初三二次函数练习题doc
数学练习卷: 《二次函数》(含答案)
数学九年级(下)单元练习卷:《二次函数》第Ⅰ卷(选择题)一.选择题1.已知二次函数y=﹣x2+3mx﹣3n图象与x轴没有交点,则()A.2m+n>B.2m+n<C.2m﹣n<D.2m﹣n>2.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2 3.若抛物线y=x2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m﹣8,n),则n的值为()A.8 B.12 C.15 D.164.二次函数y=ax2+bx+c的部分对应值如表x﹣3 ﹣2 ﹣1 0 1 2y﹣7 0 5 8 9 8利用该二次函数的图象判断,当函数值y>0时,x的取值范围是()A.0<x<8 B.x<0或x>8 C.﹣2<x<4 D.x<﹣2或x>4 5.抛物线y=x2向右平移1个单位,再向下平移2个单位,所得到的抛物线是()A.y=(x﹣1)2﹣2 B.y=(x+1)2﹣2 C.y=(x+1)2+2 D.y=(x﹣1)2+2 6.函数y=ax2+bx+c的图象如图所示,关于x的一元二次方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.有两个异号的实数根7.已知抛物线y=ax2+bx+c经过点(﹣4,m),(﹣3,n),若x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且﹣4<x1<﹣3,x2>0,则下列结论一定正确的是()A.m+n>0 B.m﹣n<0 C.m•n<0 D.>08.抛物线y=ax2+bx+c与直线y=ax+c(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.9.已知抛物线y=ax2+bx+c(a≠0)上部分点的横坐标x与纵坐标y的对应值如下表:x…﹣2 ﹣1 0 1 2 3 …y…﹣4 0 2 2 0 ﹣4 …下列结论:①抛物线开口向下;②当x>1时,y随x的增大而减小;③抛物线的对称轴是直线x=;④函数y=ax2+bx+c(a≠0)的最大值为2.其中所有正确的结论为()A.①②③B.①③C.①③④D.①②③④10.向空中发射一枚炮弹,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c (a≠0),若此炮弹在第6秒与第17秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第8秒B.第10秒C.第12秒D.第15秒11.如图所示,二次函数y=ax2+bx+c的图象开口向上,且对称轴在(﹣1,0)的左边,下列结论一定正确的是()A.abc>0 B.2a﹣b<0 C.b2﹣4ac<0 D.a﹣b+c>﹣1 12.抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,其部分图象如图所示.对于此抛物线有如下四个结论:①abc<0;②2a+b=0;③9a﹣3b+c=0;④若m>n >0,则x=m﹣1时的函数值小于x=n﹣1时的函数值.其中正确结论的序号是()A.①③B.②④C.②③D.③④第Ⅱ卷(非选择题)二.填空题13.已知二次函数的图象开口向上,则m的值为.14.若点(1,5),(5,5)是抛物线y=ax2+bx+c(a≠0)上的两个点,则此抛物线的对称轴是直线.15.函数y=ax2+bx+c(0≤x≤3)的图象如图所示,则该函数的最小值是.16.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是.17.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b<0;③a﹣b+c<0;④a+c>0;其中正确的说法有(写出正确说法的序号).三.解答题18.已知抛物线的解析式是y=x2﹣(k+2)x+2k﹣2.(1)求证:此抛物线与x轴必有两个不同的交点;(2)若抛物线与直线y=x+k2﹣1的一个交点在y轴上,求该二次函数的顶点坐标.19.在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+c(a≠0)与y轴交于点A,将点A 向右平移2个单位长度,得到点b.直线y=x﹣3与x轴,y轴分别交于点C,D.(1)求抛物线的对称轴;(2)若点A与点D关于x轴对称,①求点B的坐标;②若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.20.如图,抛物线y=ax2﹣x+c与x轴相交于点A(﹣2,0)、B(4,0),与y轴相交于点C,连接AC,BC,以线段BC为直径作⊙M,过点C作直线CE∥AB,与抛物线和⊙M分别交于点D,E,点P在BC下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.21.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点为A(﹣3,0),B(1,0)两点,与y轴交于点C(0,﹣3),顶点为D,其对称轴与x轴交于点E.(1)求二次函数的解析式;(2)点P为第三象限内抛物线上一点,△APC的面积记为S,求S的最大值及此时点P 的坐标.22.下面给出六个函数解析式:y=x2,y=x2+1,y=﹣x2﹣|x|,y=2x2﹣3|x|﹣1,y=﹣x2+2|x|+1,y=﹣3x2﹣|x|﹣4.小明根据学习二次函数的经验,分析了上面这些函数解析式的特点,研究了它们的图象和性质.下面是小明的分析和研究过程,请补充完整:(1)观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如:y=,其中x为自变量;(2)如图,在平面直角坐标系xOy中,画出了函数y=﹣x2+2|x|+1的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面这些函数,下列四个结论:①函数图象关于y轴对称②有些函数既有最大值,同时也有最小值③存在某个函数,当x>m(m为正数)时,y随x的增大而增大,当x<﹣m时,y随x的增大而减小④函数图象与x轴公共点的个数只可能是0个或2个或4个所有正确结论的序号是;(4)结合函数图象,解决问题:若关于x的方程﹣x2+2|x|+1=﹣x+k有一个实数根为3,则该方程其它的实数根为.参考答案一.选择题1.解:∵二次函数y=﹣x2+3mx﹣3n图象与x轴没有交点,∴△<0,即(3m)2﹣4×(﹣1)×(﹣3n)<0,9m2﹣12n<0,3m2<4n,∵抛物线开口向下,与x轴没有交点,∴﹣3n≤0,∴n≥0,当x=2时,y<0,即﹣4+6m﹣3n<0解得2m﹣n<故选:C.2.解:∵抛物线抛物线y=a2(x+1)2+k(a,k为常数,且a≠0)的开口向上,对称轴为直线x=﹣1,而A(﹣2,y1)离直线x=﹣1的距离最近,C(2,y3)点离直线x=﹣1最远,∴y1<y2<y3.故选:C.3.解:由题意b2﹣4c=0,∴b2=4c,又∵抛物线过点A(m,n),B(m﹣8,n),∴A、B关于直线x=﹣对称,∴A(﹣+4,n),B(﹣﹣4,n),把点A坐标代入y=x2+bx+c,n=(﹣+4)2+b(﹣+4)+c=﹣b2+16+c,∵b2=4c,∴n=16.故选:D.4.解:由表中的数据知,抛物线顶点坐标是(1,9),当x<1时,y的值随x的增大而增大,当x>1时,y的值随x的增大而减小,则该抛物线开口方向向上,所以根据抛物线的对称性质知,点(﹣2,0)关于直线直线x=1对称的点的坐标是(4,0).所以,当函数值y>0时,x的取值范围是﹣2<x<4.故选:C.5.解:抛物线y=x2向右平移1个单位,得:y=(x﹣1)2;再向下平移2个单位,得:y=(x﹣1)2﹣2.故选:A.6.解:由函数图象可知,函数y=ax2+bx+c的最大值是4,即4=ax2+bx+c对应的x的值只有一个,即一元二次方程ax2+bx+c﹣4=0有两个相等的实数根,故选:A.7.解:∵抛物线y=ax2+bx+c经过点(﹣4,m),(﹣3,n),x1,x2是关于x的一元二次方程ax2+bx+c=0的两个根,且﹣4<x1<﹣3,x2>0,∴m>0,n<0或m<0,n>0,∴当m>0,n<0时,m+n的正负不好确定,m﹣n>0,mn<0,<0,当m<0,n>0时,m+n的正负不好确定,m﹣n<0,mn<0,<0,由上可得,一定正确的结论是mn<0,故选:C.8.【解答】解:A、一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B、由抛物线可知,a>0,由直线可知,a<0,a的取值矛盾,故本选项错误;C、由抛物线可知,a<0,由直线可知,a>0,a的取值矛盾,故本选项错误;D、由抛物线可知,a<0,由直线可知,a<0,且抛物线与直线与y轴的交点相同,故本选项正确.故选:D.9.解:由表格可知,解得∴抛物线的解析式为y=﹣x2+x+2,∵a=﹣1<0,抛物线开口向下,①正确;抛物线的对称轴是直线x==,故②③正确,抛物线的顶点坐标是(,),故④错误,故选:A.10.解:∵此炮弹在第6秒与第17秒时的高度相等,∴抛物线的对称轴是:x==11.5,∴炮弹所在高度最高时:时间是第12秒.故选:C.11.解:A、如图所示,抛物线经过原点,则c=0,所以abc=0,故不符合题意;B、如图所示,对称轴在直线x=﹣1的左边,则﹣<﹣1,又a>0,所以2a﹣b<0,故符合题意;C、如图所示,图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,故不符合题意;D、如图所示,当x=﹣1时y<0,即a﹣b+c<0,但无法判定a﹣b+c与﹣1的大小,故不符合题意.故选:B.12.解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①错误;②∵对称轴为直线x=﹣1,即﹣=﹣1,解得b=2a,即2a﹣b=0,所以②错误;③∵抛物线y=ax2+bx+c经过点(1,0),且对称轴为直线x=﹣1,∴抛物线与x轴的另一个交点为(﹣3,0),当a=﹣3时,y=0,即9a﹣3b+c=0,所以③正确;根据选择题的筛选法,只有D正确.故选:D.二.填空题(共5小题)13.解:∵二次函数的图象开口向上,∴,解得,m=2,故答案为:2.14.解:∵点(1,5),(5,5)是抛物线y=ax2+bx+c上的两个点,且纵坐标相等.∴根据抛物线的对称性知道抛物线对称轴是直线x==3.故答案为:x=3.15.解:由函数图象可知,此函数的顶点坐标为(1,﹣1),∵此抛物线开口向上,∴此函数有最小值,最小值为﹣1;故答案为:﹣1.16.解:由题意可知:∵点A、B坐标分别为(0,4),(6,4),∴线段AB的解析式为y=4.机器人沿抛物线y=ax2﹣4ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=4只有一个交点.所以抛物线经过点A下方.∴﹣5a<4解得a>﹣.4=ax2﹣4ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=4时,36a﹣24a﹣5a=4,解得a=综上:a的取值范围是﹣<a<17.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,故①错误;∵﹣<1,a<0,∴2a+b<0,故②正确;∵当x=﹣1时,y>0,∴a﹣b+c>0,故③错误;∵a﹣b+c>0,∴a+c>b,∵b>0,∴a+c>0,故④正确.综上所述,正确结论是②④2;故答案为②④.三.解答题18.解:(1)∵△=[﹣(k+2)]2﹣4×1×(2k﹣2)=k2﹣4k+12=(k﹣2)2+8>0,∴此抛物线与x轴必有两个不同的交点;(2)∵抛物线与直线y=x+k2﹣1的一个交点在y轴上,∴2k﹣2=k2﹣1,解得k=1,则抛物线解析式为y=x2﹣3x=(x﹣)2﹣,所以该二次函数的顶点坐标为(,﹣).19.解:(1)∵y=ax2﹣4ax+c=a(x﹣2)2﹣4a+c,∴抛物线的对称轴是直线x=2;(2)①∵直线y=x﹣3与x轴,y轴分别交于点C、D,∴点C的坐标为(5,0),点D的坐标为(0,﹣3).∵抛物线与y轴的交点A与点D关于x轴对称,∴点A的坐标为(0,3).∵将点A向右平移2个单位长度,得到点B,∴点B的坐标为(2,3).②抛物线顶点为P(2,3﹣4a).(ⅰ)当a>0时,如图1.令x=5,得y=25a﹣20a+3=5a+3>0,即点C(5,0)总在抛物线上的点E(5,5a+3)的下方.∵y P<y B,∴点B(2,3)总在抛物线顶点P的上方,结合函数图象,可知当a>0时,抛物线与线段CB恰有一个公共点.(ⅱ)当a<0时,如图2.当抛物线过点C(5,0)时,25a﹣20a+3=0,解得a=﹣.结合函数图象,可得a≤﹣.综上所述,a的取值范围是:a≤﹣或a>0.20.解:(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣,解得:a=,故抛物线的表达式为:y=x2﹣x﹣3;(2)点C(0,﹣3),函数对称轴为:x=1,则点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x=(2+4)=3,当x=3时,y=x2﹣x﹣3=﹣,故点P(3,﹣);(3)由点B、C的坐标可得,直线BC的表达式为:y=x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,x2﹣x﹣3),则点H(x,x﹣3);四边形ACPB的面积=S△ABC+S△BCP=3×6+HP×OB=9+×3×(x﹣3﹣x2+x+3)=﹣x2+3x+9,∵﹣<0,故四边形ACPB的面积有最大值为,此时,点P(2,﹣3).21.解:(1)∵二次函数过A(﹣3,0),B(1,0)两点,∴设二次函数解析式为y=a(x+3)(x﹣1),∵二次函数过C点(0,﹣3),∴﹣3=a(0+3)(0﹣1),解得,a=1,∴y=(x+3)(x﹣1)=x2+2x﹣3即二次函数解析式为y=x2+2x﹣3;(2)设直线AC解析式为:y=kx+b,∵A(﹣3,0),C(0,﹣3),∴,解得,,∴直线AC的解析式为y=﹣x﹣3,过点P作x轴的垂线交AC于点G,设点P的坐标为(x,x2+2x﹣3),则G(x,﹣x﹣3),∵点P在第三象限,∴PG=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x,∴===,∴当时,,点P(﹣,﹣).,即S的最大值是,此时点P的坐标是(﹣,﹣).22.解:(1)①观察上面这些函数解析式,它们都具有共同的特点,可以表示为形如:y=ax2+b|x|+c,(a,b,c是常数,a≠0)故答案为:y=ax2+b|x|+c,(a,b,c是常数,a≠0).(2)图象如图1所示.(3)观察图象可知:①函数图象关于y轴对称,正确;②有些函数既有最大值,同时也有最小值,不正确;③存在某个函数,y=x2,当x>m(m为正数)时,y随x的增大而增大,当x<﹣m时,y随x的增大而减小,正确;④函数图象与x轴公共点的个数只可能是0个或2个或4个,错误.故答案为①③.(4)观察图2可知,关于x的方程﹣x2+2|x|+1=﹣x+k有一个实数根为3,则该方程其它的实数根为﹣1,0.故答案为﹣1,0.。
初三二次函数练习题
初三二次函数练习题1. 已知二次函数的顶点坐标为(-1, 2),且经过点(0, 3),求该二次函数的解析式。
2. 某抛物线与x轴交于点A(-2, 0)和点B(4, 0),求该抛物线的对称轴方程。
3. 函数y = ax^2 + bx + c(a ≠ 0)的图象与x轴有两个交点,且交点的横坐标分别为-1和3,求b的值。
4. 已知二次函数y = x^2 - 2x - 3,求该函数的顶点坐标。
5. 抛物线y = -2x^2 + 3x + 1与y轴交于点C,求点C的坐标。
6. 函数y = 2x^2 - 4x + 3的图象在x轴上方部分的自变量x的取值范围。
7. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图象开口向下,且经过点(1, 0)和(-2, 11),求a和b的值。
8. 抛物线y = x^2 - 4x + 3的顶点坐标为(2, -1),求该抛物线的解析式。
9. 函数y = -x^2 + 4x - 3与x轴的交点坐标为(x1, 0)和(x2, 0),求x1 + x2的值。
10. 已知抛物线y = x^2 - 6x + 9的顶点坐标为(3, 0),求该抛物线的解析式。
11. 函数y = 3x^2 - 12x + 9的图象与x轴交于点D和点E,求DE的长度。
12. 已知抛物线y = 2x^2 - 8x + 7与x轴交于点F和点G,求FG的中点坐标。
13. 函数y = x^2 - 4x + 3的图象与x轴交于点H和点I,求HI的长度。
14. 抛物线y = -x^2 + 2x + 3的顶点坐标为(1, 4),求该抛物线的解析式。
15. 函数y = 2x^2 + 4x - 6的图象在x轴下方部分的自变量x的取值范围。
初三--二次函数基础分类练习题(含答案)
二次函数练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式:2、 下列函数:① y =()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x=+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c = 3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221m m y m m x--=+是关于x 的二次函数5、当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子. (1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式; (2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式. ② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 . 3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( )A .B .C .D .6、已知函数24mm y mx--=的图象是开口向下的抛物线,求m 的值.7、二次函数12-=m mx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m mx m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大; (3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小? 10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小. 2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方t ttt向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 .2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标. (1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大.4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y .(1) 确定下列抛物线的开口方向、对称轴和顶点坐标; (2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4) 求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的? 8、已知函数()412-+=x y .(1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________; 7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( ) A 、22 B 、23 C 、32 D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标 13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点 1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab 11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论: ①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。
中考数学总复习《二次函数的三种形式》练习题附带答案
中考数学总复习《二次函数的三种形式》练习题附带答案一、单选题(共12题;共24分)1.已知二次函数y=ax2+bx+c的y与c的部分对应值如下表则下列判断中正确的是().A.抛物线开口向上B.抛物线与y轴交于负半轴C.当x=3时,y<0D.方程ax2+bx+c=0有两个相等实数根2.若b<0,则二次函数y=x2-bx-1的图象的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限3.将二次函数y=2x2﹣4x+1化成顶点式是()A.y=2(x+1)2﹣1B.y=2(x﹣1)2﹣1C.y=2(x+1)2+1 D.y=2(x﹣1)2+14.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x﹣1)2+4C.y=(x+1)2+2D.y=(x﹣1)2+25.二次函数y=x2-6x+5的图像的顶点坐标是()A.(-3,4)B.(3,-4)C.(-1,2)D.(1,-4)6.把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()A.y=(x-2)2-1B.y=(x+2)2-1C.y=(x-2)2+7D.y=(x+2)2+77.抛物线y=(x+1)2+2的对称轴为()A.直线x=1B.直线x=-1C.直线x=2D.直线x=-28.已知二次函数的解析式为:y=-3(x+5)2﹣7,那么下列说法正确的是()A.顶点的坐标是(5,-7)B.顶点的坐标是(-7,-5)C.当x=-5时,函数有最大值y=-7D.当x=-5时,函数有最小值y=-79.在平面直角坐标系中,抛物线y=-(x-2)2+1的顶点是点P,对称轴与x轴相交于点Q,以点P为圆心,PQ长为半径画⊙P,那么下列判断正确的是()A.x轴与⊙P相离;B.x轴与⊙P相切;C.y轴与⊙P与相切;D.y轴与⊙P相交.10.若二次函数y=x2+bx+5配方后为y=(x-2)2+k,则b、k的值分别为()A.0,5B.0,1C.-4,5D.-4,111.为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE⊙x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE 所在抛物线的解析式为()A.y= 14(x+3)2B.y= 14(x﹣3)2C.y=﹣14(x+3)2D.y=﹣14(x﹣3)212.抛物线y=−(x−1)2−2的顶点坐标是()A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)二、填空题(共6题;共6分)13.将二次函数y=﹣2x2+6x﹣5化为y=a(x﹣h)2+k的形式,则y=.14.一抛物线和另一抛物线y=﹣2x2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为15.已知某抛物线的顶点是(2,−1),与y轴的交点到原点的距离为3,则该抛物线的解析式为.16.关于x的一元二次方程x2+bx+c=0的两根为x1=1,x2=2,那么抛物线y=x2+bx+c的顶点坐标为.17.将二次函数y=x2﹣2x+4化成y=(x﹣h)2+k的形式,则y=.18.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为.三、综合题(共6题;共74分)19.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连结OA,二次函数y=x2图象从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设二次函数顶点M的横坐标为m,当m为何值时,线段PB最短,并求出二次函数的表达式;(3)当线段PB最短时,二次函数的图象是否过点Q(a,a﹣1),并说理由.20.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,⊙AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.21.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴(1)y=2x2+6x﹣12(2)y=﹣0.5x2﹣3x+3.22.已知二次函数的解析式是y=x2﹣2x﹣3(1)用配方法将y=x2﹣2x﹣3化成y=a(x﹣h)2+k的形式;(2)在直角坐标系中,用五点法画出它的图像;(3)利用图象求当x为何值时,函数值y<0(4)当x为何值时,y随x的增大而减小?(5)当﹣3<x<3时,观察图象直接写出函数值y的取值的范围.23.已知二次函数y=x2−4x+3.(1)将y=x2−4x+3化成y=a(x−ℎ)2+k的形式:;(2)这个二次函数图象与x轴交点坐标为;(3)这个二次函数图象的最低点的坐标为;(4)当y<0时,x的取值范围是.24.已知二次函数y=x2﹣2x﹣3.(1)用配方法将解析式化为y=(x﹣h)2+k的形式;(2)求这个函数图象与x轴的交点坐标.参考答案1.【答案】C2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】A7.【答案】B8.【答案】C9.【答案】B10.【答案】D11.【答案】B12.【答案】C13.【答案】﹣2(x﹣32)2﹣1214.【答案】y=﹣2(x+2)2+115.【答案】y=(x−2)2−1或y=−12(x−2)2−116.【答案】( 32,- 14)17.【答案】(x﹣1)2+318.【答案】y=x2-8x+20.19.【答案】(1)解:设直线OA的解析式为y=kx∵A(2,4)∴2k=4,解得k=2∴线段OA所在直线的函数解析式为y=2x;(2)解:∵顶点M的横坐标为m,且在OA上移动,∴y=2m(0≤m≤2),∴M(m,2m),∴抛物线的解析式为y=(x﹣m)2+2m∴当x=2时,y=(2﹣m)2+2m=m2﹣2m+4(0≤m≤2)∴PB=m2﹣2m+4=(m﹣1)2+3(0≤m≤2)∴当m=1时,PB最短当PB最短时,抛物线的解析式为y=(x﹣1)2+2;(3)解:若二次函数的图象是过点Q(a,a﹣1)则方程a﹣1=(a﹣1)2+2有解.即方程a2﹣3a+4=0有解∵⊙=(﹣3)2﹣4×1×4=﹣7<0.∴二次函数的图象不过点Q.20.【答案】(1)解:设抛物线解析式为y=a(x+4)(x﹣2)将B(0,﹣4)代入得:﹣4=﹣8a,即a= 1 2则抛物线解析式为y= 12(x+4)(x﹣2)=12x2+x﹣4;(2)解:过M作MN⊙x轴将x=m代入抛物线得:y= 12m2+m﹣4,即M(m,12m2+m﹣4)∴MN=| 12m2+m﹣4|=﹣12m2﹣m+4,ON=﹣m∵A(﹣4,0),B(0,﹣4),∴OA=OB=4∴⊙AMB的面积为S=S⊙AMN+S梯形MNOB﹣S⊙AOB= 12×(4+m)×(﹣12m2﹣m+4)+ 12×(﹣m)×(﹣12m2﹣m+4+4)﹣12×4×4=2(﹣12m2﹣m+4)﹣2m﹣8=﹣m2﹣4m=﹣(m+2)2+4当m=﹣2时,S取得最大值,最大值为4.21.【答案】(1)解:y=2x2+6x﹣12=2(x+ 32)2﹣32,则该抛物线的顶点坐标是(﹣32,﹣32)对称轴是x=﹣3 2(2)解:y=﹣0.5x2﹣3x+3=﹣12(x+3)2+ 152,则该抛物线的顶点坐标是(﹣3,152),对称轴是x=﹣322.【答案】(1)解:y=x2﹣2x﹣3=(x﹣1)2﹣4,即y=(x﹣1)2﹣4(2)解:由(1)可知,y=(x﹣1)2﹣4,则顶点坐标为(1,﹣4)令x=0,则y=﹣3∴与y轴交点为(0,﹣3)令y=0,则0=x2﹣2x﹣3,解得x1=﹣1,x2=3∴与x轴交点为(﹣1,0),(3,0).列表:x…﹣10 123…y=x2﹣2x﹣3…0﹣3﹣4﹣30…(3)解:由图象知,当﹣1<x<3时,函数值y<0(4)解:由图象知,当x<1时,y随x的增大而减小(5)解:当x=﹣3时,y=9+6﹣3=12,则﹣3<x<3时,0<y<1223.【答案】(1)y=(x-2)2-1(2)(1,0)或(3,0)(3)(2,-1)(4)1<x<324.【答案】(1)解:y=(x2﹣2x+1)﹣4=(x﹣1)2﹣4(2)解:令y=0,得x2﹣2x﹣3=0解得x1=3,x2=﹣1∴这条抛物线与x轴的交点坐标为(3,0),(﹣1,0)。
中考数学总复习《二次函数》专项提升练习题(附答案)
中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。
九年级数学二次函数专项训练含答案-精选5篇
九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4 B .有最小值4 C .有最大值6 D .有最小值6 2.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( )A .(0,2)B .(0,3)C .(0,4)D .(0,5) 3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( )A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =--- 4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+ B .2(4)y x =+ C .28y x x =+ D .2164y x =- 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,①320a b +>,①24b a c ac >++,①a c b >>.正确结论的个数为( )A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( )A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大 9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①c ≥−2 ;①当x >0时,一定有y 随x 的增大而增大;①若点D 横坐标的最小值为−5,点C 横坐标的最大值为3;①当四边形ABCD 为平行四边形时,a =12. 其中正确的是( )A .①①B .①①C .①①D .①①① 10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =①方程()2110ax a x -++=至少有一个整数根①若11x a<<,则()211y ax a x =-++的函数值都是负数 ①不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________.16.已知二次函数223y x x =--+,当12a x时,函数值y 的最小值为1,则a 的值为_______.17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点.(1)若(1,0)A -,则b =______.(2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______.三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式 19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到①ACD .(1)求该抛物线的函数解析式.(2)①ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得①ACE 与①ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:①抛物线经过点()1,0A -,()5,0B ,()0,5C ,①设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,①()()21545y x x x x =-+-=-++.①该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y = ∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x =++与x 轴的另一交点为D ,抛物线的对称轴为:552,1222x=-=-⨯()3,0C-∴点()2,0D-,连接,BD交对称轴于,MMD MC∴=,此时,MB MC MB MD BD+=+=最小,此时:BD=MBC∴20.解:(1)对于y x=x=0时,y=当y=0时,03x-=,妥得,x=3①A(3,0),B(0,把A(3,0),B(0,2y bx c++得:+=0b cc⎧⎪⎨=⎪⎩解得,bc⎧=⎪⎨⎪=⎩①抛物线的解析式为:2y x x=-(2)抛物线的对称轴为直线12bxa=-==故设P(1,p),Q(m,n)①当BC为菱形对角线时,如图,①B ,C 关于对称没对称,且对称轴与x 轴垂直,①①BC 与对称轴垂直,且BC //x 轴①在菱形BQCP 中,BC ①PQ①PQ ①x 轴①点P 在x =1上,①点Q 也在x =1上,当x =1时,211y①Q (1,); ①当BC 为菱形一边时,若点Q 在点P 右侧时,如图,①BC //PQ ,且BC =PQ①BC //x 轴,①令y =2y 解得,120,2x x ==①(2,C①PQ=BC=22①PB=BC=2①迠P在x轴上,①P(1,0)①Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,①抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,①点A(﹣2,0),点B(8,0),①对称轴为直线x=3,①①ACD周长=AD+AC+CD,AC是定值,①当AD+CD取最小值时,△ACD周长能取得最小值,①点A,点B关于对称轴直线x=3对称,①连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,①0=8k ﹣8,①k =1,①直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,①点D (3,﹣5);(3)存在,①点A (﹣2,0),点C (0,﹣8),①直线AC 解析式为y =﹣4x ﹣8,如图,①①ACE 与①ACD 面积相等,①DE ①AC ,①设DE 解析式为:y =﹣4x +n ,①﹣5=﹣4×3+n ,①n =7,①DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, ①点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( ) A .y =(2x ﹣1)2 B .y =(x +1)2﹣x 2 C .y =ax 2D .y =2x +32.若抛物线258(3)23m m y m x x -+=-+-是关于x 的二次函数,那么m 的值是( )A .3B .2-C .2D .2或33.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( ) A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( ) A .1,3,5a b c ==-= B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-=5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( ) A .2a ≠ B .a≥0C .a=2D .a>06.下列函数中①31y x ;①243y x x =-;①1y x=;①225=-+y x ,是二次函数的有() A .①①B .①①C .①①D .①①7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( ) A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( ) A .a≠0,b≠0,c≠0 B .a<0,b≠0,c≠0 C .a>0,b≠0,c≠0 D .a≠0二、填空题 9.若()2321m m y m x --=+是二次函数,则m 的值为______.10.若22ay x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;①3y x =-;①2431y x x =-+;①2(1)y m x bx c =-++;①y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数. 14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数; ① 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________. 三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数? 22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m x +8. (1)若这个函数是一次函数,求m 的值; (2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.4 10.2± 11.0 12.①13. 4,-2 4 14. 1 3215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数18.(1)m (2)m ≠m ≠19.①a≠0;①b=0或-1,a 取全体实数①当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y =ax 2+bx +c 中,a >0,b <0,c <0,那么这个二次函数的图象可能是( )A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y14.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+3 5.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B(1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B作BF⊥l于点F∴BF=OE=∵BF+AE=OE+AE=OA=∴S△ABC=S△BCD+S△ACD=CD•BF+CD•AE∴S△ABC=CD(BF+AE)=×2×=23.解:(1)∵抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点∴,解得:,∴抛物线解析式为y=﹣x2+2x+3,设直线AB的解析式为y=mx+n(m≠0),则,解得,∴直线AB的解析式为y=x+1;(2)令x=0,则y=﹣x2+2x+3=3,∴C(0,3),则OC=3,BC=2,BC∥x轴,∴S△ABC=×BC×OC==3.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+12.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?21.如图,抛物线与x轴交于A(﹣1,0)、B(4,0),与y轴交于C.(1)求抛物线的解析式;(2)如图1,已知线段DE与线段BC关于平面内某点成中心对称,其中DE的两端点刚好一个落在抛物线上,一个落在对称轴上,求落在对称轴上的点的坐标;(3)如图2,点M为第二象限抛物线上,作MN∥BC交抛物线于点N,直线NB、MC 交于点P,求P点的横坐标.22.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y'),给出如下定义:若y'=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)点(﹣5,﹣2)的“可控变点”坐标为;(2)若点P在函数y=﹣x2+16的图象上,其“可控变点”Q的纵坐标y′是7,求“可控变点”Q的横坐标;(3)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16≤y′≤16,求实数a的取值范围.23.在平面直角坐标系中,抛物线y=x2+bx+c经过A(﹣4,0),点M为抛物线的顶点,点B在y轴上,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线解析式;(2)直线AB的函数解析式为,点M的坐标为.(3)在y轴上找一点Q,使得△AMQ的周长最小,具体作法如图②,作点A关于y轴的对称点A',连接MA′交y轴于点Q,连接AM,AQ,此时△AMQ的周长最小,请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A,O,C,N为顶点的四边形是平行四边形?若存在请直接写出点N的坐标;若不存在,请说明理由.参考答案一.选择题(共10小题)1.下列各式中,是y关于x的二次函数的是()A.y=4x B.y=3x﹣5C.y=D.y=2x2+1解:A.根据二次函数的定义,y=4x是一次函数,不是二次函数,故A不符合题意.B.根据二次函数的定义,y=3x﹣5不是二次函数,是一次函数,故B不符合题意.C.根据二次函数的定义,y=是反比例函数,不是二次函数,故C不符合题意.D.根据二次函数的定义,y=2x2+1是二次函数,故D符合题意.故选:D.2.已知:a>b>c,且a+b+c=0,则二次函数y=ax2+bx+c的图象可能是下列图象中的()A.B.C.D.解:A、由图知a>0,﹣=1,c>0,即b<0,∵已知a>b>c,故本选项错误;B、由图知a<0,而已知a>b>c,且a+b+c=0,必须a>0,故本选项错误;C、图C中条件满足a>b>c,且a+b+c=0,故本选项正确;D、∵a+b+c=0,即当x=1时a+b+c=0,与图中与x轴的交点不符,故本选项错误.故选:C.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)解:∵二次函数可化为y=(x﹣3)2+5,∴二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是(3,5),故选:D.4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2解:y=x2+2x﹣1=(x2+2x+1)﹣2=(x+1)2﹣2,即y=(x+1)2﹣2.故选:D.5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6解:y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴当x<2时,y随着x增大而增大,∴当x=时有最大值y=﹣2(﹣2)2+2=﹣2.5,故选:C.6.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+1解:设所求的抛物线解析式为y=a(x﹣3)2+1,∵所求抛物线与函数y=的图象相同且开口方向相反,∴a=﹣,∴所求的抛物线解析式为y=﹣(x﹣3)2+1.故选:D.7.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1解:当x=﹣1时,y1=(x﹣1)2=(﹣1﹣1)2=4;当x=1时,y2=(x﹣1)2=(1﹣1)2=0;当x=2时,y3=(x﹣1)2=(2﹣1)2=1,所以y2<y3<y1.故选:C.8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.4解:根据表格数据可知:抛物线的对称轴是直线x==,∴③错误;∵抛物线与x轴的一个交点为(﹣2,0),∴抛物线与x轴的另一个交点为(3,0),∴方程ax2+bx+c=0有两根为x1=﹣2,x2=3;故①正确;从表格可知当x=0时,y=6,∴抛物线与y轴的交点为(0,6);∴②正确;从表格可知:当x<时,y随x的增大而增大,当x>时,y随x的增大而减小,∴抛物线开口向下,故④错误.故选:B.9.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对解:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°,∴∠OBE=∠OCF=45°,∵BE=CF,∴△BOE≌△COF,∴OE=OF,∠BOE=∠COF,∴∠BOE+∠COE=∠COF+∠COE,即∠EOF=∠BOC=90°,且S△COE+S△COF=S△COE+S△BOE,即S四边形OECF=S△BOC=S正方形ABCD=×4×4=4,由垂线段最短可得,当OE⊥BC时,OE=BC=×4=2,△OEF面积取最小值为×2×2=2,∴结论Ⅰ和Ⅱ都对,结论Ⅲ错,故选:A.10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°解:把(25,0.725),(50,0.06),(60,0.09)代入y=ax2+bx+c得:,解得,∴y=0.0001x2﹣0.008x+0.21=0.0001(x﹣40)2+0.05,∵0.0001>0,∴x=40时,y最小为0.05,∴燃气灶烧开一壶水最节省燃气的旋钮角度约为40°,故选:B.二.填空题(共6小题)11.函数是二次函数,则m的值为3.解:∵函数是二次函数,∴m2﹣7=2且m+3≠0,解得:m=3.则m的值为3.故答案为:3.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,则点B的横坐标.x B的值为5.解:∵y=x2﹣4x+c,∴抛物线开口向上,对称轴为直线x=﹣=2,∴点A,B关于直线x=2对称,∵点A横坐标为﹣1,∴点B横坐标为5,故答案为:5.13.已知二次函数y=ax2开口向上,且|2﹣a|=3,则a=5.解:∵|2﹣a|=3,∴2﹣a=±3,解得:a=﹣1或5,又二次函数y=ax2开口向上,则a>0,故a=5.故答案为:5.14.已知抛物线y=x2﹣3x+1的图象上有一点A(m,n),则m﹣n的最大值是3.解:∵点A(m,n)在抛物线y=x2﹣3x+1上,∴n=m2﹣3m+1,∴m﹣n=﹣m2+4m﹣1=﹣(m﹣2)2+3,∴当m=2时,m﹣n有最大值为3,故答案为:3.15.如图,在平面直角坐标系中,抛物线y=﹣x2+2x+c与x轴交于点A、B,与y轴交于点C,过点C作CD∥x轴,交抛物线于另一点D,若AB+CD=3,则c的值为﹣.解:设A(x1,0),B(x2,0),令y=0,则y=﹣x2+2x+c=0,由根与系数的关系得:x1+x2=2,x1•x2=﹣c,则AB=|x1﹣x2|===2,令x=0,则y=c,∴C(0,c),∵CD∥x轴,∴点D纵坐标为c,当y=c时,则﹣x2+2x+c=c,解得:x=2,或x=0,∴D(2,c),∴CD=2,∵AB+CD=3,∴2+2=3,解得:c=﹣,故答案为:﹣.16.如图,在矩形ABCD中,AB=12,BC=16,点E、F分别是边AB、BC上的动点,且EF=10,点G是EF的中点,AG、CG,则四边形AGCD面积的最小值为142.解:连接AC,过B作BH⊥AC于H,以B为圆心,BG为半径作圆,交BH于G',如图:∵四边形ABCD是矩形,∴∠EBF=90°,∵EF=10,点G是EF的中点,∴BG=EF=10=5,∴G在以B为圆心,5为半径的弧上,当G运动到G'时,S△ACG最小,此时四边形AGCD 面积的最小值,最小值即为四边形AG'CD的面积,∵AB=12=CD,BC=16=AD,∴AC=20,S△ACD=×12×16=96,∴BH==,∴G'H=BH﹣5=﹣5=,∴S△ACG'=AC•G'H=×20×=46,∴S四边形AG'CD=S△ACD+S△ACG'=46+96=142,即四边形AGCD面积的最小值是142.故答案为:142.三.解答题(共7小题)17.看图回答.(1)当y=0时,求x的值;(2)当y>5时,求x的范围;(3)y随x的增大而增大时,求x的范围.解:(1)由图象可知,抛物线经过点(﹣1,0),对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当y=0时,x的值为﹣1和3;(2)∵抛物线经过点(﹣1,0),(3,0),(0,﹣3),∴设抛物线的解析式为y=a(x+1)(x﹣3),代入(0,﹣3)得,﹣3=﹣3a,解得a=1,∴抛物线的解析式为y=(x+1)(x﹣3),令y=5得5=(x+1)(x﹣3),解得x1=4,x2=﹣2,∴当y>5时,求x的范围是x>4或x<﹣2;(3)∵y=(x+1)(x﹣3)=(x﹣1)2+4,∴抛物线开口向上,顶点为(1,4),对称轴为直线x=1,∴y随x的增大而增大时,x的范围是x>1.18.已知二次函数y=x2﹣6x+8.(1)将解析式化成顶点式;(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小.解:(1)y=x2﹣6x+8=x2﹣6x+9﹣1=(x﹣3)2﹣1;(2)开口向上,对称轴是直线x=3,顶点坐标是(3,﹣1);(3)x>3时,y随x的增大而增大;x<3时,y随x增大而减小.19.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有函数关系:h=﹣5r2+20t,求小球飞行高度达到最高时的飞行时间.解:∵h=﹣5t2+20t=﹣5(t﹣2)2+20,且﹣5<0,∴当t=2时,h取最大值20,答:小球飞行高度达到最高时的飞行时间为2s.20.“阳光玫瑰葡萄”品种是近几年来广受各地消费者青睐的优质新品种,在云南省广泛种植.长沙市某品牌水果经销商计划在2023年五一期间进行商业促销活动,经过调查往年的统计数据发现,云南省批发“阳光玫瑰葡萄”的最低价格为每斤15元若按每斤30元的价格到市区销售,平均每天可售出60斤若每斤“阳光玫瑰葡萄”的售价每降低1元,那么平均每天的销售量会增加10斤,为了尽快减少库存,该水果商决定降价销售.(1)若降价2元,则每天的销售利润是多少元(2)若该经销商计划销售“阳光玫瑰葡萄”每天盈利1100元,那么每斤“阳光玫瑰葡萄”的售价应降至每斤多少元?(其它成本忽略不计)(3)将商品的销售单价定为多少元时,商场每天销售该商品获得的利润w最大?最大利润是多少元?解:(1)根据题意,降价2元则销售量为60+2×10=80(斤),销售利润为:(30﹣15﹣2)×80=1040(元),。
中考数学《二次函数》专项练习题-附带答案
中考数学《二次函数》专项练习题-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数中,是二次函数的是()A.y=−8x B.y=8C.y=8x2D.y=8x−4x2.抛物线y=2x2﹣1的对称轴是()A.直线x=﹣1 B.直线x=1C.x轴D.y轴43.已知抛物线y=ax2(a≠0)的开口向下,则a的值可能为()A.-2 B.1C.1 D.√244.设函数y1=−(x−a1)2,y2=−(x−a2)2直线x=1的图象与函数y1,y2的图象分别交于点A(1,c1),B(1,c2)得()A.若1<a1<a2,则c1<c2B.若a1<1<a2,则c1<c2C.若a1<a2<1,则c1<c2D.若a1<a2<1,则c2<c15.若点M(0,5),N(2,5)在抛物线y=2(x−m)2+3上,则m的值为()A.2 B.1 C.0 D.-16.二次函数y=ax2+bx+c的图像经过点(−5,0),(3,0)则关于x的方程ax2+bx+c=0的根是()A.x1=0,x2=3B.x1=−5,x2=0C.x1=5,x2=−3D.x1=−5,x2=37.如图,抛物线y=ax2+bx+c的对称轴为直线x=1,经过点(3,0)下列结论:①abc>0;②b2−4ac>0;③3a+c=0;④抛物线经过点(−3,y1)和(4,y2),则y1>y2;⑤am2−b≤a−bm (m为任意实数).其中,正确结论的个数是()A.1 B.2 C.3 D.48.如图1,校运动会上,初一的同学们进行了投实心球比赛.我们发现,实心球在空中飞行的轨迹可以近似看作是抛物线.如图2建立平面直角坐标系,已知实心球运动的高度y(m)与水平距离x(m)之间的函数关系是y=−112x2+23x+53,则该同学此次投掷实心球的成绩是()A.2m B.6m C.8m D.10m二、填空题9.抛物线y=2(x+1)2+2的顶点坐标是.10.已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为.11.把抛物线y=12x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.12.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx=m有实数根,则m的最小值为13.某景点的“喷水巨龙”口中C处的水流呈抛物线形,该水流喷出的高度y(m)与水平距离x(m)之间的有关系如图所示,D为该水流的最高点DA⊥OB,垂足为A.已知OC=OB=8m,OA=2m则该水流距水平面的最大高度AD的为m.三、解答题14.已知二次函数y=−2x2+bx+c的图像经过A(−1,0),B(3,0)求抛物线的解析式15.将二次函数y=2x2+4x−1的解析式化为y=a(x+m)2+k的形式,并指出该函数图象的开口方向、顶点坐标和对称轴.16.已知二次函数y=x2+bx+c经过(0,−2)和(1,−2).(1)求该二次函数的表达式和对称轴.(2)当−1≤x≤3时,求该二次函数的最大值和最小值.17.如图,二次函数y=x2+bx+c的图象与x轴分别交于点A,B(4,0)(点A在点B 的左侧),且经过点(−3,7),与y轴交于点C .(1)求b,c的值.(2)将线段OB平移,平移后对应点O′和B′都落在拋物线上,求点B′的坐标. 18.某某商店销售一种销售成本为 40 元/件的商品,销售一段时间后发现,每天的销量 y(件)与当天的销售单价 x (元/件)满足一次函数关系,并且当 x =20 时,y=1000,当 x =25 时,y=950.(1)求出y与x的函数关系式,并写出自变量的取值范围;(2)求出每件售价多少元时,商店销售该商品每天能获得最大利润,最大利润是多少元;(3)如果该商店要使每天的销售利润不低于 13750 元,且每天的总成本不超过 20000 元,那么销售单价应控制在什么范围内?参考答案1.C2.D3.A4.C5.B6.D7.C8.D9.(-1,2)10.1或﹣4511.y =12(x +1)2−212.-313.914.解:把(-1,0)、(3,0)代入y =−2x 2+bx +c 中得{−2−b +c =0−18+3b +c =0解得{b =4c =6∴二次函数的解析式为y =−2x 2+4x +6.15.解:y =2(x 2+2x)−1y =2(x 2+2x +1)−2−1y =2(x +1)2−3∴开口方向:向上,顶点坐标:(-1,-3),对称轴:直线x =−1.16.(1)解:将点(0,-2)与(1,-2)分别代入y=x 2+bx+c得{c =−21+b +c =−2解得:{b =−1c =−2所以所求的函数解析式为:y=x 2-x-2对称轴直线为:x =−b 2a =−−12=12;(2)解:∵函数y=x 2-x-2 中,二次项系数为1>0,对称轴直线是x=12 ∴抛物线的开口向上,当x=12时,函数有最小值y= −94又-1≤x ≤3,故当x=3时,有最大值y=4∴当-1≤x ≤3时,函数的最大值是4,最小值是−94.17.(1)解:将点 B(4,0) 、 (−3,7) 代入二次函数解析式 y =x 2+bx +c 得 {16+4b +c =09−3b +c =7解得 {b =−2c =−8; (2)解:由(1)得二次函数的解析式为 y =x 2−2x −8 ,由题意可得 OB =4 设平移后点 O ′ 和 B ′ 的坐标分别为 (x 1,m) , (x 2,m) 则 x 1,x 2 为一元二次方程 x 2−2x −8=m 的两个根( x 1<x 2 ),且 x 2−x 1=4∴x 2−2x −8−m =0由根与系数的关系可得: x 2+x 1=2 x 1x 2=−8−m∴{x 2+x 1=2x 2−x 1=4解得 {x 1=−1x 2=3∴x 1x 2=−1×3=−8−m∴m =5∴B ′(3,−5) .18.(1)解:设y 与x 的函数关系式为y =kx +b∵当x =20时y =1000,当x =25时∴{20k +b =100025k +b =950解得{k =−10b =120∴y 与x 的函数关系式为y =−10x +1200(40≤x ≤120);(2)解:设销售利润为w 元,则w =(x −40)(−10x +1200)=−10x 2+1600x −48000=−10(x −80)2+16000∵a =−10<0∴抛物线开口向下∴当x =80时答:当每件售价80元时,商店销售该商品每天可获得最大利润,最大利润是16000元.(3)解:当w=13750时解得:x1=65∵a=−10<0,抛物线开口向下∴w≥13750时的解集为:65≤x≤95又∵每天的总成本不超过20000元∴40(−10x+1200)≤20000解得:x≥70∴70≤x≤95答:销售单价应控制在70元至95元之间.。
九年级数学 二次函数(巩固篇)(专项练习)Word版含解析
专题2.3 二次函数(巩固篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.3 二次函数(巩固篇)(专项练习) 一、单选题知识点一、二次函数的判断1.下列函数:①2y x =-,①3y x=,①2y x ,①234y x x =++,y 是x 的反比例函数的个数有( ). A .1个B .2个C .3个D .4个2.下列函数中,二次函数是( ) A .y =﹣4x +5B .y =x (2x ﹣3)C .y =ax 2+bx +cD .21y x =3.设y =y 1﹣y 2,y 1与x 成正比例,y 2与x 2成正比例,则y 与x 的函数关系是( ) A .正比例函数 B .一次函数 C .二次函数D .以上均不正确4.若用(1)、(2)、(3)、(4)四幅图分别表示变量之间的关系,将下面的(a )、(b )、(c )、(d )对应的图象排序( )(1) (2) (3) (4) (a )面积为定值的矩形(矩形的相邻两边长的关系) (b )运动员推出去的铅球(铅球的高度与时间的关系)(c )一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物质量的关系)(d )某人从A 地到B 地后,停留一段时间,然后按原速返回(离开A 地的距离与时间的关系)A .(3)(4)(1)(2)B .(3)(2)(1)(4)C .(4)(3)(1)(2)D .(3)(4)(2)(1)知识点二、根据二次函数定义求参数5.若函数y =(a ﹣1)x 2+2x +a 2﹣1是二次函数,则( ) A .a ≠1B .a ≠﹣1C .a =1D .a =±16.已知函数y =ax 2+bx +c ,其中a ,b ,c 可在0,1,2,3,4五个数中取值,则不同的二次函数的个数共有( ) A .125个B .100个C .48个D .10个7.如果函数22(2)27m y m x x -=-+-是二次函数,则m 的取值范围是( ) A .2m =±B .2m =C .m =﹣2D .m 为全体实数8.若y=(m +1)265m m x --是二次函数,则m= ( )A .-1B .7C .-1或7D .以上都不对知识点三、列二次函数解析式9.下列实际问题中,可以看作二次函数模型的有( )①正常情况下,一个人在运动时所能承受的每分钟心跳的最高次数b 与这个人的年龄a 之间的关系为b =0.8(220-a );①圆锥的高为h ,它的体积V 与底面半径r 之间的关系为V =13πr 2h (h 为定值);①物体自由下落时,下落高度h 与下落时间t 之间的关系为h =12gt 2(g 为定值); ①导线的电阻为R ,当导线中有电流通过时,单位时间所产生的热量Q 与电流I 之间的关系为Q =RI 2(R 为定值). A .1个B .2个C .3个D .4个10.用一根长60cm 的铁丝围成一个矩形,那么矩形的面积2()y cm 与它的一边长()x cm 之间的函数关系式为( ) A .230(030)y x x x =-<< B .230(030)y x x x =-+< C .230(030)y x x x =-+<<D .230(030)y x x x =-+<11.二次函数2y ax c =+的图象与22y x =的图象形状相同,开口方向相反,且经过点()1,1,则该二次函数的解析式为( ) A .221y x =-B .223y x =+C .221y x =--D .223y x =-+12.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为( )A .2105607350y x x =--+B .2105607350y x x =-+-C .210350y x x =-+D .2103507350y x x =-+-二、填空题知识点一、二次函数的判断 13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.下列各式:()()()()2222212;2;;;12;2(1)2;2122y x y x y y y x x y x y x x x x x=+====-+=-+=+--;其中y 是x 的二次函数的有________(只填序号)15.下列函数中属于一次函数的是_____,属于反比例函数的是______,属于二次函数的是______A. y =x(x +1)B. xy =1C. y =2x 2-2(x +1)2D. y =16.二次函数y =3x 2+5的二次项系数是_____,一次项系数是_____. 知识点二、根据二次函数定义求参数17.已知函数y =(2﹣k )x 2+kx +1是二次函数,则k 满足__. 18.若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足_____. 19.函数()21m y m x =++是关于x 的二次函数,则m=___ 20.若函数()2262mm y m x --=+是二次函数,则m =________.知识点三、列二次函数解析式21.矩形周长等于40,设矩形的一边长为x ,那么矩形面积S 与边长x 之间的函数关系式为____.22.在①ABC 中,已知BC 边长为x(x>0),BC 边上的高比它的2倍多1,则三角形的面积y 与x 之间的关系为__________.23.正方形边长为2,若边长增加x ,那么面积增加y ,则y 与x 的函数关系式是______. 24.用一根长为10m 的木条,做一个长方形的窗框,若长为xm ,则该窗户的面积y (m 2)与x (m )之间的函数表达式为_____. 三、解答题25.已知函数y=-(m+2)2-2m x (m 为常数),求当m 为何值时:(1)y 是x 的一次函数?(2)y 是x 的二次函数?并求出此时纵坐标为-8的点的坐标.26.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一条矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带BC 边长为xm ,绿化带的面积为ym2 , 求y 与x 之间的函数关系式,并写出自变量x的取值范围.27.如图2 - 4所示,长方形ABCD的长为5 cm,宽为4 cm,如果将它的长和宽都减去x(cm),那么它剩下的小长方形AB′C′D′的面积为y(cm2).(1)写出y与x的函数关系式;(2)上述函数是什么函数?(3)自变量x的取值范围是什么?28.某商场销售一批名牌衬衫,每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经市场调查发现,如果每件衬衫每降价1元,商场每天可多售出2件.()1如果每件衬衫降价5元,商场每天赢利多少元?()2如果商场每天要赢利1200元,且尽可能让顾客得到实惠,每件衬衫应降价多少元?()3用配方法说明,每件衬衫降价多少元时,商场每天赢利最多,最多是多少元?参考答案:1.A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x =-是一次函数,故选项①不符合题意;3y x=是反比例函数,故选项①符合题意; 2y x 是二次函数,故选项①不符合题意;234y x x =++是二次函数,故选项①不符合题意;①y 是x 的反比例函数的个数有:1个 故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解. 2.B【分析】根据二次函数的定义判断即可.【详解】A 、y =﹣4x+5是一次函数,故选项A 不合题意; B 、y =x (2x ﹣3)是二次函数,故选项B 符合题意;C 、当a =0时,y =ax 2+bx+c 不是二次函数,故选项C 不合题意;D 、21y x =不是二次函数,故选项D 不合题意. 故选:B .【点睛】本题主要考查的是二次函数的定义,熟练掌握二次函数的概念是解题的关键. 3.C【分析】设y 1=k 1x ,y 2=k 2x 2,根据y =y 1﹣y 2得到y =k 1x ﹣k 2x 2,由此得到答案. 【详解】解:设y 1=k 1x ,y 2=k 2x 2, 则y =k 1x ﹣k 2x 2,所以y 是关于x 的二次函数, 故选:C .【点睛】此题考查列函数关系式,正确理解正比例函数的定义是解题的关键. 4.A【分析】根据每个类别的数量关系,判断函数图象的变化规律,选择正确结论.【详解】解:根据题意分析可得:(a )面积为定值的矩形,其相邻两边长的关系为反比例关系,对应图象为(3); (b )运动员推出去的铅球,铅球的高度随时间先增大再减小,对应图象为(4); (c )一个弹簧不挂重物到逐渐挂重物,弹簧长度随所挂重物质量增大而增大;对应图象为(1);(d )某人从A 地到B 地后,停留一段时间,然后按原速返回,对应图象为(2). 故选:A .【点睛】本题考查了函数图象,主要利用了反比例函数图象,抛物线,一次函数图象,分析得到各小题中的函数关系是解题的关键. 5.A【分析】利用二次函数定义进行解答即可. 【详解】解:由题意得:a ﹣1≠0, 解得:a ≠1, 故选:A .【点睛】本题主要考查了二次函数的定义,准确计算是解题的关键. 6.B【分析】根据二次函数的定义得到0a ≠,依据a 、b 、c 的选法通过计算即可得到答案 【详解】由题意0a ≠, ①a 有四种选法:1、2、3、4,①b 和c 都有五种选法:0、1、2、3、4, ①共有455⨯⨯=100种, 故选:B【点睛】此题考查二次函数的定义2(0)y ax bx c a =++≠,有理数的乘法运算,根据题意得到a 、b 、c 的选法是解题的关键. 7.C【分析】根据二次函数定义可得m -2≠0,222m -=,再解即可. 【详解】解:由题意得:m -2≠0,222m -=, 解得:m=-2, 故选:C .【点睛】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.8.B【分析】令x的指数为2,系数不为0,列出方程与不等式解答即可.【详解】由题意得:m2-6m-5=2;且m+1≠0;解得m=7或-1;m≠-1,①m=7,故选:B.【点睛】利用二次函数的定义,二次函数中自变量的指数是2;二次项的系数不为0.9.C【详解】形如y=ax2+bx+c(a、b、c是常数且a≠0)的函数是二次函数,由二次函数的定义可得①①①是二次函数,故选C.10.C【分析】由矩形另一边长为周长的一半减去已知边长求得另一边的长,进一步根据矩形的面积等于相邻两边长的积列出关系式即可.【详解】由题意得:矩形的另一边长=60÷2-x=30-x,矩形的面积y(cm2)与它的一边长x(cm)之间的函数关系式为y=x(30-x)=-x2+30x(0<x<30).故选:C.【点睛】此题考查根据实际问题列二次函数关系式,掌握矩形的边长与所给周长与另一边长的关系是解题的关键.11.D【分析】根据二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,得到a=−2,然后把点(1,1)代入y=−2x2+c求出对应的c的值,从而可得到抛物线解析式.【详解】①二次函数y=ax2+c的图象与y=2x2的图象形状相同,开口方向相反,①a=−2,①二次函数是y=−2x2+c,①二次函数y=ax2+c经过点(1,1),①1=−2+c,①c=3,①抛该二次函数的解析式为y=−2x 2+3; 故选D.【点睛】此题考查二次函数的性质,解题关键在于利用待定系数法求解. 12.B【分析】商品所赚钱=每件的利润×卖出件数,把相关数值代入即可求解. 【详解】解:每件的利润为(x -21), ①y =(x -21)(350-10x ) =-10x 2+560x -7350. 故选B .【点睛】本题考查了根据实际问题列二次函数关系式,解决本题的关键是找到总利润的等量关系,注意先求出每件商品的利润. 13.12-2x , 1【分析】函数化简为一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 【详解】①y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项 ①21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1.故答案是:12; -2x;1.【点睛】考查了二次函数的定义,二次函数的一般形式:y=ax 2+bx+c (a ,b ,c 是常数且a≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 14.①①①【分析】根据二次函数的定义与一般形式即可求解. 【详解】解:y 是x 的二次函数的有①,①,①. 故答案是:①,①,①.【点睛】本题考查了二次函数的定义,一般形式是y=ax 2+bx+c (a≠0,且a ,b ,c 是常数,x 是未知数). 15. C B A【详解】根据题意可知y=x (x+1)=x 2+x ,可由二次函数的定义,可知是二次函数;根据xy=1是反比例关系,所以是反比例函数;而y =2x 2-2(x +1)2= y =2x 2-2(x 2+2x+1)=-4x -2,是一次函数;函数y . 故答案为C 、B 、A. 16. 3 0【分析】根据二次函数的定义解答即可.【详解】二次函数y =3x 2+5的二次项系数是3,一次项系数是0. 故答案是:3;0.【点睛】考查二次函数的定义,是基础题,熟记概念是解题的关键,要注意没有一次项,所以一次项系数看做是0. 17.k ≠2【分析】利用二次函数定义可得2﹣k ≠0,再解不等式即可. 【详解】解:由题意得:2﹣k ≠0, 解得:k ≠2, 故答案为:k ≠2.【点睛】本题主要考查了二次函数的定义,准确分析计算是解题的关键. 18.m ≠﹣1【分析】利用二次函数定义可知m+1≠0,再解不等式即可; 【详解】解:由题意得:m+1≠0, 解得:m≠﹣1, 故答案为:m≠﹣1.【点睛】本题考查了二次函数的定义,正确掌握二次函数的定义是解题的关键; 19.2【分析】根据二次函数的定义可得220m m ⎧=⎪⎨+≠⎪⎩,求解即可.【详解】解:①函数()21my m x =++是关于x 的二次函数,①220m m ⎧=⎪⎨+≠⎪⎩,解得2m =,故答案为:2.【点睛】本题考查二次函数的定义,注意二次项系数不能为0. 20.4【分析】直接利用二次函数的定义进而分析得出答案. 【详解】由题意得:2262m m --=,且20m +≠, 解得:4m =. 故答案为:4.【点睛】本题考查了二次函数的定义,解决问题的关键是明确最高次项的次数为2,且最高次项系数不为0. 21.220S x x =-+【分析】根据矩形的周长、一边长,可得另一边长,根据矩形的面积公式,可得答案. 【详解】解:设矩形的一边长为x 米,另一边长为(20-x )米, ①由矩形的面积公式,得 2(20)20S x x x x =-=-+【点睛】本题考查了函数解析式,利用了矩形的面积公式. 22.y=x 2+12x【分析】根据已知得出三角形的高,进而利用三角形面积公式求出即可. 【详解】①BC 边长为x(x>0),BC 边上的高比它的2倍多1, ①这条边上的高为:2x+1, 根据题意得出:y=12x (2x+1)=x 2+12x . 故答案为y=x 2+12x .【点睛】此题主要考查了根据实际问题列二次函数关系式,根据三角形面积公式得出是解题关键. 23.y=x 2+4x【分析】增加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可. 【详解】新正方形的边长为2x +,原正方形的边长为2. ∴新正方形的面积为2(2)x +,原正方形的面积为4, 22(2)44y x x x ∴=+-=+,故答案为24y x x =+.【点睛】考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.24.y =﹣x 2+5x【分析】直接利用根据实际问题列二次函数解析式关系式,正确表示出长方形的宽是解题关键.【详解】设长为xm ,则宽为(5﹣x )m ,根据题意可得:y =x (5﹣x )=﹣x 2+5x .故答案是:y =﹣x 2+5x .【点睛】考查了根据实际问题列二次函数解析式,正确表示出长方形的宽是解题关键.25.(1)(2) m =2,纵坐标为-8的点的坐标是,-8),(,-8)【分析】(1)根据一次函数的定义求m 的值即可;(2)根据二次函数的定义求得m 的值,从而求得二次函数的解析式,把y =-8代入解析式,求得x 的值,即可得纵坐标为-8的点的坐标.【详解】(1)由y=-(m+2)22m x -(m 为常数),y 是x 的一次函数,得221,20,m m ⎧-=⎨+≠⎩解得 ①当y 是x 的一次函数;(2)由y=-(m+2)22m x -(m 为常数),y 是x 的二次函数,得222,20,m m ⎧-=⎨+≠⎩解得m=2,m=-2(不符合题意的要舍去),当m=2时,y 是x 的二次函数,当y=-8时,-8=-4x 2,解得故纵坐标为-8的点的坐标是-8)和(,-8).【点睛】本题考查了一次函数的定义、二次函数的定义,解题关键是掌握一次函数与二次函数的定义.26.y=﹣12x2+20x ,自变量x 的取值范围是0<x≤25.【详解】试题分析:由矩形的性质结合BC 的长度可得出AB 的长度,再根据矩形的面积公式即可找出y 与x 之间的函数关系式.试题解析:①四边形ABCD 为矩形,BC=x①AB=40-2x . 根据题意得:24012022x y BC AB x x x -⎛⎫=⨯==-+ ⎪⎝⎭,因为墙长25米,所以025x <≤. 27.(1) y =x2-9x +20;(2) 二次函数;(3) 0<x <4.【详解】试题分析:(1)根据长方形的面积公式,根据图示求解即可得到函数关系式;(2)通过二次函数的定义可判断;(3)根据x 取值不能大于原方程的长方形的宽进行分析.试题解析:(1)根据长方形的面积公式,得y =(5-x)·(4-x)=x 2-9x +20,所以y 与x 的函数关系式为y =x 2-9x +20.(2)上述函数是二次函数.(3)自变量x 的取值范围是0<x <4.点睛:此题主要考查了根据题意列函数的解析式,熟悉掌握根据题意列函数关系式是解决此题的关键.28.(1)如果每件衬衫降价5元,商场每天赢利1050元;()2每件衬衫应降价20元.()3每件衬衫降价15元时,商场平均每天盈利最多.【分析】总利润=每件利润×销售量.设每天利润为w 元,每件衬衫应降价x 元,据题意可得利润表达式,(1)把x =5代入求得相应的w 的值即可;(2)再求当w =1200时x 的值;(3)根据函数关系式,运用函数的性质求最值.【详解】(1)设每天利润为w 元,每件衬衫降价x 元,根据题意得w =(40−x )(20+2x )=−2x 2+60x +800=−2(x−15)2+1250当x =5时,w =−2(5−15)2+1250=1050(元)答:如果每件衬衫降价5元,商场每天赢利1050元;;()2当w 1200=时,22x 60x 8001200-++=,解之得1x 10=,2x 20=.根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.()3商场每天盈利()()40x 202x -+22(x 15)1250=--+.所以当每件衬衫应降价15元时,商场盈利最多,共1250元.答:每件衬衫降价15元时,商场平均每天盈利最多.【点睛】本题考查了配方法的应用,一元二次方程的应用.根据题意写出利润的表达式是此题的关键.。
中考数学真题二次函数专项练习(带答案)
中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
(完整版)初中数学二次函数专题经典练习题(附答案)
二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。
初中二次函数练习题
初中二次函数练习题一、选择题1. 下列哪个选项是二次函数的一般形式?A. y = 3x + 2B. y = x^2 + 3x + 1C. y = x - 2D. y = 2x^3 + 12. 二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,那么a 的取值范围是:A. a > 0B. a < 0C. a ≥ 0D. a ≤ 03. 如果二次函数y = ax^2 + bx + c的顶点坐标为(1, -2),那么b 和a的关系是:A. b = -2a + 2B. b = 2a + 1C. b = -2a - 1D. b = 2a - 14. 二次函数y = -x^2 + 4x + 6的最大值是:A. 1B. 3C. 6D. 105. 已知二次函数y = x^2 - 2x + 3,当x = 1时,y的值是:A. 0B. 1C. 2D. 3二、填空题6. 二次函数y = 2x^2 - 6x + 5的顶点坐标是________。
7. 如果二次函数y = ax^2 + bx + c与x轴有两个交点,那么判别式Δ = b^2 - 4ac应满足的条件是________。
8. 二次函数y = -3x^2 + 6x - 1与y轴的交点坐标是________。
9. 已知二次函数y = x^2 - 4x + 4可以写成完全平方的形式,其形式为y = (x - ________)^2。
10. 函数y = 2x^2 - 8x + 7的图像与x轴的交点个数是________。
三、解答题11. 已知二次函数y = ax^2 + bx + c的图像经过点(1, 1)和(2, 4),求a和b的值。
12. 某工厂生产一种产品,其成本函数为C(x) = 0.5x^2 - 100x + 5000,其中x表示产品数量。
求该工厂生产多少件产品时,成本最低。
13. 一个抛物线形的桥拱,其方程为y = -0.2x^2 + 2,当x的取值范围在-10到10之间时,求该桥拱的最大高度。
初三年级二次函数练习题
初三年级二次函数练习题1. 某小区的物业费用是根据房屋面积来确定的,已知该小区的一套房子的面积为100平方米,物业费用为2000元。
设该小区的物业费用与房屋面积之间存在二次函数关系,试求该小区物业费用与房屋面积的函数表达式,并利用该表达式计算以下问题:a) 若房屋面积增加到150平方米,物业费用是多少?b) 若房屋面积减少到80平方米,物业费用是多少?解析:设物业费用为y,房屋面积为x。
根据已知信息,我们可以得出以下两个点的坐标:(100, 2000)和(x, y)。
由于物业费用与房屋面积之间存在二次函数关系,所以可以设函数的表达式为y = ax^2 + bx + c。
代入已知的点(100, 2000),可以得到一个等式:2000 = a * 100^2 + b * 100 + c。
同理,代入点(x, y),可以得到另一个等式:y = ax^2 + bx + c。
由于我们需要求解函数的表达式,因此需要解这两个等式组成的方程组:1) 2000 = a * 100^2 + b * 100 + c2) y = ax^2 + bx + c解方程组得到a、b、c的值后,即可得到函数的表达式,并用该表达式回答a)和b)的问题。
2. 若已知二次函数f(x) = ax^2 + bx + c的顶点的横坐标为1,纵坐标为5,并且该函数在x = 2处取得最小值-3。
求该二次函数的函数表达式。
解析:根据已知信息,我们可以得出以下两个点的坐标:(1, 5)和(2, -3)。
由于二次函数的顶点的横坐标为1,纵坐标为5,可以得到一个等式:5 = a * 1^2 + b * 1 + c。
由于该函数在x = 2处取得最小值-3,可以得到另一个等式:-3 = a * 2^2 + b * 2 + c。
解以上两个等式组成的方程组,可以得到a、b、c的值,从而确定二次函数的函数表达式。
3. 已知二次函数f(x) = ax^2 + bx + c的图像经过点(1, 2)和(2, 3),且在x = 0处和x = 3处与x轴相交。
初三二次函数综合练习题
初三二次函数综合练习题一、选择题1. 已知二次函数的图象开口向上,且顶点坐标为(2,3),则该二次函数的对称轴是()。
A. x=2B. x=2C. y=2D. y=32. 二次函数y=ax^2+bx+c(a≠0)的图象与x轴交于A、B两点,且|AB|=4,则a的取值范围是()。
A. a>0B. a<0C. a≠0D. 无法确定3. 已知二次函数y=x^22x3的图象上存在一点P,使得P到原点的距离等于5,则点P的坐标可能是()。
A. (4, 3)B. (4, 3)C. (4, 3)D. (4, 3)4. 下列二次函数中,图象开口向上且顶点在第一象限的是()。
A. y=x^2+2x+1B. y=x^22x1C. y=x^22x+1D. y=x^2+2x1二、填空题5. 已知二次函数y=ax^2+bx+c的图象经过点(1,2)和(1,6),则该二次函数的对称轴为直线______。
6. 二次函数y=x^24x+3的图象与x轴的交点坐标为______。
7. 若二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(h,k),则该二次函数的最小值为______。
8. 已知二次函数y=x^2+2x+3的图象与y轴的交点坐标为______。
三、解答题9. 已知二次函数y=x^26x+9的图象,求该函数的顶点坐标、对称轴及开口方向。
10. 已知二次函数y=2x^2+4x+6的图象与x轴有两个交点,求这两个交点的坐标。
11. 设二次函数y=ax^2+bx+c的图象经过点(0,3)、(1,2)和(2,1),求该二次函数的解析式。
12. 已知二次函数y=x^24x+3与y=x^2+2x+5的图象相交于A、B两点,求线段AB的长度。
13. 已知二次函数y=x^22x3的图象上存在一点P,使得P到直线y=2x的距离等于1,求点P的坐标。
14. 设二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(2,1),求该二次函数的最大值。
初三数学二次函数练习题
初三数学二次函数练习题一、选择题1. 已知二次函数的图象开口向上,则其二次项系数()A. 大于0B. 小于0C. 等于0D. 无法确定2. 二次函数y=ax^2+bx+c(a≠0)的图象上存在一点P,使得该函数在点P处的切线斜率为0,则点P的横坐标为()A. b/2aB. b/2aC. a/2bD. b/2c3. 已知二次函数y=x^22x3,则它的顶点坐标为()A. (1, 4)B. (1, 4)C. (1, 4)D. (1, 4)4. 二次函数y=ax^2+bx+c的图象与x轴相交于A、B两点,若A、B两点坐标分别为(1,0)和(3,0),则对称轴的方程为()A. x=1B. x=3C. x=1D. x=3二、填空题1. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(1,2),则该二次函数的解析式为________。
2. 二次函数y=x^24x+3的图象与y轴的交点坐标为________。
3. 若二次函数y=ax^2+bx+c的图象经过点(1,2)和(1,6),则该二次函数的解析式为________。
4. 已知二次函数y=x^22x3的图象与x轴相交于A、B两点,若A、B两点的坐标分别为(1,0)和(3,0),则该二次函数的对称轴方程为________。
三、解答题1. 已知二次函数y=ax^2+bx+c的图象开口向上,且顶点坐标为(2,3),又知该函数图象与x轴相交于A、B两点,A、B两点坐标分别为(1,0)和(3,0),求该二次函数的解析式。
2. 设二次函数y=ax^2+bx+c的图象经过点(0,1)、(1,2)和(1,6),求该二次函数的解析式。
3. 已知二次函数y=x^24x+3的图象与x轴相交于A、B两点,求线段AB的长度。
4. 设二次函数y=ax^2+bx+c的图象开口向下,且顶点坐标为(1,4),又知该函数图象与y轴相交于点(0,3),求该二次函数的解析式。
四、应用题1. 一抛物线形拱桥的跨度为8米,拱桥的最高点距水面4米,水面与桥的连接处为抛物线的对称轴。
二次函数基础练习题(打印版)
二次函数基础练习题(打印版)### 二次函数基础练习题一、选择题1. 函数\( y = ax^2 + bx + c \)(其中\( a \neq 0 \))是二次函数,当\( a > 0 \)时,其开口方向是()A. 向上B. 向下C. 向左D. 向右2. 若二次函数\( y = ax^2 + bx + c \)的对称轴是直线\( x = 1 \),则\( b \)和\( a \)的关系是()A. \( b = 2a \)B. \( b = -2a \)C. \( b = a \)D. \( b = -a \)二、填空题1. 二次函数\( y = ax^2 + bx + c \)的顶点坐标是(),其中\( a \neq 0 \)。
2. 若二次函数的图象与x轴有两个交点,则\( b^2 - 4ac \)的值大于()。
三、解答题1. 已知二次函数\( y = ax^2 + bx + c \)的图象经过点(1,2)和(-1,0),求\( a \)的值。
2. 求二次函数\( y = x^2 - 2x + 1 \)的顶点坐标,并判断其图象的开口方向。
四、应用题1. 某工厂生产一种产品,其成本函数为\( C(x) = 0.5x^2 - 100x + 3000 \),其中\( x \)为生产数量(单位:件)。
求该工厂生产多少件产品时,每件产品的平均成本最低。
2. 某公司计划在一块长为50米的长方形地块上建造一个仓库,仓库的一边靠墙,另外三边需要用围栏围起来。
若围栏的总长度为90米,求仓库的最大面积。
答案:一、选择题1. A2. A二、填空题1. \( \left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right) \)2. 0三、解答题1. 将点(1,2)代入\( y = ax^2 + bx + c \)得\( a + b + c = 2 \),将点(-1,0)代入得\( a - b + c = 0 \)。
初三下二次函数练习题及答案
初三下二次函数练习题及答案一、选择题1.下面哪一个函数是二次函数?A. y = 3x + 1B. y = x² + 2x + 1C. y = 4^xD. y = √x2.二次函数y = ax² + bx + c图象是抛物线,开口向上的条件是:A. a > 0B. a < 0C. b > 0D. b < 03.已知二次函数y = x² - 4x + 3的顶点为(2,-1),则a、b、c的值分别为:A. a = 1,b = -4,c = -1B. a = 1,b = 4,c = -3C. a = 1,b = -4,c = 3D. a = 1,b = -2,c = -3二、计算题1.已知二次函数y = x² - 3x + 2,求该函数的顶点坐标和对称轴的方程式。
解答:顶点的横坐标为x = -b/2a,所以 x = -(-3)/(2*1) = 3/2。
将x = 3/2代入原函数可得y = (3/2)² - 3*(3/2) + 2 = -1/4。
所以,该二次函数的顶点坐标为(3/2, -1/4)。
对称轴的方程式为x = 3/2。
2.已知二次函数y = 2x² - 4x + 1,求该函数的零点。
解答:函数的零点即为使得y = 0的x的值。
将y = 0代入原函数可得2x² - 4x + 1 = 0。
使用求根公式可解得x = (4 ± √(16 - 4*2*1))/(2*2) = (4 ± √8)/4 = (1 ± √2)/2。
所以,该二次函数的零点为x = (1 + √2)/2和x = (1 - √2)/2。
三、应用题1.小明将一长方形花坛围起来,其中一边贴着墙,另外三边用栅栏围起来。
已知墙的一段长为4米,花坛的面积为12平方米。
若栅栏的费用为每米15元,求栅栏的总费用。
解答:设花坛的另外两条边长分别为x和y,则有xy = 12。
初三数学二次函数大题练习题
初三数学二次函数大题练习题1. 下列二次函数中,哪个函数的图像是一个开口朝下的抛物线?A. f(x) = x^2 + 2x + 1B. f(x) = -x^2 + 2x + 1C. f(x) = x^2 - 2x + 1D. f(x) = -x^2 - 2x + 1解析:开口朝下的抛物线表现为二次函数的a系数为负数。
观察选项中的a系数即可得出答案。
因此,选项 B 和 D 的函数图像是一个开口朝下的抛物线。
2. 已知二次函数f(x) = 2x^2 + 4x - 3,求其顶点的坐标和对称轴的方程。
解析:对于一般形式的二次函数f(x) = ax^2 + bx + c,顶点的横坐标为 x = -b/(2a)。
带入题目中的函数可得:x = -4/(2*2) = -1。
将 x = -1 代入函数f(x)中求解纵坐标:f(-1) = 2*(-1)^2 + 4*(-1) - 3 = -3。
因此,顶点的坐标为 (-1, -3)。
对称轴的方程为 x = -1,即二次函数的图像与直线 x = -1 对称。
3. 已知二次函数f(x)图像的顶点为 (2, 5)。
求该二次函数的解析式。
解析:二次函数的一般形式为 f(x) = ax^2 + bx + c。
已知顶点为 (2, 5),代入顶点坐标可得以下方程组:5 = a*2^2 + b*2 + c ——(1)0 = a*4 + b*2 ——(2)由于顶点在抛物线上,这意味着对称轴必须经过顶点,因此对称轴的方程为 x = 2。
对称轴方程的系数 b 必为零,代入方程组(2)可解得 b = 0。
将 b = 0 代入方程组(1)中可解得 c = 5 - a*4。
将 b = 0 和 c = 5 - a*4 代入一般形式的二次函数中,得到解析式 f(x) = ax^2 + 5 - a*4。
由于任意二次函数与其关于顶点对称的函数图像相同,解析式可以化简为 f(x) = ax^2 + 5。
4. 已知二次函数f(x) = x^2 + bx + 1 的图像过点 (2, 4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
二次函数测试题
一.选择题
1、二次函数y=x 2
+x-2的图象与x 轴交点的横坐标是( ) A .2和-1 B .2-和1 C .2和1 D .2-和-1
2.抛物线y=-3(x+6)2
-1的对称轴是直线( ).
A .x=-6
B .x=-1
C .x=l
D .x=6
3.关于x 的一元二次方程向(a-1)x 2+x+a 2
-1=0的一个根是0,则a 的值为( ) A .0.5 B .1 C .-1 D .1或-1
4.将抛物线y=5x 2
先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为( )
A .y=5(x+3)2+2
B .y=5(x+3)2-2
C .y=5(x-3)2+2
D .y=5(x-3)2
-2 5.下列四个函数中,y 随x 增大而减小的是( )
A .y=2x B.y=-2x+5 C . D .y=-x 2
+2x-1
6.在平面直角坐标系中,若点P(x-2,x)在第二象限.则x 的取值范围为( ) A .x>0 B .x<2 C .O<x<2 D .x>2
7.抛物线y=8x 2
+2mx+m-2的顶点在x 轴上,则顶点坐标是( )
A .(4,0)
B . C. D .(0,)
8、下列函数中是二次函数的是( )
(A )142
+=x y ;(B )14+=x y ;(C )x y 4
=
;(D )142+=x
y 。
10、与抛物线152
--=x y 顶点相同,形状也相同,而开口方向相反的抛物线所对应的函数是( ) (A )152--=x y ;(B )152-=x y ;(C )152+-=x y ;(D )152
+=x y 。
11、在同一直角坐标系中,一次函数y=ax+c 和二次函数y=ax 2
+c 的图象大致为( )
12、已知二次函数y=ax 2
+bx+c 的图象如图,则a 、b 、c 满足 ( )
(A )a <0,b <0,c >0;(B )a <0,b <0,c <0; (C )a <0,b >0,c >0;(D )a >0,b <0,c >0。
13、已知二次函数772
--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )
(A )k >47-; (B )k ≥47-;(C )k ≥47-且k ≠0;(D )k >4
7
-且k ≠0。
14、已知2
2y x =的图象是抛物线,若抛物线不动,把x 轴,y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是( ).
2 A.2
2(2)2y x =-+ B.2
2(2)2y x =+-
C.2
2(2)2y x =--
D.2
2(2)2y x =++
15、已知二次函数2
y ax bx c =++的图象如图所示,对称轴是1x =,则下列结论中正确的是( ). A.0ac >
B.0b < C240b ac -< D.20a b +=
16、抛物线y=x 2
-3的顶点坐标、对称轴是( )
A (0,3) x=3
B (0,一3) x=0
C (3,0) x=3
D (一3,0 )x=0 17、设抛物线y=x 2
+4x-k 的顶点在x 轴上,则k 的值为( ) A -4 B 4 C -2 D 2 18、二次函数y=x 2+6x-2的最小值为( ) A 11 B -11 C 9 D -9
19.把一个小球以20 m/s 的速度竖直向上弹出,它在空中的高度h (m)与时间t (s)满足关系:h =20t -5t 2.当h =20 m 时,小球的运动时间为( )
A.20 s
B.2 s
C.(22+2) s
D.(22-2) s
20.如果抛物线y =-x 2+2(m -1)x +m +1与x 轴交于A 、B 两点,且A 点在x 轴正半轴上,B 点在x 轴的负半轴上,则m 的取值范围应是( )
A.m >1
B.m >-1
C.m <-1
D.m <1
21.如图3,一次函数y =-2x +3的图象与x 、y 轴分别相交于A 、C 两点,二次函数y =x 2+bx +c 的图象过点c 且与一次函数在第二象限交于另一点B ,若AC ∶CB =1∶2,那么,这个二次函数的顶点坐标为( ) A.(-
21,411) B.(-21,45) C.(21,411) D.(21,-4
11) 22.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y (万元)与新增加的投资额x (万元)之间函数关系为( )
A.y =25x +15
B.y =2.5x +1.5
C.y =2.5x +15
D.y =25x +1.5
23.如图4,铅球运动员掷铅球的高度y (m)与水平距离x (m)之间的函数关系式是y =-12
1x 2+32x +35
,则该
运动员此次掷铅球的成绩是( )
A.6 m
B.12 m
C.8 m
D.10 m
图3 图4 图5
24.某幢建筑物,从10 m 高的窗口A ,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面
地面
3
40m ,则水流落地点B 离墙的距离OB 是( ) 垂直,如图5,如果抛物线的最高点M 离墙
1 m ,离x
3
A.2 m
B.3 m
C.4m
D.5 m
二.填空题
25、小明从右边的二次函数2y ax bx c =++图象中,观察得出了下面0
x <的五条信息:①0a <,②0c =,③函数的最小值为3-,④当x=2.你
时,0y >,⑤当1202x x <<<时,12y y >(6)对称轴是直线认为其中正确的个数为( )A.2 B.3 C.4
D.5
26.抛物线2
3x y =的图象向右移动3个单位,再向下移动4
个单
位,它的顶点坐标是 ,对称轴是 解析式是 ;
27.找出能反映下列各情景中两个变量间关系的图象,并将代号填在相应的横线上.
(1)一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是______. (2)正方形的面积与边长之间的关系.对应的图象是______.
(3)用一定长度的铁丝围成一个长方形,长方形的面积与其中一边的长之间的关系.对应的图象是______.
(4)在220 V 电压下,电流强度与电阻之间的关系.对应的图象是______.
A B D
图2
28.函数
的图象的顶点关于y 轴的对称点的坐标是_______.
29.二次函数y=x 2
-2x-3的最小值是_______.
30.y=a(x+h)2
+k 中,a<0,h>0,k>0,则它的开口向_______.顶点在第_______象限.
31.若关于x 的方程kx 2
+2x-1=0有实数根,则k 的取值范围_______.
32.二次函数y=x 2
-2(k+1)x+k+3有最小值-4,且图象的对称轴在y 轴的右侧,则k 的值是_______. 33. 抛物线2
y ax bx c =++过点A (-1,0),(30)B ,,则此抛物线的对称轴是直线x = . 34、抛物线y =2(x -2)2-6的顶点坐标是
35、已知二次函数2
3y x bx =++的对称轴为2x =,则b =
36.若抛物线y =2x 2-4x +1与x 轴两交点分别是(x 1,0),(x 2,0),则x 12+x 22=______. 37.若抛物线y =x 2-(2k +1)x +k 2+2,与x 轴有两个交点,则整数k 的最小值是______.
38等腰梯形的周长为60 cm ,底角为60°,当梯形腰x =______时,梯形面积最大,等于______.
39.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加了1个,
为了获得最大利润,则应降价______元,最大利润为______元.
40、小敏用一根长为8cm 的细铁丝围成矩形,则矩形的最大面积是( )。