8下课本ch2-3-尺规作图[58页]
八年级数学下册19.3 尺规作图(一)华东师大版
19.3 尺规作图(一)学习目标:1、 画一条线段等于已知线段2、 画一个角等于已知角3、 画角平分线重点与难点:1、 画一个角等于已知角2、 画角平分线教学过程:1、画一条线段等于已知线段试一试如图24.4.1,MN 为已知线段,用直尺和圆规准确地画一条线段AC 与MN 相等。
步骤:1、 画射线AB ,2、 然后用圆规量出线段MN 的长,再在射线AB 上截取AC =MN ,线段AC 就是所要画的线段.2、画一个角等于已知角试一试如图所示,∠AOB 为已知角,试按下列步骤用圆规和直尺准确地画∠A ′O ′B ′等于∠AOB .步骤:1、 画射线O ′A ′.2、 以点O 为圆心,以适当长为半径画弧,交OA 于C ,交OB 于D .3、 以点O ′为圆心,以OC 长为半径画弧,交O ′A ′于C ′.4、 以点C ′为圆心,以CD 长为半径画弧,交前一条弧于D ′.5、 经过点D ′画射线O ′B ′.∠A ′O ′B ′就是所要画的角.BO A3、画角平分线A做一做 利用直尺和圆规把一个角二等分.已知:∠AOB ,图24.4.1求作:射线OC ,使∠AOC =∠BOC步骤:1、 在OA 和OB 上,分别截取OD 、OE ,使OD =OE O B2、 分别以D 、E 为圆心,大于21DE 的长为半径作弧,在∠AOB 内,两弧交于点C 3、 作射线OC ,OC 就是所求的射线。
练 习如图,平分∠A 。
(不写画法,保留作图痕迹)A综合练习A 组1、已知知线段a 和b ,如下图,求作一线段,使它的长度等于a +b.ab2、已知线段a 和b ,如下图,求作一线段,使它的长度等于a-b.ab3、已知线段AB 和CD ,如下图,求作一线段,使它的长度等于AB +2CD.4、如图,已知∠A 、∠B ,求作一个角,使它等于∠A +∠B.5、试把如图所示的角四等分.(首先把∠O 二等分,再把得到的两部分分别再二等分即可),请完成操作并写出画法.O5、如图,已知∠A ,试画∠B =21∠A.(不写画法,保留作图痕迹)(第5题)6、画出图中三角形三个内角的角平分线.(不写画法,保留作图痕迹)(第6题)7、请你利用直尺和圆规分别画出满足图24.4.4和图24.4.5中条件的三角形ABC.(1)已知两边及夹角; (2)已知两角及夹边.(1)‘ (2)B组完成下列画图,并写出画法.1、一条线段,使其等于AB-2CD.(第1题)2、画一个角,使其等于∠A-2∠B.(第2题)3、画一个等腰三角形,使其腰长等于AB,底边长等于BC.(第3题)4、如图,已知∠α、∠β及线段a,求作: △ABC,使AC=a, ∠BAC=∠α,∠ABC=∠β,(不写作法)αβa。
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图.1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!. 五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线 4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点. ⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12M M ,为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】设半径为1..我们的任务就是做出这个长度..1的长度自然就出来了. 【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,角形..) ⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ; ⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积; ⑵ 这样的直线有多少条?请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄NM P CB Al金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由. ⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△,∴ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△.又∵点D 为边AB 的黄金分割点,∴AD BD AB AD=.∴ADC BDCABC ADCS S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DECFCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△.∴ADCFGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法;M (答案图1)M (答案图2)A CB 图1 A D B 图2CAD B图3C F E 图4画法一:如答图1,取EF中点G,再过点G作一直线分别交AB,DC于M,N点,则直线MN就是ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM NE∥交AB于点M,连接MN,则直线MN就是ABCD的黄金分割线.。
初二数学尺规作图1[人教版](PPT)5-3
在几何里,把限定用直尺和圆规 来画图,称为尺规作图.最基本,最常用 的尺规作图,通常称基本作图.
☆其中,直尺是没有刻度的. ☆一些复杂的尺规作图都是由基本作图组成的.
以前学过的“作一条线段等于已知线段”,就 是一种基本作图. ☆下面介绍几种基本作图.
水、奶油、糖、果汁等物混合搅拌,在低温下冻成的砖形硬块。 【冰锥】īī(~儿)名雪后檐头滴水凝成锥形的冰。也叫冰锥子、冰柱、冰溜()。 【并】ī 名山西太原的别称。 【兵】ī①兵器:短~相接|秣马厉~。②名军人;军队:当~|~种|骑~。③名军队中的最基层成员:官~一致。④指军事或战 争:~法|~书。;中国保藏中心 微生物资源中心 保藏中心 https:/// 中国保藏中心 微生物资源中心 保藏中心 ;军队哗变:发动~。 【兵不血刃】ī兵器上面没有沾血,指未经交锋而取得胜利。 【兵不厌诈】ī用兵打仗可以使用欺诈的办法迷惑敌人(语本《韩非子?难一》:“战阵之间,不 厌诈伪。”不厌:不排斥;不以为非)。 【兵车】ī名①古代作战用的车辆。②指运载军队的列车、汽车等。 【兵船】ī名旧时指军舰。 【兵丁】īī名士兵的 旧称。 【兵法】ī名古代指用兵作战的策略和方法:熟谙~。 【兵符】ī名①古代调兵遣将的符节。②兵书。 【兵戈】ī〈书〉名兵器,借指战争:不动~|~ 四起。 【兵革】ī〈书〉名兵器和甲胄,借指战争:~未息。 【兵工】ī名军工。 【兵工厂】ī名制造武器装备的工厂。 【兵贵神速】ī用兵以行动特别迅速最 为重要(语出《三国志?魏书?郭嘉传》)。 【兵荒马乱】ī形容战时社会动荡不安的景象。 【兵火】ī名战火,指战争:~连天|书稿毁于~。 【兵家】ī名① 古代研究军事理论、从事军事活动的学派。主要代表人物有孙武、孙膑等。②用兵的人:胜败乃~常事|徐州历来为~必争之地。 【兵舰】ī名军舰。 【兵 谏】ī动用武力胁迫君主或当权者接受规劝:发动~。 【兵来将挡,水来土掩】ī,比喻不管对方使用什么计策、手段,都有对付办法。也比喻针对具体情况 采取相应对策。 【兵力】ī名军队的实力,包括人员和武器装备等:~雄厚|集中~。 【兵临城下】ī指大军压境,城被围困。形容形势危急。 【兵乱】ī名由 战争造成的混乱局面;兵灾:屡遭~。 【兵马俑】ī名古代用来殉葬的兵马形象的陶俑。 【兵痞】ī名指在旧军队中长期当兵、品质恶劣、为非作歹的人。 【兵棋】ī名特制的军队标号图型和人员、兵器、地物等模型,在沙盘和地图上可以像棋子一样摆放或移动,供指挥员研究作战和训练等情况时使用。 【兵器】 ī名武器?。 【兵强马壮】形容军队实力强,富有战斗力。 【兵权】ī名军权。 【兵戎】ī〈书〉名指武器、军队:~相见(武装冲突的婉辞)。 【兵士】ī名士 兵。 【兵书】ī名讲兵法的书。 【兵团】ī名①军队的一级组织,下辖几个军或师。②泛指团以上的部队:主力~|地方~。
尺规作图资料(完整)
1:尺规作出正三角形2尺规作出正方形3:尺规作出正六边形4:尺规作出正十边形5:尺规作出正十六边形6:尺规作出正十七边形7:尺规作出正十五边形8:尺规作出正五边形9:单尺作出正八边形10:单尺作出正方形11:单尺作出正六边形12:单尺作出正五边形13:单规找出两点间的三等分点14:单规找出两点间的中点15:单规作出等边三角形16:单规作出正八边形17:单规作出正方形18:单规作出正六边形19:单规作出正十边形20:单规作出正十二边形21:单规作出正十六边形22:单规作出正十五边形23单规作出正五边形24:只有两个刻度的直尺作出正三角形25:只有两个刻度的直尺作出正方形初中数学尺规作图专题讲解张远波尺规作图是起源于古希腊的数学课题.只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题。
平面几何作图,限制只能用直尺、圆规.在历史上最先明确提出尺规限制的是伊诺皮迪斯。
他发现以下作图法:在已知直线的已知点上作一角与已知角相等。
这件事的重要性并不在于这个角的实际作出,而是在尺规的限制下从理论上去解决这个问题.在这以前,许多作图题是不限工具的.伊诺皮迪斯以后,尺规的限制逐渐成为一种公约,最后总结在《几何原本》之中.初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
北师大版八年级下册数学:尺规作图
(2)连接CD,则直线CD即是线段AB的 垂直平分线,如图2-5-25-4所示.
知识要点梳理
5. 过一点作已知直线的垂线: 作法步骤: (1)点(O)在直线(l)外 ①以点O为圆心,以大于点到直线l的 距离为半径作弧,交直线l于A,B两点; ②分别以点A,B为圆心,以大于 AB的长为半径作 弧,在AB的上方或下方交于点C; ③连接C,O,则直线CO即是线段AB的垂线,如图25-25-5所示.
知识要点梳理
请同学们小组合作分辨学案中第2题中各图各自属 于哪种基本作图?
知识要点梳理
请小组成员之间接龙式地出一道作图题(五种基本 作图中一种),在组员完成后,小组长组织组内评价总 结,最后小组派代表汇报。
知识要点梳理
1. 作一条线段等于已知线段: 作法步骤:(1)作一条射线AC;(2)在射线上截取 和已知线段a一样长的线段AB,如图2-5-25-1所示. Nhomakorabea识要点梳理
2. 作一个角等于已知角: 作法步骤:(1)作射线O′A′;(2)以O为圆心,以任 意长为半径画弧,交OA于点C,交OB于点D;(3)以 O′为圆心,以OC的长为半径画弧,交O′A′于点C′;(4) 以点C′为圆心,以CD的长为半径画弧,交前弧于点D′; (5)过D′作射线O′B′,则∠A′O′B′即是所求作 的角,如图2-5-25-2所示.
法的复杂作图。 解此类题,首先利用几何图形的性质把复杂作图拆
解成基本作图,然后利用基本作图的方法逐步完成复杂 作图。
评价小结
通过本节课的学习,你收获了什么?合作愉快吗? 还有什么困惑吗?
布置作业:
请同学们课后完成 学案中3道作业题。
布置作业
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种。
限用直尺和圆规来完成的作图方法,叫做尺规作图法。
最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法。
用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点。
一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题。
历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题"。
直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意。
数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形。
初中尺规作图详细讲解含图
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最着名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问径1题.若干着名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个着名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多着名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形==.2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段2.做一角等于已知角3.做一角的角平分线4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点.⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点.⑷ 分别以12M M ,为圆心,以r 为半径作圆.∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】 设半径为1..我们的任务就是做出这个长度..1的直的长度自然就出来了.【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,腰为..)⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形作法:⑴ 作线段12MD a =; ⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙;⑷ 过D 作DE MN ⊥,交O ⊙于E ,⑸ 以DE 为一边作正方形DEFG .正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M .1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ;⑵ 以AD 为一边作正三角形'ADD ;⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧).⑸ 连接AB 、AC 、BC 得ABC ∆.ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =);⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点.连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上.⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E .⑸ 过G 作''GD G D ∥交BC 于D .则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ;⑶ 过P 、N 作直线l .直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条?请你用语言描述出这样的直线.【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BC AB AC=,那么称点C 为线段AB 的黄金分割点. 某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S S S S =,那么称直线l 为该图形的黄金分割线. ⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.⑷ 如图4,点E 是ABCD Y 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD Y 的黄金分割线.请你画一条ABCD Y 的黄金分割线,使它不经过ABCD Y 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下: 设ABC △的边AB 上的高为h . 12ADC S AD h=g △,12BDC S BD h =g △,12ABC S AB h =g △, ∴ADC ABC S AD S AB =△△,BDC ADC S BD S AD=△△. 又∵点D 为边AB 的黄金分割点,∴AD BD AB AD =.∴ADC BDC ABC ADC S S S S =△△△△.A CB 图1 AD图2 C A D 图3 C F E E 图4∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分, 此时1212S S S ==,即121S S S S ≠, ∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DEC FCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△. ∴ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形. 又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法; 画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,则直线MN 就是ABCD Y 的黄金分割线.画法二:如答图2,在DF 上取一点N ,连接EN ,再过点F 作FM NE ∥交AB 于点M , 连接MN ,则直线MN 就是ABCD Y 的黄金分割线.E M (答案图1)E M (答案图2)。
2019年初中数学-八年级典型例题解析:尺规作图
典型例题解析:尺规作图 《尺规作图》典型例题一例 已知线段a 、b ,画一条线段,使其等于b a 2+.分析 所要画的线段等于b a 2+,实质上就是b b a ++.画法:1.画线段a AB =.2.在AB 的延长线上截取b BC 2=.线段AC 就是所画的线段. 说明1.尺规作图要保留画图痕迹,画图时画出的所有点和线不可随意擦去.2.其它作图都可以通过画基本作图来完成,写画法时,只需用一句话来概括叙述基本作图.《尺规作图》典型例题二例 如下图,已知线段a 和b ,求作一条线段AD 使它的长度等于2a -b .错解 如图(1), (1)作射线AM ;(2)在射线AM 上截取AB =BC =a ,CD =b ,则线段AD 即为所求.错解分析 主要是作图语言不严密,当在射线上两次截取时,要写清是否顺次,而在求线段差时,要交待截取的方向.图(1) 图(2)正解 如图(2), (1)作射线AM ;(2)在射线AM 上,顺次截取AB =BC =a ; (3)在线段CA 上截取CD =b ,则线段AD 就是所求作的线段.《尺规作图》典型例题三例 求作一个角等于已知角∠MON (如图1).图(1) 图(2)错解 如图(2),(1)作射线11M O ;(2)在图(1),以O 为圆心作弧,交OM 于点A ,交ON 于点B ; (3)以1O 为圆心作弧,交11M O 于C ;(4)以C 为圆心作弧,交于点D ;(5)作射线D O 1. 则∠D CO 1即为所求的角.错解分析 作图过程中出现了不准确的作图语言,在作出一条弧时,应表达为:以某点为圆心,以其长为半径作弧.正解 如图(2),(1)作射线11M O ;(2)在图(1)上,以O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ;(3)以1O 为圆心,OA 的长为半径作弧,交11M O 于点C ;(4)以C 为圆心,以AB 的长为半径作弧,交前弧于点D ;(5)过点D 作射线D O 1. 则∠D CO 1就是所要求作的角.《尺规作图》典型例题四例 如下图,已知∠α及线段a ,求作等腰三角形,使它的底角为α,底边为a .分析 先假设等腰三角形已经作好,根据等腰三角形的性质,知两底角∠B =∠C =∠α,底边BC =a ,故可以先作∠B =∠α,或先作底边BC =a .作法 如下图(1)∠MBN =∠α;(2)在射线BM 上截取BC =a ;(3)以C 为顶点作∠PCB =∠α,射线CP 交BN 于点A .△ABC 就是所要求作的等腰三角形.说明 画复杂的图形时,如一时找不到作法,一般是先画出一个符合条件的草图,再根据这个草图进行分析,逐步寻找画图步骤.尺规作图》典型例题五例 如图(1),已知直线AB 及直线AB 外一点C ,过点C 作CD ∥AB (写出作法,画出图形). 分析 根据两直线平行的性质,同位角相等或内错角相等,故作一个角∠ECD =∠EFB 即可. 作法 如图(2).图(1) 图(2) (1)过点C 作直线EF ,交AB 于点F ;(2)以点F 为圆心,以任意长为半径作弧,交FB 于点P ,交EF 于点Q ; (3)以点C 为圆心,以FP 为半径作弧,交CE 于M 点; (4)以点M 为圆心,以PQ 为半径作弧,交前弧于点D ; (5)过点D 作直线CD ,CD 就是所求的直线.说明 作图题都应给出证明,但按照教科书的要求,一般不用写出,但要知道作图的原由.《尺规作图》典型例题六例 如下图,△ABC 中,a =5cm ,b =3cm ,c =3.5cm ,∠B =︒36,∠C =︒44,请你从中选择适当的数据,画出与△ABC 全等的三角形(把你能画的三角形全部画出来,不写画法但要在所画的三角形中标出用到的数据).分析 本题实质上是利用原题中的5个数据,列出所有与△ABC 全等的各种情况,依据是SSS 、SAS 、AAS 、ASA .解 与△ABC 全等的三角形如下图所示.《尺规作图》典型例题七例 正在修建的中山北路有一形状如下图所示的三角形空地需要绿化.拟从点A 出发,将△ABC 分成面积相等的三个三角形,以便种上三种不同的花草,请你帮助规划出图案(保留作图痕迹,不写作法).分析 这是尺规作图在生活中的具体应用.要把△ABC 分成面积相等的三个三角形,且都是从A 点出发,说明这三个三角形的高是相等的,因而只需这三个三角形的底边也相等,所以只要作出BC 边的三等分点即可.作法 如下图,找三等分点的依据是平行线等分线段定理.《尺规作图》典型例题八例 已知∠AOB ,求作∠AOB 的平分线OC . 错解 如图(1)作法 (1)以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点; (2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧相交于C 点; (3)连结OC ,则OC 就是∠AOB 的平分线.错解分析 对角平分线的概念理解不够准确而致误.作法(3)中连结OC ,则OC 是一条线段,而角平分线应是一条射线.图(1) 图(2)正解 如图(2)(1)以点O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E 两点; (2)分别以D 、E 为圆心,以大于21DE 的长为半径作弧,两弧交于C 点; (3)作射线OC ,则OC 为∠AOB 的平分线.《尺规作图》典型例题九例 如图(1)所示,已知线段a 、b 、h (h <b ). 求作△ABC ,使BC =a ,AB =b , BC 边上的高AD =h .图(1)错解 如图(2), (1)作线段BC =a ;(2)作线段BA =b ,使AD ⊥BC 且AD =h . 则△ABC 就是所求作的三角形.错解分析 ①不能先作BC ;②第2步不能同时满足几个条件,完全凭感觉毫无根据;③未考虑到本题有两种情况.对于这种作图题往往都是按照由里到外的顺序依次作图,如本题先作高AD ,再作AB ,最后确定BC .图(2) 图(3)正解 如图(3).(1)作直线PQ ,在直线PQ 上任取一点D ,作DM ⊥PQ ; (2)在DM 上截取线段DA =h ;(3)以A 为圆心,以b 为半径画弧交射线DP 于B ;(4)以B 为圆心,以a 为半径画弧,分别交射线BP 和射线BQ 于1C 和2C ; (5)连结1AC 、2AC ,则△1ABC (或△2ABC )都是所求作的三角形.《尺规作图》典型例题十例 如下图,已知线段a ,b ,求作Rt △ABC ,使∠ACB =90°,BC =a ,AC =b (用直尺和圆规作图,保留作图痕迹).分析 本题解答的关键在于作出∠ACB =90°,然后确定A 、B 两点的位置,作出△ABC .作法 如下图(1)作直线MN :(2)在MN 上任取一点C ,过点C 作CE ⊥MN ; (3)在CE 上截取CA =b ,在CM 上截取CB =a ; (4)连结AB ,△ABC 就是所求作的直角三角形.说明 利用基本作图画出所求作的几何图形的关键是要先分析清楚作图的顺序.若把握不好作图顺序,要先画出假设图形.《尺规作图》典型例题十一例 如下图,已知钝角△ABC ,∠B 是钝角.求作:(1)BC 边上的高;(2)BC 边上的中线(写出作法,画出图形). 分析 (1)作BC 边上的高,就是过已知点A 作BC 边所在直线的垂线;(2)作BC 边上的中线,要先确定出BC 边的中点,即作出BC 边的垂直平分线. 作法 如下图(1)①在直线CB 外取一点P ,使A 、P 在直线CB 的两旁; ②以点A 为圆心,AP 为半径画弧,交直线CB 于G 、H 两点; ③分别以G 、H 为圆心,以大于21GH 的长为半径画弧,两弧交于E 点; ④作射线AE ,交直线CB 于D 点,则线段AD 就是所要求作的△ABC 中BC 边上的高. (2)①分别以B 、C 为圆心,以大于21BC 的长为半径画弧,两弧分别交于M 、N 两点; ②作直线MN ,交BC 于点F ;③连结AF ,则线段AF 就是所要求作的△ABC 中边BC 上的中线.说明 在已知三角形中求作一边上的高线、中线、角平分线时,首先要把握好高线、中线、角平分钱是三条线段;其次,高线、中线的一个端点必须是三角形中这边所对的顶点,而关键是找出另一个端点.《尺规作图》典型例题十二例 如图(1)所示,在图中作出点C ,使得C 是∠MON 平分线上的点,且AC =OC .图(1) 图(2)分析 由题意知,点C 不仅要在∠MON 的平分线上,且点C 到O 、A 两点的距离要相等,所以点C 应是∠MON 的平分线与线段OA 的垂直平分线的交点.作法 如图(2)所示 (1)作∠MON 的平分线OP ;(2)作线段OA 的垂直平分线EF ,交OP 于点C ,则点C 就是所要求作的点.说明(1)根据题意弄清要求作的点的特征是到各直线距离相等,还是到各端点距离相等.(2)两条直线交于一点.《尺规作图》典型例题十三例 如下图,已知线段a 、b 、∠α、∠β.求作梯形ABCD ,使AD =a ,BC =b ,AD ∥BC ,∠B =∠α;∠C =∠β.分析 假定梯形已经作出,作AE ∥DC 交BC 于E ,则AE 将梯形分割为两部分,一部分是△ABE ,另一部分是AECD.在△ABE中,已知∠B=∠α,∠AEB=∠β,BE=b-a,所以,可以首先把它作出来,而后作出AECD.作法如下图.(1)作线段BC=b;(2)在BC上截取BE=b-a;(3)分别以B、E为顶点,在BE同侧作∠EBA=∠α,∠AEB=∠β,BA、EA交于A;(4)以EA、EC为邻边作AECD.四边形ABCD就是所求作的梯形.说明基本作图是作出较简单图形的基础,三角形是最简单的多边形,它是许多复杂图形的基础.因此,要作一个复杂的图形,常常先作一个比较容易作出的三角形,然后以此为基础,再作出所求作的图形.《尺规作图》典型例题十四例如下图,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与公路的距离相等,且离铁路与公路交叉处B点700米,如果你是红方的指挥员,请你在图示的作战图上标出蓝方指挥部的位置.分析依据角平分线的性质可以知道,蓝方指挥部必在A区内两条路所夹角的平分线上,然后由蓝方指挥部距B点的距离,依据比例尺,计算出图上的距离为3.5cm,就可以确定出蓝方指挥部的位置.解如下图,图中C点就是蓝方指挥部的位置.《尺规作图》典型例题十五例如图(1),已知有公共端点的线段AB、BC.求作⊙O,使它经过点A、B、C(要求:尺规作图,不写作法,保留作图痕迹).图(1)图(2)分析因为A、B、C三点在⊙O上,所以OA=OB=OC=R.根据到线段AB、BC各端点距离相等的点在线段的垂直平分线上,故分别作线段AB 、BC 垂直平分线即可.解 如图(2)说明 角平分线的性质、线段垂直平分线的性质在作图题中的应用是近几年中考中的又一道风景,它往往与实际问题紧密联系在一起.《尺规作图》典型例题十六例 如图,是一块直角三角形余料,︒=∠90C .工人师傅要把它加工成一个正方形零件,使C 为正方形的一个顶点,其余三个顶点分别在AB 、BC 、AC 边上.试协助工人师傅用尺规画出裁割线.分析 要作出符合条件的正方形,可先作出有三个角为90°的四边形,并设法让相邻的一组边相等即可.作法 如图.① 作ACB ∠的角平分线CD ,交AB 于点G ;②过G 点分别作AC 、BC 的垂线,垂足为E 、F .则四边形ECFG 就是所要求作的正方形.。
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴经过两已知点可以画一条直线;⑵已知圆心和半径可以作一圆;⑶两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴三等分角问题:三等分一个任意角;⑵倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗?顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图.1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点 ,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!. 五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线 4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法.【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置?【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP∆是等腰三角形,这样的P 点有几个?【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点. ⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12M M ,为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O ⊙外切.”又该怎么作图?⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】设半径为1..我们的任务就是做出这个长度..1的长度自然就出来了. 【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,角形..) ⑷【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =.⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E .⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ).则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件.【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ; ⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积; ⑵ 这样的直线有多少条?请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC △的黄NM P CB Al金分割线.你认为对吗?为什么?⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线?⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由. ⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADC S AD h =△,12BDC S BD h =△,12ABC S AB h =△,∴ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△.又∵点D 为边AB 的黄金分割点,∴AD BD AB AD=.∴ADC BDCABC ADCS S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等,∴DECFCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△.∴ADCFGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEF S S S S =四边形△△△. ∴直线EF 也是ABC △的黄金分割线.⑷ 画法不惟一,现提供两种画法;M (答案图1)M (答案图2)A CB 图1 A D B 图2CAD B图3C F E 图4画法一:如答图1,取EF中点G,再过点G作一直线分别交AB,DC于M,N点,则直线MN就是ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM NE∥交AB于点M,连接MN,则直线MN就是ABCD的黄金分割线.。
8下基会ch2-3-尺规作图[20页]
A、B、C 三點,O 是原點,
OA ⊥ AB 且 OA ≠ AB 。今想
在第一象限內找一點 D,使得
D 到 x 軸的距離與 D 到 y 軸的
距離相等,且 DB = DA ,則
D 點要用下列何種方法求得?
(A)作 AB 中垂線與 OA 中垂線的交點
( D ) 2.如右圖, AB 為圓 O 的直徑, 在圓 O 上取異於 A、B 的一 點 C,並連接 BC 、 AC。若 想在 AB 上取一點 P,使得 P 與直線 BC 的距離等於 AP 長, 判斷下列四個作法何者 正確?
(A) 作 AC 的中垂線, 交 AB 於 P 點
(B) 作∠ACB 的角平分線, 交 AB 於 P 點
( C ) 1.如右圖,大、小兩圓的圓心 均為 O 點,半徑分別為 3、2, 且 A 點為小圓上的一固定點。 若在大圓上找一點 B,使得 OA = AB,則滿足上述條件的 B 點共有幾個?
(A) 0 (B) 1 (C) 2 (D) 3 【 101 基測第 15 題】
以 A 為圓心, OA 為半徑畫弧交大圓於兩點, 如右圖, OA = AB =2, B 點有兩個,故選(C)
( ) 5.圖(十八)的△ABC中AB > AC >BC , 且D為BC上一點。今打算在 AB上找一點P ,在AC上找一點Q,使得△APQ與△PDQ 全等,以下是甲、乙兩人的作法:
(甲)連接AD ,作AD的中垂 線分別交AB 、AC於P 點、Q點,則P、Q兩 點即為所求
【108會考第25題】
( ) 5.圖(十八)的△ABC中AB > AC >BC , 且D為BC上一點。今打算在 AB上找一點P ,在AC上找一點Q,使得△APQ與△PDQ 全等,以下是甲、乙兩人的作法:
初中尺规作图详细讲解(含图)
初中数学尺规作图讲解初等平面几何研究的对象,仅限于直线、圆以及由它们(或一部分)所组成的图形,因此作图的工具,习惯上使用没有刻度的直尺和圆规两种.限用直尺和圆规来完成的作图方法,叫做尺规作图法.最简单的尺规作图有如下三条:⑴ 经过两已知点可以画一条直线;⑵ 已知圆心和半径可以作一圆;⑶ 两已知直线;一已知直线和一已知圆;或两已知圆,如果相交,可以求出交点;以上三条,叫做作图公法.用直尺可以画出第一条公法所说的直线;用圆规可以作出第二条公法所说的圆;用直尺和圆规可以求得第三条公法所说的交点.一个作图题,不管多么复杂,如果能反复应用上述三条作图公法,经过有限的次数,作出适合条件的图形,这样的作图题就叫做尺规作图可能问题;否则,就称为尺规作图不能问题.历史上,最著名的尺规作图不能问题是:⑴ 三等分角问题:三等分一个任意角;⑵ 倍立方问题:作一个立方体,使它的体积是已知立方体的体积的两倍;⑶ 化圆为方问题:作一个正方形,使它的面积等于已知圆的面积.这三个问题后被称为“几何作图三大问题”.直至1837年,万芝尔(Pierre Laurent Wantzel)首先证明三等分角问题和立方倍积问题属尺规作图不能问题;1882年,德国数学家林德曼(Ferdinand Lindemann)证明π是一个超越数(即π是一个不满足任何整系数代数方程的实数),由此即可推得根号π(即当圆半径1r=时所求正方形的边长)不可能用尺规作出,从而也就证明了化圆为方问题是一个尺规作图不能问题.若干著名的尺规作图已知是不可能的,而当中很多不可能证明是利用了由19世纪出现的伽罗华理论.尽管如此,仍有很多业余爱好者尝试这些不可能的题目,当中以化圆为方及三等分任意角最受注意.数学家Underwood Dudley曾把一些宣告解决了这些不可能问题的错误作法结集成书.还有另外两个著名问题:⑴ 正多边形作法·只使用直尺和圆规,作正五边形.·只使用直尺和圆规,作正六边形.·只使用直尺和圆规,作正七边形——这个看上去非常简单的题目,曾经使许多著名数学家都束手无策,因为正七边形是不能由尺规作出的.·只使用直尺和圆规,作正九边形,此图也不能作出来,因为单用直尺和圆规,是不足以把一个角分成三等份的.·问题的解决:高斯,大学二年级时得出正十七边形的尺规作图法,并给出了可用尺规作图的正多边形的条件:尺规作图正多边形的边数目必须是2的非负整数次方和不同的费马素数的积,解决了两千年来悬而未决的难题.⑵ 四等分圆周只准许使用圆规,将一个已知圆心的圆周4等分.这个问题传言是拿破仑·波拿巴出的,向全法国数学家的挑战.尺规作图的相关延伸:用生锈圆规(即半径固定的圆规)作图1.只用直尺及生锈圆规作正五边形2.生锈圆规作图,已知两点A、B,找出一点C使得AB BC CA==.3.已知两点A、B,只用半径固定的圆规,求作C使C是线段AB的中点.4.尺规作图,是古希腊人按“尽可能简单”这个思想出发的,能更简洁的表达吗顺着这思路就有了更简洁的表达.10世纪时,有数学家提出用直尺和半径固定的圆规作图. 1672年,有人证明:如果把“作直线”解释为“作出直线上的2点”,那么凡是尺规能作的,单用圆规也能作出!从已知点作出新点的几种情况:两弧交点、直线与弧交点、两直线交点,在已有一个圆的情况下,那么凡是尺规能作的,单用直尺也能作出!.五种基本作图:初中数学的五种基本尺规作图为:1.做一线段等于已知线段 2.做一角等于已知角 3.做一角的角平分线 4.过一点做一已知线段的垂线5.做一线段的中垂线下面介绍几种常见的尺规作图方法:⑴ 轨迹交点法:解作图题的一种常见方法.解作图题常归结到确定某一个点的位置.如果这两个点的位置是由两个条件确定的,先放弃其中一个条件,那么这个点的位置就不确定而形成一个轨迹;若改变放弃另一个条件,这个点就在另一条轨迹上,故此点便是两个轨迹的交点.这个利用轨迹的交点来解作图题的方法称为轨迹交点法,或称交轨法、轨迹交截法、轨迹法. 【例1】 电信部门要修建一座电视信号发射塔,如下图,按照设计要求,发射塔到两个城镇A 、B 的距离必须相等,到两条高速公路m 、n 的距离也必须相等,发射塔P 应修建在什么位置m【分析】 这是一道实际应用题,关键是转化成数学问题,根据题意知道,点P 应满足两个条件,一是在线段AB 的垂直平分线上;二是在两条公路夹角的平分线上,所以点P 应是它们的交点.【解析】 ⑴ 作两条公路夹角的平分线OD 或OE ;⑵ 作线段AB 的垂直平分线FG ;则射线OD ,OE 与直线FG 的交点1C ,2C 就是发射塔的位置.【例2】 在平面直角坐标系中,点A 的坐标是(4,0),O 是坐标原点,在直线3y x =+上求一点P ,使AOP ∆是等腰三角形,这样的P 点有几个【解析】 首先要清楚点P 需满足两个条件,一是点P 在3y x =+上;二是AOP ∆必须是等腰三角形.其次,寻找P 点要分情况讨论,也就是当OA OP =时,以O 点为圆心,OA 为半径画圆,与直线有两个点1P 、2P ;当OA AP =时,以A 点为圆心,OA 为半径画圆,与直线无交点;当PO PA =时,作OA 的垂直平分线,与直线有一交点3P ,所以总计这样的P 点有3个.【例3】 设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r 的圆,使其与O ⊙及'O ⊙外切.rr【分析】 设M ⊙是符合条件的圆,即其半径为r ,并与O ⊙及'O ⊙外切,显然,点M 是由两个轨迹确定的,即M 点既在以O 为圆心以R r +为半径的圆上,又在以'O 为圆心以'R r +为半径的圆上,因此所求圆的圆心的位置可确定.若O ⊙与'O ⊙相距为b ,当2r b <时,该题无解,当2r b =有唯一解;当2r b >时,有两解.【解析】 以当O ⊙与'O ⊙相距为b ,2r b >时为例:⑴ 作线段OA R r =+,''O B R r =+.⑵ 分别以O ,'O 为圆心,以R r +,'R r +为半径作圆,两圆交于12,M M 两点. ⑶ 连接1OM ,2OM ,分别交以R 为半径的O ⊙于D 、C 两点. ⑷ 分别以12M M ,为圆心,以r 为半径作圆. ∴12,M M ⊙⊙即为所求.【思考】若将例3改为:“设O ⊙与'O ⊙相离,半径分别为R 与'R ,求作半径为r ()r R >的圆,使其与O ⊙ 内切,与'O⊙外切.”又该怎么作图⑵ 代数作图法:解作图题时,往往首先归纳为求出某一线段长,而这线段长的表达式能用代数方法求出,然后根据线段长的表达式设计作图步骤.用这种方法作图称为代数作图法.【例4】 只用圆规,不许用直尺,四等分圆周(已知圆心).【分析】设半径为1.,也就是说用这个长度去等分圆周.我们的任务就是做出这个长度..一直角边为1的直角三. 【解析】 具体做法:⑴ 随便画一个圆.设半径为1.⑵ 先六等分圆周.⑶ 以这个距离为半径,分别以两个相对的等分点为圆心,同向作弧,交于一点.(“两个相对的等分点”其实就是直径的两端点啦!两弧交点与“两个相对的等分点”形成的是一个底为2,等腰三角形.)【例5】 求作一正方形,使其面积等于已知ABC ∆的面积.【分析】 设ABC ∆的底边长为a ,高为h ,关键是在于求出正方形的边长x ,使得212x ah =,所以x 是12a 与h 的比例中项.【解析】 已知:在ABC ∆中,底边长为a ,这个底边上的高为h ,求作:正方形DEFG ,使得:ABC DEFG S S ∆=正方形haDCBANM作法:⑴ 作线段12MD a =;⑵ 在MD 的延长线上取一点N ,使得DN h =;⑶ 取MN 中点O ,以O 为圆心,OM 为半径作O ⊙; ⑷ 过D 作DE MN ⊥,交O ⊙于E , ⑸ 以DE 为一边作正方形DEFG . 正方形DEFG 即为所求.【例6】 在已知直线l 上求作一点M ,使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .al【分析】 先利用代数方法求出点M 与圆心O 的距离d ,再以O 为圆心,d 为半径作圆,此圆与直线l 的交点即为所求.【解析】 ⑴ 作Rt OAB ∆,使得:90A ∠=︒,OA r =,AB a =. ⑵ 以O 为圆心,OB 为半径作圆.若此圆与直线l 相交,此时有两个交点1M ,2M . 1M ,2M 即为所求.若此圆与直线l 相切,此时只有一个交点M .M 即为所求.若此圆与直线l 相离,此时无交点.即不存在这样的M 点使得过M 作已知半径为r 的O ⊙的切线,其切线长为a .⑶ 旋转法作图:有些作图题,需要将某些几何元素或图形绕某一定点旋转适当角度,以使已知图形与所求图形发生联系,从而发现作图途径.【例7】 已知:直线a 、b 、c ,且a b c ∥∥.求作:正ABC ∆,使得A 、B 、C 三点分别在直线a 、b 、c 上.c ba D'DCB Acba【分析】 假设ABC ∆是正三角形,且顶点A 、B 、C 三点分别在直线a 、b 、c 上.作AD b ⊥于D ,将ABD ∆绕A 点逆时针旋转60︒后,置于'ACD ∆的位置,此时点'D 的位置可以确定.从而点C 也可以确定.再作60BAC ∠=︒,B 点又可以确定,故符合条件的正三角形可以作出.【解析】 作法:⑴ 在直线a 上取一点A ,过A 作AD b ⊥于点D ; ⑵ 以AD 为一边作正三角形'ADD ; ⑶ 过'D 作''D C AD ⊥,交直线c 于C ;⑷ 以A 为圆心,AC 为半径作弧,交b 于B (使B 与'D 在AC 异侧). ⑸ 连接AB 、AC 、BC 得ABC ∆. ABC ∆即为所求.【例8】 已知:如图,P 为AOB ∠角平分线OM 上一点.求作:PCD ∆,使得90P ∠=︒,PC PD =,且C 在OA 上,D 在OB 上.OD'O【解析】 ⑴ 过P 作PE OB ⊥于E . ⑵ 过P 作直线l OB ∥;⑶ 在直线l 上取一点M ,使得PM PE =(或'PM PE =); ⑷ 过M (或'M )作MC l ⊥(或'M C l ⊥),交OA 于C (或'C )点;⑸ 连接PC (或'PC ),过P 作PD PC ⊥(或''PD PC ⊥)交OB 于D (或'D )点. 连接,PD CD (或',''PD C D ). 则PCD ∆(或''PC D ∆)即为所求.⑷ 位似法作图:利用位似变换作图,要作出满足某些条件的图形,可以先放弃一两个条件,作出与其位似的图形,然后利用位似变换,将这个与其位似得图形放大或缩小,以满足全部条件,从而作出满足全部的条件. 【例9】 已知:一锐角ABC ∆.求作:一正方形DEFG ,使得D 、E 在BC 边上,F 在AC 边上,G 在AB 边上.C BAG'F'E'D'G FED CBA【分析】 先放弃一个顶点F 在AC 边上的条件,作出与正方形DEFG 位似的正方形''''D E F G ,然后利用位似变换将正方形''''D E F G 放大(或缩小)得到满足全部条件的正方形DEFG .【解析】 作法:⑴ 在AB 边上任取一点'G ,过'G 作''G D BC ⊥于'D⑵ 以''G D 为一边作正方形''''D E F G ,且使'E 在'BD 的延长线上. ⑶ 作直线'BF 交AC 于F .⑷ 过F 分别作''FG F G ∥交AB 于G ;作''FE F E ∥交BC 于E . ⑸ 过G 作''GD G D ∥交BC 于D . 则四边形DEFG 即为所求.⑸ 面积割补法作图:对于等积变形的作图题,通常在给定图形或某一确定图形上割下一个三角形,再借助平行线补上一个等底等高的另一个三角形,使面积不变,从而完成所作图形.【例10】 如图,过ABC ∆的底边BC 上一定点,P ,求作一直线l ,使其平分ABC ∆的面积.【分析】 因为中线AM 平分ABC ∆的面积,所以首先作中线AM ,假设PQ 平分ABC ∆的面积,在AMC ∆中先割去AMP ∆,再补上ANP ∆.只要NM AP ∥,则AMP ∆和AMP ∆就同底等高,此时它们的面积就相等了.所以PN 就平分了ABC ∆的面积.【解析】 作法:⑴ 取BC 中点M ,连接,AM AP ;⑵ 过M 作MN AP ∥交AB 于N ; ⑶ 过P 、N 作直线l . 直线l 即为所求.【例11】 如图:五边形ABCDE 可以看成是由一个直角梯形和一个矩形构成.⑴ 请你作一条直线l ,使直线l 平分五边形ABCDE 的面积;⑵ 这样的直线有多少条请你用语言描述出这样的直线.FED CBAMFDCBFD CB【解析】 ⑴ 取梯形AFDE 的中位线MN 的中点O ,再取矩形BCDF 对角线的交点'O ,则经过点O ,'O 的 直线l 即为所求;⑵ 这样的直线有无数条.设⑴中的直线l 交AE 于Q ,交BC 于R ,过线段RQ 中点P ,且与线段AE 、BC 均有交点的直线均可平分五边形ABCDE 的面积.【例12】 (07江苏连云港)如图1,点C 将线段AB 分成两部分,如果AC BCAB AC=,那么称点C 为线段AB 的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l 将一个面积为S 的图形分成两部分,这两部分的面积分别为1S ,2S ,如果121S SS S =,那么称直线l 为该图形的黄金分割线.⑴ 研究小组猜想:在ABC △中,若点D 为AB 边上的黄金分割点(如图2),则直线CD 是ABC△NM P CB Al的黄金分割线.你认为对吗为什么⑵ 请你说明:三角形的中线是否也是该三角形的黄金分割线 ⑶ 研究小组在进一步探究中发现:过点C 任作一条直线交AB 于点E ,再过点D 作直线DF CE ∥,交AC 于点F ,连接EF (如图3),则直线EF 也是ABC △的黄金分割线.请你说明理由.⑷ 如图4,点E 是ABCD 的边AB 的黄金分割点,过点E 作EF AD ∥,交DC 于点F ,显然直线EF 是ABCD 的黄金分割线.请你画一条ABCD 的黄金分割线,使它不经过ABCD 各边黄金分割点.【解析】 ⑴ 直线CD 是ABC △的黄金分割线.理由如下:设ABC △的边AB 上的高为h .12ADCS AD h =△,12BDC S BD h =△,12ABCS AB h =△, ∴ADC ABC S AD S AB =△△,BDC ADC S BDS AD=△△.又∵点D 为边AB 的黄金分割点,∴AD BD AB AD=.∴ADC BDCABC ADCS S S S =△△△△.∴直线CD 是ABC △的黄金分割线.⑵ ∵三角形的中线将三角形分成面积相等的两部分,此时1212S S S ==,即121S S S S ≠,∴三角形的中线不可能是该三角形的黄金分割线.⑶ ∵DF CE ∥,∴DEC △和FCE △的公共边CE 上的高也相等, ∴DECFCE S S =△△.设直线EF 与CD 交于点G ,∴DGE FGC S S =△△.∴ADCFGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =△四边形.又∵ADC BDC ABC ADC S S S S =△△△△,∴BEFC AEF ABC AEFS SS S =四边形△△△.∴直线EF 也是ABC △的黄金分割线. ⑷ 画法不惟一,现提供两种画法;画法一:如答图1,取EF 中点G ,再过点G 作一直线分别交AB ,DC 于M ,N 点,CB(答案图1)CB(答案图2)AC B图ADB图CAD B图CF E CB图则直线MN就是ABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM NE∥交AB于点M,连接MN,则直线MN就是ABCD的黄金分割线.。
初中数学八年级下册几何尺规作图基本类型总结(共五种)
八年级数学几何尺规作图基本类型一、作一条线段等于线段已知线段AB,作线段A’B’,使A’B’=AB.【作法】(1) 作射线A’C’(2) 以点A’为圆心,以AB的长为半径画弧,交射线A’ C’于点B’,A’B’ 就是所求作的线段。
二、作一个角等于角已知∠AOB,作∠A’O’B’ 使∠A’O’B’=∠AOB【作法】(1) 作射线O’A’;(2) 以点O为圆心,任意长为半径画弧,交OA于点C,交OB于点D;(3) 以点O’为圆心,同样(OC)长为半径画弧,交O’A’于点C’;(4) 以点C’为圆心,CD长为半径画弧,交前面的弧于点D’ ,(5) 过点D’作射线O’B’.∠A’O’B’为所作的角.三、作角平分线【作法】(1)以点O为圆心,以任意长为半径画弧,两弧交角AOB两边于点M,N。
(2)分别以点M,N为圆心,以大于1/2MN的长度为半径画弧,两弧交于点P。
(3)作射线OP。
射线OP即为所求。
四、经过一点作直线的垂线1、点C在直线l上,试过点C画出直线l的垂线.【作法】(1)以点C为圆心,任一线段的长为半径画弧,交直线l于点A、B;(2)以点A 、B为圆心,以大于CB长为半径在直线一侧画弧,两弧交于点D;(3)经过点C、D作直线CD.直线CD即为所求.2、过直线外一点C画出直线l的垂线.【作法】(1)以点C为圆心,以适当长为半径画弧,交直线l于点A、B;(2)分别以点A、 B为圆心,以CB长为半径在直线另一侧画弧,两弧于点D.(3)经过点C、D作直线CD.直线CD即为所求.五、作线段的垂直平分线【作法】(1)分别以点A,B为圆心,以大于1/2AB的长为半径作弧,两弧交于C,D两点. (2)作直线CD.CD即为所求.。
八年级数学尺规作图优秀课件
4、画线段的垂直平分线
:线段AB。 求作:作直线CD交AB于O,使CD⊥AB,且AO=BO.
C
那么CD是线段AB
的垂直平分线. A
B
D
5.过定点作直线的垂线
①.如图,点C在直线l上,试过点C画出直线l 的垂线.
D
直线CD即为所求.
A
CB
②.如图,如果点C不在直线l上,试和同学讨论,应采 取怎样的步骤,过点C画出直线l的垂线?
直线CD即为所求.
图 24.4.10
A
BБайду номын сангаас
D
五种根本作图:
1、作一条线段等于线段 2、作一个角等于角 3、平分角 4、作线段的垂直平分线 5、过一点作直线的垂线
B D
B` D`
O
A
C
O`
C`
A`
证明:连接DC,D’C’ ,由作法可知 △C`O`D`≌△COD(SSS), ∴∠C`O`D`=∠COD(全等三角形的对应角相 即∠A`O`B`=∠AOB。
等),
3、平分角
• : ∠AOB。 • 求作:射线OC,使 ∠ AOC= ∠ BOC。
B
E
C
O
D
A
OC就是所求的射线。
根本作图
在几何里,把限定用直尺和圆规来画 图,称为尺规作图.最根本,最常用的尺 规作图,通常称根本作图.
其中,直尺是没有刻度的;
1.作一条线段等于线段
2、作一个角等于角
: ∠AOB。 求作: ∠A`O`B`,使∠A`O`B`= ∠AOB。
B D
O
A C
B` D`
O`
C`
A`
∠A`O`B`就是所求的角。
2020-2021学年人教 版 八年级数学下册尺规作图课件
A.以点C为圆心,OD为直径的弧
B.以点C为圆心,DM为直径的弧
C.以点E为圆心,OD为直径的弧
D.以点E为圆心,DM为直径的弧
课堂作业
4.用直尺和圆规作一个角等于已知角,如图,能得出∠A'O'B'=∠AOB的依据 是( B )
A.SAS
B.SSS
C.ASA
D.AAS
5.如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以
过直线 外一点 作已知 直线的 垂线的 步骤
1.以点O为圆心,任意长为半径向点O两侧
作 2.分弧别,以交点直A线、于B为A、圆B心两,点以;大__于___12_A__B_长为
半径向直线两侧作弧,交点分别为M、N 3.连接MN,MN即为所求垂线
1.以P为圆心,以适当长为半径作弧,使它与
A2.B分交别于以点CC、、DD为. 圆心,以大___于__12__C_长D 为半径画
人教版2011课标 数学
尺规作图 总复习
尺规作图
考点分类一 基本作图 【知识考点】 基本作图: (1)作一条线段等于已知线段;(2)作角的平分线;
(3)作线段的垂直平分线; (4)作一个角等于已知角; (5)过一点作已知直线的垂线. 利用基本作图作特殊图形:(1)已知三边作三角形; (2)已知两边及其夹角作三角形;(3)已知两角及其夹边作三角形; (4)已知底边和高作等腰三角形;(5)作三角形的内切圆和外接圆. 【对应精练】 1. 已知:线段a,∠α. 求作:△ABC,使AB=AC=a,∠B=∠α. 解:如图所示:△ABC即为所求.
初二尺规作图
一、选择题:1.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,那么∠BAD的度数为〔〕A.65°B.60°C.55°D.45°2.如图,钝角△ABC,依以下步骤尺规作图,并保存作图痕迹.步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.以下表达正确的选项是〔〕A.BH垂直分分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD3.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.假设AB=6,AC=4,那么△ACD的周长为.4.如图,线段AB,分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.假设FA=5,那么FB=.5.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.〔保存作图痕迹,不写作法〕6. 如图,△ABC,∠C=Rt∠,AC<BC,D为BC上一点,且到A,B两点的距离相等.〔1〕用直尺和圆规,作出点D的位置〔不写作法,保存作图痕迹〕;〔2〕连结AD,假设∠B=37°,求∠CAD的度数.7.如图,一块余料ABCD,AD∥BC,现进展如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H 为圆心,大于GH的长为半径画弧,两弧在∠ABC部相交于点O,画射线BO,交AD于点E.〔1〕求证:AB=AE;〔2〕假设∠A=100°,求∠EBC的度数.8.阅读下面材料:在数学课上,教师提出如下问题:小芸的作法如下:尺规作图:作一条线段的垂直平分线.:线段AB.如图,〔1〕分别以点A和点B为圆心,大于AB 的长为半径作弧,两弧相交于C、D两点;〔2〕作直线CDHFDEB CAK教师说:“小芸的作确.〞请答复:小芸的作图依据是_________________________.9.在学习“用直尺和圆规作一个角等于角〞时,教科书介绍如下:对于“想一想〞中的问题,以下答复正确的选项是:A.根据“边边边〞可知,△'''C O D≌△COD,所以∠'''A O B=∠AOBB.根据“边角边〞可知,△'''C O D≌△COD,所以∠'''A O B=∠AOBC.根据“角边角〞可知,△'''C O D≌△COD,所以∠'''A O B=∠AOBD.根据“角角边〞可知,△'''C O D≌△COD,所以∠'''A O B=∠AOB10.小米在用尺规作图作△ABC边AC上的高BH,作法如下:①分别以点D,E为圆心,大于12DE的长为半径作弧,两弧交于F;②作射线BF,交边AC于点H;③以B为圆心,BK长为半径作弧,交直线AC于点D和E;④取一点K,使K和B在AC的两侧;所以,BH就是所求作的高.其中顺序正确的作图步骤是A.①②③④B.④③②①C.②④③①D.④③①②11.如图,∠CAB,用直尺和圆规作∠ABD,使∠ABD=21∠A,射线BD与射线AC相交于点D.〔不写画法,保存作图痕迹〕12.阅读下面材料:数学课上,教师提出如下问题:C尺规作图:作一角等于已知角.已知:∠AOB.小明解答如下图:教师说:“小明作确.〞请答复:〔1〕小明的作图依据是;〔2〕他所画的痕迹弧MN 是以点为圆心,为半径的弧.13.阅读下面材料:数学课上,教师提出如下问题:小艾的作法如下:教师表扬了小艾的作法是对的.请答复:小艾这样作图的依据是____________. 14. 阅读下面材料:在数学课上,教师提出如下问题:解:F DE OBC AMN 尺规作图:经过直线上一点作这条直线的垂线.:直线AB 和AB 上一点C .求作:AB 的垂线,使它经过点C .如图,〔1〕在直线AB 上取一点D ,使点D 与点C 不重合,以点C 为圆心,CD 长为半径作弧,交AB 于D ,E 两点; 〔2〕分别以点D 和点E 为圆心,大于12DE 长为半径作弧,两弧相交于点F ; 〔3〕作直线CF .所以直线CF 就是所求作的垂线.教师说:“小义的作确.〞 请答复:. 15.数学课上,同学们兴致勃勃地尝试着利用不同画图工具画一个角的平分线. 小明用直尺画角分线的方法如下:〔1〕如图1,用支持的一边贴在∠AOB 的OA 边上,沿着支持的另一条边画直线m ;〔2〕如图2,再用支持的一边贴在∠AOB 的OB 边上,沿着直尺的另一条边画直线n ,直线m 与直线n 交于点P ;〔3〕如图3,作射线OP .射线OP 是∠AOB 的平分线.mAO Bm nPAOBm nP AOB教师说:“小明的作确.〞请答复:小明的作图依据是________________________________________.16.有两棵树位置如图,树脚分别为A ,B .地上有一只昆虫沿A —B 的路径在地面上爬行.小树顶D 处一只小鸟想飞下来抓住小虫后,再飞到大树的树顶C 处,问小鸟飞至AB 之间何处时,飞行距离最短,在图中画出该点的位置.17.,如下图,甲、乙、丙三个人做传球游戏,游戏规那么如下:甲将球传给乙,乙将球立刻传给丙,然后丙又立刻将球传给甲.假设甲站在∠AOB 的P 点,乙站在OA 上,丙站在OB 上,并且甲、乙、丙三人的传球速度一样.问乙和丙必须站在何处,才能使球从甲到乙、乙到丙、最后丙到甲这一轮所用的时间最少?D'C'CDBO'B'轴对称练习1.以下说法中,不正确的选项是( ).A.等腰三角形是轴对称图形B.假设△ABC ≌△A ′B ′C ′,那么这两个三角形一定轴对称C.假设两个图形对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称D.直线MN 是线段AB 的垂直平分线,假设点P 使PA=PB,那么点P 在MN 上,假设P 1A ≠P 1B,那么P 1不在MN 上2.请画出对称轴右边的图形,这给我们一个什么形象?3.如图,阴影局部是由5个小正方形组成的一个直角图形,请用三种方法分别在图中虚线方格涂黑3个小正方形,使它们成为轴对称图形.4.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE.求证:△ABC是等腰三角形.5.在等边△ABC 中,D 是BC(如图①)或其延长线(如图②)上任意一点(D 与B 、C 不重合).连结AD,在CA 或其延长上取一点E,使CE =BD,连结BE 交AD 或其反向延长线于点O. 〔1〕请按题目条件将图②补画完整.〔2〕请结合图①或图②说明∠CAD =∠ABE . 〔3〕假假设D 点可以在BC 上或BC 的延长线上滑动,其余条件保持不变.试探究:∠BOD 的大小会随着点D 的变化而变化吗?如变化,试说明理由;如不变,大小为多少?DC BAF E6.在等边△ABC外侧作直线AP,点B关于直线AP的对称点为D,连接AD,BD,CD,其中CD交直线AP于点E.设∠PAB=α,∠ACE=β,∠AEC=γ.(1) 依题意补全图1;(2) 假设α=15°,直接写出β和γ的度数;(3) 如图2,假设60°<α<120°,①判断α,β的数量关系并加以证明;②请写出求γ大小的思路.〔可以不写出计算结果.........〕7.(1)小明同学在学习了全等三角形的相关知识后发现,只用两把完全一样的长方形直尺就可以作出一个锐角的平分线.如左图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.〞小明作图的依据是。
初中数学尺规作图方法大全
初中数学尺规作图方法大全尺规作图是一种用没有刻度的直尺和圆规作图的方法。
最基本的尺规作图通常称为基本作图,而一些复杂的尺规作图则是由基本作图组成的。
基本作图包括五种:作一条线段等于已知线段、作一个角等于已知角、作已知线段的垂直平分线、作已知角的角平分线、过一点作已知直线的垂线。
第一个问题要求作一条长度等于已知线段a的线段AB。
作法是先作射线AP,然后在射线AP上截取AB=a。
这样就得到了所求的线段AB。
第二个问题要求作已知线段MN的中点O。
作法是以M、N为圆心,大于MN的相同线段为半径画弧,两弧相交于P、Q,然后连接PQ交MN于O。
这样就得到了所求的点O。
第三个问题要求作已知角AOB的角平分线OP。
作法是以O为圆心,任意长度为半径画弧,分别交OA、OB于M、N,然后分别以M、N为圆心,大于AOB的线段长为半径画弧,两弧交AOB内于P,最后作射线OP。
这样就得到了所求的角平分线OP。
第四个问题要求作一个角等于已知角AOB。
作法是先作射线O'A',然后以O为圆心,任意长度为半径画弧,交OA于M,交OB于N,再以O’为圆心,以OM的长为半径画弧,交O’A’于M’,以M’为圆心,以MN的长为半径画弧,交前弧于N’,最后连接O’N’并延长到B’。
这样就得到了所求的角A’O’B’。
最后一个问题要求经过点P作直线CD,使得CD经过点P且CD⊥AB。
作法是以P为圆心,任意长为半径画弧,交AB于M、N,然后分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点Q,最后过D、Q作直线CD。
这样就得到了所求的直线CD。
题六:已知直线AB及外一点P,求作直线CD,使CD经过点P,且CD⊥AB。
作法:1)以P为圆心,任意长为半径画弧,交AB于M、N;2)分别以M、N为圆心,大于MN长度的一半为半径画弧,两弧交于点Q;3)过P、Q作直线CD。
则直线CD就是所求作的直线。
题目七:已知三边作三角形。
已知:线段a,b,c,求作△ABC,使AB=c,AC=b,BC=a。
八年级数学下册19.3尺规作图(二)华东师大版
19.3尺规作图(二)学习目标:1、画已知线段的垂直平分线2、经过一点作已知直线的垂线重点与难点:1、经过一点作已知直线的垂线教学过程:4、画已知线段的垂直平分线定义:垂直于一条线段并且平分这条线段的直线,叫做线段的垂直平分线(或叫中垂线。
)做一做如图所示,已知线段AB,画出它的垂直平分线.步骤:1、以点A为圆心,以大于AB一半的长为半径画弧;2、以点B为圆心,以同样的长为半径画弧,3、两弧的交点分别记为C、D,连结CD,则CD是线段AB的垂直平分线.5、经过一点作已知直线的垂线(1)已知点在直线上:试一试:如图所示,点C在直线l上,试过点C画出直线l的垂线.步骤:1、以C为圆心,任一线段的长为半径画弧,交l于A、B两点,则C是线段AB的中点.2、点A为圆心,以大于AB一半的长为半径画弧;3、以点B为圆心,以同样的长为半径画弧,两弧的交点分别记为M、N,连结MN,则MN是线段AB的垂直平分线.(2)已知点在直线外 思考:如图所示,如果点C 不在直线l 上,试和同学讨论,应采取怎样的步骤,过点C 画出直线l 的垂线? 作法:A练 习 一、填空:1、求作:线段MN 的垂直平分线。
作法:(1)__________为圆心,_____为 M N半径作弧,两弧相交于______(2)连____,则____为线段的垂直平分线。
B2、如图:在△ABC 中,∠ABC 为钝角,求作:AB 上的高CD 。
作法:(1)以____为圆心,适当长为半径,作弧交直 C线AB 于_____,(2)分别以_______圆心,以大于21_____的长为半径作弧, 两弧相交于点___,A B(3)_________,则即为所求。
综合练习:一、根据题意完成下列尺规作图并填空:a 1、已知线段abc,,求作△ABC ,使BC=a,CA=b,AB=c ,b 作法:(1)作BC=__________,c(2)在BC 的同旁,以B 为_____,以_____ 为半径作___,再以____为圆心,以____ 为半径___,两弧_______ (3)连结___,____则△ABC 就是所要求作的三角形。