抛物线的几何性质-抛物线焦点弦的性质

合集下载

高中数学必修五抛物线的定义知识点

高中数学必修五抛物线的定义知识点

高中数学必修五抛物线的定义知识点
高中数学抛物线的定义知识点(一)
抛物线方程
1设,抛物线的标准方程、类型及其几何性质:
图形
焦点
准线
范围
对称轴轴轴
顶点(0,0)
离心率
焦点
注:①顶点
.
②则焦点半径
;则焦点半径为
.
③通径为2p,这是过焦点的所有弦中最短的.
④(或)的参数方程为
(或
)(为参数).
高中数学抛物线的定义知识点(二)
抛物线的性质(见下表):
抛物线的焦点弦的性质:
关于抛物线的几个重要结论:
(1)弦长公式同椭圆.
(2)对于抛物线y2=2px(p>0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部
(3)抛物线y2=2px上的点P(x1,y1)的切线方程是
抛物线y2=2px(p>0)的斜率为k的切线方程是y=kx+
(4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是
(5)过抛物线y2=2px上两点
的两条切线交于点M(x0,y0),则
(6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F,又若切线PA⊥PB,则AB必过抛物线焦点F.。

高中数学必修抛物线教学讲义

高中数学必修抛物线教学讲义

03- 抛物线【知识点】一、抛物线的标准方程、种类及其几何性质() :标准方程图形焦点准线范围对称轴极点离心率二、抛物线的焦半径、焦点弦轴(0,0)轴1.焦点弦:过抛物线焦点的弦,若,则(1) x0+,(2) ,- p2(3)弦长 , ,即当 x1=x2时 , 通径最短为 2p(4)若 AB的倾斜角为θ,则 =(5) +=2.通径:过抛物线的焦点且垂直于对称轴的弦。

过焦点的全部弦中最短的弦,也被称做通径.其长度为2p.3.的参数方程为(为参数),的参数方程为(为参数).4、弦长公式:三、抛物线问题的基本方法1.直线与抛物线的地点关系2.直线,抛物线,3.,消 y 得:4.( 1)当 k=0 时,直线与抛物线的对称轴平行,有一个交点;5.( 2)当 k≠ 0 时,>0,直线与抛物线订交,两个不一样交点;=0,直线与抛物线相切,一个切点;<0,直线与抛物线相离,无公共点。

(3)若直线与抛物线只有一个公共点, 则直线与抛物线必相切吗(不必定)6.对于直线与抛物线的地点关系问题常用办理方法直线:抛物线,①联立方程法:设交点坐标为, ,则有 , 以及,还可进一步求出,在波及弦长,中点,对称,面积等问题时,常用此法,比方a.订交弦 AB的弦长或b.中点, ,②点差法:设交点坐标为,,代入抛物线方程,得将两式相减,可得a.在波及斜率问题时,b.在波及中点轨迹问题时,设线段的中点为,,即,同理,对于抛物线,若直线与抛物线订交于两点,点是弦的中点,则有(注意能用这个公式的条件: 1)直线与抛物线有两个不一样的交点, 2)直线的斜率存在,且不等于零)【典型例题】考点 1 抛物线的定义题型利用定义, 实现抛物线上的点到焦点的距离与到准线的距离之间的变换[ 例1 ]已知点P 在抛物线 y2= 4x 上,那么点P 到点Q( 2,- 1)的距离与点P 到抛物线焦点距离之和的最小值为[分析]过点P 作准线的垂线交准线于点R,由抛物线的定义知,,当P 点为抛物线与垂线的交点时,获得最小值,最小值为点Q到准线的距离, 因准线方程为x=-1,故最小值为31. 已知抛物线的焦点为,点,在抛物线上,且、、成等差数列,则有()A.B.C. D.[分析]C由抛物线定义,即:.2.已知点 F 是抛物线的焦点 ,M 是抛物线上的动点 , 当最小时 ,M点坐标是()A. B. C. D.[分析]设 M到准线的距离为, 则,当最小时,M点坐标是,选C考点2抛物线的标准方程题型 : 求抛物线的标准方程[ 例 2 ]求知足以下条件的抛物线的标准方程,并求对应抛物线的准线方程:(1) 过点 (-3,2)(2)焦点在直线上[ 分析 ] (1)设所求的抛物线的方程为或,∵过点 (-3,2)∴∴∴抛物线方程为或,前者的准线方程是后者的准线方程为(2)令得,令得,∴抛物线的焦点为(4,0) 或 (0,-2),当焦点为(4,0)时,∴,此时抛物线方程; 焦点为 (0,-2)时∴,此时抛物线方程.∴所求抛物线方程为或, 对应的准线方程分别是.3. 若抛物线的焦点与双曲线的右焦点重合, 则的值[分析]4.对于极点在原点的抛物线,给出以下条件:①焦点在 y 轴上;②焦点在 x 轴上;③抛物线上横坐标为 1 的点到焦点的距离等于 6;④抛物线的通径的长为 5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2, 1).能使这抛物线方程为y 2=10的条件是 ____________. (要求填写适合条件的序号)x[分析]用清除法,由抛物线方程y2=10x 可清除①③④,进而②⑤知足条件.5.若抛物线的极点在原点,张口向上, F 为焦点, M为准线与 Y 轴的交点, A 为抛物线上一点 , 且,求此抛物线的方程[ 分析 ]设点是点在准线上的射影,则,由勾股定理知,点 A 的横坐标为,代入方程得或4,抛物线的方程或考点 3抛物线的几何性质题型:相关焦半径和焦点弦的计算与论证[ 例 3 ] 设 A、 B 为抛物线上的点, 且 (O 为原点 ), 则直线 AB必过的定点坐标为__________.[分析]设直线OA方程为 , 由解出 A点坐标为解出 B 点坐标为,直线AB方程为 , 令得,直线AB 必过的定点增补:抛物线的几个常有结论及其应用结论一:若AB是抛物线的焦点弦(过焦点的弦),且,,则:,。

抛物线的简单几何性质

抛物线的简单几何性质

x
直线与抛物线的关系
例3.已知抛物线y2=4x,过定点A(-2, 1)的
直线l的斜率为k,下列情况下分别求k的
取值范围:
1. l与抛物线有且仅有一个公共点;
2. l与抛物线恰有两个公共点;
3. l与抛物线没有公共点.
例 1 已知抛物线的方程为 y 4 x ,直线 l 过定点 P ( 2 , 1 ) ,斜率为 k , k 为何值时,直线 l 与抛物线 2 y 4 x :⑴只有一个公共点;⑵有两个公共点;⑶ 没有公共点?
l
y
(4) 离心率:
O
F
x
e =1
方程 图
y2 = 2px
(p>0)
y
l O F x
y2 = -2px
x2 = 2py
x2 = -2py
(p>0)
y
x
l l F x
(p>0)
y
F
O l
(p>0)
y
x
O F
形 范围
对称 性
O
x≥0 y∈R
x≤0 y∈R
x∈R y≥0
x∈R y≤0
关于x轴对称 (0,0) e=1
2
分析:直线与抛物 线有一个公共点 的情况有两种情 形:一种是直线 平行于抛物线的 对称轴; 另一种是直线与 抛物线相切.

归纳方法:
1.联立方程组,并化为关于x或y的一元方程;
2.考察二次项的系数是否为0,
①若为0,则直线与抛物线的对称轴平行, 直线与抛物线有且仅有一个交点; ②若不为0,则进入下一步. 3.考察判别式 ⊿<0 直线与抛物线相离. ⊿=0 直线与抛物线相切; ⊿>0 直线与抛物线相交;

抛物线焦点弦性质

抛物线焦点弦性质

焦点弦的角平分线性质
总结词
通过抛物线焦点的弦也是该弦所夹角的角平分线。
详细描述
对于给定的抛物线和通过该抛物线焦点的弦,该弦将把与之相交的两个射线平分,也就是说,它是一 个角平分线。这一性质在几何学中有着广泛的应用,特别是在解决与角平分线相关的问题时。
04 焦点弦的应用
在几何作图中的应用
抛物线的性质
THANKS FOR WATCHING
感谢您的观看的性质和定理将被发现和证明。
未来研究可以进一步探索抛物线焦点弦与其他几何图形之间的关系,以 及在各个领域的应用前景。
同时,随着计算机技术的发展,数值模拟和可视化技术可以为抛物线焦 点弦性质的研究提供更多的手段和方法,有助于更深入地理解这一概念。
物体的运动规律。
05 结论
对抛物线焦点弦性质的总结
抛物线焦点弦性质是几何学中的重要概念,它涉及到抛物线、焦点和弦的一系列特 性。
焦点弦是指通过抛物线焦点的弦,它具有一些特殊的性质,如长度、倾斜角等。
这些性质在几何学、光学、天文学等领域有着广泛的应用,对于解决实际问题具有 重要的意义。
对未来研究的展望
焦点弦的面积性质
总结词
抛物线焦点弦将抛物线划分为两个面 积相等的部分。
详细描述
对于给定的抛物线,通过焦点的弦将 该抛物线分为两个面积相等的区域。 这一性质在几何和解析几何中都有所 应用,是抛物线的一个重要特性。
焦点弦的切线性质
总结词
焦点弦在抛物线上的切点与焦点的连线垂直于该弦。
详细描述
对于抛物线上的任意一点,该点处的切线与通过该点和焦点的连线垂直。这一 性质在解决几何问题时非常有用,因为它揭示了切线、弦和焦点之间的特殊关 系。
焦点弦的性质是抛物线几何性质的一 个重要部分,它在解决一些数学问题 中有着广泛的应用。

抛物线及其性质知识点大全

抛物线及其性质知识点大全

抛物线及其性质1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质:图形参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔.开口方向 右左上下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p =>22(0)x py p =->焦 点位 置 X 正X 负Y 正Y 负焦 点坐 标 (,0)2p (,0)2p -(0,)2p(0,)2p -准 线方 程 2p x =-2p x =2p y =-2p y =范 围 0,x y R ≥∈0,x y R ≤∈0,y x R ≥∈0,y x R ≤∈对 称轴 X 轴X 轴Y 轴Y 轴顶 点坐 标 (0,0)离心率 1e =通 径 2p焦半径11(,)A x y 12p AF x =+12p AF x =-+12p AF y =+12p AF y =-+焦点弦长AB12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++焦点弦长AB 的补充11(,)A x y22(,)B x y以AB 为直径的圆必与准线l 相切若AB 的倾斜角为α,22sin p AB α=若AB 的倾斜角为α,则22cos pAB α=2124p x x = 212y y p =-112AF BF AB AF BF AF BF AF BF p++===•• 3.抛物线)0(22>=p px y 的几何性质:(1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.(2)对称性:对称轴要看一次项,符号决定开口方向. (3)顶点(0,0),离心率:1=e ,焦点(,0)2p F ,准线2px -=,焦准距p . (4) 焦点弦:抛物线)0(22>=p px y 的焦点弦AB ,),(11y x A ,),(22y x B ,则p x x AB ++=21||. 弦长|AB|=x 1+x 2+p,当x 1=x 2时,通径最短为2p 。

抛物线的简单几何性质(第2课时焦点弦)-高二数学教材配套教学课件(人教A版2019选择性必修第一册)

抛物线的简单几何性质(第2课时焦点弦)-高二数学教材配套教学课件(人教A版2019选择性必修第一册)
4
2
1
1
2
(2)

= ;
|FA| |FB| p
(3)以 AB 为直径的圆与抛物线的准线相切.
抛物线的简单几何性质
p
,0
p
证明:(1)抛物线 y2=2px(p>0)的焦点为 F 2
,准线方程为 x=- .
2
p
设直线 AB 的方程为 x=my+ ,把它代入 y2=2px,
2
化简,得 y2-2pmy-p2=0.
上的两个动点(AB 不垂直于 x 轴),且|AF|+|BF|=8,线段 AB 的垂直平分线恒
经过点 Q(6,0),求抛物线的方程.
解:设抛物线的方程为
y2=2px(p>0),则其准线方程为
设 A(x1,y1),B(x2,y2),∵|AF|+|BF|=8,
p
p
∴x1+ +x2+ =8,
2
2
p
x=- .
1
则|CC1|= (|AA1|+|BB1|)
2
1
1
= (|AF|+|BF|)= |AB|.
2
2
∴以线段 AB 为直径的圆与抛物线的准线相切.
抛物线的简单几何性质
2. 以x轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐
标原点,则其方程为(
)
A.y2=8x
C.y2=8x或y2=-8x
2p
p
y0
2
y1 y2 p
p
y0
2
( y1 y2 ) p
02抛物线的简单的几何性质
P
A
R
T
O
N
E
抛物线的简单几何性质

抛物线的简单几何性质

抛物线的简单几何性质
与抛物线方程联立,得y=43x-1 , y2=4x
消去 y,整理得 4x2-17x+4=0, 由抛物线的定义可知,|AB|=x1+x2+p= 147+2=245. 所以,线段 AB 的长为245.
[点评] 过抛物线焦点的直线与抛物线相交弦长问 题是抛物线中常见问题.解决此类问题,通常有三种 解法:(1)焦点弦长公式,
|AB|= p-y1-y2
典例精析
类型一 抛物线的简单几何性质 [例1] 抛物线的顶点在原点,对称轴重合于椭圆 9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距 离为3,求抛物线的方程. [分析] 先确定抛物线方程的形式,再依条件求待 定参数.
[解] 椭圆 9x2+4y2=36 可化为x42+y92=1,得抛物 线的对称轴为 x 轴.
(2)顶点在原点,对称轴为y轴时的抛物线方程可设 为x2=ay(a≠0),当a>0时,抛物线开口向上,当a<0时, 抛物线开口向下.
类型二 抛物线的焦点弦问题 [例 2] 斜率为43的直线 l 经过抛物线 y2=2px 的
焦点 F(1,0),且与抛物线相交于 A、B 两点. (1)求该抛物线的标准方程和准线方程; (2)求线段 AB 的长; [分析] (1)由抛物线焦点坐标得 p 值,求出抛物
(3)方法一:如图 4,知直线 AB 斜率必存在 故设 AB 方程为 y-1=m(x-1) 即 y=mx-m+1,设 A(x1,y1),B(x2,y2) 则由yx=2=m4xy-m+1 得 x2-4mx+4m-4=0
图4
则 x1+x2=4m,而x1+2 x2=1 即 x1+x2=2 ∴4m=2,m=12, 故直线 AB 方程为 x-2y+1=0.
方法二:设 A(x1,y1),B(x2,y2),则xx2122= =44yy12① ②

高中数学公开课优质教案:抛物线和简单几何性质教案(焦点弦的性质)

高中数学公开课优质教案:抛物线和简单几何性质教案(焦点弦的性质)

抛物线几何性质专题一---------抛物线的焦半径和焦点弦一、教学目标(一)知识教学点使学生理解并掌握抛物线的几何性质,从定义和标准方程出发,探究有关抛物线的焦半径和焦点弦的常见性质.(二)能力训练点从抛物线的定义和标准方程出发,结合几何分析和坐标运算,推导抛物线的性质,从而培养学生分析、归纳、推理等能力.(三)学科渗透点使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线方程的关系概念的理解,这样才能解决抛物线中的弦、最值等问题.二、教材分析1.重点:有关抛物线焦半径和焦点弦几何性质的推理过程中所应用的方法、技巧和结论.2.难点:对抛物线的几何性质推理和应用的方法渗透.三、课堂设计提问、填表、讲解、演板、练习、探究、总结.四、教学过程教学环节教学内容设计意图(一)复习上节课的定义及各标准方程,提问学生。

复习巩固(二)抛物线的几何性质探究:(1)范围因为0>p,由方程可知0≥x,所以抛物线在y轴的右侧,当x的值增大时,||y也增大,这说明抛物线向右上方和右下方无限延伸.(2)对称性以y-代y,方程不变,所以抛物线关于x轴对称.我们把抛物线的对称轴叫做抛从认识抛物线的几何直观入手,总结归纳常见的几何性质。

物线的轴. (3)顶点抛物线与它的轴的交点叫做抛物线的顶点,在方程中,当 时,因此抛物线的顶点就是坐标原点. (4)离心率抛物线上的点与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,由抛物线的定义可知其他三种标准方程抛物线的几何性质可类似地求得.(5)讨论抛物线上一动点P 到焦点F 的距离(焦半径长度)和焦点弦长的问题。

总结如下:2011-11-13焦点弦的长度焦半径顶点对称性范围图形方程y 2= 2px (p >0)y 2= -2px (p >0)x 2= 2py (p >0)x 2= -2py (p >0)l F yxOl FyxOlFy xOx ≥0y ∈R x ≤0y ∈Rx ∈R y ≥0y ≤0x ∈R l FyxO 12p x x ++12()p x x -+12p y y ++12()p y y -+02px +02px -02py +02py -关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称(0,0)(0,0)(0,0)(0,0)(三)有关抛物线定义和焦半径的灵活应用。

第2课时抛物线的简单几何性质

第2课时抛物线的简单几何性质

第2课时 抛物线的简单几何性质一、抛物线的性质1.抛物线2y =2px(p>0)的简单几何性质(1)对称性:以-y 代y ,方程2y =2px(p>0)不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫做抛物线的轴,抛物线只有一条对称轴. (2)顶点:抛物线和它的轴的交点叫做抛物线的顶点.(3)离心率:抛物线上的点到焦点的距离和它到准线的距离的比,叫做抛物线的离心率, (4)通径:过焦点垂直于轴的弦称为抛物线的通径,其长为2p.(5)范围:由y2=2px ≥0,p>0知x ≥0,所以抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸,p 值越大,它开口越开阔. 2.焦半径抛物线上一点与焦点F 连接的线段叫做焦半径,设抛物线上任一点A(x0,y0),则四种标准方程形式下的焦半径公式为3.p 表示焦点到准线的距离,p >0.p 值越大,抛物线的开口越宽;p 值越小,抛物线的开口越窄。

4.焦点弦问题如图所示:AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2),AB 的中点M (x 0,y 0),抛物线的准线为l .(1)以AB 为直径的圆必与准线l 相切; (2)|AB |=2(x 0+p2)=x 1+x 2+p ;(3)A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=42p ,y 1·y 2=2p.题型一、抛物线的对称性例1、正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y 2=2px (p >0)上,求这个正三角形的边长.[解析] 如图,设正三角形OAB 的顶点A 、B 在抛物线上,且它们坐标分别为(x 1,y 1)和(x 2,y 2)则:y 21=2px 1,y 22=2px 2.又|OA |=|OB |,∴x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,∴(x 1-x 2)(x 1+x 2+2p )=0. ∵x 1>0,x 2>0,2p >0,∴x 1=x 2, 由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称.由于AB 垂直于x 轴,且∠AOx =30°.∴y 1x 1=tan30°=33,而y 21=2px 1,∴ y 1=23p . 于是|AB |=2y 1=43p . 例2、等腰Rt △ABO 内接于抛物线2y =2px(p>0),O 为抛物线的顶点,OA ⊥OB ,则△ABO 的面积是()A .82pB .42p C .22pD .2p[答案] B题型二、抛物线焦点弦的性质例3、斜率为2的直线经过抛物线y 2=4x 的焦点,与抛物线相交于两点A 、B ,求线段AB 的长. 解∴|AB|=|AF|+|BF|=x1+x2+2=3+2=5. 例4、过抛物线2y =8x 的焦点作直线l ,交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则|AB|的值为_____________.[答案] 10 题型三、最值问题例5、设P 是抛物线y 2=4x 上的一个动点,F 为抛物线焦点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.[解析] (1)如图,易知抛物线的焦点为F (1,0),准线方程是x =-1,由抛物线的定义知:点P 到直线x =-1的距离等于点P 到焦点F 的距离.于是,问题转化为:在曲线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小.显然,连AF 交抛物线于P 点,故最小值为22+12,即 5. (2)如图把点B 的横坐标代入y 2=4x 中,得y =±12,因为12>2,所以B 在抛物线内部,自B 作BQ 垂直准线于Q ,交抛物线于P 1.此时,由抛物线定义知: |P 1Q |=|P 1F |.那么|PB |+|PF |≥|P 1B |+|P 1Q | =|BQ |=3+1=4. 即最小值为4. 例6、定点M ⎪⎭⎫⎝⎛310,3与抛物线y 2=2x 上的点P 之间的距离为d 1,P 到抛物线准线l 的距离为d 2,则d 1+d 2取最小值时,P 点坐标为( )A .(0,0)B .(1,2)C .(2,2) D.⎪⎭⎫ ⎝⎛-21,81 [答案] C例7、设抛物线C :x 2=2py 的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;(2)若A 、B 、F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m 、n 距离的比值.[正解] (1)由已知可得△BFD 为等腰直角三角形,当p >0时,|BD |=2p ,圆F 的半径|F A |=2p ,由抛物线定义可知A 到l 的距离d =|F A |=2p . 因为△ABD 的面积为42,所以12|BD |·d =42,即12·2p ·2p =42,解得p =2,所以F (0,1),圆F 的方程为x 2+(y -1)2=8. 当p <0时,同理可得p =-2,∴F (-1,0), ∴圆F 的方程为x 2+(y +1)2=8.(2)因为A 、B 、F 三点在同一直线m 上,所以AB 为圆F 的直径,∠ADB =90°,由抛物线定义知|AD |=|F A |=12|AB |.所以∠ABD =30°,m 的斜率为33或-33. 当m 的斜率为33时,由已知可设n :y =33x +b ,代入x 2=2py 得x 2-233px -2pb =0. 由于n 与C 只有一个公共点,故Δ=43p 2+8pb =0,解得b =-p 6.因为m 的截距b 1=p 2,|b 1||b |=3,所以坐标原点到m ,n 距离的比值为3. 当m 的斜率为-33时,由图形的对称性可知,坐标原点到m ,n 的距离的比值为3. 课后作业一、选择题1.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1)、B (x 2,y 2)两点,若x 1+x 2=10,则弦AB 的长度为( )A .16B .14C .12D .10[答案] C[解析] 设抛物线的焦点为F ,则|AB |=|AF |+|BF |=x 1+1+x 2+1=x 1+x 2+2=10+2=12. 2.设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →与x 轴正向的夹角为60°,则|OA |为( )A.214pB.212pC.136p D.1336p [答案] B[解析] 设A (x 1,y 1),直线F A 的方程为y =3(x -p 2),由⎩⎪⎨⎪⎧ y 2=2px y =3(x -p 2),得⎩⎪⎨⎪⎧x 1=32p y 1=3p. ∴|OA |=x 21+y 21=94p 2+3p 2=212p . 3.过抛物线焦点F 的直线与抛物线相交于A 、B 两点,若点A 、B 在抛物线准线上的射影分别为A 1,B 1,则∠A 1FB 1为( )A .45°B .60°C .90°D .120°[答案] C[解析] 设抛物线方为y 2=2px (p >0). 如图,∵|AF |=|AA 1|,|BF |=|BB 1|, ∴∠AA 1F =∠AF A 1,∠BFB 1=∠FB 1B .又AA 1∥Ox ∥B 1B ,∴∠A 1FO =∠F A 1A ,∠B 1FO =∠FB 1B ,∴∠A 1FB 1=12∠AFB =90°.4.抛物线y 2=2x 的焦点为F ,其准线经过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左顶点,点M 为这两条曲线的一个交点,且|MF |=2,则双曲线的离心率为( ) A.102B .2 C. 5 D.52[答案] A[解析] F (12,0),l :x =-12,由题意知a =12.由抛物线的定义知,x M -(-12)=2,∴x M =32,∴y 2M =3,∵点(x M ,y M )在双曲线上,∴9414-3b 2=1,∴b 2=38,∴c 2=a 2+b 2=58,∴e 2=c 2a 2=58×4=52,∴e =102. 5.已知A 、B 在抛物线y 2=2px (p >0)上,O 为坐标原点,如果|OA |=|OB |,且△AOB 的垂心恰好是此抛物线的焦点F ,则直线AB 的方程是( ) A .x -p =0 B .4x -3p =0 C .2x -5p =0D .2x -3p =0[答案] C[解析] 如图所示:∵F 为垂心,F 为焦点,OA =OB ,∴OF 垂直平分AB . ∴AB 为垂直于x 轴的直线设A 为(2pt 2,2pt )(t >0),B 为(2pt 2,-2pt ), ∵F 为垂心,∴OB ⊥AF ,∴k OB ·k AF =-1, 即-(2pt )2(2pt 2-p 2)·2pt 2=-1,解得t 2=54∴AB 的方程为x =2pt 2=52p ,∴选C.二、填空题6.已知过抛物线y 2=6x 焦点的弦长为12,则此弦所在直线的倾斜角是__________________.[答案] π4或3π4[解析] 设直线的倾斜角为θ,由题意得12=2p sin 2θ=6sin 2θ,∴sin 2θ=12,∴sin θ=±22,∵θ∈[0,π),∴θ=π4或3π4.7.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |=__________________.[答案] 8[解析] 如图,k AF =-3,∴∠AFO =60°,∵|BF |=4,∴|AB |=43, 即P 点的纵坐标为43, ∴(43)2=8x ,∴x =6, ∴|P A |=8=|PF |. 三、解答题8.如图,有一张长为8,宽为4的矩形纸片ABCD ,按如图所示的方法进行折叠,使每次折叠后点B 都落在AD 边上,此时记为B ′(注:图中EF 为折痕,点F 也可落在CD 边上).过点B ′作B ′T ∥CD 交EF 于点T ,求点T 的轨迹方程.[解析] 如图,以边AB 的中点O 为原点,AB 所在的直线为y 轴建立平面直角坐标系,则B (0,-2).连结BT ,由折叠知|BT |=|B ′T |.∵B ′T ∥CD ,CD ⊥AD ,∴B ′T ⊥AD .根据抛物线的定义知,点T 的轨迹是以点B 为焦点,AD 所在直线为准线的抛物线的一部分.设T (x ,y ).∵|AB |=4.即定点B 到定直线AD 的距离为4,∴抛物线的方程为x 2=-8y .在折叠中,线段AB ′的长度|AB ′|在区间[0,4]内变化,而x =|AB ′|,∴0≤x ≤4,故点T 的轨迹方程为x 2=-8y (0≤x ≤4).9.定长为3的线段AB 的端点A 、B 在抛物线y 2=x 上移动,求AB 中点到y 轴距离的最小值,并求出此时AB 中点M 的坐标.[解析] 如图,设F 是抛物线y 2=x 的焦点,A 、B 两点到准线的垂线分别是AC 、BD ,M 点到准线的垂线为MN ,N 为垂足,则|MN |=12(|AC |+|BD |),根据抛物线定义得|AC |=|AF |,|BD |=|BF |,∴|MN |=12(|AF |+|BF |)≥|AB |2=32.设M 点的横坐标为x ,则|MN |=x +14,∴x =|MN |-14≥32-14=54,等号成立的条件是弦AB 过点F , 由于|AB |>2p =1,∴AB 过焦点是可能的,此时M 点到y 轴的最短距离是54,即AB 的中点横坐标为54.当F 在AB 上时,设A 、B 的纵坐标分别为y 1、 y 2,则y 1y 2=-p 2=-14,从而(y 1+y 1)2=y 21+y 22+2y 1y 2=2×54-12=2,∴y 1+y 2=±2, ∴M 点的坐标为(54,±22)时,M 到y 轴距离的最小值为54.。

高中数学抛物线的几何性质-抛物线焦点弦的性质

高中数学抛物线的几何性质-抛物线焦点弦的性质
5、由焦点弦长公式
得 | AB | = x1 + x2,+ p
2
2
2
这个等式的几何意义是什么?
以AB为直径的圆与 抛物线的准线相切.
yA
OF
x
B
8
探求新知
6、设点M为抛物线准线与x轴的交点,则∠AMF
与∠BMF的大小关如何?
y
A
C
相等
M
OF
x
D
B
9
探求新知
7、过点A、B作准线的垂线,垂足分别为C、D,
3、A、B两点的坐标是否存在相关关系?若存 在,其坐标之间的关系如何?
yA
O
Fx
B
y1y2
= -p2, x1x2
=
p2 4
6
探求新知
4、利用焦半径公式,|AF|,|BF|可作哪些变形? |AF|与|BF|之间存在什么内在联系?
yA
O
Fx
B
1 + 1 =2 | AF | | BF | p
7
探求新知
满足OA ⊥OB O为坐标原点,
求证 : 直线AB经过一个定点.
yA
O x
B
14
例题讲解
解 : 如图,设OA的方程是y kx k 0,则因OA OB,
故可设OB的方程为y=- 1 x. k
yA

y y
kx 2 2
px
得A的坐标
2 k
p
2
,
2p k
O

y
1 k
x
得B的坐标
2 pk 2 , 2 pk
y
k 1 k
2
x
2
p

抛物线和简单几何性质教案(焦点弦的性质)

抛物线和简单几何性质教案(焦点弦的性质)

抛物线的几何性质(第二课时)---------抛物线的焦半径和焦点弦的性质一、教学目标(一)认知目标通过对抛物线焦点弦有关性质的探究,进一步改善对“抛物线”的认知结构。

(二)能力目标从抛物线的定义和标准方程出发,结合几何分析和坐标运算,推导抛物线焦点弦的性质。

培养学生分析、归纳、推理等能力.培养发现问题,提出问题的意识和数学交流的能力。

(三)情感目标通过对问题的探究活动,亲历知识的建构过程,领悟其中所蕴涵的数学思想和辩证唯物主义观点;体验探索中挫折的艰辛和快乐,感悟“数学美”,激发学习热情,初步形成正确的数学观,创新意识和科学精神。

二、学情分析学生已经学习了抛物线的定义、标准方程、抛物线的简单几何性质以及直线与抛物线的位置关系,有了一定的知识储备和探究问题的能力,因此本节课是学生能力的提升,知识的完善和升华。

三、重点难点应用函数与方程思想变形与化简技术处理焦点弦的有关性质。

1.重点:有关抛物线焦半径和焦点弦几何性质的推理过程中所应用的方法、技巧和结论.2.难点:对抛物线的几何性质推理和应用的方法渗透.四、教法与学法分析本节课坚持运用“3+1教学模式”,将“知识与技能,过程与方法,情感态度与价值观”的三维目标细化为教学的三个环节,即“理解课题相对完整的知识方法-------抛物线的定义与标准方程的四种形式统一起来;感悟典型问题的变式探究--------抛物线中焦点弦问题,获得解决典型问题的经验与规律---------运用方程和函数思想处理问题”。

在“抓迁移,促能力”形成的过程中,立足于培养学生学习数学的习惯,使学有目标,记有规律,用有方法,贯彻通性通法,对灵活应用分层次要求。

努力做到教法、学法的最优组合。

并体现以下特点:(1)充分利用数形结合,促使学生由感性认识上升为理性认识。

(2)重视学生主体参与。

学生是学习的主体,教是为了使学生会学,因此,对本节课每个环节,都应通过学生的自主学习、合作探究、交流展示的学习过程来完成。

抛物线标准方程及其几何性质

抛物线标准方程及其几何性质

教学内容知识梳理1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质:①顶点是焦点向准线所作垂线段中点。

②焦准距:FK p =③通径:过焦点垂直于轴的弦长为2p 。

④顶点平分焦点到准线的垂线段:2p OF OK ==。

⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。

所有这样的圆过定点F 、准线是公切线。

⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。

所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。

⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。

所有这样的圆的公切线是准线。

3抛物线标准方程的四种形式:,,px y px y 2222-==。

,py x py x 2222-== 4抛物线px y 22=的图像和性质:①焦点坐标是:⎪⎭⎫⎝⎛02,p , ②准线方程是:2px -=。

③焦半径公式:若点),(00y x P 是抛物线px y 22=上一点,则该点到抛物线C NM 1QM 2K FPoM 1QM 2KF Poyx的焦点的距离(称为焦半径)是:02p PF x =+, ④焦点弦长公式:过焦点弦长121222p pPQ x x x x p =+++=++ ⑤抛物线px y 22=上的动点可设为P ),2(2y py或2(2,2)P pt pt 或P px y y x 2),(2=其中5一般情况归纳:方程 图象 焦点 准线 定义特征 y 2=kxk>0时开口向右 (k/4,0)x=─k/4到焦点(k/4,0)的距离等于到准线x= ─k/4的距离k<0时开口向左 x 2=kyk>0时开口向上 (0,k/4)y=─k/4到焦点(0,k/4)的距离等于到准线y=─k/4的距离k<0时开口向下例题讲解例1设抛物线的顶点在原点,准线方程为x =-2,则抛物线的方程是( ) A .y2=-8x B .y2=8x C .y2=-4xD .y2=4x例2坐标平面内到定点F(-1,0)的距离和到定直线l :x =1的距离相等的点的轨迹方程是( ) A .y2=2xB .y2=-2xC .y2=4xD .y2=-4x例3已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A.34 B .1 C.54 D.74例4拋物线y2=4x 上一点M 到焦点的距离为2,则M 到y 轴的距离为________. 例5已知过抛物线y2=4x 的焦点F 的直线交该抛物线于A 、B 两点,|AF|=2,则|BF|=________.例6根据下列条件求拋物线的标准方程.(1)拋物线的焦点是双曲线16x2-9y2=144的左顶点;(2)拋物线焦点在x 轴上,直线y =-3与拋物线交于点A ,|AF|=5.例7已知抛物线y2=2x 的焦点是F ,点P 是抛物线上的动点,又有点A(3,2),求|PA|+|PF|的最小值,并求出取最小值时P 点的坐标. 变式练习.(1)将本例中A (3,2)改为A ⎝ ⎛⎭⎪⎫3,103,试求|P A |+|PF |的最小值及此时P 点的坐标.(2)本例条件不变,求点P 到点B ⎝⎛⎭⎪⎫-12,1的距离与点P 到直线x =-12的距离之和的最小值.例7.已知探照灯的轴截面是抛物线y 2=x ,如图所示,平行于对称轴y=0的光线于此抛物线上入射点,反射点分别为P 、Q ,设点P 的纵坐标为a(a>0),当a 取何值时,从入射光线P 到反射点Q 的光线路径最短?例8已知拋物线C :y 2=2px (p >0)过点A (1,-2).(1)求拋物线C 的方程,并求其准线方程;y oFPQ(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与拋物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求出直线l 的方程;若不存在,说明理由.课内练习1.以抛物线)0(22>=p px y 的焦半径PF 为直径的圆与y 轴位置关系为( )A、 相交 B、 相离 C、 相切 D、 不确定 2.抛物线方程为7x +8y 2=0,则焦点坐标为( ) A .(716 ,0) B .(-732 ,0) C .(0,- 732 ) D .(0,- 716 )3.抛物线y=-x 2上的点到直线4x +3y -8=0距离的最小值是 ( ) A .43 B .75 C .85 D .34.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA → ·AF → =-4,则A 点坐标为 ( ) A .(2,±2 2 ) B .(1,±2) C .(1,2) D .(2,2 2 )5.抛物线y 2=-2px(p >0)上一点横坐标为-9,它到焦点的距离为10,这点的坐标为 . 6.过抛物线x y =2的焦点F 的直线m 的倾斜角m ,4πθ≥交抛物线于A 、B 两点,且A 点在x 轴上方,则|FA|的取值范围是 .7.一动圆M和直线:4l x =-相切,并且经过点(4,0)F ,则圆心M的轨迹方程是 . 8.直线l 过抛物线)0(22>=p px y 的焦点且与x 轴垂直,若l 被抛物线截得的线段长为6,求p 的值.9.已知直线l :y= 3 x +4被抛物线x 2=2p y(p >0)截得的弦长为4 3 . (1)求抛物线的方程;(2)在该抛物线上位于直线l 下方的部分中,求一点M ,使M 到l 的距离最远.10.已知抛物线y 2=4ax(a >0)的焦点为A ,以B (a+4,0)为圆心,|AB|长为半径画圆,在x 轴上方交抛物线于M 、N 不同的两点,若P 为MN 的中点.(1)求a 的取值范围; (2)求|AM|+|AN|的值;(3)问是否存在这样的a 值,使|AM|、|AP|、|AN|成等差数列?课后作业1.顶点为原点,抛物线对称轴为y轴,且过点(-4,5),则抛物线的准线方程为()A.y=-45B.y=45C.x=-45D.x=452.已知点P是抛物线22y x=上的动点,点P在y轴上的射影是M,点A的坐标是7(,4)2A,则||||PA PM+的最小值是()A.112B.4 C.92D.53.过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为()A.2x+y+2=0 B.3x-y+3=0 C.x+y+1=0 D.x-y+1=04.抛物线型拱桥的顶点距水面2m时,水面宽8m,若水面升1m,此时水面宽为.5.过抛物线y2=4x焦点的直线交抛物线于A,B两点,已知|AB|=10,O为坐标原点,则△OAB的重心的坐标为.6.求以原点为顶点,坐标轴为对称轴,且过点P(2,-4)的抛物线的方程.7.已知抛物线C 的顶点在原点,焦点F 在x 轴正半轴上,设A ,B 是抛物线C 上的两个动点(AB 不垂直于x 轴),且|AF|+|BF|=8,线段AB 的垂直平分线恒经过定点Q (6,0),求此抛物线方程.8.已知抛物线x y 22=及定点),0,1(),1,1(-B A M 是抛物线上的点,设直线BM AM ,与抛物线的另一交点分别为21,M M .求证:当点M 在抛物线上变动时(只要21,M M 存在且1M 与2M 是不同两点),直线21M M 恒过一定点,并求出定点的坐标B 组1.抛物线24y x =上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A .1716B .1516C .78D .02.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN → |·|MP → |+MN → ·NP → =0,则动点P (x,y )的轨迹方程是 ( ) A .y 2=8x B .y 2=-8x C .y 2=4x D .y 2=-4x3.已知P 是抛物线y=2x 2+1上的动点,定点A (0,―1),点M 分P A → 所成的比为2,则点M 的轨迹方程是( )A 、y=6x 2―31B 、x=6y 2-31 C 、y=3x 2+31 D 、y=―3x 2―14.有一个正三角形的两个顶点在抛物线y 2=2 3 x 上,另一个顶点在原点,则这个三角形的边长是 .5.对正整数n ,设抛物线x n y )12(22+=,过)0,2(n P 任作直线l 交抛物线于n n B A ,两点,则数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧+⋅)1(2n OB OA n n 的前n 项和公式是 .6.焦点在x 轴上的抛物线被直线y=2x +1截得的弦长为15 ,求抛物线的标准方程.7.定长为3的线段AB 的两个端点在抛物线y 2=x 上移动,AB 的中点为M ,求点M 到y 轴的最短距离,并求出点M 的坐标.8.在直角坐标系中,已知点⎪⎭⎫⎝⎛0,2p F (p>0), 设点F 关于原点的对称点为B ,以线段FA为直径的圆与y 轴相切.(1)点A 的轨迹C 的方程;(2)PQ 为过F 点且平行于y 轴的曲线C 的弦,试判断PB 与QB 与曲线C 的位置关系.21M M 是曲线C 的平行于y 轴的任意一条弦,若直线FM1与BM2的交点为M ,试证明点M 在曲线C 上.。

学案1:2.7.2 抛物线的几何性质

学案1:2.7.2 抛物线的几何性质

2.7.2抛物线的几何性质学习目标核心素养1.了解抛物线的范围、对称性、顶点、焦点、准线等几何性质.(重点)2.会利用抛物线的性质解决一些简单的抛物线问题.(重点、难点)3.掌握直线与抛物线相交时与弦长相关的知识.通过抛物线的几何性质的学习,培养直观想象、数学运算素养.【情境导学】情境引入如果让抛物线绕其对称轴旋转,就得到一个旋转形成的抛物面曲面,旋转抛物面的轴上,有一个焦点,任何一条平行于抛物面轴的光(射)线由抛物面上反射出来之后,其反射光(射)线都通过该点,应用抛物面的这个几何性质,人们设计了很多非常有用的东西,如太阳灶、卫星电视天线、雷达等.当然这条性质本身也是抛物线的一条性质,今天我们就来具体研究一下构成抛物面的线——抛物线的几何性质.新知初探1.抛物线的几何性质标准方程y2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形性质范围x≥0,y∈R x≤0,y∈R x∈R,y≥0x∈R,y≤0对称轴x轴y轴顶点离心率e=思考1:抛物线x2=2py(p>0)有几条对称轴?思考2:抛物线的范围是x∈R,这种说法正确吗?思考3:参数p对抛物线开口大小有何影响?2.焦点弦设过抛物线焦点的弦的端点为A(x1,y1),B(x2,y2),则初试身手1.思考辨析(正确的打“√”,错误的打“×”)(1)抛物线是中心对称图形.()(2)抛物线的范围为x∈R.()(3)抛物线关于顶点对称.()(4)抛物线的标准方程虽然各不相同,但离心率都相同.()2.设抛物线y2=8x上一点P到y轴的距离是6,则点P到该抛物线焦点F的距离是() A.8B.6C.4D.23.过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2),若x1+x2=6,则|AB|=.4.顶点在原点,对称轴是x轴,并且顶点与焦点的距离等于6的抛物线方程是.【合作探究】【例1】(1)平面直角坐标系xOy中,有一定点A(2,1),若线段OA的垂直平分线过抛物线y2=2px(p>0)的焦点,则该抛物线的标准方程是.(2)抛物线的顶点在原点,对称轴重合于椭圆9x2+4y2=36短轴所在的直线,抛物线焦点到顶点的距离为3,求抛物线的方程及抛物线的准线方程.[规律方法]用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置.不同的焦点设出不同的方程.[跟进训练]1.已知抛物线关于x轴对称,它的顶点在坐标原点,其上一点P到准线及对称轴距离分别为10和6,求抛物线方程.【例2】(1)抛物线y2=4x的焦点为F,准线为l,点A是抛物线上一点,且∠AFO=120°(O 为坐标原点),AK⊥l,垂足为K,则△AKF的面积是.(2)已知正三角形AOB的一个顶点O位于坐标原点,另外两个顶点A,B在抛物线y2=2px(p >0)上,求这个三角形的边长.[规律方法]利用抛物线的性质可以解决的问题(1)对称性:解决抛物线的内接三角形问题.(2)焦点、准线:解决与抛物线的定义有关的问题.(3)范围:解决与抛物线有关的最值问题.(4)焦点:解决焦点弦问题.提醒:解答本题时易忽略A,B关于x轴对称而出错.[跟进训练]2.已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A、B两点,O为坐标原点,若双曲线的离心率为2,△AOB的面积为3,求抛物线的标准方程.[探究问题]以抛物线y2=2px(p>0)为例,回答下列问题:(1)过焦点F的弦长|AB|如何表示?还能得到哪些结论?(2)以AB为直径的圆与直线l具有怎样的位置关系?(3)解决焦点弦问题需注意什么?【例3】已知抛物线方程为y2=2px(p>0),过此抛物线的焦点的直线与抛物线交于A,B两点,且|AB|=52p,求AB所在直线的方程.[思路探究]根据弦长求出直线斜率,进而求得直线方程.[母题探究]1.(改变问法)本例条件不变,求弦AB的中点M到y轴的距离.2.(变换条件)本例中,若A 、B 在其准线上的射影分别为A 1,B 1,求∠A 1FB 1.[规律方法]解决过焦点的直线与抛物线相交有关的问题时,一是注意直线方程和抛物线方程联立得方程组,再结合根与系数的关系解题,二是注意焦点弦长、焦半径公式的应用.解题时注意整体代入思想的运用,简化运算.【课堂小结】1.讨论抛物线的几何性质,一定要利用抛物线的标准方程;利用几何性质,也可以根据待定系数法求抛物线的方程.2.解决抛物线的轨迹问题,可以利用抛物线的标准方程,结合抛物线的定义.3.抛物线y 2=±2px (p >0)的过焦点的弦长|AB |=x 1+x 2+p ,其中x 1,x 2分别是点A ,B 横坐标的绝对值;抛物线x 2=±2py (p >0)的过焦点的弦长|AB |=y 1+y 2+p ,其中y 1,y 2分别是点A ,B 纵坐标的绝对值.4.求抛物线的方程常用待定系数法和定义法;直线和抛物线的弦长问题、中点弦问题及垂直、对称等可利用判别式、根与系数的关系解决;抛物线的综合问题要深刻分析条件和结论,灵活选择解题策略,对题目进行转化.【学以致用】1.若抛物线y 2=2x 上有两点A 、B 且AB 垂直于x 轴,若|AB |=22,则抛物线的焦点到直线AB 的距离为( )A .12B .14C .16D .182.在抛物线y 2=16x 上到顶点与到焦点距离相等的点的坐标为( ) A .(42,±2) B .(±42,2) C .(±2,42)D .(2,±42)3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( ) A .(2,±22)B .(1,±2)C.(1,2) D.(2,22)4.已知AB是过抛物线2x2=y的焦点的弦,若|AB|=4,则AB的中点的纵坐标是.5.已知点P(1,m)是抛物线C:y2=2px上的点,F为抛物线的焦点,且|PF|=2,直线l:y =k(x-1)与抛物线C相交于不同的两点A,B.(1)求抛物线C的方程;(2)若|AB|=8,求k的值.【参考答案】【情境导学】新知初探2.抛物线的几何性质(0,0)1思考1:[提示]有一条对称轴.思考2:[提示]抛物线的方程不同,其范围就不一样,如y2=2px(p>0)的范围是x≥0,y∈R,故此说法错误.思考3:[提示]参数p(p>0)对抛物线开口大小有影响,因为过抛物线的焦点F且垂直于对称轴的弦的长度是2p,所以p越大,开口越大.初试身手1.[答案](1)×(2)×(3)×(4)√[提示](1)×在抛物线中,以-x代x,-y代y,方程发生了变化.(2)×抛物线的方程不同,其范围不同,y2=2px(p>0)中x≥0,y∈R.(3)×(4)√离心率都为1,正确.2.A[∵抛物线的方程为y2=8x,∴其准线l的方程为x=-2,设点P(x0,y0)到其准线的距离为d,则d=|PF|,即|PF|=d=x0-(-2)=x0+2,∵点P到y轴的距离是6,∴x0=6,∴|PF|=6+2=8.]3.8[∵y2=4x,∴2p=4,p=2.∵由抛物线定义知:|AF|=x1+1,|BF|=x2+1,∴|AB|=x1+x2+p=6+2=8.]4.y2=24x或y2=-24x[∵顶点与焦点距离为6,即p2=6,∴2p=24,又对称轴为x轴,∴抛物线方程为y2=24x或y2=-24x.]【合作探究】【例1】(1)y 2=5x [线段OA 的垂直平分线为4x +2y -5=0,与x 轴的交点为⎝⎛⎭⎫54,0, ∴抛物线的焦点为⎝⎛⎭⎫54,0,∴其标准方程是y 2=5x .] (2)解:椭圆的方程可化为x 24+y 29=1,其短轴在x 轴上,∴抛物线的对称轴为x 轴,∴设抛物线的方程为y 2=2px 或y 2=-2px (p >0). ∵抛物线的焦点到顶点的距离为3,即p2=3,∴p =6,∴抛物线的标准方程为y 2=12x 或y 2=-12x , 其准线方程分别为x =-3和x =3. [跟进训练]1.[解] 设抛物线方程为y 2=2ax (a ≠0),点P (x 0,y 0). 因为点P 到对称轴距离为6,所以y 0=±6,因为点P 到准线距离为10,所以⎪⎪⎪⎪x 0+a2=10. ① 因为点P 在抛物线上,所以36=2ax 0. ②由①②,得⎩⎪⎨⎪⎧ a =2,x 0=9或⎩⎪⎨⎪⎧a =18,x 0=1 或⎩⎪⎨⎪⎧ a =-18,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=-9. 所以所求抛物线方程为y 2=±4x 或y 2=±36x .类型二抛物线性质的应用【例2】(1)43 [如图,设A (x 0,y 0),过A 作AH ⊥x 轴于H ,在Rt △AFH 中,|FH |=x 0-1,由∠AFO =120°,得∠AFH =60°,故y 0=|AH |=3(x 0-1),所以A 点的坐标为()x 0,3(x 0-1), 将点A 坐标代入抛物线方程可得3x 20-10x 0+3=0, 解得x 0=3或x 0=13(舍),故S △AKF =12×(3+1)×23=43.](2)解:如图所示,设正三角形OAB 的顶点A ,B 在抛物线上,且坐标分别为A (x 1,y 1),B (x 2,y 2),则y 21=2px 1,y 22=2px 2.又|OA |=|OB |,所以x 21+y 21=x 22+y 22,即x 21-x 22+2px 1-2px 2=0,整理得(x 1-x 2)(x 1+x 2+2p )=0.∵x 1>0,x 2>0,2p >0,∴x 1=x 2,由此可得|y 1|=|y 2|, 即线段AB 关于x 轴对称. 由此得∠AOx =30°,所以y 1=33x 1,与y 21=2px 1联立, 解得y 1=23p .∴|AB |=2y 1=43p . [跟进训练]2.[解] 由已知得c a =2,所以a 2+b 2a 2=4,解得ba =3.即渐近线方程为y =±3x ,而抛物线准线方程为x =-p2,于是A ⎝⎛⎭⎫-p 2,-32p ,B ⎝⎛⎭⎫-p 2,32p ,从而△AOB 的面积为12·3p ·p 2=3.可得p =2,因此抛物线开口向右,所以标准方程为y 2=4x .类型三焦点弦问题[探究问题](1) [提示] ①|AB |=2⎝⎛⎭⎫x 0+p2(焦点弦长与中点关系). ②|AB |=x 1+x 2+p =2psin 2θ(θ为AB 的倾斜角).③A ,B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2=p 24,y 1·y 2=-p 2.④S △AOB =p 22sin θ.⑤1|AF |+1|BF |=2p(定值). (2) [提示] 如图,AB 是过抛物线y 2=2px (p >0)焦点F 的一条弦,设A (x 1,y 1),B (x 2,y 2),AB 的中点M (x 0,y 0),相应的准线为l .所以以AB 为直径的圆必与准线l 相切.(3) [提示] 要注意抛物线定义在其中的应用,通过定义将焦点弦长度转化为端点的坐标问题,从而可借助根与系数的关系进行求解.【例3】[解] ∵过焦点的弦长|AB |=52p , ∴弦所在的直线的斜率存在且不为零,设直线AB 的斜率为k ,且A (x 1,y 1),B (x 2,y 2).∵y 2=2px 的焦点为F ⎝⎛⎭⎫p 2,0.∴直线方程为y =k ⎝⎛⎭⎫x -p 2. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,整理得k 2x 2-(k 2p +2p )x +14k 2p 2=0(k ≠0), ∴x 1+x 2=k 2p +2p k 2,∴|AB |=x 1+x 2+p =k 2p +2p k 2+p , 又|AB |=52p ,∴k 2p +2p k 2+p =52p ,∴k =±2. ∴所求直线方程为y =2⎝⎛⎭⎫x -p 2或y =-2⎝⎛⎭⎫x -p 2. [母题探究]1.[解] 设AB 中点为M (x 0,y 0),由例题解答可知2x 0=x 1+x 2=32p , 所以AB 的中点M 到y 轴的距离为34p . 2.[解] 由例题解析可知AB 的方程为y =k ⎝⎛⎭⎫x -p 2,即x =1k y +p 2,代入y 2=2px 消x 可得y 2=2p k y +p 2,即y 2-2p ky -p 2=0,∴y 1y 2=-p 2, 由A 1点的坐标为⎝⎛⎭⎫-p 2,y 1,B 1点的坐标为⎝⎛⎭⎫-p 2,y 2,得kA 1F =-y 1p ,kB 1F =-y 2p . ∴kA 1F ·kB 1F =y 1y 2p2=-1,∴∠A 1FB 1=90°. 【学以致用】1.A [线段AB 所在的直线方程为x =1,抛物线的焦点坐标为⎝⎛⎭⎫12,0,则焦点到直线AB的距离为1-12=12.] 2.D [抛物线y 2=16x 的顶点O (0,0),焦点F (4,0),设P (x ,y )符合题意,则有 ⎩⎪⎨⎪⎧ y 2=16x ,x 2+y 2=(x -4)2+y 2⇒⎩⎪⎨⎪⎧ y 2=16x ,x =2⇒⎩⎨⎧x =2,y =±4 2. 所以符合题意的点为(2,±42).]3.B [由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0, 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B .] 4.158 [设A (x 1,y 1),B (x 2,y 2),由抛物线2x 2=y ,可得p =14. ∵|AB |=y 1+y 2+p =4,∴y 1+y 2=4-14=154,故AB 的中点的纵坐标是y 1+y 22=158.] 5.[解] (1)抛物线C :y 2=2px 的准线为x =-p 2, 由|PF |=2得:1+p 2=2,得p =2. 所以抛物线的方程为y 2=4x .(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,可得 k 2x 2-(2k 2+4)x +k 2=0,Δ=16k 2+16>0,∴x 1+x 2=2k 2+4k 2. ∵直线l 经过抛物线C 的焦点F ,∴|AB |=x 1+x 2+p =2k 2+4k 2+2=8,解得k =±1, 所以k 的值为1或-1.。

抛物线焦点在y轴上的焦点弦公式

抛物线焦点在y轴上的焦点弦公式

抛物线焦点在y轴上的焦点弦公式
在数学中,抛物线是一种常见的二次曲线,其焦点和定点均是定义抛物线的重要元素之一。

当抛物线的焦点位于y轴上时,焦点弦公式可以用来描述焦点和定点之间的关系。

抛物线的标准方程
一般来说,抛物线的标准方程可以表示为:
\[ y = ax^2 + bx + c \]
其中,a,b,c为常数,a不等于0,且抛物线的开口方向由a的符号决定。

当a 大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

抛物线焦点在y轴上的情况
当抛物线的焦点在y轴上时,可以得到以下特殊的抛物线方程:
\[ x^2 = 4ay \]
这是焦点在y轴上的抛物线标准方程,其中焦点坐标为(0,a)。

这样的抛物线开口向上或向下,具体取决于a的正负。

求焦点弦的公式
在抛物线焦点在y轴上的情况下,焦点弦是一个特殊的直线,可以用一般的直线方程\[y = mx + c\]来表示。

接下来,我们来推导焦点弦的具体公式。

由于焦点位于y轴上,因此焦点的横坐标为0,那么焦点弦的方程可以化简为\[y = c\]。

同时,焦点弦过抛物线的焦点(0,a),我们可以将这个点代入焦点弦的公式,解得\[c = a\]。

最终焦点弦的公式为\[y = a\]。

这说明抛物线焦点在y轴上时,焦点弦的方程是\[y = a\],即焦点弦与x轴平行且与y轴的交点为抛物线的焦点坐标。

总结
抛物线焦点在y轴上时,我们得到了焦点弦的公式\[y = a\],这个公式描述了焦点弦与x轴平行且过抛物线焦点的特性。

抛物线是数学中重要的曲线之一,焦点弦公式帮助我们理解和描述焦点弦的几何性质。

(完整版)抛物线的几何性质

(完整版)抛物线的几何性质

抛 物 线一、抛物线22(0)y px p =>的简单几何性质1、范围:因为0p >,由方程22y px =可知,这条抛物线上任意一点M 的坐标(),x y 满足不等式0x ≥,所以这条抛物线在y 轴的右侧;当x 的值增大时,y 也增大,这说明抛物线向上方和右下方无限延伸,它的开口向右.2、对称性:以y -代y ,方程22(0)y px p =>不变,因此这条抛物线是以x 轴为对称轴的轴对称图形.抛物线的对称轴叫作抛物线的轴3、顶点:抛物线和它的轴的焦点叫作抛物线的顶点.在方程22(0)y px p =>中,当0y =时,0x =,因此这条抛物线的顶点就是坐标原点.4、离心率:抛物线上的点到焦点的距离与到准线的距离的比,叫作抛物线的离心率,用e 表示.按照抛物线的定义,1e =知识剖析:抛物线的通径:过焦点且与焦点所在的轴垂直的直线与抛物线交于点12,M M ,线段12M M 叫作抛物线的通径,将02px =代入22y px =得y p =±,故抛物线22y px =的通径长为2p例1、已知点(),M x y 在抛物线28y x =上,则()22,129f x y x y x =-++的取值范围? 分析:本题的实质是将(),f x y 转化为关于x 的二次函数,求二次函数在区间[)0,+∞上的最值. ()()22,812925f x y x x x x =-++=++,又[)0,x ∈+∞,所以当0x =时,(),f x y 取得最小值9,当[)0,x ∈+∞时,()()2,25f x y x =++,无最大值.故()22,129f x y x y x =-++的取值范围为[)9,+∞答案:[)9,+∞二、抛物线的四种标准方程相应的几何性质:知识剖析:(1)通过上表可知,四种形式的抛物线的顶点相同,均为()0,0O ,离心率均为1,它们都是轴对称图形,但是对称轴不同.(2)抛物线和椭圆、双曲线的几何性质的差异:①它们都是轴对称图形,但椭圆和双曲线又是中心对称图形,抛物线不是中心对称图形; ②顶点个数不同:椭圆有4个顶点、双曲线有2个顶点、抛物线只有1个顶点; ③焦点个数不同:椭圆和双曲线各有2个焦点,抛物线只有1个焦点;④离心率的取值范围不同:椭圆的离心率的取值范围是01e <<,双曲线离心率的取值范围是1e >,抛物线的离心率是1e =;⑤椭圆和双曲线都有两条准线,而抛物线只有一条准线;⑥椭圆是封闭式曲线,双曲线和抛物线都是非封闭式曲线,由于抛物线没有渐近线,因此在画抛物线时切忌将其画成双曲线例2、某抛物线的顶点是椭圆22169144x y +=的中心,而焦点为椭圆的左顶点,求此抛物线的标准方程.分析:因为该椭圆的中心在坐标原点,左顶点为()3,0-,所以可直接设抛物线的标准方程,求得p 后可得方程.答案:解:由22169144x y +=得:221169y x +=,所以椭圆的左顶点为()3,0-.由题意设所求抛物线的标准方程为()220y px p =->,由32p=,得6p =,故所求抛物线的标准方程为212y x =-.三、焦点弦问题及其应用 1、焦点弦如图,AB 是抛物线()220y px p =>过焦点F 的一条弦.设点()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,过,,A B M 分别向抛物线的准线作垂线,垂足分别为111,,A B M ,则根据抛物线的定义有11AF BF AA BB +=+.又1MM 是梯形11AA B B 的中位线,1112AB AA BB MM ∴=+=.综上可得以下结论: ①121212,,2222p p p p AF x BF x AB x x x x p ⎛⎫⎛⎫=+=+∴=+++=++ ⎪ ⎪⎝⎭⎝⎭,其常被称作抛物线的焦点弦长公式.②022p AB x ⎛⎫=+ ⎪⎝⎭(焦点弦长与中点的关系)③若直线AB 的倾斜角为α,则22sin pAB α= 推导:12AB AF BF x x p =+=++由④的推导知,当AB 不垂直于x 轴时,()1220py y k k+=≠1212122222y y y y p p p x x p p k k k k+∴+=+++=+=+ 222212212tan sin p p AB p p k αα⎛⎫∴=+=+= ⎪⎝⎭当k 不存在时,即90α=时,22sin pAB α=亦成立 ④A B 、两点的横坐标之积、纵坐标之积为定值,即2124p x x =,212y y p =-分析:利用点斜式写出直线AB 的方程,与抛物线方程联立后进行证明.要注意直线斜率不存在的情况. 推导:焦点F 的坐标为,02p ⎛⎫⎪⎝⎭,当AB 不垂直于x 轴时,可设直线AB 的方程为:()02p y k x k ⎛⎫=-≠ ⎪⎝⎭,由222p y k x y px⎧⎛⎫=-⎪ ⎪⎝⎭⎨⎪=⎩,得:2220ky py kp --= ()2224212212121222,22444y y y y p p y y p x x p p p p ∴=-==== 当AB 垂直于x 轴时,直线AB 的方程为:2px =则222212121212,,224y y p y p y p y y p x x p p ==-⇒=-==⑤11AF BF +为定值2p推导:由焦半径公式知,12,22p pAF x BF x =+=+ ()12212121211112224x x p p pp p AF BF x x x x x x ++∴+=+=+++++又21212,4p x x x x AB p =+=-,代入上式得:()22112424AB p p p AF BF p AB p +==+-+为常数 故11AF BF +为定值2p.2、抛物线中与焦点弦有关的一些几何图形的性质(1)抛物线以过焦点的弦为直径的圆和准线相切(2)抛物线()220y px p =>中,设AB 为焦点弦,M 为准线与x 轴的交点,则AMF BMF ∠=∠ (3)设AB 为抛物线的焦点弦.① 点A B 、在准线上的射影分别为点11A B 、,若P 为11A B 的中点,则PA PB ⊥;②O 为抛物线的顶点,若AO 的延长线交准线于点C ,连接BC ,则BC 平行于x 轴,反之,若过点B 作平行于x 轴的直线交准线于点C ,则,,A O C 三点共线. (4)通径是所有焦点弦(过焦点的弦)中最短的弦.例3、已知抛物线的顶点在原点,x 轴为对称轴,经过焦点且倾斜角为4π的直线,被抛物线所截得的弦长为6,求抛物线方程.解:当抛物线的焦点在x 轴正半轴上时,可设抛物线的标准方程为()220y px p =>,则焦点F的坐标为,02p ⎛⎫ ⎪⎝⎭,直线l 的方程为2p y x =-.设直线l 与抛物线的交点为()()1122,,,A x y B x y ,过点,A B 分别向抛物线的准线作垂线,垂足分别为点11A B 、,则有:111212+=622p p AB AF BF AA BB x x x x p ⎛⎫⎛⎫=+=+++=++= ⎪ ⎪⎝⎭⎝⎭,由222p y x y px⎧=-⎪⎨⎪=⎩,消去y ,得222p x px ⎛⎫-= ⎪⎝⎭,即22304p x px -+= 123x x p ∴+=,代入①式得:336,2p p p +=∴= ∴所求抛物线的标准方程为23y x =当抛物线的焦点在x 轴负半轴上时,用同样的方法可求出抛物线的标准方程是:23y x =-例4、已知抛物线()220y px p =>的焦点为F ,点()()()111222333,,,P x y P x y P x y 、、在抛物线上,且2132x x x =+,则有( )123.A FP FP FP += 222123.B FP FP FP += 213.2C FP FP FP =+ 2213.D FPFP FP =解析:123P P P 、、在抛物线上,且2132x x x =+,两边同时加上p ,得2132()222p p p x x x +=+++ 即2132FP FP FP =+ 答案:C例5、过抛物线24y x =的焦点作直线交抛物线于()()1122,,,A x y B x y 两点,如果126x x +=,那么AB =?解析:由抛物线定义,得12628AB AF BF x x p =+=++=+=。

抛物线弦中点轨迹的一个重要结论

抛物线弦中点轨迹的一个重要结论

抛物线弦中点轨迹的一个重要结论1. 抛物线定义:平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。

它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当02. 抛物线的标准方程存有四种形式,参数的几何意义,就是焦点至准线的距离,掌控相同形式方程的几何性质(如下表中):其中为抛物线就任一点。

3. 对于抛物线上的点的坐标可设为,以简化运算。

4. 抛物线的焦点弦:设立过抛物线的焦点的直线与抛物线缴于,直线与的斜率分别为,直线的倾斜角为,则存有求解。

说明:1. 谋抛物线方程时,若由未知条件所述曲线就是抛物线通常用未定系数法;若由未知条件所述曲线的动点的规律通常用轨迹法。

2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。

3. 化解焦点弦问题时,抛物线的定义存有广为的应用领域,而且还应当特别注意焦点弦的几何性质。

抛物线的焦点弦的性质:关于抛物线的几个关键结论:(1)弦长公式同椭圆.(2)对于抛物线y2=2px(p>0),我们存有p(x0,y0)在抛物线内部p(x0,y0)在抛物线外部(3)抛物线y2=2px上的点p(x1,y1)的切线方程是抛物线y2=2px(p>,高二;0)的斜率为k的切线方程是y=kx+(4)抛物线y2=2px外一点p(x0,y0)的切点弦方程就是(5)过抛物线y2=2px上两点的两条切线交于点m(x0,y0),则(6)自抛物线外一点p作两条切线,切点为a,b,若焦点为f, 又若切线pa⊥pb,则ab必过抛物线焦点f.利用抛物线的几何性质解题的方法:根据抛物线定义得出结论抛物线一个非常关键的几何性质:抛物线上的的边焦点的距离等同于至准线的距离.利用抛物线的几何性质,可以展开表达式、图形的推论及有关证明.抛物线中定点问题的解决方法:在中考中通常以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在答疑题中常常将解析几何中的'方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题就是一个较好的切人点,充分利用点在抛物线上及抛物线方程的特点就是化解此类题型的关键,培上最值时经常运用基本不等式、判别式以及转变为函数最值等方法。

专题70:抛物线基础知识和典型例题(解析版)

专题70:抛物线基础知识和典型例题(解析版)

专题70:抛物线基础知识和典型例题(解析版)抛物线1、定义:平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.2、抛物线的几何性质:标准方程范围顶点对称轴轴轴焦点准线方程离心率,越大,抛物线的开口越大焦半径通径过抛物线的焦点且垂直于对称轴的弦称为通径:焦点弦长公式3、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即.4、关于抛物线焦点弦的几个结论:设为过抛物线焦点的弦,,直线的倾斜角为,则⑴⑵⑶以为直径的圆与准线相切;⑷焦点对在准线上射影的张角为⑸四、直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系:⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

⑵.从代数角度看:设直线L的方程与圆锥曲线的方程联立得到。

①.若=0,当圆锥曲线是双曲线时,直线L与双曲线的渐进线平行或重合;当圆锥曲线是抛物线时,直线L与抛物线的对称轴平行或重合。

②.若,设。

③..时,直线和圆锥曲线相交于不同两点,相交。

b.时,直线和圆锥曲线相切于一点,相切。

c.时,直线和圆锥曲线没有公共点,相离。

五、弦长问题:直线与圆锥曲线相交时的弦长问题是一个难点,化解这个难点的方法是:设而不求,根据根与系数的关系,进行整体代入。

即当直线与圆锥曲线交于点,时,则====题型一:求抛物线的解析式例1求适合下列条件的抛物线的标准方程: (1)顶点在原点,焦点是(0,5)F ; (2)顶点在原点,准线是4x =; (3)焦点是8(0,)F -,准线是8y =;(4)顶点在原点,关于x 轴对称,顶点与焦点的距离等于6.例1(1)220x y =;(2)216y x =-;(3)232x y =-;(4)224y x =±. 【解析】 【分析】(1)判断焦点位置,设出抛物线方程,根据焦点求解出抛物线的标准方程;(2)根据准线判断焦点位置,设出抛物线方程,根据准线方程求解出抛物线的标准方程; (3)根据焦点和准线设出抛物线方程,根据焦点坐标即可求解出抛物线的标准方程; (4)先判断出顶点位置,然后设出抛物线的标准方程,利用已知条件求解出抛物线的标准方程. 【详解】(1)因为焦点在y 轴正半轴,设抛物线方程22x py =,所以52p=,所以10p =, 所以抛物线的标准方程为220x y =;(2)因为准线4x =,所以焦点在x 轴负半轴,设22y px =-,所以42p=,所以8p =, 所以抛物线的标准方程为216y x =-;(3)由条件可知抛物线的焦准距被坐标原点平分,所以抛物线的顶点在坐标原点,设抛物线方程22x py =-, 所以82p=,所以16p =,所以抛物线的标准方程为232x y =-;(4)设抛物线的标准方程为22y px =,所以62p=,所以12p =±, 所以抛物线的标准方程为:224y x =±. 【点睛】本题考查根据已知条件求解抛物线的标准方程,主要考查学生的分析与计算能力,难度较易. 例2:已知抛物线2:4C x y =的焦点为F ,椭圆E 的中心在原点,焦点在x 轴上,点F 是它的一个顶点,且其离心率2e =求椭圆E 的方程. 例3:2214x y +=.【解析】 【分析】由点抛物线焦点F 是椭圆的一个顶点可得1b =,由椭圆离心率e =c a =椭圆方程可求. 【详解】设椭圆E 的方程为22221x y a b+=,半焦距为c .由已知条件,()0,1F ,1b ∴=,c a =222a b c =+, 解得2a =,1b =.所以椭圆E 的方程为2214x y +=.【点睛】本题考查了利用待定系数法求椭圆方程,属于基础题.题型二:求抛物线的轨迹例3:已知曲线()2C :2y x =+上有一点A ,定点()B 2,0,求线段AB 中点P 的轨迹方程。

焦点弦公式抛物线

焦点弦公式抛物线

焦点弦公式抛物线焦点弦公式是数学领域中的一项非常重要的定理,尤其在抛物线的研究中,常常被广泛应用。

今天,我们就来详细探讨一下焦点弦公式在抛物线上的具体应用。

首先,我们需要了解一下抛物线的基本定义。

抛物线是平面解析几何中一个很重要的图形,它的轨迹是由一个动点在平面上沿着一定轨迹以恒定速度运动时所形成的。

而这一轨迹通常是由一个定点(即焦点)和一条直线(即准线)所决定的。

接着,我们来看一下焦点弦公式的具体表达方式。

在抛物线上,假设有两个点A和B,它们分别位于抛物线上的两条直线上。

同时,假设抛物线的焦点为F,准线的方程为y=kx,其中k是任意实数。

那么,焦点弦公式的表达式可以写作:AB²=4(FD)²+(AD-BD)²其中,D是平面上任意一点的坐标,AD和BD分别是点A和点B 与准线的距离。

通过这个公式,我们可以用抛物线上的任意两个点的坐标来计算它们之间的距离。

这个公式广泛应用于计算抛物线上的曲线长度和弧长,对于抛物线的研究具有非常重要的意义。

除此之外,焦点弦公式还可以用于计算抛物线切线的方程。

这里引入一个概念——抛物线的几何性质。

抛物线的切线与焦点之间的连线、切点的切线和准线平行。

通过焦点弦公式,我们可以先求出点A和点B之间的距离AB,然后再根据几何性质求出焦点F、直线y=kx上的一点C以及线段AC和BC的长度,接着,我们就可以通过线段AC的长度和准线的斜率求出点A的切线方程y=ax+b,同理可以得到点B的切线方程。

在许多实际问题中,这种方式找出抛物线的切线方程非常有效,因为这样做可以大大减少我们的计算时间和复杂度。

总之,焦点弦公式在抛物线的研究中发挥了重要作用,无论是在计算曲线长度、弧长还是求解切线方程等方面,这个公式都具有非常强的应用价值。

我们需要在学习和研究抛物线的过程中深入理解并认真应用焦点弦公式,才能真正掌握抛物线的本质特性和用途。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

满 足 O A⊥ O B O 为 坐 标 原 点 ,
求 证 :直 线 A B 经 过 一 个 定 点 .
yA
O x
B
例题讲解
解 :如 图 ,设 O A 的 方 程 是 ykxk0,则 因 OAOB,
故 可 设 OB的 方 程 为 y=-1x. k
yA
由 yy2k2 xpx得 A的 坐 标 2kp 2,2kp
2.4.2抛物线的几何性质
复习回顾
1.抛物线y2=2px(p>0)的范围、 对称性、顶点、离心率、焦半径分别是 什么?
范围:x≥0,y∈R; 对称性:关于x轴对称;
顶点:原点;
离心率:e=1;
焦半径:| MF
|=
x0
+
p.
2
问题提出
过抛物线的焦点F作直线交抛 物线于A、B两点,线段AB叫做抛物 线的焦点弦,请你探究焦点弦具有 哪些性质. y A
O
F
x
B
探求新知
设AB为焦点弦.点A(x1,y1),B(x2,
y12、) 焦点弦AB的长如何计算?
yA
|AB|=x1+x2+p
O Fx B
探求新知
y 2、抛物线的焦点弦AB的长是否存
A
在最小值?若存在,其最小值为
多少?
O Fx B
垂直于对称轴的焦点弦最短,叫做抛 物线的通径,其长度为2p.
探求新知
4
4 1 1 2 ;
O
M
F
x
AF BF p
C
5以 A B为 直 径 的 圆 与 抛 物 线 的 准 线 相 切 ;
B
6AM F BM F
7 DFC 90
例题讲解
例1 过抛物线焦点F的直线交抛物线于A、
B两点,过点A和抛物线顶点的直线交抛物
线的准线于点C,求证:直线BC平行于抛
物线的对称轴.
yA
5、由焦点弦长公式
得 | AB| = x1+x2 + p,
2
22
OF x B
这个等式的几何意义是什么? 以AB为直径的圆与
抛物线的准线相切.
探求新知
6、设点M为抛物线准线与x轴的交点,
则∠AMF与∠BMF的大小关如何?
yA C
M OF
相等
x
D
B
探求新知
7、过点A、B作准线的垂线,垂足分
别为C、D,则△ACF和△BDF都是等腰
k
2p 2p
y1k2
x k
1k2
k
y1kk2 x2p
直 线 A B 经 过 一 个 定 点 2 p ,0 .
课堂小结
1.抛物线有许多几何性质,探究抛物线 的几何性质,可作为一个研究性学习 课题,其中焦点弦性质中的有些结论 会对解题有一定的帮助.
2.焦点弦性质y1y2=-p2是对焦点在 x轴上的抛物线而言的,对焦点在y轴 上的抛物线,类似地有x1x2=-p2.
O
由y1kx得B的坐标2pk2,2pk
B
x
y2 2px
由 两 点 式 ,得 AB的 方 程 为 :2yp k2 kp2kp2pxk2 2 kp 22 kp 2
例题讲解
整 理 ,得 A B 的 方 程 为 :y 2 k p 1 k k2 x 2 kp 2
A B 的 方 程 为 :y2pk x 2p k 1k2 k1k2
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!
3、A、B两点的坐标是否存在相关关
系?若存在,其坐标之间的关系如
何?
yA
O Fx B
y1y2
=
-
p2,x1x2
=
p2 4
探求新知
4、利用焦半径公式,|AF|,|BF|可作 哪些变形?|AF|与|BF|之间存在什么 内在联系? y A
O Fx B
1 + 1 =2 | AF | | BF | p
探求新知
三角形,那么∠CFD的大小如何?
yA C
90°
OF
x
D
B
形成结论
过抛物线y2=2px的焦点F作直线交抛物线于A、 B两点,焦点弦AB具有如下性质.
1
AB
x1 x2
p
2p sin 2
;
2 AB 有 最 小 值 ,为 通 径 长 2p;
yA D
3 y1 y2 p 2 , x1x2
p2 ;
yA
O
F
x
C
B
例题讲解
解 :设 A x1, y1 , B x2, y2 则
yA
直 线 O A的 方 程 为 y y1 x 2 p x
x1
y1
O F
x

xБайду номын сангаас
p ,则 2
yC
p2 y1
C
B
又 y1y2 p 2 ?
yC
p2 y1
p2 p2
y2
y2
BC P X 轴
例题讲解
例 2:设 A ,B 是 抛 物 线 y2=2pxp>0上 的 两 点 ,且
相关文档
最新文档