机控制器是电动机控制线路的核心部件,它能够实现对电动机的启停、速度调节和保护等功能。
2. 合理布置电动机控制线路电动机控制线路的布置应符合安全、可靠和美观的原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相鼠笼式异步电动机使用自耦减压启动器的接线
画出接线原理图和各主要元件的作用
主要元件及作用:
(1)具有两组抽头的自耦变压器。供启动阶段降压用。
(2)欠压脱扣器。当失压或欠压时,使自耦减压启动器退出运行(防再次来电时形成全压启动)。
取A相电压经同步变压器降压后,进入RC移相电路形成滞后30度的正弦电压,由三级管将正弦波形成方波,再经光电隔离、反相及输出电路,在输出端得到同步脉冲信号。
4.6 零电流检测电路
不论是电压型还是电流型控制的无环流交-交变频器,正反组变流器的换向都必须处于零电流状态,此时两组变流器的触发脉冲都被封锁。因此,实际的零电流一定要准确可靠的检测出来,这关系到换相的死区长短,以及换相的可靠性。
2 传统的起动方法
2.1 定子串电抗器起动
对于鼠笼式异步电机一般采用定子回路串电抗器分级起动,绕线式异步电机则采用转子回路串电抗器起动。定子边串电抗器起动,即增加定子边电抗值,可理解为降低定子实际所加电压,其目的是减少起动电流。此起动方式属降压起动,缺点是起动转矩随定子电压的降低而成平方关系下降,外串电阻中有较大的功率损耗。又由于是分级起动,起动特性不平滑。
2.2 星-三角起动
起动时定子绕组星形连接,起动后三角形连接。在电动机绕组星形连接时,电动机电流仅为三角形连接的1/3,遗憾的是电动机的转矩也同样降低到三角形接线时的1/3,为了使电动机在额定转速时达到它的额定转矩,在经历了预先设定的时间后,又从星形接线转换到三角形接线,在转换过程中会出现二次冲击电流。
软起动的优点是起动特性曲线好,使晶闸管的导通角从零度开始,逐渐前移,电机的端电压从零开始逐渐上升,直至达到额定电压,起动电流从零线性上升至设定值,从而满足起动转矩的要求,保证起成功。表1为软起动同传统起动对照表。
4 重载起动方式(交-交变频起动)
4.1 交-交变频工作原理
尽管软起动具有起动平滑,起动时间等参数可调的特性,具有传统起动方法无法比拟的优越性,是传统降压起动器的理想换代产品。但可控硅调压方式的软起动器控制感应电动机,在减小电压的同时,供电频率仍为工频,使得其功率因数低,无功功率增加,这决定了其只能应用于轻载场合,对于重载起动就勉为其难了。然而在很多场合下,不能保证负载为轻载起动,如球磨机、破碎机、空气压缩机、风机等,这就使得我们想在降低电压的同时,能够减小供电电压频率,即保持V/F不变,保证恒力矩起动,因而变频器变频起动无疑是最好的起动设备,但如果把变频器仅作起动,不调速,资金浪费很大,特别是高压大容量的通用变频器价格就更为昂贵,且感应电动机的重载起动只是短时间的过程,故寻求一种感应电机的重载安全起动方法是很有必要的。纵上述几种起动方式可得出采用交-交变频器来实现重载起动。因为交-交变频没有中间直流环节,仅用一次变换就实现了变频,所以效率较高,而且大功率交流电机调速系统所用的变频器也主要是交-交变频来完成的。
2.3 自耦变压器起动
当电动机起动时,电动机的定子通过自耦变压器接到三相电源上。当电机转速升高到一定值时,自耦变压器被切除,电动机定子直接接到电源上,电动机进入正常运行状态。同直接起动时相比,当电压降到W2/W1倍时,起动电流和起动转矩降到(W2/W1)2倍(W2/W1为自耦变压器的变比)。这种起动方式的优点是起动时定子电压的大小可调。比起定子串电抗起动,当限定的起动电流相同时,起动转矩损失较少。要使变压器的容量和耐压水平提高,将使得变压器的体积增大,成本高,且不允许频繁起动,同样也不能带重负载起动。
1 引言
三相交流电动机从发明以来,经历了100多年的历程,在这漫长的岁月里,它为奠定与发展这项经典的传动技术树立了丰碑,。又由于其具有结构简单、运行可靠、维护方便、价格低廉,而广泛作用于电力拖动生产机械的动力,在机械、化工、纺织和石化等行业有大量的应用。然而,电动机的起动特性却一直举步维艰。这是因为电动机在恒压下直接起动,其起动电流约为额定电流的4-7倍,其转速要在很短时间内从零升至额定转速,会在起动过程中产生冲击,很容易使电力拖动对象的传动机构等造成严重磨损甚至损坏。在起动瞬间大电流的冲击下,将引起电网电压降低,影响到电网内其它设备的正常运行。同时由于电压降低,电动机本身起动也难以完成,造成电机堵转,严重时,可能烧坏电动机。因而如何减少异步电动机起动瞬间的大电流的冲击,是电动机运行中的首要问题。为此必须设法改善电动机的起动方法,使达到电动机的平滑无冲击的起动,于是各种限流起动方法也就应运而生。
.4 频敏变阻器起动
对于绕线式异步电机来说,如果仅仅是为了限制起动电流、增大起动转矩,则一般采用转子回路串频敏变阻器起动方式。但此起动方式在频繁起动下,易发生温升,且结构复杂,不常用。
由此可知上述几种起动方式的共同特点是控制电路简单,起动转矩基本固定不可调,起动中都存在二次冲击电流,对负载机械有冲击转矩,且受电网电压波动的影响,一旦出现电网电压下降,会造成电机堵转,起动困难,且上述几种起动方法,在停机时都是瞬间停机,遇到负载较重时会造成剧烈的机械冲击。
设要得到的正弦波输出电压为
(2)
则比较式(1)和式(2)可得(3)
(3)
式中γ称为输出电压比,
因此 (4)
上式就是用余弦交点法求变流电路α角的基本公式。
式(4)可以用模拟电路来实现,但线路复杂,且不易实现准确的控制,所以采用微机来实现上述运算。可把事先计算好的数据存入存储器中,运行时按照所存的数据进行实时控制。为了用计算机实现实时控制,必须具备三相低频信号、同步信号、零电流检测三个基本条件。
检测方法 检测负载电流的方法常用的有两种:LEM电流传感器和检测和晶闸管端电压法。用LEM电流传感器检测负载电流,可将主电路与控制电路完全隔离,且检测电路结构简单。但由于换相等原因,负载电流含有丰富的电流谐波,给电流检测、尤其是过零点检测带来了一定困难。LEM传感器输出信号经滤波、整形后,会产生伪过零点,使控制系统出现误动作。由于晶闸管导通时其端电压为管压降,近似等于零,而阻断时端电压等于其所接交流电压(电网线电压或相电压)。同时检测变频器主电路中每一相上的六个晶闸管,如有一管导通说明此相有电流。如六管全关断则说明此相无电流,也就是电流过零点。这种方法直接检测零电流,不需要对电流波形进行整形,其输出信号完全对应着电流波形中的零电流,使检测电路更加准确、可靠。图4为零电流检测电路。
4.4 三相低频信号的产生原理
用计算机产生三相低频信号,必须首先将要产生的低频信号进行数字化。这不仅在幅值上数字化,在时间上也要数字化。在时间上,以一度为单位(分辨率已经足够),将低频信号的一个周期分成360等份。根据需要的频率求出低频信号一度的时间,以次作为定时时间,这样每隔一度,便输出一次低频信号的对应值,每360循环一次,构成低频的周期。其它两相输出和上面一样,只是输出的对应数值不一样,正好相差120、240度。这样就构成了互差1200的低频信号。由于准梯形波具有较高的基波幅值,因此这里采用它作为低频参考信号,它是限幅的正弦波,当等于600时就已经到达了最大值。其目的是提高直流电压的利用率。
3 软起动
所谓软起动是指装置输出电压按一定规律上升,使被控电动机的电压由零升到全电压,转速相应的由零平滑加速到额定转速的过程。它是电力电子技术与自动化控制技术的综合,是将强电和弱电结合起来的控制技术。在软起动器中三相电源与被控电机之间串入三相反并联晶闸管,采用反并联接线的晶闸管接在电动机的每相,利用晶闸管移相控制原理,控制其内部晶闸管的导通角,电动机起动时,用调节6个晶闸管的不完全导通来控制电动机的供电电源。换言之,起动时只有三相正弦波形的一部分向电动机供电。
由于采用无环流控制方式,有换流死区,所以输出波形有一点畸变。可以采用快速的,比较好的零电流检测方法来式将逐渐被可控硅软起动所取代,然而软起动却不能很好解决感应电机的重载起动,因而给出了一种实用的交-交变频起动方式来解决这个问题。由于目前采用交-交变频技术成本相对过高,同时由于国内的研究开发相对滞后,致使该技术还主要限于大型矿井的关键设备。但随着这一技术相对成本的不断降低,人们节能意识的不断深入,该技术在矿井中的应用必将迎来一个全新的时期,同时在应用范围上也将扩大,并有待开发和完善。
c. 其它两相低频信号分别滞后120、240度的同样波形,可以完全使用同样的表格。
d. 为了得到复值可变的低频信号,在低频数字信号输出之前,应乘以调制系数,调制系数的范围是0~1。
e. 1度对应的时间是由所需输出频率决定的,将其转换为定时时间常数后,存放于TIME的单元中,它就是控制交-交变频器输出频率的变量。
5 出现的问题及解决方法
交-交变频电路的输出电压是由若干段电网电压拼接而成的。当输出频率升高时,输出电压一个周期内电网电压的段数就减少,所含谐波分量就要增加。这种输出电压的波形畸变是限制输出频率提高的主要因数之一。所以最高输出频率不高于电网频率的1/3-1/2。但由于我们主要用于起动,一旦速度达到了1/3全速,可以控制相应的晶闸管,使它们切换到软起动,软起动方式仍由本装置实现。在软起动的作用下完成起动结束。因为此时电压相对较小,切换的过程中,不会有很大的冲击电流。
4.5 同步信号电路
采用微机定时方式进行交-交变频的移相控制时,需要给微机提供各晶闸管控制角起时定时时刻的方波信号,使移相控制装置向晶闸管发出的触发脉冲信号在电源电压的每个周期内均能重复出现。因此,这一方波信号的频率应与电源频率相同。所以,一般将此方波信号称为同步信号。此外,同步信号的另一作用是微机利用它的状态来进行判相定管,决定是某相的上管或下管工作与否。
交-交变频的工作原理是让两组交流电路按一定频率交替工作,就可以给负载输出该频率的交流电。改变两组变流电路的切换频率,就可以改变输出频率;改变变流电路工作时的控制角α,就可以改变交流输出电压的幅值。
如果让α角不是固定值,在半个周期内让正组变流电路P的α角按正弦规律从900逐渐减小到00,然后在逐渐增大到900。那么,正组整流电路在每个控制间隔内的平均输出电压按正弦规律从零逐渐增至最大,在逐渐减小到零。在另外半个周期内,对负组变流器N进行同样的控制,就可以得到接近正弦波的输出电压。和可控硅整流电路(软起动)一样,交-交变频电路也属于电网换相。