鲁教版初中数学九年级上册期中测试题
2022-2023学年鲁教版(五四制)九年级上册数学期中综合测试卷
期中综合测试卷时间:90分钟 满分:120分一、选择题(每题4分,共40分)1.如图所示,电线杆CD 的高度为h ,两根拉线AC 与BC 相互垂直,∠CAB =a ,则拉线BC 的长度为(A ,D ,B 在同一直线上)( ) A.a h sin B. a h cos C. ahtan D. h ·cosa 2.在△ABC 中,若2)cos 23(22sin B A -+-=0,∠A ,∠B 都是锐角,则∠C 的度数是( )A. 75° B. 90° C. 105° D. 120° 3.下列关于反比例函数y =x3-的说法正确的是() A.y 随x 的增大而增大 B.函数图象过点(2,23) C.图象位于第一、三象限 D.x >0时,y 随x 的增大而增大4.如图所示,在平面直角坐标系中,点B 在第一象限,BA ⊥x 轴于点A ,反比例函数y =xk(x >0)的图象与线段AB 相交于点C ,且C 是线段AB 的中点,点C关于直线y =x 的对称点C '的坐标为(1,n )(n ≠1),若△OAB 的面积为3,则k 的值为( ) A.31B. 1C. 2D. 3 5.如图所示,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为( )A. 1603mB. 1203mC. 300 mD. 1602m 6.如图所示,△ABC 的顶点A 在反比例函数y =xk(x >0)的图象上,顶点C 在x 轴上,AB ∥x 轴,若点B 的坐标为(1,3),S △ABC =2,则k 的值为( ) A. 4 B. -4 C. 7 D. -77.将一张矩形纸片ABCD (如图所示)那样折起,使顶点C 落在C '处,测量得AB =4,DE =8.则sin ∠C 'ED 为( )A. 2B.21C. 22D. 238.如图所示,正方形ABCD 的边长为5,点A 的坐标为(-4,0),点B 在y 轴上,若反比例函数y =xk(k ≠0)的图象过点C ,则该反比例函数的表达式为( ) A. x y 3=B. x y 4=C. x y 5=D. xy 6= 9.如图所示,△ABC 的三个顶点C 坐标分别为A (1,2),B (4,2),C (4,4).若反比例函数y =xk在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A. 1≤k ≤4B. 2≤k ≤8C. 2≤k ≤16D. 8≤k ≤16 10.如图所示,直线y =-21x +b 与x 轴交于点A ,与双曲线y =xk (x <0)交于点B ,若S △AOB =2,则b 的值是( ) A. 4 B. 3 C. 2 D. 1 二、填空题(每题4分,共20分)11.计算:sin 230°+tan44ºtan46°+sin 260°=__________________。
鲁教版-学年度上学期九年级数学期中检测题(含答案)
期中测试题(九年级数学上) (时间:90分钟满分:120分)一、选择题(每小题3分,共36分) 1.下列各点中在反比例函数y=x6的图象上的是( ) A.(-2,-3) B.(-3,5) C.(3,-2) D.(6,-1) 2.反比例函数y=xk(k ≠0)的图象经过点(-2,3),则该反比例函数的图象在( ) A.第一、三象限 B.第二、四象限 C.第二、三象限 D.第一、二象限3.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( ) A.该村人均耕地面积随总人口的增多而增多 B.该村人均耕地面积y 与总人口x 成正比例 C.若该村人均耕地面积为2公顷,则总人口有100人 D.当该村总人口为50人时,人均耕地面积为1公顷4.(2016·金华中考)一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为a.现要在楼梯上铺一条地毯,已知CA=4米,楼梯宽度1米,则地毯的面积至少需要( ) A.a sin 4平方米 B.acos 4平方米 C.)tan 44(a 平方米 D.(4+4tana)平方米5.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( ) A.332cm B.334cm C.5cm D.2 cm 6.如图所示,A,B,C 三点在正方形网格线的交点处,若将△ACB 绕点A 逆时针旋转得到△AC ’B ′,则tanB ’的值是( ) A.21 B.31 C.41D.427.如图所示,在数轴上点A 所表示的数x 的范围是( )A.0060sin 30sin 23<<x B.0045cos 2330cos <<x C.0045tan 30tan 23<<x D.0060tan 45tan 23<<x8.在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a,b,c,a+b=28,sinA+sinB=57,则斜边 c 的值为( )A.10B.14C.20D.249.在Rt △ABC 中,∠C=90°,tanA=34,AB=8,则AC 等于( ) A.6 B.332 C. 524D.1210.已知反比例函数y=x10,当1<x<2时,y 的取值范围是( )A.0<y<5B.1<y<2C.5<y<10D.y>1011.已知点A(-1,y 1),B(2,y 2)都在双曲线y=x m23+上,且y 1>y 2,则m 的取值范围是( ) A.m<0 B.m>0 C. m>23- D. m<23-12.如图所示,反比例函数y= - x6在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,直线AB 与x 轴交于点C,则△AOC 的面积为( ) A.8 B.10 C.12 D.24 二、填空题(每小题3分,共15分) 13.已知反比例函数y=xk(k ≠0),如果在这个函数图象所在的每一个象限内,y 的值随着x 的值增大而减小,那么k 的取值范围是 。
【鲁教版】九年级数学上期中试题(及答案)
一、选择题1.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°2.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 3.如图,O 是正ABC 内一点,3OA =,4OB =,5OC =,将线段BO 以点B 为旋转中心逆时针旋转60︒得到线段BO ',下列结论:①BO A '△可以由BOC 绕点B 逆时针旋转60︒得到;②点O 与O '的距离为4;③150AOB ︒∠=;④633AOBO S '=+四边形.其中正确的结论有( ).A .1个B .2个C .3个D .4个4.如图,△ABC 是等腰直角三角形,BC 是斜边,将△ABP 绕点A 逆时针旋转后得到ACP '△,如果AP =2,那么PP '的长等于( )A .32B .23C .2D .4 5.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C .26D .41 6.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1) 7.函数y =ax 2与y =ax +a ,在第一象限内y 随x 的减小而减小,则它们在同一直角坐标系中的图象大致位置是( )A .B .C .D .8.二次函数2y ax bx c =++的图象如图所示,那么一次函数y ax b =+的图象大致是( ).A .B .C .D .9.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x << 10.对于二次函数2(2)7y x =---,下列说法正确的是( )A .图象开口向上B .对称轴是直线2x =-C .当2x >时,y 随x 的增大而减小D .当2x <时,y 随x 的增大而减小11.27742322x -+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+= 12.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( )A .1-B .1C .17-D .17 13.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( )A .5-B .5C .10319-D .1031914.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020二、填空题15.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.16.高尔夫球运动是一项具有特殊魅力的运动,运动员会利用不同的高尔夫球杆将高尔夫球打进球洞,从而使其在优美的自然环境中锻炼身体,并陶冶情操. 如图,某运动员将一只高尔夫球沿某方向击出时,小球的飞行路线是一条抛物线. 如果不考虑空气阻力等因素,小球的飞行高度 h (单位:米)与飞行时间 t (单位:秒)之间满足函数关系2205h t t =- .则小球从飞出到落地瞬间所需的时间为________秒.17.写出一个二次函数,其图像满足:①开口向下;②与y 轴交于点(0,3)-,这个二次函数的解析式可以是_______________________.18.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.19.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.20.如图,世纪广场有一块长方形绿地,AB =18m ,AD =15m ,在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,则x =_____.三、解答题21.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠=,则222PA PB PC +=?小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠=,点P 在ABC ∆外部,使得45BPC ∠=,若 4.5PAC S =,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠=135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长. 22.如图,△ABC 在平面直角坐标系中,每个小正方形网格的边长都是1个单位长度. (1)画出ABC 关于x 轴的对称图形111A B C △,并写出点1A 的坐标;(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的222A B C △,并写出A 2的坐标. (3)直接写出12B B 的长度.23.某超市销售一种牛奶,进价为每箱36元,规定售价不低于进价.现在的售价为每箱60元,每月可销售100箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x 元(x 为正整数),每月的销量为y 箱.(1)写出y 与x 之间的函数关系式和自变量x 的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?24.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A m B n Cd A B ⨯+⨯+=+.例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题:如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离; (3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.25.已知,关于x 的一元二次方程2210x x m -+-=有两个不相等的实数根.求m 的取值范围.26.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由旋转的性质可得∠BAC=∠CAD'=45°,AD=AD',由等腰三角形的性质可得∠AD'D=67.5°,∠D'AB=90°,即可求∠ABD的度数.【详解】解:∵将△ABD绕点A逆时针旋转45°得到△ACD′,∴∠BAC=∠CAD'=45°,AD=AD',∴∠AD'D=1(180°-45°)=67.5°,∠D'AB=90°,2∴∠ABD=90°-67.5°=22.5°;故选:B.【点睛】本题考查了旋转的性质,等腰三角形的性质,直角三角形两锐角互余等知识;熟练运用旋转的性质和等腰三角形的性质是解题的关键.2.D解析:D【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.【解答】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.C解析:C【分析】证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12×3×4+3×42=6+43,故结论④错误.【详解】解:如图,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AOBO′=S△AOO′+S△OBO′=12323④错误;故选:C.【点睛】本题考查了旋转变换、等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.4.C解析:C【分析】由旋转的性质可得出AP AP '=,B C AP AP '∠∠=,由90BAC ∠=︒可得90PAP '∠=︒,所以APP '是等腰直角三角形,由AP 的长度结合勾股定理计算出'AP 的长度即可.【详解】由旋转的性质可得:AP AP '==2,B C AP AP '∠∠=,∴BAP APC CAP APC '∠+∠=∠+,∴=90BAC PAP '∠=∠︒,∴PP '==.故选:C .【点睛】本题主要考查旋转的性质以及勾股定理,根据旋转的性质得出对应角的度数是解题关键. 5.D解析:D【分析】根据旋转的性质可得BA =BE ,∠ABE =60°,AC =DE ,进而可得△ABE 是等边三角形,然后根据等边三角形的性质和已知条件可得∠EAD =90°,根据勾股定理可求出DE 的长,即为AC 的长【详解】解:∵△EBD 是由△ABC 旋转得到,∴BA =BE ,∠ABE =60°,AC =DE ,∴△ABE 是等边三角形,∴∠EAB =60°,∵∠BAD =30°,∴∠EAD =90°,∵AE =AB =5,AD =4,∴DE,即故选:D .【点睛】本题考查了旋转的性质、等边三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.6.A解析:A【解析】试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称7.B解析:B【分析】先根据二次函数y =ax 2的增减性确定出 a >0,然后判断出二次函数的开口方向,再根据一次函数的性质确定出一次函数图象经过的象限与 y 轴的交点,然后判断即可.【详解】解:∵函数y =ax 2在第一象限内y 随x 的减小而减小,∴a >0,∴y =ax 2的图象经过原点且开口方向向上,y =ax +a 经过第一三象限,且与y 轴的正半轴相交.A . 二次函数开口向上,一次函数与y 轴的负半轴相交,不符合题意B .二次函数开口向上,一次函数与y 轴的正半轴相交,符合题意C .二次函数开口向下,一次函数与y 轴的负半轴相交,不符合题意D .二次函数开口向下,一次函数与y 轴的正半轴相交,不符合题意故选:B .【点睛】本题考查了二次函数的图象,一次函数的图象,是基础题,根据二次函数的增减性确定出 a 是正数是解题的关键.8.C解析:C【分析】根据二次函数图象,知道开口和对称轴,判断a 、b 的符号,再进行判断一次函数的图象.【详解】解:根据二次函数图象知:开口向下,则0a < 故一次函数从左往右是下降趋势.对称轴再y 轴左边,故02b a-< 即得:0b < 故一次函数交y 轴的负半轴. 则一次函数y ax b =+图象便为C 选项故本题选择C .【点睛】本题属于二次函数与一次函数的综合,关键在意找到系数的正负.9.C解析:C【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围. 10.C解析:C【分析】由抛物线解析式可求得开口方向、对称轴、顶点坐标,可求得答案.【详解】解:∵2(2)7y x =---,∵a <0,∴抛物线开口向下,对称轴为x=2,顶点坐标为(2,-7),当2x >时,y 随x 的增大而减小,当2x <时,y 随x 的增大而增大,∴A 、B 、D 都不正确,C 正确,故选:C .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).11.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为722x -±=⨯,符合题意;D 、22730x x -+=的解为x =故选:C .本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 12.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.13.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.14.A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题15.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.16.4【分析】根据函数关系式当h=0时0=20t-5t2解方程即可解答【详解】由题意得:20t-5t2=0解之:t1=0(不符合题意)t2=4∴小球从飞出到落地瞬间所需的时间为4秒故答案为:4【点睛】本解析:4【分析】根据函数关系式,当h=0时,0=20t-5t 2,解方程即可解答.【详解】由题意得:20t-5t 2=0,解之:t 1=0(不符合题意),t 2=4.∴小球从飞出到落地瞬间所需的时间为4秒.故答案为:4.【点睛】本题主要考查了二次函数与一元二次方程的关系,根据题意建立方程是解决问题的关键. 17.【分析】根据二次函数的性质可得出a <0利用二次函数图象上点的坐标特征可得出c=-3取a=-1b=0即可得出结论【详解】解:设二次函数的解析式为y=ax2+bx+c ∵抛物线开口向下∴a <0∵抛物线与y解析:23=--y x【分析】根据二次函数的性质可得出a <0,利用二次函数图象上点的坐标特征可得出c=-3,取a=-1,b=0即可得出结论.【详解】解:设二次函数的解析式为y=ax 2+bx+c .∵抛物线开口向下,∴a <0.∵抛物线与y 轴的交点坐标为(0,-3),∴c=-3.取a=-1,b=0时,二次函数的解析式为y=-x 2-3.故答案为:y=-x 2-3(答案不唯一).【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征,找出a <0,c=-3是解题的关键.18.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 19.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠ 故答案为:13a >-且0a ≠. 【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.20.【分析】由在绿地中开辟三条宽为xm 的道路后剩余绿地的面积为144m2即可得出关于x 的一元二次方程此题得解【详解】解:设道路的宽为xm 根据题意得:(18﹣2x )(15﹣x )=144解得:或(舍去)答:解析:3【分析】由在绿地中开辟三条宽为xm 的道路后,剩余绿地的面积为144m 2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设道路的宽为xm ,根据题意得:(18﹣2x )(15﹣x )=144,解得:13x =或221x =(舍去),答:道路的宽为3m .故答案为:3.【点睛】此题考查一元二次方程的应用,根据题意找出等量关系,正确列方程是解题的关键.三、解答题21.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得 90AMP ∠=和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M连接,AM45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC ∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BM PBC ABM BC BA =⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅= 3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =, //,90AD BC DEC ∠=︒,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =, 又旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AF AEB FEB BE BE =⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.22.(1)图见详解,A 1(-3,-5);(2)图见详解;A 2(5,3);(3)B 1B 22【分析】(1)找到A 、B 、C 关于x 轴的对称点A 1、B 1、C 1连接各点即可得到结果,同时得到点A 1的坐标;(2)找到A 、B 、C 绕着O 点旋转90°后的对应点A 2、B 2、C 2连接各点即可得到结果,同时得到点A 2的坐标;(3)利用勾股定理求出B 1B 2的长.【详解】 解:(1)如图所示,△A 1B 1C 1即为所求,A 1(-3,-5);(2)如图所示,△A 2B 2C 2即为所求,A 2(5,3);(3)B 1B 22233+2.【点睛】本题考查利用轴对称变换和旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(1)10010y x =+,1≤x ≤24,且x 为整数;(2)超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【分析】(1)根据价格每降低1元,平均每月多销售10箱,由每箱降价x 元,多卖10x ,据此可以列出函数关系式;(2)由利润=(售价-成本)×销售量列出函数关系式,求出最大值.【详解】解:(1)根据题意,得:y =100+10x ,由60﹣x ≥36得x ≤24,∴1≤x ≤24,且x 为整数;(2)设所获利润为W ,则W =(60﹣x ﹣36)(10x +100)=﹣10x 2+140x +2400=﹣10(x ﹣7)2+2890,∵此二次函数的二次项系数小于0,∴函数开口向下,有最大值,∴当x =7时,W 取得最大值,最大值为2890,此时售价为60-7=53(元),答:超市定价为53元时,才能使每月销售牛奶的利润最大,最大利润是2890元.【点睛】本题主要考查二次函数应用,由利润=(售价-成本)×销售量列出函数关系式求最值,用二次函数解决实际问题是解题的关键.24.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式d =()3,2M 可得:点M 到直线AB的距离为:3065d ===; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB的距离为:238275a a d -+==,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3, ∴()()3,0,0,4A B --,∴5AB =, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭,∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.25.m<2.【分析】根据方程有两个不相等的实数根列得4-4(m-1)>0,求解即可.【详解】∵方程有两个不相等的实数根,∴4-4(m-1)>0,解得m<2.【点睛】此题考查一元二次方程根的判别式:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程没有实数根,熟记根的判别式是解题的关键.26.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+ 416x <<,当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.。
【鲁教版】九年级数学上期中试卷(附答案)
一、选择题1.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 2.如图,在Rt ABC 中,90ACB ∠=︒,60B ∠=︒,1BC =,A B C ''由ABC 绕点C 顺时针旋转得到,其中点A '与点A 、点B '与点B 是对应点,连接AB ',且点A 、B '、A '在同一条直线上,则AA '的长为( )A .3B .23C .4D .45 3.如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0) 4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种5.如图所示的图形中,是中心对称图形的是( )A .B .C .D .6.如图,将Rt △ABC 绕点A 按顺时针方向旋转一定角度得到Rt △ADE ,点B 的对应点D 恰好落在BC 边上,若DE =12,∠B =60°,则点E 与点C 之间的距离为( )A .12B .6C .62D .637.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D . 8.如图所示的抛物线形构件为某工业园区的新厂房骨架,为了牢固起见,构件需要每隔0.4m 加设一根不锈钢的支柱,构件的最高点距底部0.5m ,则该抛物线形构件所需不锈钢支柱的总长度为( )A .0.8mB .1.6mC .2mD .2.2m9.如图,以直线1x =为对称轴的二次函数2y ax bx c =++的图象与x 轴负半轴交于A 点,则一元二次方程20ax bx c ++=的正数解的范围是( ).A .23x <<B .34x <<C .45x <<D .56x <<10.若关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解,则函数21(3)4y x x a =--+-图象与x 轴的交点个数为( )A .0个B .1个C .2个D .1或2个 11.某小区2018年屋顶绿化面积为22000m ,计划2020年屋顶绿化面积要达到22880m .设该小区2018年至2020年屋顶绿化面积的年平均增长率为x ,则可列方程为( )A .2000(12)2880x +=B .2000(1)2880x ⨯+=C .220002000(1)2000(1)2880x x ++++=D .22000(1)2880x +=12.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根13.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x 14.已知x 1、x 2是一元二次方程x 2﹣4x ﹣1=0的两个根,则x 1•x 2等于( )A .4B .1C .﹣1D .﹣4 二、填空题15.已知抛物线2y x bx c =++的部分图象如图所示,当0y <时,x 的取值范围是______.16.已知函数223y x x =--,当函数值y 随x 的增大而减小时,x 的取值范围是______.17.若关于x 的一元二次方程240x x k ++=有两个相等的实数根,则k =______. 18.一元二次方程-+=(5)(2)0x x 的解是______________.19.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.20.定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:()3,0B 、()1,3C -都是“整点”.抛物线()2220y ax ax a a =++->与x 轴交于点M ,N 两点,若该抛物线在M 、N 之间的部分与线段MN 所围的区域(包括边界)恰有5个整点,则a 的取值范围是_______.三、解答题21.如图,在等腰直角三角形MNC 中,90CNM ∠=︒且CN MN =,将MNC 绕点C 顺时针旋转60︒,得到ABC ,连接AM .(1)判断CAM 的形状并证明;(2)若32AB =,求AM 的长.22.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.23.阅读下列材料:我们知道,一次函数y kx b =+的图象是一条直线,而y kx b =+经过恒等变形可化为直线的另一种表达形式0Ax By C ++=(A 、B 、C 是常数,且A 、B 不同时为0).如图1,点()P m n ,到直线l :0Ax By C ++=的距离(d )计算公式是:22A m B n Cd A B ⨯+⨯+=+例:求点()1,2P 到直线51126y x =-的距离d 时,先将51126y x =-化为51220x y --=,再由上述距离公式求得()()()225112222113512d ⨯+-⨯+-==+-. 解答下列问题:如图2,已知直线443y x =--与x 轴交于点A ,与y 轴交于点B ,抛物线245y x x =-+上的一点()3,2M .(1)请将直线443y x =--化为“0Ax By C ++=”的形式; (2)求点M 到直线AB 的距离; (3)抛物线上是否存在点P ,使得PAB △的面积最小?若存在,求出点P 的坐标及PAB △面积的最小值;若不存在,请说明理由.24.如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0,1),B (2,0),O (0,0),将此三角板绕原点O 逆时针旋转90°,得到△A 'B 'O .一抛物线经过点A '、B '、B .(1)求该抛物线的解析式;(2)设点P 是在第一象限内抛物线上的一动点,是否存在点P ,使四边形PB 'A 'B 的面积是△A 'B 'O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由.25.如图,有一道长为10m 的墙,计划用总长为54m 的篱笆,靠墙围成由六个小长方形组成的矩形花圃ABCD .若花圃ABCD 面积为272m ,求AB 的长.26.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设A 的坐标为(,)m n ,根据旋转的性质得到C 是A 和A '的中点,利用中点公式可以求出点A '的坐标.【详解】解:设A 的坐标为(,)m n ,∵A 和A '关于点(0,1)C 对称, ∴02m a +=,12n b +=,解得m a =-,2n b =-+, ∴点A '的坐标2(),a b --+. 故选:B .【点睛】本题考查图形的旋转,解题的关键是利用中点公式求出旋转后的点坐标.2.A解析:A【分析】先利用互余计算出∠BAC=30°,再根据含30度的直角三角形三边的关系得到AB=2BC=2,接着根据旋转的性质得A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B' C=∠B=60°,于是可判断CA A'为等腰三角形,所以∠CA A'=∠A'=30°,再利用三角形外角性质计算出∠B'CA=30°,可得B'A=B'C=1,然后利用A A'=A B'+A'B'进行计算.【详解】解:∵∠ACB=90°,∠B=60°,∴∠BAC=30°,∴AB=2BC=2×1=2,∵ABC绕点C顺时针旋转得到A'B'C,∴A'B'=AB=2,B'C=BC=1,A'C=AC,∠A'=∠BAC=30°,∠A'B'C=∠B=60°,∴CA A'为等腰三角形,∴∠CA A'=∠A'=30°,∵A、B'、A'在同一条直线上,∴∠A'B'C=∠B'AC+∠B'CA,∴∠B'CA=60°﹣30°=30°,∴B'A=B'C=1,∴A A'=A B'+A'B'=2+1=3.故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30度的直角三角形三边的关系.3.A解析:A【分析】BC=,再利用旋转的性质得到如图,利用含30度的直角三角形三边的关系得到1'∠︒,然后利用第四象限点的坐====∠''''==1,90OC OC B C BC B C O BCO标特征写出点B′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒, 3331BC OC ∴==⨯=, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 4.B解析:B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B .5.D解析:D【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,不符合题意;B 、不是中心对称图形,不符合题意;C 、不是中心对称图形,不符合题意;D 、是中心对称图形,符合题意.故选D .【点睛】本题考查中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.D解析:D【分析】由旋转的性质可得DE =BC =12,AD =AB ,AC =AE ,∠DAB =∠EAC ,由直角三角形的性质可得AB =12BC =6,AC =3,AB =63,通过证明△ACE 是等边三角形,可得AC =AE =EC =63.【详解】解:如图,连接EC ,∵将Rt △ABC 绕点A 按顺时针方向旋转一定角度得到Rt △ADE ,∴DE =BC =12,AD =AB ,AC =AE ,∠DAB =∠EAC ,∵∠B =60°,∴∠ACB =30°,∴AB =12BC =6,AC 3AB =3 ∵AD =AB ,∠B =60°,∴△ABD 是等边三角形,∴∠DAB =60°=∠EAC ,∴△ACE 是等边三角形,∴AC =AE =EC =3故选:D .【点睛】本题考查了旋转的性质,直角三角形的性质,等边三角形的判定和性质,求出AC 的长是本题的关键.7.D解析:D【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.8.B解析:B【分析】根据题意建立平面直角坐标系,得出B 、C 的坐标,然后根据待定系数法求出抛物线解析式,然后求出当当0.2x =和0.6x =时y 的值,然后即可求解.【详解】如图,由题意得()0,0.5B ,()1,0C .设抛物线的解析式为2y ax c =+, 代入得12a =-,12c =, ∴抛物线的解析式为21122y x =-+. 当0.2x =时,0.48y =,当0.6x =时,0.32y =.∴()1122334420.480.32 1.6BC B C B C B C m +++=⨯+=,故选B .【点睛】本题考查了二次函数的拱桥问题,关键是要根据题意作出平面直角坐标系,并根据所建立的平面直角坐标系求出函数解析式.9.C解析:C【分析】先根据图象得出对称轴左侧图象与x 轴交点横坐标的取值范围,再利用对称轴1x =,可以算出右侧交点横坐标的取值范围.【详解】∵二次函数2y ax bx c =++的对称轴为1x =,而对称轴左侧图象与x 轴交点横坐标的取值范围是32x -<<-,∴右侧交点横坐标的取值范围是45x <<.故选:C .【点睛】本题主要考查了图象法求一元二次方程的近似根,解答本题首先需要观察得出对称轴左侧图象与x 轴交点横坐标的取值范围,再根据对称性算出右侧交点横坐标的取值范围. 10.C解析:C【分析】根据解不等式组的一般步骤得到a 的取值范围,然后求出函数21(3)4y x x a =--+-的判别式,根据根的判别式的正负即可得到图象与x 轴的交点个数.【详解】 解:∵关于x 的不等式组232x a x a ≥+⎧⎨<-⎩有解, ∴3a-2>a+2,即a >2,令y=0,21(3)4x x a --+-=0, △=(-1)2-4×(a-3)×(-14)=a-2, ∵a >2,∴a-2>0,∴函数图象与x 轴的交点个数为2.故选:C .【点睛】解答此题要熟知以下概念:(1)解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.(2)一元二次方程ax 2+bx+c=0(a≠0)的解与二次函数y=ax 2+bx+c 的关系.11.D解析:D【分析】一般用增长后的量=增长前的量×(1+增长率),如果设绿化面积的年平均增长率为x ,根据题意即可列出方程.【详解】解:设平均增长率为x ,根据题意可列出方程为:2000(1+x )2=2880.故选:D .【点睛】此题考查了由实际问题抽象出一元二次方程,即一元二次方程解答有关平均增长率问题.对于平均增长率问题,在理解的基础上,可归结为a (1+x )2=b (a <b );平均降低率问题,在理解的基础上,可归结为a (1-x )2=b (a >b ).12.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.13.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.14.C解析:C【分析】据一元二次方程的根与系数的关系得到两根之和即可.【详解】解:∵方程x 2-4x-1=0的两个根是x 1,x 2,∴x 1∙x 2=-1.故选:C .【点睛】本题考查了一元二次方程ax 2+bx+c=0的根与系数关系,两根之和是-b a ,两根之积是c a. 二、填空题15.【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标再根据图象法即可得【详解】由图象可知抛物线的对称轴为与x 轴的一个交点坐标为则其与x 轴的另一个交点坐标为结合图象得:当时故答案为:【点睛】本题 解析:13x【分析】先根据二次函数的对称性求出其与x 轴的另一个交点坐标,再根据图象法即可得.【详解】由图象可知,抛物线的对称轴为1x =,与x 轴的一个交点坐标为(1,0)-,则其与x 轴的另一个交点坐标为(3,0),结合图象得:当0y <时,13x, 故答案为:13x.【点睛】本题考查了二次函数的对称性、二次函数与不等式,熟练掌握二次函数的对称性是解题关键. 16.【分析】先求出函数图像的对称轴然后根据二次函数的增减性即可解答【详解】解:∵函数图像的对称轴为x=1∴当数值随的增大而减小故答案为【点睛】本题考查了二次函数的增减性确定二次函数的对称轴是解答本题的关键解析:1x <【分析】先求出函数图像的对称轴,然后根据二次函数的增减性即可解答.【详解】解:∵函数223y x x =--图像的对称轴为x=1∴当1x <,数值y 随x 的增大而减小.故答案为1x <.【点睛】本题考查了二次函数的增减性,确定二次函数的对称轴是解答本题的关键.17.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为:4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解 解析:4【分析】根据一元二次方程根的判别式可直接进行求解.【详解】解:∵关于x 的一元二次方程240x x k ++=有两个相等的实数根,∴224440b ac k ∆=-=-=,解得:4k =;故答案为:4.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.18.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 19.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x﹣5)(x﹣7)=0,则x﹣5=0或x﹣7=0,解得x1=5,x2=7,故答案为:x1=5,x2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.20.1<a≤2【分析】画出图象找到该抛物线在MN之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界利用与y交点位置可得a的取值范围【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点解析:1<a≤2【分析】画出图象,找到该抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点的边界,利用与y交点位置可得a的取值范围.【详解】解:抛物线y=ax2+2ax+a−2(a>0)化为顶点式为y=a(x+1)2−2,∴函数的对称轴:x=−1,顶点坐标为(−1,−2),∴M和N两点关于x=−1对称,根据题意,抛物线在M、N之间的部分与线段MN所围的区域(包括边界)恰有5个整点,这些整点是(0,0),(−1,0),(−1,−1),(−1,−2),(−2,0),如图所示:∵当x=0时,y=a−2,∴−1<a−2≤0,当x=1时,y=4a−2>0,即:120 420aa--≤-⎧⎨⎩<>,解得1<a≤2,故答案为:1<a≤2.【点睛】本题考查抛物线与x轴的交点、配方法确定顶点坐标、待定系数法等知识,利用函数图象确定与y轴交点位置是本题的关键.三、解答题21.(1)CAM 为等边三角形;见解析;(2)AM 6=.【分析】(1)根据有一个角为60︒的等腰三角形为等边三角形进行证明即可;(2)根据勾股定理即可求解.【详解】(1)CAM 为等边三角形.证明:∵MNC 绕点C 顺时针旋转60︒,得到ABC ,∴CA CM =,ACM 60∠=︒∴CAM 为等边三角形;(2)∵NC M 是等腰直角三角形∴ABC 是等腰直角三角形 ∵B A =∴AC 6=== ∵CAM 为等边三角形∴AM 6=【点睛】此题主要考查等边三角形的判定、勾股定理,熟练掌握等边三角形的判定定理是解题关键.22.(1)证明见解析;(2)成立,证明见解析.【分析】(1)将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,利用旋转的性质和等腰三角形的性质证明'NBM ∆为直角三角形,可证明'MN M N =,利用全等三角形的判定(SSS )可证明()'CMN CM N SSS ∆≅∆,即可证得1'452MCN MCM ︒∠=∠=; (1)仿照(1)中方法将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,证明DBN ∆为直角三角形,再证DN=MN ,进而证明()CMN CDN SSS ∆≅∆即可得出结论.【详解】()1如图1,,90AC BC ACB ︒=∠=,将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,则'ACM NCM ∆≅∆,',','ACM BCM CM CM AM BM ∴∠=∠==,连接'M N ,'CAM CNM ∠=∠=45°,''90M BN CBM CBA ︒∴∠=∠+∠=,'NBM ∴∆为直角三角形,22222''NM BN BM BN AM ∴=+=+,又222MN AM BN =+,'MN M N ∴=, 在CMN ∆和'CM N ∆中''CM CM MC M N CN CN =⎧⎪=⎨⎪=⎩,()'CMN CM N SSS ∴∆≅∆,'MCN M CN ∴∠=∠,1'452MCN MCM ︒∴∠=∠=, 即45MCN ︒∠=;()2如图2,,90AC BC ACB ︒=∠=,将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,CMA CDB ∴∆≅∆,,,135CM CD AM BD CAM CBD ︒∴==∠=∠=,90DBN CBD CBA ︒∴∠=∠-∠=,DBN ∴∆为直角三角形,22222DN BD BN AM BN ∴=+=+,又222MN AM BN =+,DN MN ∴=, 在CMN ∆和CDN ∆中CM CD CN CN MN DN =⎧⎪=⎨⎪=⎩,()CMN CDN SSS ∴∆≅∆,1452MCN DCN MCD ︒∴∠=∠=∠=, 45MCN ︒∴∠=.【点睛】本题考查了等腰三角形的性质、旋转的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质,利用旋转性质旋转△ACM 构造直角三角形是解答的关键.23.(1)43120x y ++=;(2)点M 到直线AB 的距离为6;(3)存在,413,39P ⎛⎫ ⎪⎝⎭,△PAB 面积最小值为656. 【分析】(1)根据题意可直接进行化简;(2)根据题中所给公式可直接进行代值求解;(3)设点()2,45P a a a -+,根据题意可得点P 到直线AB 的距离,然后根据三角形面积计算公式可得2327422PAB Sa a =-+,最后根据二次函数的性质可进行求解. 【详解】 解:(1)由443y x =--可得:43120x y ++=; (2)由公式d =()3,2M 可得:点M 到直线AB的距离为:3065d ===; (3)存在点P ,使△PAB 的面积最小,理由如下:设点()2,45P a a a -+,则有:点P 到直线AB的距离为:238275a a d -+==,由图像可得当y>0时,x 的值为全体实数,∴238270a a -+>,∵直线443y x =--与x 轴交于点A ,与y 轴交于点B , ∴当x=0时,y=-4,当y=0时,x=-3, ∴()()3,0,0,4A B --,∴5AB =, ∴22132734654222236PAB S AB d a a a ⎛⎫=⋅=-+=-+ ⎪⎝⎭, ∴当43a =时,△PAB 的面积最小,即为656PAB S =, ∴此时点P 的坐标为413,39⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查二次函数的图像与性质及点到直线的距离公式,关键是根据题中所给点到直线的距离公式进行分析和求解问题即可.24.(1)22y x x =-++;(2)存在,P (1,2).【分析】(1)利用旋转的性质得出A′(−1,0),B′(0,2),再利用待定系数法求二次函数解析式即可;(2)利用S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB ,再假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,得出一元二次方程,得出P 点坐标即可.【详解】解:(1)△A′B′O 是由△ABO 绕原点O 逆时针旋转90°得到的,又A (0,1),B (2,0),O (0,0),∴A′(−1,0),B′(0,2),∵A′(−1,0),B′(0,2),B (2,0),设抛物线的解析式为:y =a (x +1)(x−2)将B′(0,2)代入得出:2=a (0+1)(0−2),解得:a =−1,故抛物线的解析式为y =−(x +1)(x−2)=−x 2+x +2;(2)∵P 为第一象限内抛物线上的一动点,设P (x ,y ),则x >0,y >0,P 点坐标满足y =−x 2+x +2.连接PB ,PO ,PB′,∴S 四边形PB′A′B =S △B′OA′+S △PB′O +S △POB , =12×1×2+12×2×x +12×2×y , =x +(−x 2+x +2)+1,=−x 2+2x +3,∵A′O =1,B′O =2,∴△A′B′O 面积为:12×1×2=1, 假设四边形PB′A′B 的面积是△A′B′O 面积的4倍,则4=−x 2+2x +3,即x 2−2x +1=0,解得:x 1=x 2=1,此时y =−12+1+2=2,即P (1,2).∴存在点P (1,2),使四边形PB′A′B 的面积是△A′B′O 面积的4倍.【点睛】此题主要考查了待定系数法求二次函数的解析式,二次函数的性质,坐标和图形的变换−旋转,利用四边形PB′A′B 的面积是△A′B′O 面积的4倍得出等式方程求出x 是解题关键. 25.AB 的长是12m【分析】设AB 的长是x m ,则BC 的长是(18-x )m ,根据题意得方程,解方程即可得到结论.【详解】解:设AB 的长是x m ,则BC 的长是()18x -m .根据题意,得()1872-=x x .解这个方程,得16x =,212x =.当6x =时,181210-=>x (不合题意,舍去).当12x =时,186-=x 符合题意.答:AB 的长是12m .【点睛】本题考查了一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.26.(1)54k >; (2)54k <.【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.。
【鲁教版】九年级数学上期中试题附答案
一、选择题1.如图,在ABC 中,15B ∠=︒,将ABC 绕点A 逆时针旋转得到ADE ,当点B ,C ,D 恰好在同一直线上时,50CAD ∠=︒,则E ∠的度数为( )A .50°B .75°C .65°D .60°2.如图,已知平行四边形ABCD 中,AE BC ⊥于点,E 以点B 为中心,取旋转角等于,ABC ∠把BAE △顺时针旋转,得到BA E '',连接DA '.若60,50ADC ADA '∠=︒∠=︒,则DA E ''∠的大小为( )A .130︒B .150︒C .160︒D .170︒3.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .304.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°5.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种6.如果齿轮A 以逆时针方向旋转,齿轮E 旋转的方向( )A .顺时针B .逆时针C .顺时针或逆时针D .不能确定7.若飞机着陆后滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,则函数图象大致为( )A .B .C .D .8.已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如表:x ﹣1 0 2 3 4 y5﹣4﹣3A .抛物线的开口向下B .抛物线的对称轴为直线x =2C .当0≤x ≤4时,y ≥0D .若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 29.若()14,A y -,()21,B y -,()30,C y 为二次函数2(2)3y x =-++的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .123y y y <=B .312y y y =<C .312 y y y <<D .123y y y =<10.据省统计局公布的数据,安徽省2019年第二季度GDP 总值约为7.9千亿元人民币,若我省第四季度GDP 总 值为y 千亿元人民币,平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是( )A .7.9(12)y x =+B .27.9(1)y x =-C .27.9(1)y x =+D .27.97.9(1)7.9(1)y x x =++++11.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1C .17-D .1712.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-313.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( ) A .15% B .40% C .25% D .20% 14.一元二次方程x 2﹣4x ﹣1=0配方后正确的是( )A .(x ﹣2)2=1B .(x ﹣2)2=5C .(x ﹣4)2=1D .(x ﹣4)2=5二、填空题15.已知点P (m ,n )在抛物线2y ax x a =--上,当1m 时,总有1n ≥-成立,则实数a 的取值范围是_______.16.已知二次函数()210y ax bx a =++≠的图象与x 轴只有一个交点.请写出 一组满足条件的,a b 的值:a =__________,b =_________________17.已知自变量为x 的二次函数4()()y ax b x b=++经过(,4),(2,4)m m +两点,若方程4()()0ax b x b++=的一个根为3x =,则其另一个根为__________.18.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________. 19.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.三、解答题21.如图,已知,点E在正方形ABCD的BC边上(不与点B,C重合),AC是对角线,过点E作AC的垂线,垂足为G,连接BG,DG.把线段DG绕着G点顺时针旋转,使D点的对应点F点刚好落在BC延长线上,根据题意补全图形.=;(1)证明:GC GE(2)连接DF,用等式表示线段BG与DF的数量关系,并证明.22.阅读理解并解决问题:一般地,如果把一个图形绕着一个定点旋转一定角度α(α小于360°)后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个定点叫做旋转对称中心,α叫做这个旋转对称图形的一个旋转角.请依据上述定义解答下列问题:(1)请写出一个旋转对称图形,这个图形有一个旋转角是90°,这个图形可以是______;(2)为了美化环境,某中学需要在一块正六边形空地上分别种植六种不同的花草,现将这块空地按下列要求分成六块:①分割后的整个图形必须既是轴对称图形又是旋转对称图形;②六块图形的面积相同;请你按上述两个要求,分别在图中的两个正六边形中画出两种不同的分割方法(只要求画图正确,不写作法).23.某商店销售一种商品,经市场调研发现,当该商品每件的售价为60元时,每天可销售200件;如果调整价格,每件的售价每增加1元,每天的销售数量将减少10件.已知该商品的进价为每件50元.(1)当每件商品的售价为64元时,求该商品每天的销售数量;(2)当每件商品的售价为多少时,销售该商品每天获得的利润最大?并求出最大利润.24.已知关于x的方程(k-1)x2+(2k-1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=(k-1)x2+(2k-1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围.(3)已知抛物线y=(k-1)x2+(2k-1)x+2恒过定点,求出定点坐标x--=;25.(1)()2120(2)21212t t += (3)()22x x x -=- (4)23520.x x --=26.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由旋转的性质得出AD=AB ,∠E=∠ACB ,由点B ,C ,D 恰好在同一直线上,则△BAD 是底角为15°的等腰三角形,求出∠BAD=150°,可得100BAC ∠=︒,由三角形内角和定理即可得出结果. 【详解】解:∵将ABC 绕点A 逆时针旋转得到ADE , ∴AD=AB ,∠E=∠ACB ,∵点B ,C ,D 恰好在同一直线上, ∴△BAD 是底角为15°的等腰三角形, ∴∠BDA=15B ∠=︒, ∴∠BAD=150°, ∵50CAD ∠=︒, ∴100BAC ∠=︒∴1801001565BCA -∠=︒-=, ∴65E ∠=. 故选:C 【点睛】此题主要考查了旋转的性质、等腰三角形的判定和性质、三角形的内角和定理等知识;判断出三角形ABD 是等腰三角形是解本题的关键.2.C解析:C【分析】先根据平行四边形的性质可得60,//AD BC ABC ∠=︒,再根据平行线的性质可得130DA B '∠=︒,然后根据直角三角形的性质、旋转的性质可得30BA E BAE ''∠=∠=︒,最后根据角的和差即可得. 【详解】四边形ABCD 是平行四边形,60ADC ∠=︒,60,//AD BC ABC ∴∠=︒,50ADA '∠=︒,180130DA B ADA ''∴∠=︒-∠=︒, AE BC ⊥,9030BAE ABC ∴∠=︒-∠=︒,由旋转的性质得:30BA E BAE ''∠=∠=︒,13030160DA E DA B BA E '''''∴∠=∠+∠=︒+︒=︒, 故选:C . 【点睛】本题考查了平行四边形的性质、旋转的性质、平行线的性质等知识点,熟练掌握平行四边形与旋转的性质是解题关键.3.A解析:A 【分析】根据旋转的性质找到对应点、对应角、对应线段作答. 【详解】解:∵3120B A ∠=∠=︒ ∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC , ∴∠D=∠A=40°,∠DEC=∠B=120°, ∴∠DCE=180°-40°-120°=20°, ∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°. 故选:A . 【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.4.C解析:C 【分析】直接根据四边形AEHB 的四个内角和为360°即可求解. 【详解】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG , ∴∠BAE =35°,∠E =90°,∠ABD =45°, ∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°. 故选C . 【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.B解析:B 【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案: 得到的不同图案有:共5个.故选B .6.B解析:B 【分析】根据图示进行分析解答即可. 【详解】齿轮A 以逆时针方向旋转,齿轮B 以顺时针方向旋转,齿轮C 以逆时针方向旋转,齿轮D 以顺时针方向旋转,齿轮E 以逆时针方向旋转, 故选B . 【点睛】此题考查旋转问题,关键是根据图示进行解答.7.C解析:C 【分析】根据关系式可得图象的开口方向,可求出函数的顶点坐标,根据s 从0开始到最大值时停止,可得t 的取值范围,即可得答案. 【详解】∵滑行的距离()s m 与滑行的时间()t s 之间的关系式为s=60t-1.5t 2,-1.5<0, ∴图象的开口向下,∵s=60t-1.5t 2=-1.5(t-20)2+600, ∴顶点坐标为(20,600), ∵s 从0开始到最大值时停止,∴0≤t≤20, ∴C 选项符合题意, 故选:C . 【点睛】本题考查二次函数的应用,熟练掌握二次函数的图象与性质是解题关键.8.B解析:B 【分析】根据表格中的数据和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:由表格可得,该抛物线的对称轴为直线x =042=2,故选项B 正确; 当x <2 时,y 随x 的增大而减小,当x >2时,y 随x 的增大而增大,所以该抛物线的开口向上,故选项A 错误;当0≤x ≤4时,y ≤0,故选项C 错误;由二次函数图象具有对称性可知,若A (x 1,2),B (x 2,3)是抛物线上两点,则x 1<x 2或x 2<x 1,故选项D 错误; 故选:B . 【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.9.B解析:B 【分析】根据二次函数的解析式可得图象开口向下,对称轴为2x =-,故点()14,A y -与点()30,C y 关于对称轴对称,即13y y =,再根据点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小即可得出结论. 【详解】解:二次函数2(2)3y x =-++的图象开口向下,对称轴为2x =-, ∴点()14,A y -与点()30,C y 关于对称轴对称, ∴13y y =,∵点()21,B y -与点()30,C y 在对称轴右侧,y 随x 增大而减小, ∴23y y >, ∴312y y y =<, 故选:B . 【点睛】本题考查二次函数的性质,根据二次函数解析式得到对称轴是解题的关键.10.C解析:C 【分析】根据平均每个季度GDP 增长的百分率为x ,第三季度季度GDP 总值约为7.9(1+x )元,第四季度GDP 总值为7.9(1+x )2元,则函数解析式即可求得. 【详解】解:设平均每个季度GDP 增长的百分率为x ,则y 关于x 的函数表达式是:y=7.9(1+x )2.故选:C . 【点睛】此题主要考查了根据实际问题列二次函数关系式,正确理解增长率问题是解题关键.11.B解析:B 【分析】根据一元二次方程的根的定义、根与系数的关系即可得. 【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++,()()24m m m n =-++,34=-+, 1=, 故选:B . 【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.12.D解析:D 【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可. 【详解】依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3. 故选:D 【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.13.D解析:D【分析】设平均每次降价的百分率为x,根据该商品的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x,依题意,得:100(1-x)2=64,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).故选:D.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.B解析:B【分析】根据一元二次方程的配方法即可求出答案.【详解】解:x2﹣4x﹣1=0x2-4x=1x2-4x+4=1+4(x-2)2=5,故选:B.【点睛】本题考查了解一元二次方程-配方法,解题的关键是会用配方法解答方程.二、填空题15.0<a≤【分析】依照题意画出图形分0<<1及≥1两种情况考虑结合函数图形以及已知条件可得出关于a的一元一次不等式组(或一元一次不等式)解之即可得出a的取值范围综上即可得出结论【详解】当≥1时有解得:解析:0<a≤1 2【分析】依照题意画出图形,分0<12a<1及12a≥1两种情况考虑,结合函数图形以及已知条件可得出关于a的一元一次不等式组(或一元一次不等式),解之即可得出a的取值范围,综上即可得出结论.【详解】当12a≥1时,有11aa a⎧⎨--≥-⎩>,解得:a>0,∴0<a≤12;当0<12a<1时,有()224114aa--≥--,解得:a=12∴0<a≤12.综上所述:0<a≤12.故答案为:0<a≤12.【点睛】本题考查了二次函数的性质以及二次函数图象上点的坐标特征,分0<12a<1及12a≥1两种情况找出关于a的一元一次不等式(一元一次不等式组)是解题的关键.16.【分析】根据判别式的意义得到△=b2-4a=0然后a取一个不为0的实数再确定对应的b的值【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x轴只有一个交点∴△=b2-4a=0若a=1则b可解析:12【分析】根据判别式的意义得到△=b2-4a=0,然后a取一个不为0的实数,再确定对应的b的值.【详解】解:∵二次函数y=ax2+bx+1(a≠0)的图象与x轴只有一个交点,∴△=b2-4a=0,若a=1,则b可取2.故答案为1,2(答案不唯一).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x 轴的交点坐标问题转化为解关于x的一元二次方程.17.x=﹣1或﹣5【分析】根据题意该函数一定过点(04)可得两点的坐标进而求得对称轴根据解析式与方程的关系即可求得方程另一个根【详解】解:∵当x=0时=4∴m=0或m=﹣2∴二次函数经过或∴对称轴为直线解析:x=﹣1或﹣5【分析】根据题意该函数一定过点(0,4),可得(,4),(2,4)m m +两点的坐标,进而求得对称轴,根据解析式与方程的关系即可求得方程另一个根.【详解】解:∵当x=0时,4()()y ax b x b =++=4,∴m=0或m=﹣2,∴二次函数4()()y ax b x b =++经过(0,4),(2,4)或(2,4),(0,4)-,∴对称轴为直线x=1或x=﹣1,∵方程4()()0ax b x b++=的一个根为3x =,∴方程的另一个根为x=﹣1或﹣5,故答案为:x=﹣1或﹣5.【点睛】本题考查二次函数图象上的点的坐标特征、二次函数与一元二次方程的关系,熟练掌握二次函数的图象与性质,根据二次函数的对称性求解是解答的关键. 18.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法 解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解. 19.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019. 【点睛】 本题考查根与系数关系.熟记根与系数关系的公式是解题关键.20.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.补图见解析;(1)见解析;(2)DF =,理由见解析【分析】(1)证明△EGC 是等腰直角三角形即可得出结论;(2)连接DG 、FG ,由“SAS”可证△BEG ≌△FCG ,得出BG=GF ,得出EF=BC=DC ,由“SAS”可证△GEF ≌△GCD ,得出∠EGC=∠DGF=90°,FG=GD ,则△DGF 是等腰直角三角形,从而得出BG .【详解】解:补全图形如图所示,(1)∵四边形 ABCD 是正方形,AC 是对角线,∴∠ACB =45°,∵EG ⊥AC ,∴∠EGC=90 °∴∠ GEC= ∠ ACB=45 °∴GC =GE ;(2)2DF BG =.理由如下:证明:∵△EGC 是等腰直角三角形,∴EG =GC ,∠GEC =∠ACB =45°,∴∠BEG =∠GCF =135°,由旋转得:DG =GF ,正方形 ABCD 中,AB=AD ,∠BCA=∠DCA=45°,CG=CG∴△CBG ≌△CDG (SAS ),∴∠CGB=∠CGD , BG =DG ,∴BG=GF ∴∠GBC=∠GFB又∠BEG =∠GCF∴△BEG ≌△FCG (AAS ),∴∠BGE =∠CGF ,∴∠CGB ﹣∠BGE =∠CGD ﹣∠CGF ,即∠EGC =∠DGF =90°,∴△DGF 是等腰直角三角形,2222222DF DG GF BG BG BGBG∴=+=+== 即2DF BG =.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,灵活运用这些性质解决问题是本题的关键.22.(1)正方形(答案不唯一,例如正八边形、圆等);(2)见解析【分析】(1)根据旋转对称图形的定义解答即可;(2)先作出正六边形的旋转中心,再根据图形既是轴对称图形又是旋转对称图形进行作图即可.【详解】解:(1) 正方形(答案不唯一,例如正八边形、圆等);故答案为:正方形(答案不唯一,例如正八边形、圆等);(2)如图所示:【点睛】本题考查了轴对称图形和旋转对称图形的定义及作图,正确理解题意、熟练掌握基本知识是解题的关键.23.(1)当每件商品的售价为64元时,该商品每天的销售数量为160件;(2)当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答; (2)根据等量关系“利润=(售价-进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【详解】解:()1当每件商品的售价为64元时,该商品每天的销售数量为()200106460160-⨯-=(件).()2设每件商品的售价为x 元,销售该商品每天获得的利润为W ,则()()502001060W x x ⎡⎤=---⎣⎦221013004000010(65)2250x x x =-+-=--+,∵100-<,∴当65x =时,W 取得最大值,最大值为2250.答:当每件商品的售价为65元时,销售该商品每天获得的利润最大,最大利润为2250元.【点睛】本题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.24.(1)证明见解析;(2)a >1或a <﹣4;(3)(0,2)、(﹣2,0).【分析】(1)分类讨论:该方程是一元一次方程和一元二次方程两种情况.当该方程为一元二次方程时,根的判别式△≥0,方程总有实数根;(2)通过解(k-1)x 2+(2k-1)x+2=0得到k =2,由此得到该抛物线解析式为y =x 2+3x+2,结合图象回答问题.(3)根据题意得到(k-1)x 2+(2k-1)x+2﹣y =0恒成立,由此列出关于x 、y 的方程组,通过解方程组求得该定点坐标.【详解】(1)证明:①当k =1时,方程为x+2=0,所以x =﹣2,方程有实数根,②当k≠1时,∵△=(2k-1)2﹣4x(k-1)×2=4k 2-12k+9=(2k-3)2≥0,即△≥0,∴无论k 取任何实数时,方程总有实数根(2)解:令y =0,则(k-1)x 2+(2k-1)x+2=0,(x-2)[(k-1)x+1]=0解关于x 的一元二次方程,得x 1=﹣2,x 2=11-k, ∵二次函数的图象与x 轴两个交点的横坐标均为整数,且k 为正整数,∴1-k =-1,k=2.∴该抛物线解析式为y =x 2+3x+2,由图象得到:当y 1>y 2时,a >1或a <﹣4.(3)依题意得(k-1)x 2+(2k-1)x+2﹣y =0恒成立,即k (x 2+2x )-x 2-x ﹣y+2=0恒成立,得:x 2+2x=0;x 1=0,y 1=2;x 2=-2,y 2=0所以该抛物线恒过定点(0,2)、(﹣2,0).【点睛】本题考查了抛物线与x 轴的交点与判别式的关系及二次函数图象上点的坐标特征,解答(1)题时要注意分类讨论.25.(1)121212,==x x 2)122626t t =-=-,3)1221x x ==,(4)12123x x ==-,.【分析】(1)利用直接开平方法求解即可;(2)利用配方法求解即可;(3)方程整理后,利用因式分解法求出解即可;(4)利用因式分解法解方程.【详解】解:(1)()212x -=,x-1=,11x x -=-=,1211x x ∴==(2)242t t +=,()226t ∴+=2t ∴+=1222t t ∴=-=-(3)()2(2)0x x x ---=,() 1)20(x x ∴--=122,1x x ∴==(4)23520.x x --=()2310()x x -+=1212,3x x ∴==-. 【点睛】本题考查了解一元二次方程-因式分解法,配方法,以及直接开平方法,熟练掌握各种解法是解题的关键.26.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1, 12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.。
鲁教版九年级数学上册期中测试卷
鲁教版九年级数学上册期中达标检测卷一、选择题(本大题共12题,每题3分,共36分)1.在△ABC 中,若cos A =12,tan B =33,则这个三角形一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 2.若反比例函数y =kx (k ≠0)的图象经过点(-3,2),则这个函数的图象一定经过点( )A .(2,-4)B .(-2,-3) C.⎝ ⎛⎭⎪⎫-12,12 D.⎝ ⎛⎭⎪⎫12,123.如图,点A 在反比例函数y 1=18x (x >0)的图象上,过点A 作AB ⊥x 轴,垂足为B ,交反比例函数y 2=6x (x >0)的图象于点C .P 为y 轴上一点,连接P A ,PC ,则△APC 的面积为( )A .5B .6C .11D .124.对于反比例函数y =-3x ,下列说法不正确的是( ) A .图象分布在第二、四象限 B .当x <0时, y 随x 的增大而增大 C .图象经过点(3,-1)D .若点A ()x 1,y 1,B ()x 2,y 2都在图象上,且x 1<x 2,则y 1<y 25.如图,在平面直角坐标系中,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ),则代数式1a -1b 的值为( )A .-12 B.12 C .-14 D.146.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC =( ) A.26 B.2626 C.2613 D.13137.比萨斜塔是意大利的著名建筑,如图所示,设塔顶中心点为点B,塔身中心线AB与垂直中心线AC的夹角为∠A,过点B向垂直中心线AC引垂线,垂足为点D.通过测量可得AB、BD、AD的长度,利用测量所得的数据计算∠A 的三角函数值,进而可求得∠A的大小.下列关系式正确的是()A.sin A=BDAB B.cos A=ABAD C.tan A=ADBD D.sin A=ADAB8.若点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y19.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A,B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx ()x>0的图象上,若AB=2,则k的值为()A.2 B.2 2 C.4 D. 210.如图,撬钉子的工具是一个杠杆,动力臂L1=L·cos α,阻力臂L2=l·cos β,如果动力F的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是()A.越来越小B.不变C.越来越大D.无法确定11.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan ∠BDE的值为()A.24 B.14 C.13 D.2312.若点A(a-1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<-1 B.-1<a<1 C.a>1 D.a<-1或a>1二、填空题(本大题共8题,每题3分,共24分)13.如图,测角仪CD竖直放在距建筑物AB底部5 m的位置,在D处测得建筑物顶端A的仰角为50°.若测角仪的高度是1.5 m,则建筑物AB的高度约为________m.(结果保留小数点后一位,参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)14.如图,点A是反比例函数y=kx(x>0)图象上一点,AB垂直于x轴,垂足为B,△OAB的面积为6.若点P(a,7)也在此函数的图象上,则a=________.15.在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为________.16.如图,点A、B在反比例函数y=12x(x>0)的图象上,A、B的纵坐标分别是3和6,连接OA、OB,则△OAB的面积是________.17.如图所示,铁路的路基横断面为一个等腰梯形ABCD, AB=DC,若腰AB的坡度为i=2:3,顶宽AD=3 m,路基高AE=4 m,则路基的下底宽是________.18.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为________m.(结果保留根号)19.如图,在4×4的正方形方格图中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则sin∠BAC=________.20.点P,Q,R在反比例函数y=kx(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴,y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为________.三、解答题(本大题共7题,其中21题6分,22~26题每题8分,27题14分,共60分.写出必要的文字说明、证明过程或推演步骤) 21.计算:(1)2cos 30°-tan 60°+tan 45°-12sin 60° (2)12-2cos 60°+sin 245°+2-122.直线y =kx +b 过x 轴上的点A ⎝ ⎛⎭⎪⎫32,0,且与双曲线y =m x 相交于B 、C 两点,已知B 点坐标为(2,-1),求: (1)直线和双曲线的表达式; (2)△AOB 的面积.23.如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数y =kx (x >0)的图象上(点B 的横坐标大于点A 的横坐标),点A 的坐标为(2,4),过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C ,连接OA ,AB . (1)求k 的值.(2)若D 为OC 的中点,求四边形OABC 的面积.24.我国海关总署严厉打击“洋垃圾”违法行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)25.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求出经过点E的反比例函数表达式.26.如实景图,由某国企集团捐建的早元街人行天桥于2019年12月18日动工,2020年2月28日竣工,彰显了国企的担当精神,展现了高效速度.该桥的引桥两端各由两个斜面和一个水平面构成,如示意图所示:引桥一侧的桥墩顶端E点距地面5 m,从E点处测得D点俯角为30°,斜面ED长为4 m,水平面DC长为2 m,斜面BC的坡度为1:4,求处于同一水平面上引桥底部AB的长.(结果精确到0.1 m,2≈1.41,3≈1.73).答案一、1.B 2.C3.B 【点拨】连接OA 和OC .∵点P 在y 轴上,∴△AOC 和△APC 的面积相等.∵A 在y 1=18x (x >0)的图象上,C 在y 2=6x (x >0)的图象上,AB ⊥x 轴,∴S △AOC =S △OAB -S △OBC =6,∴△APC 的面积为6.故选B. 4.D5.C 【点拨】由题意得,函数y =4x (x >0)与y =x -1的图象交于点P (a ,b ), ∴ab =4,b =a -1, ∴b -a =-1, ∴1a -1b =b -a ab =-14.6.B 【点拨】如图,作BD ⊥AC 于点D ,设小正方形的边长均为1,由勾股定理得,AB =32+22=13,AC =32+32=3 2. ∵S △ABC =12×32·BD =12×1×3, ∴BD =22,∴sin ∠BAC =BD AB =2213=2626.故选B.7.A 【点拨】在Rt △ABD 中,∠ADB =90°,则sin A =BD AB ,cos A =ADAB ,tan A =BDAD ,因此选项A 正确,选项B 、C 、D 不正确.故选A.8.C【点拨】∵点A(-1,y1),B(2,y2),C(3,y3)在反比例函数y=-6x的图象上,∴y1=-6-1=6,y2=-62=-3,y3=-63=-2,又∵-3<-2<6,∴y1>y3>y2.故选C.9.C10.A【点拨】∵动力×动力臂=阻力×阻力臂,∴当阻力及阻力臂不变时,动力×动力臂为定值,且定值>0.∴动力随着动力臂的增大而减小.∵杠杆向下运动时,α的度数越来越小,此时cos α的值越来越大,且动力臂L1=L·cos α,∴此时动力臂也越来越大.∴此时的动力越来越小.故选A.11.A12.B【点拨】∵k<0,∴在图象的每一支上,y随x的增大而增大.①当点A(a-1,y1),B(a+1,y2)在图象的同一支上时,∵y1>y2,∴a-1>a+1,此不等式无解;②当点A(a-1,y1),B(a+1,y2)在图象的两支上时,∵y1>y2,∴a-1<0,a+1>0,解得-1<a<1.二、13.7.5【点拨】如图,过点D作DE⊥AB,垂足为点E,易知四边形DEBC 为矩形,∴DE=BC=5 m,DC=BE=1.5 m.在Rt △ADE 中, ∵tan ∠ADE =AEDE ,∴AE =tan ∠ADE ·DE =tan 50°×5≈1.19×5=5.95(m). ∴AB =AE +BE ≈5.95+1.5≈7.5(m).14.127 【点拨】∵AB 垂直于x 轴,垂足为B ,∴△OAB 的面积=12|k |,即12|k |=6,又∵易知k >0,∴k =12,∴反比例函数的表达式为y =12x (x >0).∵点P (a ,7)也在此函数的图象上,∴7a =12,解得a =127.15.0 【点拨】方法一 ∵直线y =x 与双曲线y =mx 交于A ,B 两点, ∴联立得方程组⎩⎪⎨⎪⎧y =x ,y =m x ,解得⎩⎨⎧x 1=m ,y 1=m ,⎩⎨⎧x 2=-m ,y 2=-m , ∴y 1+y 2=0.方法二 ∵直线y =x 与双曲线y =mx 交于A ,B 两点,∴点A ,点B 关于原点对称,∴y 1+y 2=0.16.9 【点拨】∵点A 、B 在反比例函数y =12x (x >0)的图象上,A 、B 的纵坐标分别是3和6,∴A (4,3),B (2,6),作AD ⊥y 轴于D ,BE ⊥y 轴于E ,如图.∴S △AOD =S △BOE =12×12=6.∵S △OAB =S △AOD +S 梯形ABED -S △BOE =S 梯形ABED ,∴S △AOB =12×(4+2)×(6-3)=9. 17.15 m18.⎝ ⎛⎭⎪⎫533-1.6 【点拨】如图,易知四边形DEFC 和四边形CFBH 都是矩形, ∴DE =CF =HB =5 m ,EF =DC =3.4 m.在Rt △DEA 中,∵∠DEA =90°,∠EDA =45°, ∴∠DAE =45°,∴DE =EA =5 m. 在Rt △BCF 中,∵∠FCB =30°, cos ∠BCF =CF CB ,∴CB =5cos 30°=1033 m , ∴BF =12BC =533 m , ∵AB +AE =EF +BF ,∴AB =3.4+533-5=533-1.6(m).19.55 20.275 【点拨】∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,∴P ⎝ ⎛⎭⎪⎫k 3a ,3a ,Q ⎝ ⎛⎭⎪⎫k 2a ,2a ,R ⎝ ⎛⎭⎪⎫k a ,a ,∴CP =k 3a ,DQ =k 2a ,ER =k a ,∴OG =AG ,OF =2FG ,OF =23GA ,∴S 1=23S 3=2S 2.∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275,故答案为275.三、21.解:(1)原式=2×32-3+1-12×32=3-3+1-34=4-34.(2)原式=23-1+12+12=2 3.22.解:(1)∵A ⎝ ⎛⎭⎪⎫32,0, B ()2,-1在直线y =kx +b 上, ∴⎩⎪⎨⎪⎧0=32k +b ,-1=2k +b ,解得⎩⎨⎧k =-2,b =3, ∴直线的表达式是y =-2x +3.∵点B ()2,-1在双曲线y =m x 上,∴-1=m 2,解得m =-2,∴双曲线的表达式是y =-2x .(2) S △AOB =12×32×1=34.23.解:(1)将点A 的坐标(2,4)代入y =k x (x >0),可得k =xy =2×4=8,∴k 的值为8.(2)∵k 的值为8,∴函数y =k x (x >0)的表达式为y =8x(x >0). ∵D 为OC 的中点,OD =2,∴OC =4,∴点B 的横坐标为4,将x =4代入y =8x (x >0),可得y =2,∴点B 的坐标为(4,2),∴S 四边形OABC =S △AOD +S 梯形ABCD =12×2×4+12×(2+4)×2=10.【点拨】(1)将点A 的坐标(2,4)代入y =k x (x >0),可得结果;(2)利用反比例函数的表达式可得点B 的坐标,利用三角形的面积公式和梯形的面积公式可得结果.24.解:(1)如图,过点B 作BH ⊥CA 交CA 的延长线于点H .∵∠MBC =60°,∴∠CBA =30°.∵∠NAD =30°,∴∠BAC =120°.∴∠BCA =180°-∠BAC -∠CBA =30°.∴BH =BC ×sin ∠BCA =150×12=75(海里).答:B 点到直线CA 的距离为75海里.(2)∵BD =752海里,BH =75海里,∴DH =BD 2-BH 2=75海里.∵∠BAH =180°-∠BAC =60°,∴在Rt △ABH 中, tan ∠BAH =BH AH =3,∴AH =253海里,∴AD =DH -AH =(75-253)海里.答:执法船从A 到D 航行了(75-253)海里.25.(1)证明:∵BE ∥AC ,AE ∥OB ,∴四边形AEBD 是平行四边形.又∵四边形OABC 是矩形,∴OB 与AC 相等且互相平分,∴DA =DB ,∴四边形AEBD 是菱形.(2)如图,连接DE 交AB 于点F .∵四边形AEBD 是菱形,∴AB 与DE 互相垂直且平分.∵OA =3,OC =2,∴EF =DF =12OA =32,AF =12AB =1,∴E 点坐标为⎝ ⎛⎭⎪⎫92,1. 设反比例函数表达式为y =k x ,把点E ⎝ ⎛⎭⎪⎫92,1的坐标代入y =k x 中,得k =xy =92, ∴经过点E 的反比例函数表达式为y =92x .26.解:作DF ⊥AE 于F ,DG ⊥AB 于G ,CH ⊥AB 于H ,如图所示,易知四边形AFDG 和四边形DCHG 都是矩形,∴DF =GA ,DC =GH =2 m ,AF =DG =CH .易得∠EDF =30°,∴EF =12DE =12×4=2(m),DF =3EF =2 3 m ,∵AE =5 m ,∴CH =AF =AE -EF =5-2=3(m),∵斜面BC 的坡度为1:4,∴CH BH =14,∴BH =4CH =12 m ,∴AB =AG +GH +BH =23+2+12=23+14≈17.5(m).答:处于同一水平面上引桥底部AB 的长约为17.5 m.【点拨】作DF ⊥AE 于F ,DG ⊥AB 于G ,CH ⊥AB 于H ,易知四边形AFDG 和四边形DCHG 都是矩形,∴DF =GA ,DC =GH =2 m ,AF =DG =CH ,由含30°角的直角三角形的性质得出EF =12DE =2 m ,由锐角三角函数得出DF =3EF =2 3 m ,求出CH =AF =3 m ,由斜面BC 的坡度求出BH =4CH =12 m ,进而得出答案.。
【鲁教版】初三数学上期中试卷(带答案)
一、选择题1.“保护生态,人人有责”.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .2.如图所示,在Rt ABC ∆中,90ACB ∠=︒,将ABC ∆绕顶点C 逆时针旋转得到A B C ∆'',M 是BC 的中点,P 是A B ''的中点,连接PM .若2BC =,30A ∠=︒,则线段PM 长的最大值是( )A .4B .3C .2D .13.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内的水面的形状可能是( ) A .B .C .D .4.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105°5.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)6.如图,把△ABC 绕着点A 逆时针旋转40°得到△ADE ,∠1=30°,则∠BAE =( )A .10°B .30°C .40°D .70°7.设函数()()24310y kx k x k =+++<,若当x m <时,y 随着x 的增大而增大,则m 的值可以是( ) A .1B .0C .1-D .2-8.已知函数221y x x =--,下列结论正确的是( )A .函数图象过点()1,1-B .函数图象与x 轴无交点C .当1≥x 时, y 随x 的增大而减小D .当1x ≤时, y 随x 的增大而减小9.如图为二次函数()20y ax bx c a =++≠的图象,与x 轴交点为()()3,0,1,0-,则下列说法正确的有( )①a >0 ②20a b +=③a b c ++>0 ④当1-<x <3时,y >0A .1B .2C .3D .410.要在抛物线()4y x x =-上找点(),P a b ,针对b 的不同取值,所找点P 的个数,三人的说法如下( )甲:若5b =,则点P 的个数为0 乙:若4b =,则点P 的个数为1 丙:若3b =,则点P 的个数为1 A .甲乙错,丙对B .甲丙对,乙错C .甲乙对,丙错D .乙丙对,甲错11.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ). A .-1B .0C .2D .312.方程()55x x x +=+的根为( ) A .15=x ,25x =- B .11x =,25x =- C .0x =D .125x x ==-13.一元二次方程20x x -=的根是( ) A .10x =,21x = B .11x =,21x =- C .10x =,21x =- D .121x x == 14.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( )A .2,8B .3,4C .4,3D .4,8二、填空题15.抛物线2y x x =+向下平移2个单位长度,再向左平移3个单位长度,得到的抛物线表达式为____.16.二次函数2y ax bx c =++的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5 y125-3-4-3512利用二次函数的图象可知,当函数值时,x 的取值范围是.17.小明从如图所示的二次函数()20y ax bx c a =++≠图象中,观察得出了下面五条信息:①32a b =;②240b ac -=;③ 0ab >;④0a b c ++<;⑤20b c +>.你认为正.确.信息的有_______________.(请填序号)18.若()22214x y +-=,则22x y +=________.19.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________. 20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.如图,△ABC 三个顶点的坐标分别是A (1,1),B (4,2),C (3,4). (1)请画出△ABC 关于原点对称的△A 1B 1C 1;通过作图,你发现了△ABC 中任意一点(x ,y )关于原点中心对称后的点坐标为 .(2)已知点M 坐标为(m ,n ),点P 的坐标为(2,-3),则点M 关于点P 中心对称的点N 的坐标为 .22.如图,在边长为1的正方形组成的网格中,每个正方形的顶点称为格点.已知△ABC 的顶点均在格点上,建立如图所示的平面直角坐标系,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于原点对称的△A 1B 1C 1,并直接写出△A 1B 1C 1各顶点的坐标; (2)将线段AB 绕点A 顺时针旋转90 °后得到AB 2,画出旋转后的图形,并直接写出点B 2的坐标;(3)△A 1B 1C 1的面积为 . 23.已知抛物线的解析式为y =﹣3x 2+6x+9. (1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.24.如图,已知抛物线y =ax 2+bx +c (a ≠0)经过A (﹣1,0),B (3,0),C (0,﹣3)三点,直线l 是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在一点M ,使得△ACM 的周长最短?若存在,求点M 的坐标;若不存在,请说明理由.25.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 26.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件. (1)填空: 购买件数x (件) 513③单价(元)① ② 50【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据中心对称图形的定义对各选项分析判断即可得解.A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确. 故选:D . 【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.B解析:B 【分析】连接PC ,根据直角三角形斜边上的中线等于斜边的一半求出PC ,利用中点求出CM ,再根据三角形两边之和大于第三边即可求得PM 的最大值. 【详解】 解:如图连接PC .在Rt △ABC 中,∵∠A=30°,BC=2, ∴AB=4,根据旋转不变性可知,A′B′=AB=4,''90A CB ACB ∠=∠=︒, ∵P 是A B ''的中点,M 是BC 的中点, ∴CM=BM=1,PC=12A′B′=2 又∵PM≤PC+CM ,即PM≤3,∴PM 的最大值为3(此时P 、C 、M 共线). 故选:B . 【点睛】本题考查旋转变换、直角三角形30度角的性质、直角三角形斜边中线定理,三角形的三边关系等知识,解题的关键是学会添加常用辅助线,学会利用三角形的三边关系解决最值问题,属于中考常考题型.3.A解析:A 【分析】结合题意,相当于把正方体一个面,即正方形截去一个角,可以得到三角形、四边形、五边形.解:根据题意,结合实际,容器内水面的形状不可能是正方形、六边形、七边形.故选A.【点睛】此类问题也可以亲自动手操作一下,培养空间想象力.4.C解析:C【分析】直接根据四边形AEHB的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH=135°,∴∠DHE=360°-∠E-∠BAE-∠ABH=360°-90°-35°-135°=100°.故选C.【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键.5.D解析:D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=30°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=2324⨯=3,∴BD=2ABBC=2234()=3.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.6.D解析:D先找到旋转角,根据∠BAE =∠1+∠CAE 进行计算. 【详解】解:根据题意可知旋转角∠CAE =40°,所以∠BAE =30°+40°=70°. 故选D . 【点睛】本题主要考查了旋转的性质,解题的关键是找准旋转角.7.D解析:D 【分析】当k <0时,抛物线对称轴为直线432k x k+=-,在对称轴左侧,y 随x 的增大而增大,根据题意,得m≤-432k k +,而当k <0时,-432k k+=-2-32k >-2,可确定m 的范围, 【详解】 对称轴:直线433222k x k k+=-=--, 0k <,3222k∴-->-, x m <时,y 随x 的增大而增大,322m k∴≤--, 2m ∴≤-,∴m 的值可以是-2,故选D . 【点睛】本题考查了二次函数的性质,根据题意得出二次函数图象的对称轴是解题的关键.8.D解析:D 【分析】根据二次函数的性质进行判断即可. 【详解】解:A 、当x=-1时,221y x x =--=1+2﹣1=2,函数图象过点(-1,2),此选项错误;B 、∵△=(﹣2)2﹣4×1×(﹣1)=8>0, ∴函数图象与x 轴有两个交点, 故此选项错误;C 、∵221y x x =--=(x ﹣1)2﹣2,且1>0,∴当x≥1时,y 随x 的增大而增大, 故此选项错误;D 、当x≤1,时,y 随x 的增大而减小,此选项正确, 故选:D . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点问题,熟练掌握二次函数的性质是解答的关键.9.C解析:C 【分析】由开口方向可判断①;由对称轴为直线x=1可判断②;由x=1时y >0可判断③;由1-<x <3时,函数图像位于x 轴上方可判断④. 【详解】解:∵抛物线的开口向下 ∴a <0,故①错误; ∵抛物线的对称轴x=2b a-=1 ∴b=-2a ,即2a+b=0,故②正确;由图像可知x=1时,y=a+b+c >0,故③正确;由图像可知,当1-<x <3时,函数图像位于x 轴上方,即y >0,故④正确; 故选C . 【点睛】本题主要考查图像与二次函数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.10.C解析:C 【分析】求出抛物线的顶点坐标为(2,4),由二次函数的性质对甲、乙、丙三人的说法分别进行判断,即可得出结论. 【详解】解:y=x (4-x )=-x 2+4x=-(x-2)2+4, ∴抛物线的顶点坐标为(2,4), ∴在抛物线上的点P 的纵坐标最大为4, ∴甲、乙的说法正确;若b=3,则抛物线上纵坐标为3的点有2个, ∴丙的说法不正确; 故选:C . 【点睛】本题考查了二次函数图象上点的坐标特征、抛物线的顶点坐标等知识;熟练掌握二次函数图象上点的坐标特征是解题的关键.11.D解析:D 【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=,∴原式211122123x x x x =-++=+=. 故选:D . 【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.12.B解析:B 【分析】根据因式分解法解方程即可; 【详解】()55x x x +=+, ()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B . 【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.13.A解析:A 【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】 解:∵x 2-x=0, ∴x (x-1)=0, 则x=0或x-1=0, 解得:x 1=0,x 2=1, 故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 14.D解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题15.【分析】先把配成顶点式再利用顶点式写出平移后的抛物线的解析式【详解】此抛物线的顶点坐标为()把点()向下平移个单位长度再向左平移个单位长度所得对应点的坐标为()即()所以平移后得到的抛物线的解析式为解析:2710y x x =++【分析】先把2y x x =+配成顶点式,再利用顶点式写出平移后的抛物线的解析式.【详解】 2211()24y x x x =+=+-,此抛物线的顶点坐标为(12-,14-), 把点(12-,14-)向下平移2个单位长度,再向左平移3个单位长度, 所得对应点的坐标为(132--,124--),即(72-,94-), 所以平移后得到的抛物线的解析式为279()24y x =+-,即2710y x x =++. 故答案为:2710y x x =++.【点睛】 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.16.或【分析】由表格给出的信息可看出对称轴为直线x =1a >0开口向上与x 轴交于(−10)(30)两点则y>0时x 的取值范围即可求出【详解】根据表格中给出的二次函数图象的信息对称轴为直线x =1a >0开口向解析:1x <-或3x >【分析】由表格给出的信息可看出,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则y>0时,x 的取值范围即可求出.【详解】根据表格中给出的二次函数图象的信息,对称轴为直线x =1,a >0,开口向上,与x 轴交于(−1,0)、(3,0)两点,则当函数值y>0时,x 的取值范围是x<-1或x>3.故答案为:x<-1或x>3.【点睛】本题考查了二次函数的图象及其性质,正确掌握才能灵活运用.17.①③④⑤【分析】由抛物线的开口方向判断a 与0的关系由抛物线与y 轴的交点判断c 与0的关系然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下∴a <0∴对称轴∴故①正确;∵抛物 解析:①③④⑤【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后再根据对称轴与抛物线与x 轴的交点情况进行判断即可;【详解】∵抛物线开口向下,∴a <0,∴对称轴123b x a =-=-, ∴32a b =,故①正确; ∵抛物线与x 轴有两个交点,∴24b ac ->0,故②错误;∵对称轴123b x a =-=-,a <0, ∴32a b =<0, ∴ab >0,故③正确;当1x =时,y >0,即,y <0,∴a b c ++<0,故④正确;当1x =-时,y >0,即,a b c -+>0,∴222a b c -+>0, ∵32a b =, ∴322b b c -+>0,∴2b c +>0,故⑤正确;故答案是①③④⑤.【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.18.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.19.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:1 2【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x2-4x+1有最大值是2.故答案为:-12.【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(1)画图见解析,(-x,-y),(2)(-m +4,-n -6)【分析】(1)依据中心对称画图,即可得到△A1B1C1;根据关于原点对称的坐标变化规律,可得坐标;(2)将P点平移到原点,利用(1)的结论,求出N点坐标.【详解】解:(1)△ABC关于原点对称的△A1B1C1如图所示,(x,y)关于原点中心对称后的点坐标为(-x,-y)(2)将点P(2,-3)平移到原点,对应的点M坐标变为M1(m-2,n+3),M1(m-2,n+3)关于原点(即现在的点P)对称点M2的坐标为(-m+2,-n-3),再将点P平移回原来的位置,点M2的坐标变为(-m+4,-n-6),即点N的坐标为(-m+4,-n-6)【点睛】本题考查了中心对称的画法以及关于原点对称点的坐标变化规律,通过平移点P,把关于任意一点成中心对称的问题转化为关于原点对称的问题是解决问题的关键,体现了数学的转化思想.22.(1)图见解析;A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)B2(2,-2);(3)3.5【分析】(1)先找到A、B、C关于原点对称的A1、B1、C1,再连线即可;(2)根据网格结构点A、B,找出将线段AB绕点A顺时针旋转90°的对应点B2,然后连接A B2,写出坐标即可;(3)△A1B1C1的面积即为三角形ABC的面积,利用“割补法”即可求得.【详解】解:(1)如图所示,△A1B1C1即为所求:A1(-1,-1),B1(-4,-2),C1(-3,-4);(2)如图所示,A1B2即为所求:B 2(2,-2);(3)S △ABC =11133232113222⨯-⨯⨯-⨯⨯-⨯⨯=3.5, ∴△A 1B 1C 1的面积= S △ABC =3.5,故填:3.5.【点睛】本题考查了坐标与图形变化−旋转与对称,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23.(1)x =1;(2)与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【分析】(1)根据对称轴公式,可以求得该抛物线的对称轴;(2)令x=0求出相应的y 值,再令y=0,求出相应的x 的值,即可得到该抛物线与x 轴,y 轴的交点坐标.【详解】解:(1)∵抛物线的解析式为y =﹣3x 2+6x+9,∴该抛物线的对称轴为直线x =﹣2b a=﹣62(3)⨯-=1, 即该抛物线的对称轴为直线x =1;(2)∵抛物线的解析式为y =﹣3x 2+6x+9,∴当x =0时,y =9,当y =0时,x =﹣1或x =3,即该抛物线与x 轴的交点坐标为(﹣1,0),(3,0),与y 轴的交点坐标为(0,9)【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答. 24.(1)223y x x =--;(2)存在,M (1,﹣2)【分析】(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 可求出a 、b 、c 的值,即可确定二次函数关系式;(2)由对称可知,直线BC 与直线x =1的交点就是要求的点M ,求出直线BC 的关系式即可.【详解】解:(1)把A (﹣1,0),B (3,0),C (0,﹣3)代入y =ax 2+bx +c 得,09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得,123a b c =⎧⎪=-⎨⎪=-⎩, ∴抛物线的关系式为223y x x =--;(2)抛物线223y x x =--的对称轴为212x -=-=, ∵点M 在对称轴x =1上,且△ACM 的周长最短,∴MC +MA 最小,∵点A 、点B 关于直线x =1对称,∴连接BC 交直线x =1于点M ,此时MC +MA 最小,设直BC 的关系式为y =kx +b ,∵B (3,0),C (0,﹣3),∴303k b b +=⎧⎨=-⎩,解得,13k b =⎧⎨=-⎩, ∴直线BC 的关系式为3y x =-,当x =1时,132y =-=-,∴点M (1,﹣2),∴在抛物线的对称轴上存在一点M ,使得△ACM 的周长最短,此时M (1,﹣2).【点睛】本题考查二次函数综合,解题的关键是掌握抛物线解析式的方法和利用轴对称的性质解决线段和最短问题.25.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+ (2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 26.(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a 件时,单价恰好是50元,80-(a -10)×2=50,解得:a =25,而题目中“单价不得低于50元”,∴25x ≥时,单价是50元,故填:25x ≥;(2)因为1200>800,所以一定超过了10件,设购买了x 件这种服装且多于10件,根据题意得出:[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =20时,80-2(20-10)=60元>50元,符合题意;当x =30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.。
鲁教版(五四学制)九年级数学(上册)期中复习检测题(含答案详解)
期中检测题(时间:120分钟,满分:120分)一、 选择题(每小题3分,共36分) 1.在△中,∠=90 ,,,则sin()A.34 B. 53C. 43D. 452.如图是教学用直角三角板,边AC=30cm ,∠C=90°,tan ∠BAC=,则边BC 的长为( ) A.30cmB.20cm C.10cm D.5cm3.某水坝的坡度i=1∶,坡长AB=20米,则坝的高度为( ) A.10米B.20米C.40米D.30米4. 计算2sin 30°- °+tan 60°的结果是( ) A.B.C.D.5.在Rt△ABC 中,∠C=90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cotA=.则下列关系式中不成立的是()A.tanA •cotA=1B.sinA=tanA •cosAC.cosA=cotA •sinAD.6.如图所示,在△ABC 中,cosB=,sinC=,AC=5,则△ABC 的面积是( ) A. B.12C.14D.217. 如图所示,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( ) A.B.C.D.8. 如图所示,△ABC 为格点三角形(顶点皆在边长相等的正方形格的交叉点处),则cosB等于( )第2题图A B C a bc 第5题图第6题图第7题图 第8题图 D9. 如图所示,在△ABC 中,∠ACB=90°,AC=5,高CD=3,则sinA+sinB 等于( )10.一副三角板按图①所示的位置摆放.将△DEF 绕点A (F )逆时针旋转60°后(图②),测得CG=10cm ,则两个三角形重叠(阴影)部分的面积为( ) A.75 B.(25+25 C.(25+)D.(25+)11. 在△ABC 中,若三边满足,则cosB ( )A .B .C .D .12.如图所示,在平面直角坐标系中,点P (5,12)在射线OA 上,射线OA 与x 轴的正半轴的夹角为,则sin 等于( ) A. B.二、填空题(每小题3分,共24分)13.计算:4sin30°-2cos30°+tan60°= .14.等腰三角形的腰长为2,腰上的高为1,则它的底角等于________. 15.在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB=OB=4,则AD=.16.如图所示,某河道要建造一座公路桥,要求桥面离地面高度AC 为3米,引桥的坡角 ∠ABC 为15°,则引桥的水平距离BC 的长是米(精确到1米).17.如图所示,在顶角为30°的等腰三角形ABC 中,AB=AC ,若过点C 作CD ⊥AB 于点D ,则∠BCD=15°.根据图形计算tan15°=__________.18.在一自助夏令营活动中,小明同学从营地A 出发,要到A 地的北偏东60°方向的C 处,他先沿正东方向走了200m 到达B 地,再沿北偏东30°方向走,恰能到达目的地C (如图所示),那么,由此可知,B 、C 两地相距m .第9题图第12题图第16题图第18题图第10题图 ① ②第17题图19.如图所示,海中有一个小岛A ,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A 岛南偏西60°的B 处,往东航行20海里后到达该岛南偏西30°的C 处后,货船继续向东航行,你认为货船航行途中(填“有”或“没有”)触礁危险.20.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1 000 m ,∠D=50°.为了使开挖点E 在直线AC 上,那么DE=m . (供选用的三角函数值:sin 50°≈0.766 0,cos 50°≈0.642 8,tan 50°≈1.192) 三、解答题(共60分)21.(6分)在△ABC 中,∠C=90°,分别是∠A ,∠B , ∠C 的对边,如果=2,b=,求c 及∠B .22.(6分)如图所示,若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是60°,船从A 到B 处需时间2分钟,求该船的速度.23. (6分)如图所示,在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45°的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A 相距10海里,请你测算灯塔C 在观察站A 的什么方向?24. (6分)如图所示,在△ABC 中∠C 是锐角,BC =a ,AC=b. ⑴证明:⑵△ABC 是等边三角形,边长为4,求△ABC 的面积.25. (6分)五月石榴红,枝头鸟儿歌.一只小鸟从石榴树上的A 处沿直线飞到对面一房屋的顶部C 处.从A处看房屋顶第19题图第20题图第24题图第25题图第22题图部C 处的仰角为30°,看房屋底部D 处的俯角为45°,石榴树与该房屋之间的水平距离为3米,求出小鸟飞行的距离AC 和房屋的高度CD .26.(6分)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈,t an 21.3°≈,sin63.5°≈,tan63.5°≈2)27. (8分)某船向正东航行,在A 处望见灯塔C 在东北方向,前进到B 处望见灯塔C 在北偏西30°方向,又航行了半小时到D 处,望见灯塔C 恰在西北方向,若船速为每小时20海里.求A 、D 两点间的距离.(结果不取近似值)28.(8分)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m ,∠ABC=45°,后考虑到安全因素,将楼梯脚B 移到CB 延长线上的点D 处,使∠ADC=30°(如图所示). (1)求调整后楼梯AD 的长; (2)求BD 的长.(结果保留根号)29. (8分)已知:如图所示,在山脚的C 处测得山顶A 的仰角为45°,沿着坡度为30°的斜坡前进400米到D 处(即,CD=40米),测得A 的仰角为60°,求山的高度AB.第26题图第27题图 第28题图第29题图期中检测题参考答案1.D解析:由勾股定理知,所以所以sin.2.C 解析:在直角三角形ABC中,tan∠BAC=根据三角函数定义可知:tan∠BAC=,则BC=ACtan∠BAC=30×=10cm.故选C.3.A解析:如图所示:∵坡度i=1∶,∴设AC=x,BC=x,根据勾股定理得,,则.4.B解析:2sin 30°- °+tan 60°=2×-+=1-+=+.故选B.5.D解析:根据锐角三角函数的定义,得A.tanA•cotA==1,关系式成立;B.sinA=,tanA•cosA==,关系式成立;C.cosA=,cotA•sinA==,关系式成立;D.=+,关系式不成立.故选D.6.A解析:过点A 作,在△ABC中,cosB=,sinC=,AC=5,∴cosB==,∴∠B=45°,AD=BD.∵sinC===,∴AD=3,∴CD=4,∴BD=3,则△ABC 的面积是:×AD×BC=×3×(3+4)=.故答案为:A .7.B 解析:∵ E、F分别是AB 、AD的中点,∴ EF是△ABD的中位线,∴ BD=2EF=2×2=4.又BC=5,CD=3,∴容易验证出:∴由勾股定理的逆定理,有:BD⊥CD,∴tanC==. ∴答案为B.8.A解析:由图可知AD=3,BD=4,∴ AB==5,第3题答图∴ cosB=.故选A.9.D 解析:∵∠ACB=90°,∴∠A+∠B=90°.又∵ CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∴∠B=∠ACD.在Rt△ACD中,AC=5,CD=3,根据勾股定理得:AD=4.∴在Rt△ACD中,sinA==,sinB=sin∠ACD==,则sinA+sinB==.故选D.10.C 解析:过G作GH⊥AC于H.∵∠BCA=45°,∴CH=HG.∵在Rt△AHG中,∠CAD=60°,∴tan∠HAG=,∴AH=.∴cm,CG=∴=5由C得=,∴AC•GH=××=25().11.C 解析:设,则,,则,所以△是直角三角形,且∠.所以在△ABC中,.12.C 解析:过点P作PB⊥Ox于点B.∵点P(5,12),∴OB=5,PB=12,∴OP=13(勾股定理),∴sin==.故选C.13.2 解析:原式=14.15°或75°解析:如图,.在图①中,,所以∠∠;在图②中,,所以∠∠.15.解析:∵四边形ABCD为矩形,∴OA=OB=OD=OC=4.∴BD=OB+OD=4+4=8.在直角三角形ABD中,AB=4,BD=8,由勾股定理可知=48.∴AD=.故答案为.16.11 解析:Rt△ABC中,∠ABC=15°,AC=3,∴BC=≈11(米).17.2-解析:设AB=,则CD=DB=(1-,tan 15°=18.200 解析:由已知得:,,∴,∴∴.故答案为:.19.没有解析:∵∠BAD=60°,∠CAD=30°,∴∠BAC=30°.又∵∠ABC=30°,∴AC=BC=20,∴CD=AD=∵A岛到货轮的航线的最短距离大于15,∴没有危险.故答案为没有.20.642.8 解析:∵∠ABD=140°,∴∠DBE=180°-140°=40°.∵∠D=50°,∴∠E=180°-∠DBE-∠D=180°-40°-50°=90°,∴cos∠D=,即DE=≈1 000×0.6428=642.8,故答案为:642.8.21.分析:利用勾股定理求出c,解直角三角形求出sinB进而求出∠B的值.解:在Rt△ABC 中,由勾股定理,得∴∵∴∠B=60°.22.分析:解决此题的关键是求出AB的长,可过B作河对岸的垂线,在构建的直角三角形中,根据河岸的宽度和AB与河岸的夹角,通过解直角三角形求出AB的长,进而根据速度=路程÷时间得出结果.解:如图,过点B作BC垂直河岸,垂足为C,则在Rt△ACB中,有AB===600,因而速度v==300.答:该船的速度为300米/分钟.点评:此题考查的知识点是解直角三角形的应用,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.23.解:过点C作CD⊥AB,垂足为D.∵灯塔B在观察站A北偏西45°的方向,∴∠B=45°.又∵BC=10海里,∴在Rt△BCD中,sin∠B=,∴sin45°=,∴CD=BC•sin45°=10×=5(海里).第23题答图第22题答图在Rt △ACD 中, ∵AC=10, ∴sin ∠CAD===,∴∠CAD=30°,∴∠CAF=∠BAF-∠CAD==15°. 答:灯塔C 在观察站A 北偏西15°的方向.24.(1)证明:作AD ⊥BC 于点D ,如图所示,△ABC 的面积为BC •AD ,在Rt △ACD 中,AD= AC •sinC ,(2)解:=25.解:作AE ⊥CD 于点E .由题意可知:∠CAE=30°, ∠EAD=45°,AE=米. 在Rt △ACE 中,tan ∠CAE=,即tan30°=.∴CE===3(米),∴AC=2CE=2×3=6(米).在Rt △AED 中,∠ADE=90°-∠EAD=90°-45°=45°, ∴DE=AE=(米). ∴DC=CE+DE=(3+)米.答:AC 的距离为6米,房屋的高度为(3+)米.26.解:过C 作AB 的垂线,交线段AB 的延长线于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =,∴CD =x ·tan63.5°. 在Rt △ACD 中,AD =AB +BD =(60+x)海里, tanA =, ∴.∴,即.解得,x ≈15.答:轮船继续向东航行15海里,距离小岛C 最近.第25题答图BCDA 第26题答图第27题答图第24题答图27.解:作CE ⊥AD 于点E .设AE=x , 则CE=AE=x ,BE=.∵BD=10,AE=DE ,∴x=,x=15+5,AD=2x=30+10. 答:A 、D 两点的距离约(30+10海里. 28.分析:(1)首先由已知AB=6m ,∠ABC=45°求出AC 和BC ,再由∠ADC=30°求出AD=2AC ; (2)根据勾股定理求出CD ,从而求出BD . 解:(1)已知AB=6m ,∠ABC=45°, ∴AC=BC=AB •sin45°=6×=3.已知∠ADC=30°, ∴AD=2AC=6.答:调整后楼梯AD 的长为6m.(2)CD=AD •cos30°=6×=3,∴BD=CD-BC=3-3. 答:BD 的长为3-3(m ).点评:此题考查的是解直角三角形的应用,关键是运用直角三角函数求解. 29.解:作DE ⊥AB 于E ,作DF ⊥BC 于F ,在Rt △CDF 中,︒⋅=∴=︒=∠30sin 40030CD DF CD DCF 米,,==200(米).(米).在Rt △ADE 中,︒=∠60ADE ,设DE =x 米, ∴x x AE 360tan =⋅︒=(米).在矩形DEBF 中,BE =DF =200米,在Rt ︒=∠∆45中,ACB ACB ,∴AB =BC , 即:x x +=+32002003,∴x =200, ∴)(2003200+=+=BE AE AB 米.CBAED F第29题答图。
初中数学鲁教版(五四制)九年级上册期中-章节测试习题(6)
章节测试题1.【题文】(10分)风电已成为我国继煤电、水电之后的第三大电源.风电机组主要由塔杆和叶片组成(如图①).如图②所示,假设你站在A处测得塔杆顶端C的仰角是55°,沿HA方向水平前进43m到达山底G处,在山顶B处发现一叶片正好到达最高位置,此时测得叶片的顶端D(D,C,H在同一直线上)的仰角是45°.已知叶片的长度为35m(塔杆与叶片连接处的长度忽略不计),山高BG为10m,,,求塔杆CH的高(结果精确到1m).(参考数据:.)【答案】63m【分析】【解答】2.【题文】如图,在△ABC中,AB=AC,∠A=135°,求【答案】【分析】【解答】3.【题文】(12分)如图,一次函数y=x+4的图象与反比例函数的图象交于A(-1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且,求点P的坐标.【答案】(1)反比例函数的表达式为;(2)P(-6,0)或(-2,0).【分析】【解答】4.【题文】(12分)如图是某路灯在铅垂面内的示意图,灯柱AC的高为11m,灯杆AB与灯柱AC的夹角A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18m,从D,E两处测得路灯B的仰角分别为和,且.求灯杆AB的长度.【答案】2m【解答】5.【答题】下列函数中,属于反比例函数的是()A. B. C. y=5-2x D. y=x2+1【答案】B【分析】【解答】解:反比例函数的解析式是y=(k是常数,k≠0),A、是正比例函数,故本选项错误;B、k=,故本选项正确;C、是一次函数,故本选项错误;D、是二次函数,故本选项错误.选:B.6.【答题】正比例函数y=2x与反比例函数y=(k≠0)的图象有一个交点为(2,4),则另一个交点坐标为()A. (2,-4)B. (-2,-4)C. (-2,4)D. (-2,-2)【答案】B【解答】解:∵反比例函数是中心对称图形,正比例函数与反比例函数的图象的两个交点关于原点对称,∵一个交点的坐标为(2,4),∴它的另一个交点的坐标是(-2,-4).选B.7.【答题】一次函数y=kx+k与反比例函数y=在同一平面直角坐标系中的图象大致是()A. B. C. D.【答案】B【分析】【解答】A、由反比例函数的图象在二、四象限可知k<0,由一次函数的图象与y 轴交点在y轴的正半轴可知k>0,两结论相矛盾,故本选项错误;B、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过一、二、三象限可知k>0,两结论一致,故本选项正确;C、由反比例函数的图象在一、三象限可知k>0,由一次函数的图象过二、四象限可知k<0,两结论相矛盾,故本选项错误;D、由反比例函数的图象在二、四象限知k<0,由一次函数图象与y轴的交点在正半轴知k>0,两结论相矛盾,故本选项错误;选:B.8.【答题】若双曲线位于第二、四象限,则k的取值范围是()A. k<1B. k≥1C. k>1D. k≠1【答案】A【分析】【解答】∵双曲线位于第二、四象限,∴k-1<0,∴k<1.选A.9.【答题】如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与AB交于点E.若OD=2,则△OCE的面积为()A. 2B. 4C. 2D. 4【答案】C【分析】【解答】连接AC,∵OD=2,CD⊥x轴,∴OD×CD=xy=4,解得CD=2,由勾股定理,得OC==2,由菱形的性质,可知OA=OC,∵OC∥AB,∵△OCE与△OAC同底等高,∴S△OCE=S△OAC=×OA×CD=×2×2=2.选C.10.【答题】如图,把一块直尺与一块三角板如图放置,若∠2=135°,则tan∠1的值为()A. B. C. 1 D.【答案】C【分析】【解答】∵2=135°,∴∠2的补角=180°-135°=45°,∴∠1=90°-45°=45°,则tan∠1=tan45°=1.选C.11.【答题】如图,两建筑物的水平距离为a米,从A点测得D点的俯角为α,测得C点的俯角为β,则较低建筑物的高为()A. a米B. a cotα米C. a cotβ米D. a(tanβ-tanα)米【答案】D【分析】【解答】作DE⊥AB于点E.在直角△AED中,ED=BC=a,∠ADE=α.∵tan∠ADE=,∴AE=DE•tan∠ADE=a•tanα.同理AB=a•tanβ.∴DC=BE=AB-AE=a•tanβ-a•tanα=a(tanβ-tanα).选D.12.【答题】已知α为锐角,tanα=,则sinα=()A. B. C. D.【答案】C【分析】【解答】解:在Rt△ABC中,∠C=90°,则sinα=,tanα=和a2+b2=c2,由tanα=知,设a=3x,则b=4x,结合a2+b2=c2得c=5x.∴sinα==,选C.13.【答题】在△ABC中,∠A,∠B均为锐角,且有|tan B-|+(2cos A-1)2=0,则△ABC是()A. 直角(不等腰)三角形B. 等边三角形C. 等腰(不等边)三角形D. 等腰直角三角形【答案】B【分析】【解答】∵|tan B-|+(2cos A-1)2=0,∴tan B=,2cos A=1,则∠B=60°,∠A=60°,∴△ABC是等边三角形.选B.14.【答题】如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD =45°,若l1、l2之间的距离为50m,则A、B之间的距离为()A. 50mB. 25mC. (50-)mD. (50-25)m 【答案】C【分析】【解答】解:如图,过点A作AM⊥DC于点M,过点B作BN⊥DC于点N.则AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN=(m),∴MN=CM-CN=50-(m).则AB=MN=(50-)m.选C.15.【答题】如图,斜坡AP的坡比为1:2.4,在坡顶A处的同一水平面上有一应高楼BC,在斜坡底P处测得该楼顶B的仰角为45°,在坡顶A处测得该楼顶B的仰角∠BAC为76°,楼高BC为18米,则斜坡AP长度约为(点P、A、B、C、Q 在同一个平面内,sin76°≈0.97,cos76°≈0.22,tan76°≈4.5)()A. 24米B. 26米C. 28米D. 30米【答案】B【分析】【解答】解:延长BC交PQ于点D.∵BC⊥AC,AC∥PQ,∴BD⊥PQ.∴四边形AHDC是矩形,CD=AH,AC=DH.∵∠BPD=45°,∴PD=BD.在Rt△ABC中,tan76°=,BC=18米,∴AC=4(米).过点A作AH⊥PQ,垂足为点H.过点A作AH⊥PQ,垂足为点H.∵斜坡AP的坡度为1:2.4,∴,设AH=5k,则PH=12k,由勾股定理,得AP=13k.由PH+HD=BC+CD得:12k+4=5k+18,解得k=2,∴AP=13k=26(米).选B.16.【答题】如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A,B,连接OA,OB,已知△OAB的面积为3,则k1-k2的值等于()A. 1B. 3C. 6D. 8【答案】C【分析】【解答】解:根据反比例函数k的几何意义可知:△AOP的面积为,△BOP的面积为,∴△AOB的面积为-,∴-=3,∴k1-k2=6.选C.17.【答题】如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则OA2-AB2=______.【答案】12【分析】【解答】解:设OC=a,BD=b,则点A的坐标为(a,a),点B的坐标为(a+b,a-b).∵反比例函数y=在第一象限的图象经过点B,∴(a+b)(a-b)=6,即a2-b2=6,∴OA2-AB2=2a2-2b2=2(a2-b2)=12.故答案为12.18.【答题】反比例函数y=(k是常数,k≠0)的图象经过点(1,4),那么这个函数图象所在的每个象限内,y的值随x值的增大而______.(填“增大”或“减小”)【答案】减小【分析】【解答】∵反比例函数y=(k是常数,k≠0)的图象经过点(1,4),∴k=1×4=4,∴反比例函数的解析式为y=,∴这个函数图象所在的每个象限内,y的值随x值的增大而减小.故答案为:减小.19.【答题】如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为______.【答案】y=【分析】【解答】解:设A坐标为(x,y),∵B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0-3,解得:x=-2,y=-3,即A(-2,-3),设过点A的反比例解析式为y=,把A(-2,-3)代入得:k=6,则过点A的反比例函数解析式为y=,故答案为:y=20.【答题】在Rt△ABC中,∠C=90°,若AB=4,sin A=,则斜边AB边上的高CD的长为______.【答案】【分析】【解答】解:作CD⊥AB于D,如图,在Rt△ACB中,∵sin A==,∴BC=×4=,∴AC==,∵CD•AB=AC•BC,∴CD==,即斜边上的高为.故答案为:.。
鲁教版九年级数学上册期中测试题及答案
一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.已知两点P1(x1,y1),P2(x2,y2)在反比例函数y=3x的图象上,当x1>x2>0时,下列结论正确的是( D )A.y2<y1<0B.y1<y2<0C.0<y2<y1D.0<y1<y22.在Rt△ABC中,∠C=90°,若cos A=23,则tan B的值是( A )A.2√55B.√55C.3√55D.√533.在同一平面直角坐标系中,函数y=x-k与y=kx(k为常数,且k≠0)的图象大致为( A )4.利用我们数学课本上的计算器计算12sin 52°,正确的按键顺序是( B )5.(2022招远模拟)如图所示,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sin A=12,则DE的长为( A )第5题图A.2√3B.3C.√3D.46.定义新运算:p ⊕q={pq(q >0),-pq(q <0),例如:3⊕5=35,3⊕(-5)=35,则y=2⊕x(x ≠0)的图象是( D )7.如图所示,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D 处测得旗杆顶端A 的仰角∠ADE 为55°,测角仪CD 的高度为 1 m,其底端C 与旗杆底端B 之间的距离为6 m,设旗杆AB 的高度为x m,则下列表达式正确的是( B )第7题图A.tan 55°=6x -1B.tan 55°=x -16C.sin 55°=x -16D.cos 55°=x -168.已知12<cos α<sin 80°,则锐角α的取值范围是( D ) A.30°<α<80° B.10°<α<80° C.60°<α<80° D.10°<α<60°9.在△ABC中,∠C=90°,tan A=12,△ABC的周长为60,那么△ABC的5面积为( D )A.60B.30C.240D.120x+4的图象与x轴、10.如图所示,在平面直角坐标系中,一次函数y=43y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=k(x<0)的图象上,则k的值为( D )x第10题图A.-12B.-42C.42D.-2111.已知反比例函数y=k的图象位于第二、四象限,A(x1,y1),B(x2,y2)x两点在该图象上,下列说法:①过点A作AC⊥x轴于点C,连接OA,若△ACO的面积为3,则k=-6;②若x1<0<x2,则y1>y2;③若x1+x2=0,则y1+y2=0,其中正确的有( D )A.0个B.1个C.2个D.3个12.(2021沂源模拟)某品牌的饮水机接通电源就进入自动程序:开机加热到水温100 ℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30 ℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,则水温从100 ℃降到35 ℃所用的时间是( C )第12题图A.27 minB.20 minC.13 minD.7 min二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.已知一个反比例函数的图象经过点(3,1),若该反比例函数的图象也经过点(-1,m),则m= -3 .14.在Rt△ABC中,∠C=90°,AB=2,BC=√3,则sin A2= 12.15.(2022龙口模拟)如图所示,某兴趣小组要测量一条河的宽度,已知河的两岸l1和l2平行,在河岸l1上有一根电线杆P,河岸l2上有相距80 m的两棵树A,B,测得∠BAP=75°,∠ABP=30°,则这条河的宽度是40 m.第15题图16.如图所示,在平面直角坐标系中,反比例函数y=kx(k>0)的图象和△ABC都在第一象限内,AB=AC=52,BC∥x轴,且BC=4,点A的坐标为(3,5).若将△ABC向下平移m个单位,A,C两点同时落在反比例函数图象上,则m的值为54.第16题图17.如图所示,已知点A(5,2),B(5,4),C(8,1).直线l ⊥x 轴,垂足为点M(m,0).其中m<52,若△A ′B ′C ′与△ABC 关于直线l 对称,且△A ′B ′C ′有两个顶点在函数y=kx(k ≠0)的图象上,则k 的值为 -6或-4 .第17题图18.如图所示,在Rt △AOB 中,∠AOB=90°,顶点A,B 分别在反比例函数y=1x (x>0)与y=-5x(x<0)的图象上,则tan ∠BAO 的值为 √5 .第18题图三、解答题(本大题共7小题,满分78分.解答应写出必要的文字说明、证明过程或推演步骤)19.(10分)计算:(1)sin 260°-tan 30°·cos 30°+tan 45°; (2)tan 60°sin 30°-cos 245°+sin 245°.解:(1)原式=(√32)2-√33×√32+1=54.(2)原式=√3×12-(√22)2+(√22)2=√32.20.(10分)如图所示,AD 是△ABC 的中线,tan B=13,cos C=√22,AC= √2,求:(1)BC 的长; (2)sin ∠ADC 的值.解:(1)如图所示,过点A 作AE ⊥BC 于点E.∵cos C=√22,∴∠C=45°. ∵AC=√2,∴AE=CE=1.在Rt △ABE 中,∵tan B=13,AE=1,∴BE=3.∴BC=BE+CE=3+1=4.∴BC 的长为4.(2)∵AD 是△ABC 的中线,∴CD=12BC=2.又∵CE=1,∴DE=1.又∵AE ⊥DC,∴△ACD 为等腰三角形,∴AD=AC.∴∠ADC=∠C=45°.∴sin ∠ADC=√22.21.(10分)(2022龙口模拟)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是体积V(m 3)的反比例函数,其图象如图所示.(1)求该反比例函数的表达式;(2)当气球的体积是0.8 m3时,气球内的气压是多少千帕?解:(1)设该反比例函数表达式为P=kV,∵图象经过点(2.5,64),∴k=2.5×64=160,∴该反比例函数表达式为P=160V.(2)当V=0.8 m3时,P=1600.8=200(kPa).22.(10分)如图所示,点D是△ABC的边AC上一点,CD=2AD,AE⊥BC,交BC于点E.若BD=8,sin∠CBD=34,求AE的长.解:如图所示,过点D作DF⊥BC于点F,又∵AE⊥BC,∴AE∥DF,∴∠DFB=90°.∴sin∠CBD=DFBD =DF8=34,解得DF=6.∵AE∥DF,∴DFAE =CDCA,∴6AE=23,解得AE=9.∴AE的长为9.23.(11分)如图所示,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(-3,m+8),B(n,-6)两点.(1)求一次函数与反比例函数的表达式;(2)求△AOB的面积.解:(1)将A(-3,m+8)代入反比例函数y=m x,得m-3=m+8,解得m=-6.则m+8=-6+8=2,∴点A 的坐标为(-3,2).∴反比例函数的表达式为y=-6x .将B(n,-6)代入y=-6x,得-6n=-6,解得n=1.∴点B 的坐标为(1,-6).将A(-3,2),B(1,-6)代入y=kx+b,得{-3k +b =2,k +b =-6,解得{k =-2,b =-4.∴一次函数的表达式为y=-2x-4.(2)设AB 与x 轴相交于点C(图略).令-2x-4=0,解得x=-2.∴点C 的坐标为(-2,0),∴OC=2.∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×6=2+6=8.24.(13分)如图所示,一艘渔船位于小岛B 的北偏东30°方向,距离小岛40 n mile 的点A 处,它沿着点A 的南偏东15°的方向航行.(1)渔船航行多远距离小岛B 最近?(结果保留根号)(2)渔船到达距离小岛B 最近点后,按原航向继续航行20√6 n mile 到点C 处时突然发生事故,渔船马上向小岛B 上的救援队求救,问救援队从B 处出发沿着哪个方向航行到达事故地点航程最短?最短航程是多少?(结果保留根号)解:(1)如图所示,过点B 作BM ⊥AC 于点M,由题意,知∠BAM=45°,则∠ABM=45°,在Rt△ABM中,∵∠BAM= 45°,AB=40 n mile,∴BM=AM=√22AB=20√2 n mile.∴渔船航行20√2 n mile距离小岛 B 最近.(2)∵BM=20√2 n mile,MC=20√6 n mile,∴tan∠MBC=MCBM =√620√2=√3.∴∠MBC=60°.∴∠CBG=180°-60°-45°-30°=45°.在Rt△BCM中,∵∠CBM=60°,BM=20√2 n mile,∴BC=BMcos60°= 2BM=40√2 n mile.故救援队从B处出发沿点B的南偏东45°的方向航行到达事故地点航程最短,最短航程是40√2 n mile.25.(14分)已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图①所示,若n=-2,且函数y1,y2的图象都经过点A(3,4).①求m,k的值;②直接写出当y1>y2时,x的取值范围.(2)如图②所示,过点P(1,0)作y轴的平行线l与函数y2的图象相交于点B,与反比例函数y3=nx(x>0)的图象相交于点C.若k=2,直线l与函数y1的图象相交于点D.当点B,C,D中的一点到另外两点的距离相等时,求m-n的值.解:(1)①把A(3,4),n=-2代入y1=kx+n,得4=3k-2,解得k=2.,得m=3×4=12.∴m,k的值分别为12,2. 把A(3,4)代入y2=mx②由题图知,当y1>y2时,x的取值范围是x>3.(2)若k=2,则一次函数为y1=2x+n.当x=1时,点D,B,C的坐标分别为(1,2+n),(1,m),(1,n).∵m>0,n<0,∴当2+n>m>n时,BD=2+n-m,BC=m-n,由BD=BC,得2+n-m=m-n,则m-n=1.当m>2+n>n时,则BD=m-2-n,DC=2+n-n=2,由BD=DC,得m-2-n=2,则m-n=4.综上可知,m-n的值为1或4.。
【鲁教版】九年级数学上期中试题(带答案)
一、选择题1.如图,OAB 绕点O 逆时针旋转80°到OCD 的位置,已知45AOB ∠=︒,则AOD ∠等于( )A .45°B .35°C .25°D .15°2.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b --- 3.下列图形中,是中心对称但不是轴对称的图形是( ) A .平行四边形B .矩形C .菱形D .等边三角形4.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转34°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为( )A .60°B .64°C .66°D .68° 5.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( )A .正方形B .矩形C .菱形D .矩形或菱形6.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有( )A .3种B .4种C .5种D .6种7.如图是抛物线y =ax 2+bx+c (a≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a ﹣b+c >0; ②3a+b =0; ③b 2=4a (c ﹣n );④一元二次方程ax 2+bx+c =n ﹣1有两个不相等的实数根. 其中正确结论的个数是( )A .1个B .2个C .3个D .4个8.设函数()()12y x x m =--,23y x=,若当1x =时,12y y =,则( ) A .当1x >时,12y y < B .当1x <时,12y y > C .当0.5x <时,12y y <D .当5x >时,12y y >9.已知二次函数22236y x ax a a =-+-+(其中x 是自变量)的图象与x 轴没有公共点,且当1x <-时,y 随x 的增大而减小,则实数a 的取值范围是( ) A .2a <B .1a >-C .12a -<≤D .12a -≤<10.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米B .8米C .10米D .12米11.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20212223242526abcd efghi27 28 29 3031图1图2A .17B .18C .19D .2012.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-313.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥-C .2m >-且1m ≠-D .2m ≥-且1m ≠-14.已知a 、b 、m 、n 为互不相等的实数,且(a +m )( a +n )=2,(b +m )( b +n )=2,则ab ﹣mn的值为( ) A .4B .1C .﹣2D .﹣1二、填空题15.若抛物线22y x x c =++与坐标轴有两个交点,则c 应满足的条件是_______. 16.若二次函数26y x x c =-+的图象经过()11,A y -,()22,By ,()332,C y +三点,则关于1y ,2y ,3y 大小关系正确的是_______.(用“<”连接)17.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.18.一元二次方程22(1)210a x x a +++-=,有一个根为零,则a 的值为________. 19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____. 20.如图,点A ,B 的坐标分别为(1,4)和(4,4),抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为﹣3,则点D 的横坐标最大值为_____.三、解答题21.在下列网格图中,每个小正方形的边长均为1个单位.在Rt △ABC 中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC 以A 为旋转中心,沿顺时针方向旋转90°后的图形△AB 1C 1; (2)若点B 的坐标为(-3,5),试在图中画出平面直角坐标系,并标出A ,C 两点的坐标. 22.在6×6方格中,每个小正方形的边长为1,点A ,B 在小正方形的格点上,请按下列要求画一个以AB 为一边的四边形,且四边形的四个顶点都在格点上. (1)在图甲中画一个是中心对称图形但不是轴对称图形; (2)在图乙中画一个既是中心对称图形又是轴对称图形.参考答案23.在平面直角坐标系xOy 中,抛物线2223y x nx n n =-++-与y 轴交于点C ,与x 轴交于点,A B ,点A 在B 的左边,x 轴正半轴上一点D ,满足.OD OA OB =+ (1)①当2n =时,求点D 的坐标和抛物线的顶点坐标; ②当2AB BD =时,求n 的值;(2)过点D 作x 轴的垂线交抛物线于P ,作射线CP ,若射线CP 与x 轴没有公共点,直接写出n 的取值范围.24.某滑雪场在滑道上设置了几个固定的计时点.一名滑雪者从山坡滑下,测得了滑行距离s (单位:m )与滑行时间t (单位:s )的若干数据,如下表所示:位置1 位置2 位置3 位置4 位置5 位置6 位置7 滑行时间/s t 0 1.07 1.40 2.08 2.46 2.79 3.36 滑行距离/m s51015202535t t 点(如图).可以看出,其中绝大部分的点都近似位于某条抛物线上.于是,我们可以用二次函数()20s at bt c t =++≥来近似地表示s 与t 的关系.(1)有一个计时点的计时装置出现了故障,这个计时点的位置编号可能是_________; (2)当0t =时,0s =,所以c =________;(3)当此滑雪者滑行距离为30m 时,用时约为________s (结果保留一位小数). 25.水果店张阿姨以每斤4元的价格购进某种水果若干斤,然后以每斤6元的价格出售,每天可售出150斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出30斤,为保证每天至少售出360斤,张阿姨决定降价销售.(1)设这种水果每斤的售价降低x 元(02x ≤≤),每天的销售量为y 斤,求y 与x 的关系式;(2)销售这种水果要想每天盈利450元,张阿姨需将每斤的售价降低多少元? 26.解下列方程(1)2210x x ++= (2)233x x【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】本题旋转中心为点O ,旋转方向为逆时针,观察对应点与旋转中心的连线的夹角∠BOD 即为旋转角,利用角的和差关系求解. 【详解】解:根据旋转的性质可知,D 和B 为对应点,∠DOB 为旋转角,即∠DOB=80°, 所以∠AOD=∠DOB-∠AOB=80°-45°=35°. 故选:B . 【点睛】本题考查旋转两相等的性质:即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.2.B【分析】设A 的坐标为(,)m n ,根据旋转的性质得到C 是A 和A '的中点,利用中点公式可以求出点A '的坐标. 【详解】解:设A 的坐标为(,)m n , ∵A 和A '关于点(0,1)C 对称,∴02m a +=,12n b+=,解得m a =-,2n b =-+, ∴点A '的坐标2(),a b --+.故选:B . 【点睛】本题考查图形的旋转,解题的关键是利用中点公式求出旋转后的点坐标.3.A解析:A 【分析】根据轴对称及中心对称的概念,结合选项进行判断. 【详解】A 、平行四边形是中心对称图形,不是轴对称图形,故本选项正确;B 、矩形是中心对称图形,也是轴对称图形,故本选项错误;C 、菱形是中心对称图形,也是轴对称图形,故本选项错误;D 、等边三角形不是中心对称图形,但是轴对称图形,故本选项错误; 故选:A . 【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.B解析:B 【分析】由旋转性质得到∠D 和∠DCF 的度数,再由外角性质得到∠EFC 的度数即可. 【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°, ∴∠EFC=∠A+∠DCF=30°+34°=64°; 故选:B . 【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键.5.D【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】正方形是轴对称图形,也是中心对称图形,有4条对称轴; 矩形是轴对称图形,也是中心对称图形,有2条对称轴; 菱形是轴对称图形,也是中心对称图形,有2条对称轴. 故选D . 【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.C解析:C 【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答. 【详解】 如图所示:,共5种, 故选C . 【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.7.C解析:C 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】解:∵抛物线顶点坐标为(1,n ), ∴抛物线的对称轴为直线x=1,∵与x 轴的一个交点在点(3,0)和(4,0)之间, ∴当x=-1时,y >0,即a-b+c >0,故①正确; ∵抛物线的对称轴为直线x=1,即-2ba=1, ∴2a+b=0,∵a≠0,∴3a+b≠0,故②错误;∵抛物线顶点坐标为(1,n),∴抛物线y=ax2+bx+c(a≠0)与直线y=n有唯一一个交点,即方程ax2+bx+c=n有两个相等的实数根,∴△=b2-4a(c-n)=0,∴b2=4a(c-n),故③正确;∵抛物线的开口向下,∴y最大=n,∴直线y=n-1与抛物线有两个交点,∴一元二次方程ax2+bx+c=n-1有两个不相等的实数根,故④正确;故选:C.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.8.D解析:D【分析】当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,则m=4,画出函数图象即可求解.【详解】解:当y1=y2,即(x﹣2)(x﹣m)=3x,把x=1代入得,(1﹣2)(1﹣m)=3,∴m=4,∴y1=(x﹣2)(x﹣4),抛物线的对称轴为:x=3,如下图:设点A、B的横坐标分别为1,5,则点A、B关于抛物线的对称轴对称,从图象看在点B处,即x=5时,y1>y2,故选:D.【点睛】本题考查的是二次函数与不等式(组),主要要求学生通过观察函数图象的方式来求解不等式.9.D解析:D 【分析】根据判别式的意义得到△=(-2a )2-4(a 2-3a+6)<0,解得a <2,再求出抛物线的对称轴为直线x=a ,根据二次函数的性质得到a≥-1,从而得到实数a 的取值范围是-1≤a <2. 【详解】解∵抛物线22236y x ax a a =-+-+与x 轴没有公共点, ∴△=(-2a )2-4(a 2-3a+6)<0,解得a <2,∵抛物线的对称轴为直线x=-22a-=a ,抛物线开口向上, 而当x <-1时,y 随x 的增大而减小, ∴a≥-1,∴实数a 的取值范围是-1≤a <2. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.C解析:C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可. 【详解】解:当y =0时,即y 112=-x 223+x 53+=0, 解得:x =﹣2(舍去),x =10.∴该生此次实心球训练的成绩为10米. 故选:C . 【点睛】本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.11.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1,则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.12.D解析:D 【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可. 【详解】依题意得:230690x x x ⎧-⎨-+≠⎩=,解得x =−3. 故选:D 【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.13.D解析:D 【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可. 【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥,解得1m ≠-且2m ≥-. 故选:D . 【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.C解析:C 【分析】先把已知条件变形得到a 2+ (m +n ) a +mn ﹣2=0,b 2+( m +n ) b +mn ﹣2=0,则可把a 、b 看作方程x 2+( m +n ) x +mn ﹣2=0的两实数根,利用根与系数的关系得到ab =mn ﹣2,从而得到ab ﹣mn 的值.解:∵(a +m )( a +n )=2,(b +m )( b +n )=2,∴a 2+( m +n )a +mn ﹣2=0,b 2+( m +n )b +mn ﹣2=0,而a 、b 、m 、n 为互不相等的实数,∴可以把a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两个实数根,∴ab =mn ﹣2,∴ab ﹣mn =﹣2.故选:C .【点睛】本题考查一元二次方程根与系数的关系及整式的乘法,理解代数思想,把“a 、b 看作方程x 2+(m +n )x +mn ﹣2=0的两实数根”是解题关键.二、填空题15.或【分析】根据抛物线与轴有两个交点可知二次函数过原点或与轴相切故分两种情况解答:①将代入解析式;②△【详解】解:抛物线与坐标轴有两个交点①将代入解析式得;②△解得故答案为:或【点睛】本题考查的是抛物解析:0c 或18【分析】根据抛物线与x 轴有两个交点可知二次函数过原点或与x 轴相切.故分两种情况解答:①将(0,0)代入解析式;②△0=.【详解】 解:抛物线22y x x c =++与坐标轴有两个交点, ①将(0,0)代入解析式得0c; ②△180c =-=, 解得18c =. 故答案为:0c 或18. 【点睛】 本题考查的是抛物线与x 轴的交点及根的判别式,熟知抛物线与x 轴的交点问题与一元二次方程根的关系是解答此题的关键.16.【分析】根据函数解析式的特点其对称轴为x=3图象开口向上;利用y 随x 的增大而减小可判断根据二次函数图象的对称性可判断于是【详解】根据二次函数图象的对称性可知中在对称轴的左侧y 随x 的增大而减小因为于是 解析:231y y y <<根据函数解析式的特点,其对称轴为x=3,图象开口向上;利用y 随x 的增大而减小,可判断21y y <,根据二次函数图象的对称性可判断23y y >,于是231y y y <<. 【详解】根据二次函数图象的对称性可知,33()C y 中,|33||32|1+>-=,1(1,)A y -、2(2,)B y 在对称轴的左侧,y 随x 的增大而减小,因为112-<<,于是231y y y <<.故答案为231y y y <<.【点睛】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.17.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.18.1【分析】根据一元二次方程的解的定义把x=0代入(a+1)x2+2x+a2-1=0再解关于a 的方程然后利用一元二次方程的定义确定a 的值【详解】解:把x=0代入(a+1)x2+2x+a2-1=0得a2解析:1【分析】根据一元二次方程的解的定义,把x=0代入(a+1)x 2+2x+a 2-1=0,再解关于a 的方程,然后利用一元二次方程的定义确定a 的值.【详解】解:把x=0代入(a+1)x 2+2x+a 2-1=0得a 2-1=0,解得a=1或a=-1,而a+1≠0,所以a 的值为1.故答案为:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.8【分析】根据题意当点C 的横坐标取最小值时抛物线的顶点与点A 重合进而可得抛物线的对称轴则可求出此时点D 的最小值然后根据抛物线的平移可求解【详解】解:∵点AB 的坐标分别为(14)和(44)∴AB=3由解析:8【分析】根据题意当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,进而可得抛物线的对称轴,则可求出此时点D 的最小值,然后根据抛物线的平移可求解.【详解】解:∵点A ,B 的坐标分别为(1,4)和(4,4),∴AB=3,由抛物线y=a (x ﹣m )2+n 的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),可得:当点C 的横坐标取最小值时,抛物线的顶点与点A 重合,∴抛物线的对称轴为:直线1x =,∵点()3,0C -,∴点D的坐标为()5,0,∵顶点在线段AB上移动,∴点D的横坐标的最大值为:5+3=8;故答案为8.【点睛】本题主要考查二次函数的平移及性质,熟练掌握二次函数的性质是解题的关键.三、解答题21.(1)见解析;(2)见解析;A(0,1),C(-3,1)【分析】(1)根据图形旋转的性质画出△AB1C1即可;(2)根据B点坐标,作出平面直角坐标系,即可写出各点坐标.【详解】(1)解:旋转后图形如图所示(2)解:由B点坐标,建立坐标系如图所示,则A(0,1),C(-3,1).【点睛】本题考查的是作图-旋转变换,熟知图形旋转的性质是解答此题的关键.22.(1) (2)【分析】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形;(2)根据是中心对称图形又是轴对称图形可以确定是菱形或者正方形;【详解】(1)根据是中心对称图形但不是轴对称图形可以确定是平行四边形画图如下:(2)根据是中心对称图形又是轴对称图形可以确定是正方形画图如下:【点睛】本题考查了作图应用设计,熟练掌握轴对称图形和中心对称图形是解题关键.23.(1)①()4,0D ,顶点为()2,1-;②2n =或0n =;(2)131131322n n <<<-或 【分析】(1)①把n=2代入2223y x nx n n =-++-求得243y x x =-+经过配方即可求得顶点坐标;再令y=0,求出x 的值,可得A ,B 的坐标,根据OD OA OB =+可求出点D 的坐标;②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),根据2AB BD =列式求解即可; (2)首先求出点P 的坐标,再根据抛物线与x 轴有两个交点以及点P 的纵坐标大于0求出n 的取值范围即可.【详解】(1)①把2n =代入2223y x nx n n =-++-,得243y x x =-+配方得,()221y x =--∴顶点为()2,1-令0y =,则()221=0x --解得,1x =或3,即点()()1,0,3,0,A B∴OA=1,OB=3∵.OD OA OB =+∴OD=4∴()4,0D②设点A 的坐标为(x 1,0),点B 的坐标为(x 2,0),则有,12=2bx x n α+=,2123b x n n ax ==+-, 2222121212()24x x x x x x n +=++=,2222224226226x x n n n n n +=--+=-+22222121212()2226226124x x x x x x n n n n n -=+-=-+--+=-∴21AB x x =-=122OA OB x x n +=+=222BD OD OB n x n n n =-=-=-=∵2AB BD = ∴2(n =解得,n=2,n=-6当n=-6时,点D 在点B 的左侧,不合题意,舍去,∴n=2;当点A 在x 轴负半轴,B 在x 轴正半轴上时,2AB OA =即OB OA =所以,抛物线对称轴为y 轴,此时0n =综上所述,2n =或0n =(3)∵CP 与x 轴没有公共点,∴CP//x 轴或CP 斜向上,当x=0时,23y n n =+-∴点P 的纵坐标为23n n +-,代入2223y x nx n n =-++-得 220-=x nx ,解得,0x =(舍去),2x n =,∴2(2,3)P n n n +-∴23n n +->0, ∴2113()24n +>解得,122n +>或122n +<-,即,12n >或12n <- ∵抛物线2223y x nx n n =-++-与x 轴交于点,A B ,∴△=22(2)4(3)0n n n --+->,解得,3n <,∴n 3n n <<<或 【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用函数图象,从而求出相关字母的取值. 24.(1)3;(2)0;(3)3.1【分析】(1)由图像及表格可直接进行解答;(2)把t=0代入求解即可;(3)从表格选两个点代入函数解析式求解即可.【详解】解:(1)由表格及图像可得:出现故障的位置编号可能是位置3;故答案为3;(2)把t=0,s=0代入()20s at bt c t =++≥得:c=0; 故答案为0;(3)由(2)可得:把t=1.07,s=5和t=2.08,s=15代入()20s at bt t =+≥得: 221.07 1.0752.08 2.0815a b a b ⎧+=⎨+=⎩,解得: 2.511.98a b ≈⎧⎨≈⎩, ∴二次函数的解析式为:()22.51 1.980s t t t =+≥, 把s=30代入解析式得:()230 2.51 1.980t t t =+≥, 解得:123.1, 3.9t t ≈≈-(不符合题意,舍去),∴当此滑雪者滑行距离为30m 时,用时约为3.1s ;故答案为3.1.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 25.(1)300150y x =+;(2)只需将每斤的售价降低1元.【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【详解】(1)当02x ≤≤时,150303001500.1x y x =+⨯=+(2)由题意得:()()64300150450x x --+=解得:112x =,21x = 当12x =时,13001503003602y =⨯+=<(舍去) 当1x =时,3001150450360y =⨯+=> ∴只需将每斤的售价降低1元.【点睛】本题考查了理解解题的能力,销售量×每斤利润=总利润,掌握利润公式是解题的关键. 26.(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x , 3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.。
【鲁教版】九年级数学上期中试卷含答案
一、选择题1.在0,1,2三个数中任取两个,组成两位数,则在组成的两位数中是奇数的概率为( )A.14B.16C.12D.342.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A.25B.13C.415D.153.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a,则a的值是不等式组352132xxxx⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x-+=的实数解的概率为().A.17B.27C.37D.474.在一个不透明纸箱中放有除了标注数字不同外,其他完全相同的3张卡片,上面分别标有数字1,2,3,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为()A.59B.49C.56D.135.如图①,在矩形ABCD中,AB>AD,对角线AC,BD相交于点O,动点P由点A出发,沿A→B→C运动.设点P的运动路程为x,△AOP的面积为y,y与x的函数关系图象如图②所示,则AB边的长为()A.3 B.4 C.5 D.66.关于x的一元二次方程220x x m+-=有两个不相等的实数根,则m的取值范围是()A.1m>-B.1m C.1m≥-D.1m>-且0m≠7.新冠肺炎传染性很强,曾有2人同时患上新冠肺炎,在一天内一人平均能传染x人,经过两天传染后128人患上新冠肺炎,则x的值为()A .10B .9C .8D .78.关于x 的方程()()223x x a -+=(a 为常数)的根的情况,下列结论中正确的是( ) A .两个正根B .两个负根C .一个正根一个负根D .无实数根9.如图,长方形ABCD 是由6个正方形组成,其中有两个一样大的正方形,且最小正方形边长为1,则长方形ABCD 的边长DC 为( )A .10B .13C .16D .1910.如图,已知正方形ABCD 的边长为4,E 是边CB 延长线上一点,F 为AB 边上一点,BE =BF ,连接EF 并延长交线段AD 于点G ,连接CF 交BD 于点M ,连接CG 交BD 于点N .则下列结论: ①AE =CF ; ②∠BFM =∠BMF ; ③∠CGF ﹣∠BAE =45°; ④当∠BAE =15°时,MN =433. 其中正确的个数有( )A .1B .2C .3D .411.下列命题正确的是( ) A .有一个角是直角的四边形是矩形; B .有三个角是直角的四边形是矩形; C .对角线相等的四边形是矩形; D .对角线互相平分的四边形是矩形; 12.以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形D .对角线互相垂直平分的四边形是正方形二、填空题13.在5张完全相同的卡片上分别画上等边三角形、平行四边形、直角梯形、正方形和圆.在看不见图形的情况下随机摸出1张,这张卡片上的图形是中心对称图形的概率是________.14.投掷一枚质地均匀的骰子两次,第一次出现的点数记为a ,第二次出现的点数记为b .那么方程20x ax b -+= 有解的概率是__________。
2022-2023学年鲁教版五四制九年级上期中复习数学试卷含答案解析
2022-2023学年鲁教版(五四制)九年级上册数学期中复习试卷一.选择题(共12小题,满分36分,每小题3分)1.若正比例函数y=kx的图象经过一、三象限,则下列各点可能在反比例函数y=的图象上的是()A.(3,2)B.(0,﹣5)C.(6,0)D.(﹣3,4)2.对于函数y=,下列说法错误的是()A.当x>0时,y的值随x的增大而增大B.当x<0时,y的值随x的增大而减小C.它的图象分布在第一、三象限D.它的图象既是轴对称图形又是中心对称图形3.二次函数y=﹣x2+mx,对称轴为直线x=3,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在2<x<7的范围内有解,则t的取值范围是()A.t>﹣7B.﹣7<t<8C.8<t≤9D.﹣7<t≤94.如图,在方格图中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的正切值是()A.2B.C.D.5.若y=(m﹣2)x是二次函数,则m的值为()A.±2B.2C.﹣2D.±6.下列式子错误的是()A.sin30°+cos30°=1B.sin230°+cos230°=1C.tan50°•tan40°=1D.sin70°=cos20°7.若代数式在实数范围内有意义,则x的取值范围为()A.x>0B.x≥0C.x≠0D.x≥0且x≠18.在抛物线y=x2﹣4x+m的图象上有三个点(﹣3,y1),(1,y2),(4,y3),则y1,y2,y3的大小关系为()A.y2<y3<y1B.y1<y2=y3C.y1<y2<y3D.y3<y2<y19.下列函数中,图象一定经过原点的函数是()A.y=3x﹣2B.C.y=x2﹣3x+1D.10.如图,在平面直角坐标系中,▱OABC的边OA在y轴的正半轴上,反比例函数y=(x>0)的图象=,则k的值为()分别交AB于中点D.交OC于点E,且CE:OE=1:2,连接AE,DE,若S△ADEA.2B.C.3D.11.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),有下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=2有两个不相等的实数根;④当y <0时,﹣2<x<4,⑤b2+12a=4ac.其中正确的个是()A.2B.3C.4D.512.已知点A(1,m)与点B(3,n)都在函数y=(x>0)的图象上,则m与n的关系是()A.m>n B.m<n C.m=n D.不能确定二.填空题(共6小题,满分18分,每小题3分)13.如图,抛物线y=x2+1 与双曲线y=的交点A的横坐标1,则关于x的不等式﹣x2﹣1>0的解集是.14.在△ABC中,∠B=45°,cos A=,则∠C的度数是.15.若y=x2m+1﹣4x是二次函数,则m=;此时当x时,y随x的增大而减小.16.如图,已知正方形ABOC的边长为,且反比例函数y=(k≠0,x>0)的图象经过点A,则k=.17.如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y =(x>0)的图象上,BE⊥x轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.18.若一个反比例函数的图象经过点A(a,a)和B(3a,﹣2),则这个反比例函数的表达式为.三.解答题(共7小题,满分66分)19.(8分)计算:﹣|2﹣2|+(1+sin45°)+(﹣)﹣2.20.(8分)如图,天空中有一个静止的广告气球C,从地面上的一点A测得点C的仰角为45°.从地面上的另一点B测得点C的仰角为60°.已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度(精确到0.1m).21.(8分)如图,梯形ABCD是某水库大坝的横截面,坝顶宽CD=3m,斜坡AD的长为15m,坝高8m,斜坡BC的坡度为.(1)求斜坡AD,BC的坡角α,β(精确到0.01°);(2)求坝底宽AB的值.22.(10分)如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).23.(10分)为了节省材料,某公司利用岸堤(岸堤足够长)为一边AD,用总长为80米的材料围成一个由三块面积相等的小长方形组成的长方形ABCD区域.(1)如图1,已知BC=12米,则AB=米;(2)如图2,若BC=(x+20)米,求长方形ABCD的面积S(用含x的代数式表示),并求S的最大值.24.(10分)如图,直线y=k1x+b与双曲线y=(x>0)交于A,B两点,与x轴交于点C,若点A,B 的横坐标分别是1和2,(1)请直接写出k1x+b>的解集;(2)当△AOB的面积为3时,求k2的值.25.(12分)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:∵正比例函数y=kx的图象经过一、三象限,∴k>0.∴﹣k<0,∵﹣3×4=﹣12<0,∴可能在反比例函数y=的图象上的是点(﹣3,4),故选:D.2.解:A.对于函数y=,当x>0时,y的值随x的增大而减小,故此选项符合题意;B.对于函数y=,当x<0时,y的值随x的增大而减小,故此选项不合题意;C.对于函数y=,它的图象分布在第一、三象限,故此选项不合题意;D.对于函数y=,它的图象既是轴对称图形又是中心对称图形,故此选项不合题意;故选:A.3.解:∵抛物线y=﹣x2+mx的对称轴为直线x=3,∴﹣=3,解得m=6,∴抛物线解析式为y=﹣x2+6x=﹣(x﹣3)2+9,抛物线的顶点坐标为(3,9),当x=2时,y=﹣x2+6x=8;当x=7时,y=﹣x2+6x=﹣7,∵关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在2<x<7的范围内有解,∴抛物线y=﹣x2+6x与直线y=t在2<x<7的范围内有公共点,∴﹣7<t≤9.故选:D.4.解:由图可知,AC2=22+22=8,BC2=12+32=10,AB2=12+12=2,∴△ABC是直角三角形,且∠BAC=90°,∴tan∠ABC=.故选:A.5.解:∵y=(m﹣2)x是关于x的二次函数,∴m2﹣2=2,且m﹣2≠0,∴m=﹣2.故选:C.6.解:A.sin30°+cos30°=+≠1,因此选项A符合题意;B.sin230°+cos230°=()2+()2=+=1,因此选项B不符合题意;C.tan50°•tan40°=tan50°•cot50°=1,因此选项C不符合题意;D.sin70°=cos(90°﹣70°)=cos20°,因此选项D不符合题意;故选:A.7.解:∵在实数范围内有意义,∴x≥0且x﹣1≠0,∴x≥0且x≠1.故选:D.8.解:y=x2﹣4x+m的对称轴为x=2,(﹣3,y1),(1,y2),(4,y3)三点到对称轴的距离分别为5,1,2,∴y1>y3>y2,故选:A.9.解:①当x =0时,y =﹣2,因此y =3x ﹣2的图象不经过原点;②反比例函数的自变量的取值不包括0,图象也不经过原点;③当x =0,y =1,因此y =x 2﹣3x +1的图象不经过原点;④当x =0,y =0,因此y =x 的图象经过原点.故选:D .10.解:如图,连接AC ,BE .∵AD =DB ,∴S △ADE =S △BDE =,∵四边形AOCB 是平行四边形,∴S △AOC =S 平行四边形AOCB =S △AEB =1,∵CE :OE =1:2,∴S △AOE =S △AOC =,设A (0,b ),C (a ,t ),则B (a ,b +t ),D (a ,),E (a , t ),∵D ,E 在反比例函数的图象上,∴a •=at , 整理得t =b , ∴E (a , b ), ∴×b ×a =,∴ab =2,∴k =a •b =,故选:D .11.解:∵抛物线的开口向下,∴a<0.∵抛物线与y轴的正半轴相交,∴c>0.∵抛物线的顶点坐标A(1,3),∴=1,=3,∴b=﹣2a,b>0,4ac﹣b2=12a.①∵b=﹣2a,∴2a+b=0.故①正确;②∵a<0,b>0,c>0,∴abc<0.故②错误;③∵抛物线的顶点坐标A(1,3),a<0,∴y=ax2+bx+c有最大值为3,∴抛物线y=ax2+bx+c与直线y=2有两个交点,即方程ax2+bx+c=2有两个不相等的实数根.故③正确;④∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点B(4,0),∴抛物线与x轴的另一个交点B(﹣2,0).∵a<0,∴抛物线在x轴的下方有两部分,它们对应的x的取值范围是:x<﹣2或x>4.∴当y<0时,即ax2+bx+c<0,对应的x的取值范围是;x<﹣2或x>4.故④错误;⑤∵4ac﹣b2=12a,∴4ac=b2+12a.故⑤正确.综上所述,正确的结论有:①③⑤.故选:B.12.解:点A(1,m)与点B(3,n)都在函数y=(x>0)的图象上,因为4>0,双曲线经过第一三象限,又x>0时,第一象限的双曲线上y随x的增大而减小,因为1<3,所以m>n,故选:A.二.填空题(共6小题,满分18分,每小题3分)13.解:由﹣x2﹣1>0得,x2+1<,∵点A的横坐标为1,如图所示,∴不等式的解集是0<x<1.故答案为:0<x<1.14.解:∵在△ABC中,cos A=,∴∠A=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣45°=75°.15.解:①由题意知:2m+1=2,即:m=;因此当m=时,y=x2m+1﹣4x是二次函数;②该二次函数为:y=x2﹣4x=(x﹣2)2﹣4,所以该抛物线开口向上,且对称轴为:x=2;因此当x<2时,y随x的增大而减小.16.解:∵正方形ABOC的边长为,∴OC=AC=,∴A(,),将点A坐标代入反比例函数,得k=×=2,故答案为:2.17.解:如图,方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B (b ,),D (a ,), 由对称性可得:△BOD ≌△BOA ≌△OBC , ∴∠OBC =∠BOD ,BC =OD , ∴OI =BI ,∴DI =CI ,∴=,∵∠CID =∠BIO ,∴△CDI ∽△BOI ,∴∠CDI =∠BOI ,∴CD ∥OB ,∴S △BOD =S △AOB =S 矩形AOCB =, ∵S △BOE =S △DOG ==3,S 四边形BOGD =S △BOD +S △DOG =S 梯形BEGD +S △BOE , ∴S 梯形BEGD =S △BOD =, ∴•(a ﹣b )=, ∴2a 2﹣3ab ﹣2b 2=0,∴(a ﹣2b )•(2a +b )=0,∴a =2b ,a =﹣(舍去),∴D (2b ,), 即:(2b ,),在Rt △BOD 中,由勾股定理得, OD 2+BD 2=OB 2,∴[(2b )2+()2]+[(2b ﹣b )2+(﹣)2]=b 2+()2, ∴b =, ∴B (,2),D (2,),∵直线OB 的解析式为:y =2x ,∴直线DF 的解析式为:y =2x ﹣3, 当y =0时,2﹣3=0,∴x =, ∴F (,0), ∵OE =,OF =,∴EF =OF ﹣OE =, ∴=,方法二:如图,连接BF ,BD ,作DG ⊥x 轴于G ,直线BD 交x 轴于H , 由上知:DF ∥OB ,∴S △BOF =S △BOD =,∵S △BOE =|k |=3, ∴==,设EF =a ,FG =b ,则OE =2a ,∴BE =,OG =3a +b ,DG =,∵△BOE ∽△DFG ,∴=, ∴=,∴a =b ,a =﹣(舍去),∴D(4a,),∵B(2a,),∴==,∴GH=EG=2a,∵∠ODH=90°,DG⊥OH,∴△ODG∽△DHG,∴,∴,∴a=,∴3a=,∴F(,0)故答案为:,(,0).18.解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(a,a)和B(3a,﹣2),∴k=a2=﹣6a,解得a1=﹣6,a2=0(舍去),∴k=36,∴反比例函数的表达式为y=.故答案为:y=.三.解答题(共7小题,满分66分)19.解:原式=﹣(2﹣2)+1++9=﹣2+2+1++9=12﹣.20.解:如图,过点C作CD⊥AB于点D,∴∠CDA=90°,由题意可知:∠CAB=45°,∴∠ACD=45°,∴AD=CD,∵AB=20,∴BD=AD﹣AB=CD﹣20,在Rt△CBD中,∠CBD=60°,∴tan60°=,即=,解得CD=10(3+)≈47.3(m).答:气球离地面的高度为47.3米.21.解:(1)过D,C分别作DE⊥AB,CF⊥AB,可得四边形DEFC为矩形,∴EF=DC=3m,DE=CF=8m,在Rt△ADE中,AD=15m,DE=8m,∴sinα=≈0.5333,∴α≈32.23°,∵斜坡BC的坡度为,即tanβ=≈0.3333,∴β≈18.43°,(2)∵tanβ==,∵CF=8,∴BF=24,∵AE===≈13,∴AB=AE+EF+BF=13+3+24=40;答:坝底宽AB的值为40m.22.解:(1)∵抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3),∴,解得,所以抛物线的函数表达式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),对称轴为直线x=2;(3)如图,∵抛物线的顶点坐标为(2,﹣1),∴PP′=1,阴影部分的面积等于平行四边形A′APP′的面积,平行四边形A′APP′的面积=1×2=2,∴阴影部分的面积=2.23.解:(1)AB=(80﹣12×3)=22(米),故答案为:22;(2)BC=x+20∴AB =15﹣x则S =(x +20)(15﹣x )=﹣x 2+300,∵﹣x 2≤0,∴当x =0,即BC =20米时,S 的最大值为300平方米.24.解:(1)直线y =k 1x +b 与双曲线y =(x >0)交于A ,B 两点,且点A ,B 的横坐标分别是1和2, 由图象可知:不等式k 1x +b >的解集是1<x <2;(2)作AM ⊥x 轴于M ,BN ⊥x 轴于N ,则S △AOM =S △BON =|k 2|,设A (1,k 2),B (2,),∵△AOB 的面积为3,∴S △AOB =S △AOM +S 梯形AMNB ﹣S △BON =S 梯形AMNB =(k 2+)×(2﹣1)=3, ∴k 2=6.∴k 2的值为6.25.解:(1)∵y =x 2﹣2ax +a 2+2=(x ﹣a )2+2,∴抛物线顶点C 的坐标为(a ,2).(2)∵1>0,∴抛物线开口向上,又∵点C (a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点, ∴直线l 的解析式为y =4.当y =4时,x 2﹣2ax +a 2+2=4,解得:x1=a﹣,x2=a+,∴点E的坐标为(a﹣,4),点F的坐标为(a+,4),∴EF=a+﹣(a﹣)=2.(3)当y=t时,x2﹣2ax+a2+2=t,解得:x1=a﹣,x2=a+,∴EF=2.又∵存在实数m,使得x1≥m﹣1且x2≤m+5成立,∴,解得:2<t≤11.。
【鲁教版】九年级数学上期中试卷及答案
一、选择题1.有四根长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为( ) A .14B .23C .34D .122.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷两次骰子,掷得面朝上的点数之和是5的概率是( ) A .16B .19C .118D .2153.电脑福利彩票中有两种方式“22选5”和“29选7”,若选中号码全部正确则获一等奖,你认为获一等奖机会大的是( ) A .“22选5”B .“29选7”C .一样大D .不能确定4.小丽书包里准备的3只包装相同的备用口罩中有2只是医用外科口罩,由于感冒她想取一只医用外科口罩去医院就医时佩戴,则她一次取对的概率是( ) A .0B .12C .13D .235.学校准备举办“和谐校园”摄影作品展黛,现要在一幅长30cm ,宽20cm 的矩形作品四周外围上宽度相等的彩纸,并使彩纸的面积恰好与原作品面积相等,设彩纸的宽度为cm x ,则x 满足的方程是( )A .()()3022023020=++⨯x xB .()()30203020++=⨯x xC .()()30220223020--=⨯⨯x xD .()()30220223020++=⨯⨯x x6.一元二次方程22410x x ++=的两根为1x 、2x ,则12x x +的值是( ) A .4B .4-C .2-D .27.某养殖户的养殖成本逐年增长,已知第1年的养殖成本为10万元,第3年的养殖成本为16万元,设每年平均增长的百分率为x ,则下面所列方程中正确的是( ) A .10(1﹣x )2=16 B .16(1﹣x )2=10 C .16(1+x )2=10 D .10(1+x )2=168.如果关于x 的一元二次方程x 2﹣4x ﹣k =0有两个不相等的实数根,那么k 的取值范围是( ) A .k <﹣4B .k <4 且k ≠0C .k >﹣4D .k >﹣4且k ≠09.下列命题中,正确的是( ) A .对角线相等的四边形是矩形 B .对角线互相垂直的四边形是菱形 C .平行四边形的对角线平分且相等D .顺次连结菱形各边中点所得的四边形是矩形10.如图,以ABC 的每一条边为边作三个正方形.正方形ABIH 的顶点H 恰好在ED边上,记DHK △的面积为1S ,AHE 的面积为2S ,ABC 的面积为3S ,四边形CJIK 的面积为4S ,四边形BFGJ 的面积为5S .若12534S S S S S ++=+,则3S 与4S 的大小关系式成立的是( )A .34S S >B .34S S =C .34S S <D .无法判断11.如图,矩形纸片ABCD 中,6AB =,12BC =.将纸片折叠,使点B 落在边AD 的延长线上的点G 处,折痕为EF ,点E 、F 分别在边AD 和边BC 上.连接BG ,交CD 于点K ,FG 交CD 于点H .给出以下结论: ①EF BG ⊥; ②GE GF =;③GDK △和GKH △的面积相等; ④当点F 与点C 重合时,75D EF ∠=︒, 其中正确的结论共有( ).A .1个B .2个C .3个D .4个12.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C '处,折痕为EF ,若122EFC '∠=︒,那么ABE ∠的度数为( )A .24︒B .32︒C .30D .26︒二、填空题13.疫情防控期间,各学校严格落实测体温进校园的防控要求,某学校开设了A ,B ,C 三个测温通道.某天早晨,小明和小红两位同学随机通过测温通道进入校园,则小明和小红从同一通道进入校园的概率为______.14.大数据分析技术为打赢疫情防控阻击战发挥了重要作用.如图是刘军老师的健康码示意图,用打印机打印于边长为2cm 的正方形区域内.为了估计图中阴影部分的总面积,刘军老师在正方形区域内随机掷点,经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,由此可估计阴影部分的总面积约为__________2cm .15.已知m ,n 是方程2210x x --=的两实数根,则11m n+=_______. 16.已知关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,则a 的取值范围是_____.17.已知2x =是方程220x bx +-=的一个根,则方程的另一个根为____.18.如图,两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,则图中阴影部分的面积是________.19.如图,BD 为矩形ABCD 的对角线,点E 在BC 上,连接AE ,AE=52,EC=7,∠C=2∠DAE ,则BD=__.20.如图,将一个长方形纸片ABCD 沿EF 折叠,使C 点与A 点重合,若2,4AB AD ==,则线段DF 的长是_________.三、解答题21.国庆黄金周期间,甲、乙两名同学分别想从云台山、青天河、青龙峡3个景点中随机选择2个景点去游览.(1)求甲同学选择的2个景点是云台山、青天河的概率是________;(2)甲、乙两名同学选择的2个景点恰好相同的概率是多少?请用树状图或表格表示. 22.某校有A ,B 两个餐厅,甲、乙、丙三名学生各自随机选择其中的一个餐厅用餐,用列表或列树状图的方法解决下列问题:(1)求甲、乙、丙三名学生在同一个餐厅用餐的概率. (2)求甲、乙、丙三名学生中至少有一人在B 餐厅用餐的概率. 23.解方程: (1)2410x x -+= (2)252340x x +-=24.某旅游景区今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,求该旅游景区9,10两个月游客人数的平均增长率.25.如图,在△ABC 中,点D 是BC 边的中点,点E 是AD 的中点,过A 点作AF ∥BC ,且交CE 的延长线于点F ,联结BF . (1)求证:四边形AFBD 是平行四边形; (2)当AB =AC 时,求证:四边形AFBD 是矩形;(3)(填空)在(2)中再增加条件 .则四边形AFBD 是正方形.26.如图在Rt ABC △中,AB AC =,90BAC ∠=︒,O 为BC 的中点.(1)写出点O到ABC的三个顶点A、B、C的距离的大小关系.(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN BM,请判断OMN的形状,并证明你的结论.(3)当点M、N分别在AB、AC上运动时,四边形AMON的面积是否发生变化?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关键.2.B解析:B【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与掷得面朝上的点数之和是5的情况,再利用概率公式求解即可求得答案.【详解】解:列表得:∴掷得面朝上的点数之和是5的概率是:41.369故选:B.【点睛】此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.3.A解析:A【解析】从22个号码中选5个号码能组成数的个数有22×21×20×19×18=3160080,选出的这5个号码能组成数的个数为5×4×3×2×1=120,这5个号码全部选中的概率为120÷3160080=3.8×10−5;从29个号码中选7个号码能组成数的个数为29×28×27×26×25×24×23= 7866331200,这7个号码能组成数的个数为7×6×5×4×3×2×1=5040,这7个号码全部选中的概率为5040÷7866331200=6×10−8,因为3.8×10−5>6×10−8,所以,获一等奖机会大的是22选5.故选A.4.D解析:D直接运用概率计算公式求解即可. 【详解】解:∵小丽书包里有3只包装相同的备用口罩,2只是医用外科口罩, ∴她取一只医用外科口罩的概率为:23, 故选:D . 【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 5.D解析:D 【分析】由彩纸的面积恰好与原画面面积相等,即可得出关于x 的一元二次方程,此题得解. 【详解】解:依题意,得()()30220223020++=⨯⨯x x . 故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.C解析:C 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:由一元二次方程根与系数的关系得:12x x +=-ba =4-2=-2.故选:C . 【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟记12x x +=-ba ,12c x x a⋅=.7.D解析:D 【分析】根据第一年的养殖成本×(1+平均年增长率)2=第三年的养殖成本,列出方程即可. 【详解】设增长率为x ,根据题意得210(1)16x +=. 故选:D . 【点睛】本题考查了从实际问题中抽象出一元二次方程,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为2(1)a x b ±=.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“-”).8.C解析:C 【分析】根据根的判别式解答. 【详解】根据题意得△=(﹣4)2﹣4(﹣k )>0, 解得k >﹣4. 故选:C . 【点睛】此题考查一元二次方程根与系数的关系:∆>0时方程有两个不相等的实数根,∆=0时方程有两个相等的实数根,∆<0时方程没有实数根.第II 卷(非选择题)请点击修改第II 卷的文字说明9.D解析:D 【分析】根据矩形、菱形的判定和平行四边形的性质判断即可. 【详解】解:A 、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意; B 、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意; C 、平行四边形的对角线平分,原命题是假命题,不符合题意; D 、顺次连结菱形各边中点所得的四边形是矩形,是真命题,符合题意; 故选:D . 【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.B解析:B 【分析】设,,AC b BC a AB c ===,则有22125,BCJACKH S S S b SS a ++=+=四边形,234+BCJACKH S S S Sc ++=四边形,进而可得△ABC 是直角三角形,然后由正方形的性质可证△ABJ ≌△BIK ,最后根据等积法可求解.【详解】解:∵四边形ACDE 、ABIH 、BCGF 都是正方形, ∴AB=AH=BI ,AC=AE ,∠ABI=∠BIK=90°,∠GCB=90°, 设,,AC b BC a AB c ===,则有22125,BCJACKH S S S b SS a ++=+=四边形,234+BCJACKH S S S Sc ++=四边形,∵12534S S S S S ++=+, ∴222+=a b c ,∴△ABC 是直角三角形, ∴∠ACB=90°, ∴A 、C 、G 三点共线,∵∠JAB+∠ABC=90°,∠KBI+∠ABC=90°, ∴∠JAB=∠KBI , ∵∠ABJ=∠BIK=90°, ∴△ABJ ≌△BIK (ASA ),ABJ BIKSS∴=,∵34,+ABJBCJBIKBCJSS SSS S=+=,∴34S S =; 故选B . 【点睛】本题主要考查正方形的性质及勾股定理,熟练掌握正方形的性质及勾股定理是解题的关键.11.C解析:C 【分析】由折叠的性质可得四边形EBFG 是菱形,从而可判断①②正确;由角平分线定理可判断DK KH ≠,即可推导出③错误;根据点F 、C 重合时的性质可得30AEB ∠=︒,进而算出④正确. 【详解】解:连接BE ,如图:由折叠可知:BE GE =,BF GF =,BEF GEF ∠=∠ ∵//AD BC∴GEF BFE ∠=∠ ∴BEF BFE ∠=∠ ∴BE BF GE GF === ∴四边形EBFG 是菱形 ∴EF BG ⊥ ∴①②正确∵GK 平分DGH ∠,DG GH ≠ ∴DK KH ≠ ∴GDK GKH S S ≠△△ ∴③错误∵当点F 与点C 重合 ∴122BE BF BC AB ==== ∴30AEB ∠=︒ ∴180752AEBGEF ︒-∠∠==︒∴④正确. 故选:C 【点睛】本题考查了矩形的性质、菱形的判定和性质、折叠的性质、角平分线的性质、三角形内角和定理、等腰三角形的判定和性质以及平行线的性质等,关键在于结合图形对线段、角进行转化.12.D解析:D 【分析】由折叠的性质知:∠EBC′、∠BC′F 都是直角,∠BEF=∠DEF ,因此BE ∥C′F ,那么∠EFC′和∠BEF 互补,这样可得出∠BEF 的度数,进而可求得∠AEB 的度数,则∠ABE 可在Rt △ABE 中求得. 【详解】解:由折叠的性质知,∠BEF=∠DEF ,∠EBC′、∠BC′F 都是直角, ∴BE ∥C′F ,∴∠EFC′+∠BEF=180°, 又∵∠EFC′=122°, ∴∠BEF=∠DEF=58°,∴∠AEB=180°-∠BEF-∠DEF=64°, 在Rt △ABE 中,∠ABE=90°-∠AEB=26°. 故选D . 【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.二、填空题13.【分析】先列表得出所有等可能结果从中找到符合条件的结果数再利用概率公式计算可得【详解】列表格如下:A B C A AA BA CA B AB BB CB C AC BC CC 由表可知共有解析:1 3【分析】先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式计算可得.【详解】列表格如下:3种可能,所以小明和小丽从同一个测温通道通过的概率为39=13.故答案为13.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据频率可以估计阴影部分占正方形的65求出正方形面积即可求【详解】解:因为经过大量重复试验发现点落在阴影部分的频率稳定在左右所以估计阴影部分面积大约占正方形面积的65正方形的面积为:2×2=解析:2.6【分析】根据频率可以估计阴影部分占正方形的65%,求出正方形面积即可求.【详解】解:因为经过大量重复试验,发现点落在阴影部分的频率稳定在0.65左右,所以,估计阴影部分面积大约占正方形面积的65%,正方形的面积为:2×2=4(cm2),由此可估计阴影部分的总面积约为:4×65%=2.6(cm2)故答案为:2.6.【点睛】本题考查了用频率估计概率,解题关键是明确频率估计概率的方法及应用.15.-2【分析】由根与系数的关系可得出m +n =2mn =−1将其代入中即可求出结论【详解】解:∵mn 是方程x2−2x−1=0的两实数根∴m +n =2mn =−1∴==−2故答案为:-2【点睛】本题考查了根与系解析:-2【分析】由根与系数的关系可得出m +n =2、mn =−1,将其代入11m n +=m n n m +中,即可求出结论.【详解】解:∵m ,n 是方程x 2−2x−1=0的两实数根,∴m +n =2,mn =−1, ∴11m n +=m n n m +=21-=−2. 故答案为:-2.【点睛】本题考查了根与系数的关系,牢记两根之和等于−b a 、两根之积等于c a是解题的关键. 16.且【分析】根据一元二次方程的定义及根的判别式△>0即可得出关于a 的一元一次不等式组解之即可得出结论【详解】∵关于x 的一元二次方程(a ﹣2)x2+2x+1=0有两个不相等的实数根∴解得:a <3且a≠2解析:3a <且2a ≠【分析】根据一元二次方程的定义及根的判别式△>0,即可得出关于a 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程(a ﹣2)x 2+2x+1=0有两个不相等的实数根,∴22024(2)10a a -≠⎧⎨=--⨯>⎩, 解得:a <3且a≠2.故答案为:a <3且a≠2【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a 的取值范围,同时方程是一元二次方程,二次项系数不为零.17.【分析】利用一元二次方程的根与系数的关系定理中的两根之积计算即可【详解】设方程的另一个根为x ∵是方程的一个根∴根据根与系数关系定理得2x=-2解得x=-1故答案为:x=-1【点睛】本题考查了已知一元解析:1x =-.【分析】利用一元二次方程的根与系数的关系定理中的两根之积,计算即可.【详解】设方程220x bx +-=的另一个根为x ,∵2x =是方程220x bx +-=的一个根,∴根据根与系数关系定理,得 2x=-2,解得x=-1,故答案为:x=-1.【点睛】本题考查了已知一元二次方程的一个根求另一个根,熟练运用一元二次方程根与系数的关系定理,选择合适的计算方式是解题的关键.18.【分析】由两个长宽分别为的矩形如图叠放在一起可证得阴影部分是菱形然后设则利用勾股定理可得方程:则可求得的长继而求得答案【详解】解:如图:根据题意得:四边形是平行四边形两个矩形等高即四边形是菱形设则在 解析:2877cm . 【分析】由两个长宽分别为7cm 、3cm 的矩形如图叠放在一起,可证得阴影部分是菱形,然后设BF xcm =,则 D Fxcm ,7()AF AD DF x cm ,利用勾股定理可得方程: 2223(7)x x ,则可求得BE 的长,继而求得答案.【详解】解:如图:根据题意得://AD BC ,//BF DE ,∴四边形ABCD 是平行四边形,两个矩形等高,即DH AB =,BEDF S BE AB BF DH ,BE BF ∴=,∴四边形BEDF 是菱形,BF DF ∴=,设BF xcm =,则D F xcm ,7()AF AD DF x cm ,在Rt ABF ∆中,222AB AF BF +=,2223(7)x x , 解得:297x, 297BE cm , 2877BEDF S BE AB cm 菱形. 故答案为:2877cm . 【点睛】本题考查了菱形的判定与性质以及勾股定理等知识.掌握方程思想的应用是解此题的关键.19.13【分析】直接利用矩形的性质结合等腰直角三角形的性质得出ABBE 的长再利用勾股定理得出BD 的长【详解】解:∵四边形ABCD 是矩形∴∠ABC=∠C=90°AD ∥BC ∵∠C=2∠DAE ∴∠DAE=45解析:13【分析】直接利用矩形的性质结合等腰直角三角形的性质得出AB ,BE 的长,再利用勾股定理得出BD 的长.【详解】解:∵四边形ABCD 是矩形,∴∠ABC=∠C=90°,AD ∥BC ,∵∠C=2∠DAE ,∴∠DAE=45°,∴AB=BE ,∵,∴AB=BE=5,∵EC=7,∴AD=BC=12,∴.故填:13.【点睛】此题主要考查了矩形的性质以及勾股定理、等腰直角三角形的性质,正确得出AB ,BE 的长是解题关键.20.【分析】根据折叠的性质和勾股定理即可求得【详解】解:∵长方形纸片∴根据折叠的性质可得设根据勾股定理即解得故答案为:【点睛】本题考查折叠与勾股定理能正确表示直角三角形的三边是解题关键解析:32 【分析】根据折叠的性质和勾股定理即可求得DF .【详解】解:∵长方形纸片ABCD ,∴2CD AB ==,90C ∠=︒,根据折叠的性质可得'2AD CD AB ===,90AD F C '∠=∠=︒,D F DF '=, 设D F DF x '==,4AF AD DF x =-=-,根据勾股定理D F AD AF ''+=,即()2224x x +=-,解得32x =, 故答案为:32. 【点睛】 本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.三、解答题21.(1)13;(2)13. 【分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率; (2)用表格表示所有可能出现的结果,再求出两个景点相同的概率.【详解】解:(1)用字母,,A B C 分别表示云台山,青天河,青龙峡,甲选择的2个景点所有可能出现的结果情况如下表:共有6种等可能的结果,其中选择云台山、青天河有2种,∴P (云台山、青天河)=26=13, 故答案是:13; (2)用字母,,A B C 分别表示云台山,青天河,青龙峡,用列表法表示所有可能出现的结果如下:由上表可知,共出现9种等可能出现的结果,其中选择景点相同的有3种, 3193P ∴==(景点相同). 【点睛】 本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的关键.22.(1)14;(2)78【分析】(1)画树形图展示所有8种等可能的结果数,再找出甲、乙、丙三名学生在同一个餐厅用餐的结果数,然后根据概率公式求解;(2)从树状图中找出甲、乙、丙三名学生中至少有一人在B 餐厅用餐的结果数,然后根据概率公式求解.【详解】解:画树状图如下:甲、乙、丙选择餐厅的所有可能结果有8种,(1)甲、乙、丙三名学生在同一个餐厅用餐的可能结果有2种,∴P (甲、乙、丙三名学生在同一个餐厅用餐)2184==; (2)甲、乙、丙三名学生中至少有一人在B 餐厅用餐的可能结果有7种, ∴P (甲、乙、丙三名学生中至少有一人在B 餐厅用餐)=78. 【点睛】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.23.(1)12x =,22x =;(2)113x =,218x =-【分析】(1)使用配方法解一元二次方程;(2)因式分解法解一元二次方程.【详解】解:(1)2410x x -+=移项,得:241x x -=-配方,得:2224+21+2x x -=-2(2)3x -=2x -=∴12x =22x =(2)252340x x +-=(+18)(13)0x x -=+180x =或130x -=∴113x =,218x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.该旅游景区9,10两个月游客人数的平均增长率是56%【分析】根据增长后的游客人数=增长前的游客人数×(1+增长率),设9月、10月游客人数的平均增长率是x ,根据今年9月份游客人数比8月份增加了44%,10月份游客人数比9月份增加了69%,据此即可列方程解出即可.【详解】解:设该旅游景区9,10两个月游客人数的平均增长率是x ,根据题意,得()()()21144%169%x +=+⨯+,解得10.5656%x ==,2 2.56x =-(不合实际,舍去).答:该旅游景区9,10两个月游客人数的平均增长率是56%.【点睛】考查了一元二次方程的应用.若原来的数量为a ,平均每次增长或降低的百分率为x ,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a×(1±x )(1±x )=a ()21a ±.增长用“+”,下降用“−”.25.(1)见解析(2)见解析(3)∠BAC =90°【分析】(1)根据平行四边形的判定定理即可得到结论;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案;(3)当△ABC 为等腰直角三角形时,四边形AFBD 是正方形,理由为:由第一问证得的AF =BD ,且AF 与BD 平行,根据一组对边平行且相等的四边形为平行四边形可得四边形AFBD 为平行四边形,若三角形ABC 为等腰直角三角形,D 为斜边BC 的中点,根据直角三角形斜边上的中线等于斜边的一半可得AD =BD ,且根据三线合一得到AD 与BC 垂直,可得平行四边形的邻边相等且有一个角为直角,即可判定出四边形AFBD 为正方形.【详解】(1)证明:∵点D 是BC 边的中点,点E 是AD 的中点,∴DE 是△BCF 的中位线,∴DE ∥BF ,∴AD ∥BF ,∵AF ∥BC ,∴四边形AFBD 是平行四边形;(2)证明:(2)∵AB =AC ,BD =DC ,∴AD ⊥BC .∴∠ADB =90°.∵四边形AFBD 是平行四边形,∴四边形AFBD 是矩形;(3)当△ABC 为等腰直角三角形,且∠BAC =90°时,四边形AFBD 是正方形,理由如下: ∵四边形AFBD 为平行四边形,又∵等腰直角三角形ABC ,且D 为BC 的中点,∴AD =BD ,∠ADB =90°,∴四边形AFBD 为正方形.故答案为:∠BAC =90°.【点睛】此题考查了正方形的判定,平行四边形的判定和性质,矩形的判定,等腰直角三角形的性质,熟练掌握各判定定理是解题的关键.26.(1)OA OB OC ==;(2)OMN 是等腰直角三角形,证明见解析;(3)四边形AMON 的面积不变,理由见解析【分析】(1)连接OA ,由O 为BC 的中点可得OC OB =,由直角三角形斜边上的中线的性质可得12OA BC =,即可得OA OB OC ==. (2)由(1)不难证明45CAO B ∠=∠=︒,结合已知条件进而证明OAN ≌OBM ,即可得OM ON =,NOA MOB ∠=∠,即90NOM AOB ∠=∠=︒,所以OMN 是等腰直角三角形.(3)由(2)可得OAN S =OBM S ,进而将四边形AMON 的面积转化为AOB 的面积,AOB的面积保持不变,故四边形AMON的面积保持不变.【详解】(1)连接OA,Rt ABC△中,O为BC的中点,∴12OA BC=,OC OB=,∴122OA OB OB=⨯⨯=,∴OA OB OC==.(2)OMN是等腰直角三角形,证明如下:AB AC=,O为BC的中点,∴AO BC⊥,∴90AOB∠=︒,OA OB OC==,∴45CAO B∠=∠=︒,在OAN与OBM中,OA OBCAO BAN BM=⎧⎪∠=∠⎨⎪=⎩,∴OAN≌OBM,∴OM ON=,NOA MOB∠=∠,∴90NOM AOB∠=∠=︒,∴OMN是等腰直角三角形.(3)四边形AMON的面积保持不变,理由如下:由(2)可得:OANS=OBMS,∴OAN AOM OBM AOM AOBAMONS S S S S S=+=+=四边形.AOB的面积保持不变∴四边形AMON的面积保持不变.【点睛】本题主要考查直接三角形斜边上中线的性质以及全等三角形的判定与性质,掌握全等三角形的判定与性质定理并灵活运用是解题关键.。
【鲁教版】初三数学上期中试卷附答案
一、选择题1.如图,将△ABC 绕点C(0,1)旋转180°得到△A′B′C′,设点A 的坐标为(,)a b ,则点A′的坐标为( )A .(,)a b --B .2(),a b --+C .(),1a b --+D .(,1)a b ---2.如图,正方形ABCD 内一点P ,5AB =,2BP =,把ABP △绕点B 顺时针旋转90°得到CBP ',则PP '的长为( )A .22B .23C .3D .323.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .304.如图,正方形ABCD 的边长为1,将其绕顶点C 旋转,得到正方形CEFG ,在旋转过程中,则线段AE 的最小值为( )A 32B 2-1C .0.5D 51-5.如图,在等边ABC 中,点О在AC 上,且3,6AO CO ==,点P 是AB 上一动点,连接,OP 将线段OP 绕点О逆时针旋转60︒得到线段OD ,要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .86.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)7.对于二次函数()()2140y ax a x a =+->,下列说法正确的是( ) ①抛物线与x 轴总有两个不同的交点;②对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点; ③若该函数图象的对称轴为直线0x x =,则必有012x <<; ④当2x ≥时,y 随x 的增大而增大,则102a <≤ A .①②B .②③C .①④D .③④8.当0ab >时,2y ax =与y ax b =+的图象大致是( )A .B .C .D .9.已知二次函数2y ax bx c =++,当2x =时,该函数取最大值9.设该函数图象与 x 轴的一个交点的横坐标为1x ,若15x >则a 的取值范围是( ) A .3a 1-<<-B .2a 1-<<C .1a 0-<<D .2a 4<<10.在西宁市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间满足函数解析式y 112=-x 223+x 53+,由此可知该生此次实心球训练的成绩为( ) A .6米B .8米C .10米D .12米11.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ). A .()40012900x += B .()40021900x ⨯+=C .()24001900x += D .()()240040014001900x x ++++=12.有1人患了流感,经过两轮传染后共有81人患流感,则每轮传染中平均一个人传染了( )人. A .40B .10C .9D .813.如图,是一个简单的数值运算程序,则输入x 的值为( )A 31B .31C 31或31D .无法确定14.若()()2222230x y xy ++--=,则22x y +的值是( )A .3B .-1C .3或1D .3或-1二、填空题15.将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为________.16.如图是二次函数2(0)y ax bx c a =++≠图象的一部分,有下列4个结论:①0abc >;②240b ac ->;③关于x 的方程20ax bx c ++=的两个根是12x =-,23x =;④关于x 的不等式20ax bx c ++>的解集是2x >-.其中正确的结论是___________.17.某种洒杯的轴截面是一条抛物线段,在酒杯中加酒,当酒水深为lcm 时,液面宽为2cm ,将酒杯装满酒后,再倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm ,这个酒杯的杯口直径为______cm .18.已知关于x 的一元二次方程230x mx +=+的一个根为1,则方程的另一个根为________.19.对于任意实数a 、b ,定义:a ◆b =a 2+ab +b 2.若方程(x ◆2)﹣5=0的两根记为m 、n ,则(m +2)(n +2)=_____.20.已知1x ,2x 是方程2250x x --=的两个实数根,则2212123x x x x ++=__________.三、解答题21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.ABC 的三个顶点A ,B ,C 都在格点上,将ABC 绕点A 按顺时针方向旋转90°得到AB C ''.(1)在正方形网格中,画出AB C ''; (2)求线段CC '的长度.22.如图,△ABC 的顶点坐标分别为A (0,1),B (3,3),C (1,3).(1)画出△ABC 关于点O 的中心对称图形△A 1B 1C 1. (2)①画出△ABC 绕原点O 逆时针旋转90°的△A 2B 2C 2; ②直接写出点B 2的坐标为 .23.已知抛物线 ()21y x m x m =-+-+经过点()23,(1)求m 的值及抛物线的顶点坐标;(2)当x 取什么值时,y 随着x 的增大而减小?24.有这样一个问题:探究函数243y x x =-+的图象与性质.小丽根据学习函数的经验,对函数243y x x =-+的图象与性质进行了探究.下面是小丽的探究过程,请补充完整:(1)函数243y x x =-+的自变量x 的取值范围是_______.(2)如图,在平面直角坐标系xOy 中,画出了函数243y x x =-+的部分图象,用描点法将这个函数的图象补充完整;(3)对于上面的函数243y x x =-+,下列四个结论: ①函数图象关于y 轴对称; ②函数既有最大值,也有最小值;③当2x >时,y 随x 的增大而增大,当2x <-时,y 随x 的增大而减小; ④函数图象与x 轴有2个公共点. 所有正确结论的序号是_____.(4)结合函数图象,解决问题:若关于x 的方程243x x k -+=有4个不相等的实数根,则k 的取值范围是____.25.某种品牌的衬衫,进货时的单价为50元.如果按每件60元销售,可销售800件;售价每提高1元,其销售量就减少20件.若要获得12000元的利润,则每件的售价为多少元? 26.解方程:2420x x ++=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设A 的坐标为(,)m n ,根据旋转的性质得到C 是A 和A '的中点,利用中点公式可以求出点A '的坐标. 【详解】解:设A 的坐标为(,)m n , ∵A 和A '关于点(0,1)C 对称,∴02m a +=,12n b+=,解得m a =-,2n b =-+, ∴点A '的坐标2(),a b --+.故选:B . 【点睛】本题考查图形的旋转,解题的关键是利用中点公式求出旋转后的点坐标.2.A解析:A 【分析】由△ABP 绕点B 顺时针旋转90°得到△CBP',根据旋转的性质得BP=BP′,∠PBP′=90,则△BPP′为等腰直角三角形,由此得到BP ,即可得到答案.. 【详解】解:解:∵△ABP 绕点B 顺时针旋转90°得到△CBP', 而四边形ABCD 为正方形,BA=BC , ∴BP=BP′,∠PBP′=90,∴△BPP′为等腰直角三角形,而BP=2, ∴. 故选:A . 【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了正方形和等腰直角三角形的性质.3.A解析:A 【分析】根据旋转的性质找到对应点、对应角、对应线段作答. 【详解】解:∵3120B A ∠=∠=︒ ∴120B ∠=︒,40A ∠=︒∵△ABC 绕点C 逆时针旋转80°得到△DEC , ∴∠D=∠A=40°,∠DEC=∠B=120°, ∴∠DCE=180°-40°-120°=20°, ∵∠DCA=80°∴∠α=∠DCA-∠DCE=80°-20°=60°. 故选:A . 【点睛】本题考查旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点-旋转中心;②旋转方向;③旋转角度.4.B解析:B 【分析】分析题易可知点E 的运动轨迹是以DC 为半径以C 为圆心的圆,当A ,E ,C 三点共线且E在正方形ABCD内部的时候AE值最小.【详解】解:如图所示,连接AC∵正方形边长为1∴AC=2当A,E,C三点共线且E在正方形ABCD内部的时候AE值最小∴AE=AC-CE=2-1故选:B5.C解析:C【分析】由于将线段OP绕点O逆时针旋转60°得到线段OD,当点D恰好落在BC上时,易得:△ODP是等边三角形,根据旋转的性质可以得到△AOP≌△CDO,由此可以求出AP的长.【详解】解:当点D恰好落在BC上时,OP=OD,∠A=∠C=60°,如图.∵∠POD=60°∴∠AOP+∠COD=∠COD+∠CDO=120°,∴∠AOP=∠CDO,∴△AOP≌△CDO,∴AP=CO=6.故选:C.【点睛】此题要把旋转的性质和等边三角形的性质结合求解.属探索性问题,难度较大,近年来,探索性问题倍受中考命题者青睐,因为它所强化的数学素养,对学生的后续学习意义深远.6.D解析:D 【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB =23,∴AD =AB AC BC ⋅=232⨯=3,∴BD =2AB BC =223()=3.∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A ′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.7.B解析:B 【分析】①由y=0,一元二次方程()214=0ax a x +-,判别式()2=14a ∆-=0即可判断①;②抛物线中c=0,恒过原点,当x=4,函数值为4即可判断②;③抛物线对称轴为:122x a =-当11222a<-<时,解得102a <<,求出12a >即可判断③;④0a >,对称轴为:1222x a=-<,由抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大即可判断④. 【详解】①由y=0,()214=0ax a x +-,()2=14a ∆-,当1=04a >时,()2=14=0a ∆-有一个交点,为此抛物线与x 轴总有两个不同的交点不正确;②由()()2140y ax a x a =+->中c=0,抛物线恒过原点(0,0),当x=4,()4=1166144416y a a a a ⨯-=++=-,抛物线恒过(4,4),为此对于任何满足条件的a ,该二次函数的图象都经过点()4,4和()0,0两点正确;③()()2140y ax a x a =+->对称轴为:1441122222b a a x a a a a--=-=-==-, 当11222a<-<时,解得102a <<,∴12a >, 为此当12a >,若该函数图象的对称轴为直线0x x =,则必有012x <<正确; ④()()2140y ax a x a =+->对称轴为:122x a=-, ∵0a >,抛物线开口向上,在对称轴的右侧,y 随着x 的增大而增大, 由此1222x a=-≤, 解得10a>即0a >, 为此当2x ≥时,y 随x 的增大而增大,则102a <≤不正确. 故选择:B . 【点睛】本题考查抛物线与一元二次方程的关系,抛物线过定点,抛物线的对称轴,抛物线的增减性等问题,掌握抛物线的性质以及一元二次方程根的判别式是解题关键.8.D解析:D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项. 【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确 故选:D . 【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.9.C【分析】根据二次函数2y ax bx c =++,当2x =时,该函数取最大值9,可以写出该函数的顶点式,得到0a <,再根据该函数图象与x 轴的一个交点的横坐标为1x ,15x >,可知,当5x =时,0y >,即可得到a 的取值范围,本题得以解决.【详解】 解:二次函数2y ax bx c =++,当2x =时,该函数取最大值9, 0a ∴<,该函数解析式可以写成2(2)9y a x =-+,设该函数图象与x 轴的一个交点的横坐标为1x ,15x >,∴当5x =时,0y >,即2(52)90a -+>,解得,1a >-,a ∴的取值范围时10a -<<,故选:C .【点睛】本题考查二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质解答.10.C解析:C【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】解:当y =0时,即y 112=-x 223+x 53+=0, 解得:x =﹣2(舍去),x =10.∴该生此次实心球训练的成绩为10米.故选:C .【点睛】 本题考查了二次函数的应用中函数式中变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.11.C解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量. 12.D解析:D【分析】设每轮传染中平均一个人传染了x 人,则一轮传染后共有(1+x )人被传染,两轮传染后共有[(1+x )+x(1+x)]人被传染,由题意列方程计算即可.【详解】解:设每轮传染中平均一个人传染了x 人,由题意,得:(1+x )+x(1+x)=81,即x 2+2x ﹣80=0,解得:x 1=8,x 2=﹣10(不符合题意,舍去),故每轮传染中平均一个人传染了8人,故选:D .【点睛】本题考查了一元二次方程的应用,解一元二次方程,理解题意,正确列出方程是解答的关键.13.C解析:C【分析】先根据数值运算程序可得一个关于x 的一元二次方程,再利用直接开平方法解方程即可得.【详解】由题意得:()2319x --=-, ()213x -=,1-=x ,1x =±即1x =或1x =,故选:C .【点睛】本题考查了解一元二次方程,根据数值运算程序正确建立方程是解题关键.14.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题15.y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减左加右减可得平移后的函数解析式【详解】解:将二次函数 的图象先向左平移2个单位再向下平移4个单位则所得图象的函数表达式为:y=2(x解析:y=2(x+1)2-1【分析】利用二次函数图像平移规律:上加下减,左加右减,可得平移后的函数解析式.【详解】解:将二次函数 ()2213y x =-+ 的图象先向左平移2个单位,再向下平移4个单位,则所得图象的函数表达式为:y=2(x-1+2)2+3-4∴y=2(x+1)2-1.故答案为:y=2(x+1)2-1.【点睛】本题考查了二次函数与几何变换,正确掌握平移规律是解题关键. 16.②③【分析】根据抛物线开口方向对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断【详解】解:∵抛物线开口解析:②③【分析】根据抛物线开口方向,对称轴的位置以及与y 轴的交点可对①减小判断;利用抛物线与x 轴的交点个数可对②进行判断;根据二次函数的性质可对③进行判断;利用图象则可对④进行判断.【详解】解:∵抛物线开口向下,交y 轴的正半轴,∴a <0,c >0,∵-2b a =12, ∴b =-a >0, ∴abc <0,所以①错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,即b2>4ac ,所以②正确;∵抛物线y =ax 2+bx +c 经过点(-2,0),而抛物线的对称轴为直线x=12, ∴点(-2,0)关于直线x =12的对称点(3,0)在抛物线上, ∴关于x 的一元二次方程ax 2+bx +c =0的两根是x 1=-2,x 2=3,所以③正确.由图象可知当-2<x <3时,y >0,∴不等式ax 2+bx +c >0的解集是-2<x <3,所以④错误;故答案为②③.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac =0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.17.【分析】建立如下图所示的平面直角坐标系相当于抛物线经过点(00)(11)求得解析式为y=x²设杯口直径为2d 设倒满酒时酒的高度为m 相当于抛物线经过(dm)再由倾斜30°时杯中酒深度为2cm 时将m 用d【分析】建立如下图所示的平面直角坐标系,相当于抛物线经过点(0,0),(1,1)求得解析式为y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),再由倾斜30°时杯中酒深度为2cm 时将m 用d 代数式表示,再代入解析式中求出d 即可.【详解】解:如下图所示以酒杯内最低点为原点建立直角坐标系,故抛物线的顶点坐标为原点,设抛物线解析式为y=ax²,当酒水深为lcm 时,液面宽为2cm ,相当于抛物线且经过点(1,1),代入解析式中,a=1, 故抛物线解析式为:y=x²,设杯口直径为2d ,设倒满酒时酒的高度为m ,相当于抛物线经过(d,m),由“倾斜至与水平面成30°,此时酒杯中余下酒深度为2cm”,如下图所示:此时FH=EC=2,∠DEF=30°,DF=d ,在Rt △EDF 中,EF=2DF=2d ,3d ,在Rt △OEC 中,OE=2EC=4,∴OD=OE+ED=43d , ∴m=OD=43d , ∴将点(,43d d ),代入y=x², 即:243d d ,解得:3192d (负值舍去), 319【点睛】本题考查了二次函数的实际应用,读懂题目意思,学会建立直角坐标系并求出对应解析式是解决本题的关键.18.3【分析】先将x=1代入求得m 的值然后解一元二次方程即可求出另一根【详解】解:∵一元二次方程的一个根为1∴1+m+3=0即m=-4∴(x-1)(x-3)=0x-1=0x-3=0∴x=1或x=3即该方解析:3【分析】先将x=1代入求得m 的值,然后解一元二次方程即可求出另一根.【详解】解:∵一元二次方程230x mx +=+的一个根为1∴1+m+3=0,即m=-4∴2430x x -+=(x-1)(x-3)=0x-1=0,x-3=0∴x=1或x=3,即该方程的另一根为3.故答案为3.【点睛】本题主要考查了一元二次方程的解和解一元二次方程,关于x 的一元二次方程230x mx +=+的一个根为1求得m 的值成为解答本题的关键.19.-1【分析】根据新定义可得出mn 为方程x2+2x−1=0的两个根利用根与系数的关系可得出m +n =−2mn =−1变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算【详解】解析:-1【分析】根据新定义可得出m 、n 为方程x 2+2x−1=0的两个根,利用根与系数的关系可得出m +n =−2、mn =−1,变形(m +2)(n +2)得到mn +2(m +n )+4然后利用整体代入得方法进行计算.【详解】解:∵(x ◆2)﹣5=x 2+2x +4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m +n =﹣2,mn =﹣1,∴(m +2)(n +2)=mn +2(m +n )+4=﹣1+2×(﹣2)+4=﹣1.故答案为﹣1.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0)的根与系数的关系:若方程两根为x 1,x 2,则x 1+x 2=b a -,x 1•x 2=c a. 20.—1【分析】根据根与系数之间的关系解题即可【详解】∵是方程的两个实数根∴∴故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系解题的关键是根据公式正确计算解析:—1【分析】根据根与系数之间的关系解题即可.【详解】∵1x ,2x 是方程2250x x --=的两个实数根,∴122x x +=,125x x =,∴()()2222112*********x x x x x x x x ++++=+-=-=, 故答案为:-1【点睛】本题考查了一元二次方程根与系数之间的关系,解题的关键是根据公式正确计算.三、解答题21.(1)图见解析;(2)42.【分析】(1)先利用网格特点和旋转的性质画出点,C B '',再顺次连接点,,A C B ''即可得; (2)利用旋转的性质、勾股定理即可得.【详解】 (1)分以下三步:①先利用网格特点和旋转的性质画出点C ',②再利用旋转的性质可得,90B B A C BC AC CB '=∠'''=∠=︒,由此可画出点B ', ③顺次连接点,,A C B ''即可,如图中AB C ''即为所作:(2)由网格特点和旋转的性质得:4,90AC AC CAC ''==∠=︒,则2242CC AC AC ''=+=,即线段CC '的长度为42【点睛】本题考查了旋转的定义和性质、勾股定理,熟练掌握旋转的性质是解题关键.22.(1)作图见解析;(2)①作图见解析;②(-3,3).【分析】(1)利用关于原点对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)①利用网格特点和旋转的性质画出A、B、C的对应点A2、B2、C2即可;②利用所画图形写出B2点的坐标.【详解】解:(1)如图,△A1B1C1为所作;(2)①画如图,△A2B2C2为所作;②点B2的坐标为(﹣3,3).故答案为(-3,3).【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角.23.(1)m=3,(1,4);(2)当x>1时,y随x的增大而减小.【分析】(1)将已知点的坐标代入函数解析式,建立关于m的方程,解方程求出m的值,再将函数解析式转化为顶点式,可得到抛物线的顶点坐标.(2)利用函数解析式可知a=-1<0,结合对称轴可得到y随x的增大而减小时自变量x的取值范围.【详解】(1)解:由题意得-4+2(m-1)+m=3解之:m=3,∴抛物线的解析式为y=-x2+2x+3∴y= -(x-1)2+4∴抛物线的顶点坐标为(1,4);(2)解:∵a=-1<0,∴当x>1时,y随x的增大而减小.【点睛】本题考查了二次函数的性质以及求二次函数的顶点坐标、二次函数的增减性,熟练掌握二次函数的性质是解题的关键.24.(1)x 为任意实数;(2)见解析;(3)①③;(4)13k -<<【分析】(1)根据函数解析式可以写出x 的取值范围;(2)根据函数图象的特点,可以得到该函数关于y 轴对称,从而可以画出函数的完整图象;(3)根据函数图象可以判断各个小题中的结论是否成立;(4)根据函数图象,可以写出关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根时,k 的取值范围.【详解】解:(1)∵函数y =x 2-4|x |+3,∴x 的取值范围为任意实数,故答案为:任意实数;(2)由函数y =x 2-4|x |+3可知,x >0和x <0时的函数图象关于y 轴对称,函数图象如右图所示;(3)由图象可得,函数图象关于y 轴对称,故①正确;函数有最小值,但没有最大值,故②错误;当x >2时,y 随x 的增大而增大,当x <-2时,y 随x 的增大而减小,故③正确; 函数图象与x 轴有4个公共点,故④错误;故答案为:①③;(4)由图象可得,关于x 的方程x 2-4|x |+3=k 有4个不相等的实数根,则k 的取值范围是-1<k <3, 故答案为:-1<k <3.【点睛】本题考查抛物线与x 轴的交点、二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用数形结合的思想解答.25.每件的售价为70元或80元.【分析】要求衬衫的单价,就要设每件的售价为x 元,则每件衬衫的利润是(x-50)元,销售服装的件数是[800-20(x-60)]件,以此等量关系列出方程即可.【详解】解:设每件的售价为x 元,根据题意,得()()50800206012000 ,x x ⎡⎤⎣⎦---=化简整理,得215056000x x -+=()70800()x x --=1270,80x x ∴==答:每件的售价为70元或80元.【点睛】考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.12x =-22x =-【分析】方程利用配方法求出解即可.【详解】∵2420x x ++=,∴242x x +=-,∴24424x x ++=-+,∴()222x +=, ∴2x =-±∴12x =-22x =-【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.。
【鲁教版】九年级数学上期中试题(附答案)
一、选择题1.有四根长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为( )A .14B .23C .34D .122.从{3,2,1,0,1,2,3}---这七个数中随机抽取一个数记为a ,则a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解,但不是方程2320x x -+=的实数解的概率为( ). A .17 B .27 C .37 D .473.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是( )A .16B .115C .18D .1124.一个不透明的盒子里只装有白色和红色两种颜色的球,这些球除颜色外没有其他不同。
若从盒子里随机摸取一个球,有三种可能性相等的结果,设摸到的红球的概率为P ,则P 的值为( )A .13B .12C . 13或12D . 13或23 5.若关于x 的一元二次方程2(2)20a x x --+=有实数根,则整数a 的最大值为( ) A .−2 B .−1 C .1 D .26.关于x 的一元二次方程2x 2x m 0-+=无实数根,则实数m 的取值范围是( ) A .1m < B .m 1≥ C .1m D .1m7.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5 8.由于国内疫情得到缓和,餐饮业逐渐恢复,某地一家餐厅重新开张,开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天的收入约为2420元,若设每天的增长率为x ,则列方程为( )A .2000(1)2420x +=B .2000(12)2420x +=C .22000(1)2420x -=D .22000(1)2420x +=9.如图,已知△ABC 中,AB =AC ,AD 是∠BAC 的平分线,AE 是∠BAC 的外角平分线,ED ∥AB 交AC 于点G .下列结论:①AD ⊥BC ;②AE ∥BC ;③AE =AG ;④AD 2+AE 2=4AG 2,其中正确结论的个数是( )A .1B .2C .3D .410.如图,在ABC 中,D 、E 分别是AB 、AC 的中点,16BC =,F 是线段DE 上一点,连接AF 、CF ,4DE DF =,若90AFC ∠=︒,则AC 的长度是( )A .6B .8C .10D .1211.如图,在平行四边形ABCD 中,AD =2AB 、点F 是AD 的中点,作CE ⊥AB 垂足E 在线段AB 上,连接 EF 、CF ,则下列结论:①2BCD DCF ∠=∠;②EF =CF ; ③S △BCE =S △CEF ;④∠DFE =3∠AEF .其中正确的结论有( )A .1个B .2个C .3个D .4个 12.如图,在菱形ABCD 中,AC 与BD 相交于点O ,AC =8,BD =6,则菱形的周长等于( )A .40B .47C .24D .20二、填空题13.已知数据:125π40,其中无理数出现的频率为_____. 14.在四张完全相同的卡片上分别写上12-,0,1,2四个数字,然后放入一个不透明的袋中摇匀.现从中随机抽取第一张卡片记下数字a ,放回摇匀,然后再随机抽取第二张卡片,记下数字b ,且a b m +=,则m 的值使关于x 的一元二次方程232102m x x ⎛⎫-++= ⎪⎝⎭有实数解的概率为________. 15.关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根,则k 的取值范围是__________.16.如果菱形的两对角线的长分别是关于x 的一元二次方程2240x mx ++=的两实数根,那么该菱形的面积是____.17.如图,把矩形纸片ABCD (BC CD >)沿折痕DE 折叠,点C 落在对角线BD 上的点P 处;展开后再沿折痕BF 折叠,点C 落在BD 上的点Q 处;沿折痕DG 折叠,点A 落在BD 上的点R 处.若4PQ =,7PR =,则BD =___________.18.如图,四边形ABCD 是正方形,AB =1,以AB 为对角线作第二个正方形AEBF ,以EB 为对角线作第三个正方形EGBH ,以此类推,则第n 个正方形的面积是_______ .19.如下图,在平面直角坐标系中有一边长为l 的正方形OABC ,边OA 、OC 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形OB l B 2C 2,照此规律作下去,则点B 2020的纵坐标为_______.20.在数学课上,老师提出问题:如图,将锐角三角形纸片()ABC BC AC >经过两次折叠,得到边,,AB BC CA 上的点,,D E F ,使得四边形DECF 恰好为菱形.小明给出的折叠方法:如图,①AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;②C 点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .老师说:“小明的作法正确.”请回答:小明这样折叠的依据是①______是平行四边形;②______是菱形.三、解答题21.某市合唱团为开展“百人合唱爱国歌”网络“线上云演出”活动,需招收新成员、小霞、小健、小婷、小宇四名学生报名参加了应聘活动,其中小霞、小健来自七年级,小婷、小宇来自八年级.现对这四名学生采取随机抽取的方式进行网络线上面试.(1)若随机抽取一名学生,恰好抽到学生小霞的概率为;(2)若随机抽取两名学生,请用列表法或树状图法求抽中两名学生均来自七年级的概率.22.某校七年级积极实施拓展性课程,计划开设“羽毛球”、“电影鉴赏”、“篮球”和“美食文化”等多个拓展性课程供学生选择,要求每位学生都自主选择其中一门拓展性课程,为此,随机调查了本校部分学生选择拓展性课程的意向,并将调查结果绘制成如下统计图表(不完整):选择意向羽毛球电影鉴赏篮球美食文化其他所占百分比a35%b20%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a,b的值;(2)将条形统计图补充完整;(3)若该校七年级共有480名学生,请估算全校选择“篮球”拓展性课程的学生人数是多少?(4)现有甲、乙两位同学选拓展性课程,他们各自从羽毛球,电影鉴赏,篮球和美食文化四个拓展性课程中任意选择一门,请画出树状图或表格,并求出他们其中一位选择了电影鉴赏,另一位选择了美食文化的概率是多少?23.已知关于x 的一元二次方程为210mx nx -+=.(1)当2n m =+时,不解方程,判断方程根的情况;(2)在(1)的条件下,若2m =,求解这个方程.24.已知关于x 的一元二次方程22230x x m ++-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,求此时方程的根.25.如图,长方形ABCD 中,AD =a cm ,AB =b cm ,且a 、b 满足|8-a|+(b -4)2=0.(1)长方形ABCD 的面积为 ;(2)动点P 在AD 所在直线上,从A 出发向左运动,速度为2cm/s ,动点Q 在DC 所在直线上,从D 出发向上运动,速度为4cm/s .动点P 、Q 同时出发,设运动时间为t 秒. ①当点P 在线段AD 上运动时,求以D 、P 、B 、Q 为顶点的四边形面积;(用含t 的式子表示)②求当t 为何值时,S △BAP =S △CQB .26.已知:如图,在△ABC 中,∠ABC =90°, AB =BC ,D 是AC 的中点,DE ⊥DF ,DE 交AB 于点E ,DF 交BC 于点F .(1)求证:AE =BF ;(2)连接EF ,求∠DEF 的度数;(3)若AC =42,直接写出EF 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm 、3cm 、4cm 、5cm 的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm ,3cm ,4cm ;由于4﹣2<3<4+2,能构成三角形;②取2cm ,4cm ,5cm ;由于5﹣2<4<5+2,能构成三角形;③取3cm ,4cm ,5cm ;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=34故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关键. 2.B解析:B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩①② 解①得,2x >-,解②得,34x >-. ∴34x >-.∵a 的值是不等式组352132x x x x ⎧+>⎪⎪⎨⎪<+⎪⎩的解, ∴0,1,2,3a =.方程23120x x -+=,解得11x =,22x =. ∵a 不是方程232x x -+的解,∴0a =或3.∴满足条件的a 的值为1,2(2个).∴概率为27. 故选B .3.B解析:B【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种,则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是213015; 故选:B .【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.D解析:D【分析】分情况讨论后,直接利用概率公式进行计算即可.【详解】解:当白球1个,红球2个时:摸到的红球的概率为:P=23 当白球2个,红球1个时:摸到的红球的概率为:P=13 故摸到的红球的概率为:13或23故选:D【点睛】本题考查了概率公式,掌握概率公式及分类讨论是解题的关键. 5.C解析:C【分析】根据一元二次方程有实数根,得到根的判别式大于等于0,求出a 的范围,确定出所求即可.【详解】解:∵关于x 的一元二次方程2(2)20a x x --+=有实数根,∴△=1−8(a−2)≥0,且a −2≠0,解得:a≤178且a≠2, 则整数a 的最大值为1.故选C .【点睛】此题考查了一元二次方程根的判别式,以及一元二次方程的定义,掌握一元二次方程根与判别式的关系是解本题的关键.6.D解析:D【分析】根据判别式的意义得到△=(-2)2-4m<0,然后解不等式即可.【详解】解:∵关于x 的一元二次方程2x 2x m 0-+=无实数根,∴△=(-2)2-4m<0,解得m>1.故选:D .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.7.C解析:C【分析】由方程有实数根可知根的判别式b 2﹣4ac ≥0,结合二次项的系数非零,可得出关于a 的一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a ≥1且a ≠5,故选:C .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组,由根的判别式结合二次项系数非零得出不等式组是关键.8.D解析:D【分析】根据开业第一天收入约为2000元,之后两天的收入按相同的增长率增长,第3天收入约为2420元列方程即可得到结论.【详解】设每天的增长率为x ,依题意,得:22000(1)2420x +=.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.C解析:C【分析】连接EC ,根据等腰三角形的性质得出AD ⊥BC ,即可判断①;求出∠FAE=∠B ,再根据平行线的性质得出AE ∥BC ,即可判断②;求出四边形ABDE 是平行四边形,根据平行四边形的性质得出AE=BD ,求出AE=CD ,根据矩形的判定推出四边形ADCE 是矩形,根据矩形的性质得出AC=DE ,AG=CG ,DG=EG ,求出DG=AG=CG=EG ,根据勾股定理判断④即可;根据AE=BD=12BC和AG=12AC判断③即可.【详解】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠FAC,∴∠FAC=2∠FAE,∵∠FAC=∠B+∠ACB,∴∠FAE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=12BC,AG=12AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.【点睛】本题考查了勾股定理,等腰三角形的性质,平行线的性质和判定,平行四边形的性质和判定,矩形的性质和判定等知识点,能综合运用知识点进行推理是解此题的关键.10.D解析:D【分析】先证得DE 是△ABC 的中位线,求出DE=8,及EF=6,再根据90AFC ∠=︒证得AC=2EF 求出答案.【详解】∵D 、E 分别是AB 、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=8, ∵4DE DF =,∴DF=2,EF=6,∵90AFC ∠=︒,AE=CE ,∴AC=2EF=12,故选:D .【点睛】此题考查三角形中位线的判定及性质定理,直角三角形斜边中线等于斜边一半的性质,熟练掌握各定理并运用解决问题是解题的关键.11.C解析:C【分析】由在平行四边形ABCD 中,AD=2AB ,F 是AD 的中点,证明AF=FD=CD ,继而证得①2BCD DCF ∠=∠;然后延长EF ,交CD 延长线于M ,分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF ≌△DMF (ASA ),可得EF MF =,再证明90ECM ∠=︒,从而可判断②;由,CBE CEF S S =可得:13CBE ABCD S S =,可得:2,3BE AB =与已知不符,从而可判断③;设∠FEC=x ,则∠FCE=x ,再分别表示∠EFD=9018022703x x x ︒-+︒-=︒-,∠AEF=90,M FCM x ∠=∠=︒-从而可判断④.【详解】解:①∵F 是AD 的中点,∴AF=FD ,∵在▱ABCD 中,AD=2AB ,∴AF=FD=CD ,∴∠DFC=∠DCF ,∵AD ∥BC ,∴∠DFC=∠FCB ,∴∠DCF=∠BCF ,∴∠BCD 2DCF =∠,故①正确;②延长EF ,交CD 延长线于M ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DFM 中,A FDM AF DFAFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF (ASA ),∴FE=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴EF=CF ,故②正确;③∵EF=FM ,EFC CFM S S ∴=,若,CBE CEF SS = 则13CBE ABCD S S =11,23BE EC AB EC ∴= 32,BE AB ∴=2,3BE AB ∴= 与已知条件不符,故CBE CEF S S =不一定成立,故③错误;④设∠FEC=x ,,EF CF =∴∠FCE=x ,∴∠DCF=∠DFC=90x ︒-,∠EFC=1802x ︒-,∴∠EFD=9018022703x x x ︒-+︒-=︒-,∵∠AEF=90,M FCM x ∠=∠=︒-∴∠DFE=3∠AEF ,故④正确.故选:C .【点睛】本题考查的是平行四边形的性质,三角形全等的判定与性质,平行线的性质,三角形的内角和定理,直角三角形斜边上的中线的性质,等腰三角形的性质,掌握以上知识是解题关键.12.D解析:D【分析】根据菱形的性质可求得BO 、AO 的长,AC ⊥BD ,根据勾股定理可求出AB ,进而可得答案.【详解】解:∵四边形ABCD 是菱形,∴AB =BC =CD =DA ,132==BO BD ,142AO AC ==,AC ⊥BD ,则在Rt △ABO 中,根据勾股定理得:5AB ==,∴菱形ABCD 的周长=4×5=20.故选:D .【点睛】本题考查了菱形的性质和勾股定理,属于基础题目,熟练掌握菱形的性质是解题的关键.二、填空题13.【分析】把每个数据进行化简对最简结果进行有理数无理数的甄别后根据频率意义计算即可【详解】∵=2∴0是有理数π是无理数∴无理数出现的频率为故答案为:【点睛】本题考查了频率的意义熟练掌握频率的数学意义是 解析:25. 【分析】把每个数据进行化简,对最简结果进行有理数,无理数的甄别,后根据频率意义计算即可.【详解】 ∵, ∴120π是无理数, ∴无理数出现的频率为25.故答案为:25. 【点睛】 本题考查了频率的意义,熟练掌握频率的数学意义是解题的关键.14.【分析】先根据一元二次方程有实数解得出m 的取值范围在根据抽取原则得出的所有可能得数再用概率公式求解即可【详解】解:若一元二次方程实数解则即当时有b 四种情况012那么当时有b 四种情况012那么当时有b 解析:1116【分析】先根据一元二次方程有实数解得出m 的取值范围,在根据抽取原则得出+a b 的所有可能得数,再用概率公式求解即可.【详解】 解:若一元二次方程232102m x x ⎛⎫-++= ⎪⎝⎭实数解, 则3002m ⎛⎫-≠∆≥ ⎪⎝⎭,, 即3522m m ≠≤,, 当12a =- 时,有b 四种情况12-,0,1,2, 那么1131222a b a b a b a b +=-+=-+=+=,,,, 当0a = 时,有b 四种情况12-,0,1,2, 那么10122a b a b a b a b +=-+=+=+=,,,,当1a = 时,有b 四种情况12-,0,1,2, 那么11232a b a b a b a b +=+=+=+=,,,, 当2a = 时,有b 四种情况12-,0,1,2, 那么32342a b a b a b a b +=+=+=+=,,,, ∵a b m +=, 满足3522m m ≠≤,条件的只有11个,所有情况共有16种, 故一元二次方程有实数解的概率为1116. 故答案为:1116. 【点睛】本题主要考查一元二次方程根的判别式、概率的计算等.注意概率的求法:概率=所求情况数与总情况数之比.15.且【分析】根据一元二次方程有两个不相等的实数根知△=b2-4ac >0结合一元二次方程的定义列出关于k 的不等式组解不等式组即可得答案【详解】解:∵关于的一元二次方程有两个不相等的实数根∴解得:且故答案 解析:23k >且2k ≠ 【分析】根据一元二次方程2(2)430k x x ---=有两个不相等的实数根,知△=b 2-4ac >0,结合一元二次方程的定义列出关于k 的不等式组,解不等式组即可得答案.【详解】解:∵关于x 的一元二次方程2(2)430k x x ---=有两个不相等的实数根, ∴()()()22044230k k -≠⎧⎪⎨--⨯-⨯->⎪⎩, 解得:23k >且2k ≠, 故答案为:23k >且2k ≠. 【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零结合根的判别式△=b 2−4ac>0,列出关于k 的一元一次不等式组是解题的关键.16.12【分析】可根据韦达定理求出一元二次方程的两根之积接着通过菱形面积公式求解即可【详解】解:设的两根为则一元二次方程的两实数根为菱形的两对角线的长菱形的面积===12故答案为:12【点睛】本题主要考解析:12【分析】可根据韦达定理求出一元二次方程的两根之积,接着通过菱形面积公式求解即可.【详解】解:设2240x mx ++=的两根为12x x 、,则1224x x =,一元二次方程的两实数根12x x 、为菱形的两对角线的长,∴菱形的面积=1212x x =1242⨯=12. 故答案为:12.【点睛】本题主要考查一元二次方程的韦达定理,还涉及菱形的面积运算,属于基础题,熟练掌握韦达定理及菱形的面积公式是解决本题的关键.17.13【分析】由折叠的性质可得CD=PDAD=DRBC=BQ 由勾股定理可得(CD+7+CD4)2=(CD+7)2+CD2可求CD=5由勾股定理可求解【详解】解:∵四边形ABCD 是矩形∴AD=BC ∠C=解析:13【分析】由折叠的性质可得CD=PD ,AD=DR ,BC=BQ ,由勾股定理可得(CD+7+CD -4)2=(CD+7)2+CD 2,可求CD=5,由勾股定理可求解.【详解】解:∵四边形ABCD 是矩形,∴AD=BC ,∠C=90°,由折叠的性质可得:CD=PD ,AD=DR ,BC=BQ ,∵PQ=4,PR=7,∴PQ=BQ-(BD-PD )=BC -BD+CD=4,PR=AD -PD=BC -CD=7,∴BD=BC+CD -4,BC=CD+7,∵BD 2=BC 2+CD 2,∴(CD+7+CD -4)2=(CD+7)2+CD 2,∴CD 1=5,CD 2=-4(舍去),∴BC=12,∴13==,故答案为:13.【点睛】本题考查了翻折变换,矩形的性质,利用勾股定理列出方程是本题的关键.18.【分析】由正方形ABCD 的边长为1求出分别算出第二个第三个正方形的面积即可推导得出答案;【详解】∵正方形ABCD 的边长为1∴∴∴∴故答案是:【点睛】本题主要考查了正方形的性质准确分析计算是解题的关键 解析:112n - 【分析】由正方形ABCD 的边长为1,求出122AE AF AC ===,1122AH AB ==,分别算出第二个、第三个正方形的面积,即可推导得出答案;【详解】∵正方形ABCD 的边长为1,∴1AB =,AC =,∴122AE AF AC ===, 1122AH AB ==,∴1正方形=1ABCD S S =,2正方形1222AEBF S S ==⨯=, 3正方形111224HEGB S S ==⨯=, ⋯, ∴112n n S -=. 故答案是:112n - 【点睛】本题主要考查了正方形的性质,准确分析计算是解题的关键.19.【分析】首先求出B1B2B3B4B5B6B7B8B9的坐标找出这些坐标的之间的规律然后根据规律计算出点B2020的坐标【详解】解:∵正方形OABC 边长为1∴OB=∵正方形OBB1C1是正方形OABC解析:10102-【分析】首先求出B 1、B 2、B 3、B 4、B 5、B 6、B 7、B 8、B 9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B 2020的坐标.【详解】解:∵正方形OABC 边长为1,∴∵正方形OBB 1C 1是正方形OABC 的对角线OB 为边,∴OB 1=2,∴B 1点坐标为(0,2),同理可知OB 2B 2点坐标为(-2,2),同理可知OB 3=4,B 3点坐标为(-4,0),B 4点坐标为(-4,-4),B 5点坐标为(0,-8),B 6(8,-8),B 7(16,0)B 8(16,16),B 9(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形∵2020÷8=252…4,∴B2020的纵横坐标符号与点B4的相同,横坐标为负值,纵坐标是负值,∴B2020的坐标为(-21010,-21010).故答案为:10102 .【点睛】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的2倍,此题难度较大.20.对角线互相平分的四边形对角线互相垂直的平行四边形【分析】根据折叠的性质得到CD和EF互相垂直且平分结合菱形的判定定理对角线互相垂直平分的四边形是菱形证得结论【详解】解:如图连接DFDE根据折叠的性质解析:对角线互相平分的四边形对角线互相垂直的平行四边形【分析】根据折叠的性质得到CD和EF互相垂直且平分,结合菱形的判定定理“对角线互相垂直平分的四边形是菱形”证得结论.【详解】解:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.∴依据是:①对角线互相平分的四边形是平行四边形;②对角线互相垂直的平行四边形是菱形;故答案为:对角线互相平分的四边形;对角线互相垂直的平行四边形.【点睛】本题考查了菱形的判定和平行四边形的判定,翻折变换(折叠问题).①菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).三、解答题21.(1)14;(2)16.【分析】(1)共有4种可能出现的结果,抽到小霞的只有1种,即可利用概率公式求出恰好抽到学生小霞的概率;(2)用树状图表示所有可能出现的结果,进而求出两个同学均来自七年级的概率.【详解】解:(1)∵共有4种可能出现的结果,抽到小霞的只有1种,∴恰好抽到小霞的概率为:P(小霞)=14,故答案为:14;(2)用树状图表示所有可能出现的结果如下:共有12种可能出现的结果,其中都是七年级,即抽到小霞、小健的有2种,∴P(小霞、小健)=212=16.【点睛】本题考查了概率的应用,运用列表法或树状图法列举出所有可能出现的结果情况是正确解答的前提.22.(1)300人,a=15%,b=25%;(2)见解析;(3)120人;(4)1 8【分析】(1)用“美食文化”对应的人数除以对应的百分比可得总人数,分别用“羽毛球”和“篮球”的人数除以总人数可得a和b的值;(2)计算出“电影鉴赏”的人数,可补全统计图;(3)用全校七年级的总人数乘以样本中“篮球”对应的百分比即可;(4)画出树状图,利用概率公式计算.【详解】解:(1)总人数为:60÷20%=300人,∴a=45÷300=15%,b=75÷300=25%;(2)35%×300=105,补全统计图入如下:(3)480×25%=120人,∴估计全校选择“篮球”拓展性课程的学生人数是120人;(4)设“羽毛球”、“电影鉴赏”、“篮球”和 “美食文化”分别为A 、B 、C 、D ,画树状图如下:可知:共有16种等可能的情况,其中一位选择了电影鉴赏,另一位选择了美食文化的有2种,∴其中一位选择了电影鉴赏,另一位选择了美食文化的概率为21168=. 【点睛】本题考查的是条形统计图的综合运用,树状图法求概率,样本估计总体,从统计图中得到必要的信息是解决问题的关键.23.(1)有两个不相等的实数根;(2)122x +=,222x -= 【分析】(1)根据关于x 的一元二次方程210mx nx -+=的根的判别式△=b 2-4ac 的符号来判定该方程的根的情况;(2)由已知条件列出关于m 的方程,通过解该方程即可求得m 的值.【详解】解:(1)把2n m =+代入方程,得2(2)10mx m x -++=.∵根的判别式为[]222(2)444440m m m m m m -+-=++-=+>, ∴方程有两个不相等的实数根.(2)当2m =时,方程为22410x x -+=.∴224248m +=+=.(4)8x --±=22±=∴122x =,222x =. 【点睛】 本题考查了根与系数的关系、根的判别式.一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.24.(1)2m <;(2)11x =-21x =-【分析】(1)根据两个不相等的实数根列不等式即可;(2)根据m 为正整数,确定m 的值,解方程即可.【详解】解:(1)∵原方程有两个不相等的实数根,∴2241(23)1680m m ∆=-⨯⨯-=->,∴2m <.(2)∵m 为正整数,又2m <,∴1m =.当1m =时,原方程为2210x x +-=,解得212x -+==-.因此,原方程的根为11x =-21x =-.【点睛】本题考查了一元二次方程根的判别式和一元二次方程的解法,解题关键是熟记一元二次方程根的判别式与根的关系,列出不等式;熟练解一元二次方程.25.(1)32cm 2;(2)①四边形的面积为S =12t +16(cm 2);②当t =43或45时,S △BAP =S △CQB .【分析】(1) 由|8-a|+(b -4)2=0.可求=8=4a b ,,可求长方形ABCD 的面积=AD•AB =32(cm 2);(2)① 当P 在线段AD 上运动时,如图,DP =8-2t ,DQ =4t ,连BD ,可求S 四边形BPDQ =S △BDP +S △BDQ =12t +16(cm 2);②由S △BAP =S △CQB ,可列方程12×2t×4=12×|4t -4|×8,化去绝对值44t t -=±分类解方程即可.【详解】解:(1) a 、b 满足|8-a|+(b -4)2=0. ∵()28-0,40a b ≥-≥, ∴8-=04=0a b -,,∴AD=8cm,AB=4cm,∴长方形ABCD的面积=AD•AB=32(cm2);(2)① 当P在线段AD上运动时,如图,DP=8-2t,DQ=4t,连BD,S四边形BPDQ=S△BDP+S△BDQ,=12(8-2t)×4+12×4t×8,=12t+16(cm2);②由S△BAP=S△CQB,得:12×2t×4=12×|4t-4|×8,即|4t-4|=t,44t t-=±,44t t-=或44t t-=-,解得:t=43或45,当t=43或45时,S△BAP=S△CQB.【点睛】本题考查非负数和的性质,矩形面积,四边形面积,一元一次方程,掌握非负数的性质,利用非负数求出AD,AB,会求矩形面积,以及四边形面积,会利用三角形面积列方程解决问题是解题关键.26.(1)见解析;(2)∠DEF=45°;(3)22≤EF≤4【分析】(1)连结BD,由等腰直角三角形,结合D为AC中点可得AD=BD=CD,BD⊥AC,可求∠A=∠DBF=45º,由DE⊥DF,可得∠ADE=∠BDF,再证△ADE≌△BDF(ASA)即可;(2)由△ADE≌△BDF得DE=DF,由DE⊥DF,可证△DEF是等腰直角三角形即可;(3)由AC=42AB=BC=4,当点E与点A重合时EF最大=4,当DE⊥AB 时,由∠DEB=∠B=∠EDF=90º,DE=DF,可证四边形EBFD正方形,可得EF最小=BD=22即可求出EF的取值范围为22.【详解】解:(1)证明:连结BD,∵在△ABC中,∠ABC=90°, AB=BC,∵D是AC的中点,∴AD=BD=CD,BD⊥AC,∴∠DBC=∠DBA=45º,∴∠A=∠DBF=45º,∵DE⊥DF,∴∠ADE+∠EDB=90°,∠EDB+∠BDF=90°,∴∠ADE=∠BDF,∴△ADE≌△BDF(ASA),∴AE=BF,(2)∵△ADE≌△BDF,∴DE=DF,∵DE⊥DF,∴△DEF是等腰直角三角形,∴∠DEF=∠DFE=45°;(3)若AC=42在Rt△ABC中,由勾股定理2242=4,当点E与点A重合时EF最大=4,当DE⊥AB时,∵∠DEB=∠B=∠EDF=90º,DE=DF,四边形EBFD正方形,EF最小=BD=22EF的取值范围为22.【点睛】本题考查等腰直角三角形的性质与判定,三角形全等判定与性质,正方形的判定与性质,勾股定理,掌握等腰直角三角形的性质与判定方法,三角形全等判定的方法与性质,正方形的判定方法与性质,勾股定理的应用是解题关键.。
【鲁教版】九年级数学上期中试题及答案
一、选择题1.下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .2.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .83.如图,将等边ABC 绕点C 逆时针旋转得到A B C '',旋转角为()060αα︒<<︒.若160BDA '∠=︒,则α的大小是( )A .20°B .40°C .60°D .80°4.在一个无盖的正方体玻璃容器内装了一些水,把容器按不同方式倾斜一点,容器内的水面的形状可能是( ) A .B .C .D .5.已知等边△ABC 的边长为8,点P 是边BC 上的动点,将△ABP 绕A 逆时针转60°得到△ACQ ,点D 是AC 边的中点,连接DQ ,则DQ 的最小值是 ( )A .2B .3C .4D .不能确定6.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,依此方式,绕点O 连续旋转2020次得到正方形202020202020OA B C ,如果点A 的坐标为(1,0),那么点2020B 的坐标为( )A .(﹣1,1)B .(20)-,C .(﹣1,﹣1)D .(02)-,7.如图,一条抛物线与x 轴相交于M ,N 两点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为(﹣2,﹣3),(1,﹣3),点N 的横坐标的最大值为4,则点M 的横坐标的最小值为( )A .﹣1B .﹣3C .﹣5D .﹣78.如图为二次函数2y ax bx c =++的图象,此图象与x 轴的交点坐标分别为(-1,0)、(3,0).下列说法:0abc >;方程20ax bx c ++=的根为11x =-,23x =;当1x >时,y 随着x 的增大而增大;420a b c ++<.正确的个数是( )A .1B .2C .4D .39.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,顶点坐标为(1,)n 与y 轴的交点在(0,2)、(0,3) 之间(包含端点).有下列结论:①24ac b <;②30a b +>;③420a b c ++>;④当0y >时,x 的取值范围为13x;⑤当0x >时,y 随着x的增大而减小;⑥若抛物线经过点()12,y -、23,2y ⎛⎫ ⎪⎝⎭、()33,y ,则312y y y <<.其中正确的有( )A .②③⑤B .①③④C .①③⑥D .②③⑥10.在平面直角坐标系中,将函数25y x =-的图象先向右平移1个单位长度,再向上平移3个单位长度,得到的解析式是( )A .25(1)3y x =-++B .25(1)3y x =--+C .25(1)3y x =-+-D .25(1)3y x =---11.下列方程是关于x 的一元二次方程的是( ) A .20ax bx c ++= B .210x y -+= C .2120x x+-=D .(1)(2)1x x x -+=-12.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( ) A .15%B .40%C .25%D .20%13.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=014.关于x 的方程()---=2a 3x 4x 10有两个不相等的实数根,则a 的取值范围是( ) A .1a ≥-且3a ≠ B .1a >-且3a ≠ C .1a ≥-D .1a >-二、填空题15.二次函数223y x =的图象如图所示,点0A 位于坐标原点,点1A ,2A ,3A ,…,2013A 在y 轴的正半轴上,点1B ,2B ,3B ,…,2013B 在二次函数223y x =位于第一象限的图象上,若011A B A △,122A B A △,233A B A △,…,201220132013A B A △都为等边三角形,则201220132013A B A △的边长=________.16.已知二次函数2y ax bx c =++自变量x 的部分取值和对应函数值y 如表:x2- 1- 0 1 23 y8 30 1-3则在实数范围内能使得成立的x 取值范围是.17.二次函数y=(x+2)2-5的最小值为_______.18.将方程2630x x +-=化为()2x h k +=的形式是______.19.若m 是方程210x x +-=的根,则2222018m m ++的值为__________20.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.三、解答题21.如图,在矩形ABCD 中,AB =10,AD =6.以点A 为中心,逆时针旋转矩形ABCD ,得到矩形AEFG ,点B ,C ,D 的对应点分别为点E ,F ,G .(1)如图1,当点E 落在边CD 上时,求线段CE 的长; (2)如图2,当点E 落在线段CF 上时,求证:∠EAC =∠BAC ; (3)在(2)的条件下,CD 与AE 交于点H ,求线段DH 的长. 22.如图,在平面直角坐标系中,已知点()4,2A,()4,0B .(1)画出将OAB 绕原点逆时针旋转90°得到的11OA B ; (2)直接写出A 的对应点1A ( , ),B 的对应点1B ( , ); (3)若点A ,1A 关于某点中心对称,则对称中心的坐标为______.23.如图,在平面直角坐标系中,边长为2的正方形ABCD 的顶点A 与原点重合,顶点B 在x 轴的正半轴上,点D 在y 轴的正半轴上.抛物线2y x bx c =-++经过点B 与点D .(1)求这个二次函数的表达式;(2)将正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,若点Q 纵坐标是点P 纵坐标的2倍,求m 的值.24.如图1,抛物线y =x 2+bx +c 与x 轴交于A ,B 两点,与y 轴交于点C (0,2),连接AC ,若OC =2OA . (1)求抛物线的解析式;(2)抛物线对称轴l 上有一动点P ,当PC +PA 最小时,求出点P 的坐标;(3)如图2所示,连接BC ,M 是线段BC 上(不与B 、C 重合)的一个动点.过点M 作直线l '∥l ,交抛物线于点N ,连接CN ,BN ,设点M 的横坐标为t .当t 为何值时,△BCN 的面积最大?最大面积为多少?25.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、是轴对称图形,不是中心对称图形,故此选项不符合题意; 故选:C . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D解析:D 【分析】将△ABD 绕点D 顺时针旋转90º得△ECD ,AB=EC ,DE=AD ,等腰Rt △ADE 中,在△ACE 中由三边关系得,CE-AC <AE <CE+AC,即2<<10求出AD 的范围即可.【详解】将△ABD 绕点D 顺时针旋转90º得△ECD ,AB=EC=6,DE=AD ,在Rt △ADE 中由勾股定理得,在△ACE 中由三边关系得,CE-AC <AE <CE+AC,即2<<10,8<,故选:D .【点睛】本题考查AD 的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE 实现转化,利用三边关系确定AE 的范围是解题关键.3.A解析:A 【分析】利用旋转的性质结合等边三角形的性质和三角形外角的性质,可得出答案; 【详解】 解:如图,∵ABC 和A B C ''均为等边三角形, ∴60A A '∠=∠=︒由旋转得,旋转角为ACA α'∠=, ∵160BDA '∠=︒∴160DOA A ''∠+∠=︒ ∴100DOA '∠=︒∵DOA COA '∠=∠,180ACA CAA COA ''∠+∠+∠=︒∴20ACA '∠=︒ ∴α的大小是20° 故选:A 【点睛】本题主要考查旋转的性质以及等边三角形的性质和三角形外角的性质等知识,正确掌握旋转的性质是解题关键.4.A解析:A 【分析】结合题意,相当于把正方体一个面,即正方形截去一个角,可以得到三角形、四边形、五边形. 【详解】解:根据题意,结合实际,容器内水面的形状不可能是正方形、六边形、七边形. 故选A . 【点睛】此类问题也可以亲自动手操作一下,培养空间想象力.5.B解析:B 【分析】根据旋转的性质,即可得到∠ACQ =∠60B =°,当DQ ⊥CQ 时,DQ 的长最小,再根据勾股定理,即可得到DQ 的最小值. 【详解】解:由旋转可得∠ACQ =∠60B =°. 因为点D 是AC 的中点,所以CD =4.当DQ ⊥CQ 时,DQ 的长最小,此时∠CDQ =30︒. 所以122CQ CD ==,DQ ==所以DQ 的最小值是 故选B . 【点睛】本题主要考查了旋转的性质,旋转前后的图形全等,对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角.6.C解析:C 【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:如图,∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(02),B2(-1,1),B3(20),B4(-1,-1),…,发现是8次一循环,所以2020÷8=252…4,∴点B2020的坐标为(-1,-1)故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.7.C解析:C【分析】当图象顶点在点B时,点N的横坐标的最大值为4,求出a=13;当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,求出x值,即可求解.【详解】当图象顶点在点B时,点N的横坐标的最大值为4,则此时抛物线的表达式为:y=a(x﹣1)2﹣3,把点N的坐标代入得:0=a(4﹣1)2﹣3,解得:a=13,当顶点在点A时,M点的横坐标为最小,此时抛物线的表达式为:y=13(x+2)2﹣3,令y=0,则x=﹣5或1,即点M的横坐标的最小值为﹣5,故选:C.【点睛】本题考查的是二次函数与x轴的交点,涉及到函数基本性质和函数的最值,其中确定坐标取得最值时,图象所处的位置是本题的关键.8.C解析:C【分析】①由抛物线的开口方向、与y轴的交点判定a、c的符号,根据对称轴确定b的符号;②根据二次函数图象与x轴的交点解答;③利用对称轴和二次函数的图象的性质作出判断;④将x=2代入函数关系式,结合图象判定y的符号.【详解】解:①∵抛物线的开口向上,对称轴在y轴的右边,与y轴的交点在y的负半轴上,∴a>0,-b2a>0,c<0,即b<0,∴abc>0,正确;②二次函数y=ax2+bx+c的图象与x轴的交点是(-1,0)、(3,0),∴方程ax2+bx+c=0的根为x1=-1,x2=3故本选项正确;③函数对称轴是直线x=1,根据图象当x>1时,y随x的增大而增大;④根据图象可知抛物线与x轴的交点坐标是(-1,0),(3,0),∴当x=2时,y<0∴当x=1时4a+2b+c<0,正确.共有四个正确的,故选:C.【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性,还是一道比较容易出错的题目.9.B【分析】根据二次函数图像可知1x =为抛物线的对称轴,可以求出与x 轴正半轴交点坐标,可解④⑤,开口朝下,与y 轴交于正半轴,可知:0a <,23c ≤≤,根据对称轴公式可得:0b >,可解①②③,根据图像可解⑥.【详解】∵抛物线开口朝下,∴0a <,∵与y 轴的交点在(0,2)、(0,3) 之间(包含端点),∴23c ≤≤,∴4ac <0,∴24ac b <,∴①正确;∵1x =为抛物线的对称轴, ∴12b a-=, ∴0b >,12a b =-, ∴313202a b b b b +=-+=-<, ∴②不正确;∵1x =-时,0a b c -+=, ∴32c b =, ∴1424202a b c b b c c ⎛⎫++=⨯-++= ⎪⎝⎭> ∴③正确; ∵1x =为抛物线的对称轴,(1,0)A -,∴B 点坐标为(3,0),∴当0y >时,x 的取值范围为13x∴④正确;∵1x =为抛物线的对称轴,∴1x >时,y 随着x 的增大而减小,∴⑤不正确;由图像可知:213000y y y =<,>,,∴132y y y <<,∴⑥不正确;故选:B .本题主要考查的是二次函数图像的性质以及二次函数对称轴,数量掌握二次函数图像的性质是解决本题的关键.10.B解析:B【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,抛物线25y x =-的图象向右平移1个单位所得函数图象的关系式是:()251y x =--; 由“上加下减”的原则可知,抛物线()251y x =--的图象向上平移3个单位长度所得函数图象的关系式是()2513y x =--+.故选:B .【点睛】本题考查了二次函数的图象平移,熟知函数图象平移的法则是解答此题的关键. 11.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.12.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x)2=64,解得:x1=0.2=20%,x2=1.8(不合题意,舍去).故选:D.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13.A解析:A【分析】本题可设长为(80+2x),宽为(50+2x),再根据面积公式列出方程,化简即可.【详解】解:依题意得:(80+2x)(50+2x)=5400,即4000+260x+4x2=5400,化简为:4x2+260x-1400=0,即x2+65x-350=0.故选:A.【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.14.B解析:B【分析】方程有两个不相等的实数根,显然原方程应该是关于x的一元二次方程,因此得到二次项∆>即可得到答案.系数不为0即当a-3≠0时,且判别式0【详解】∵关于x的方程()32---=有两个不相等的实数根a x4x10∴a-3≠0,且2∆--⨯-⨯-=+>=(4)4(3)(1)440a aa≥-且a≠3解得:1故选B.【点睛】本题主要考查方程的解,一元二次方程的根的判别式,根据判别式,列出关于参数a的不等式,是解题的关键.二、填空题15.2013【分析】分别过B1B2B3作y轴的垂线垂足分别为ABC设A0A1=aA1A2=bA2A3=c则AB1=aBB2=bCB3=c再根据所求正三角形的边长分别表示B1B2B3的纵坐标逐步代入抛物线解析:2013【分析】分别过B 1,B 2,B 3作y 轴的垂线,垂足分别为A 、B 、C ,设A 0A 1=a ,A 1A 2=b ,A 2A 3=c ,则AB 1=32a ,BB 2=32b ,CB 3=32c ,再根据所求正三角形的边长,分别表示B 1,B 2,B 3的纵坐标,逐步代入抛物线y=23x 2中,求a 、b 、c 的值,得出规律. 【详解】分别过1B ,2B ,3B 作y 轴的垂线,垂足分别为A 、B 、C ,设01A A a =,12A A b =,23A A c =,由勾股定理则22101032AB A B AA a =-=,232BB b =,332CB c =, 1111312233AA AB a a ==⨯=,则13,22a B a ⎛⎫ ⎪ ⎪⎝⎭, 22312233BA BB b b ==⨯=,则23,22b B b a ⎛⎫+ ⎪ ⎪⎝⎭, 3331233CA c ===,则33,2c B a b ⎫++⎪⎪⎝⎭, 在正011A B A △中,13,2a B ⎫⎪⎪⎝⎭, 代入223y x =中,得223234a a =⨯,解得1a =,即011A A =, 在正122A B A △中,23,12b B ⎫+⎪⎪⎝⎭,代入223y x =中,得2231234b b +=⨯,解得2b =,即122A A =, 在正233A B A △中,33,322c B c ⎛⎫+ ⎪ ⎪⎝⎭,代入223y x =中,得2233234c c ⎛⎫+=⨯ ⎪⎝⎭,解得3c =,即233A A =,…,依此类推由此可得201220132013A B A △的边长2013=.故答案为:2013.【点睛】本题考查了二次函数的综合运用.勾股定理应用,掌握探究规律题的解题方法,关键是根据正三角形的性质用边长表示抛物线上点的坐标,利用抛物线解析式求正三角形的边长,得到规律.16.或【分析】根据表格中的数据和二次函数的性质可以得到对称轴函数图象的开口方向再根据表格中的数据即可得到y-3>0成立的x 取值范围【详解】解:由表格可知该二次函数的对称轴是直线函数图象开口向上故y-3> 解析:1x <-或3x >【分析】根据表格中的数据和二次函数的性质,可以得到对称轴、函数图象的开口方向,再根据表格中的数据,即可得到y-3>0成立的x 取值范围.【详解】解:由表格可知, 该二次函数的对称轴是直线1312x -+==,函数图象开口向上, 故y-3>0成立的x 的取值范围是x <-1或x >3,故答案为:x <-1或x >3.【点睛】 本题考查二次函数的性质、二次函数图象上点的坐标特点,解答本题的关键是明确题意,利用二次函数的性质解答.17.-5【分析】根据二次函数的顶点式的意义即可确定函数的最值【详解】解:∵y=(x+2)2-5∴当x=-2时函数有最小值为-5故答案为-5【点睛】本题主要考查了二次函数的最值掌握根据二次函数的顶点式求最解析:-5【分析】根据二次函数的顶点式的意义即可确定函数的最值.【详解】解:∵y=(x+2)2-5∴当x=-2时,函数有最小值为-5.故答案为-5.【点睛】本题主要考查了二次函数的最值,掌握根据二次函数的顶点式求最值的方法是解答本题的关键.18.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数 解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.【详解】∵2630x x +-=∴263x x +=∴26939x x+++=∴()2312x+= 故答案为:()2312x+=【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解. 19.2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值.【详解】解:∵m 是方程210x x +-=的根,∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=.故答案是:2020.【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.20.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程 解析:25或16【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案.【详解】解:∵关于x 的方程2100x x m -+=∴1a =,10b =-,c m = ∴1210b x x a +=-=,12c x x m a == ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根 ∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.三、解答题21.(1)2;(2)见解析;(3)165【分析】(1)由旋转的性质知AB=AE=10,由矩形的性质得出AD=BC=6,∠BAD=∠D=90°,由勾股定理得出DE=8,即可得出答案;(2)由旋转的性质知∠AEF=∠BAD=90°,AE=AB ,证明Rt △ABC ≌Rt △AEC (HL ),即可得出结论;(3)设DH=x ,由矩形的性质得出CH=CD-DH=10-x ,∠DCA=∠BAC ,证出∠DCA=∠EAC ,得出AH=CH=10-x ,在Rt △ADH 中,由勾股定理得出方程,解方程即可得出答案.【详解】(1)解:由旋转的性质知:AB =AE =10,∵四边形ABCD 是矩形,∴AD =BC =6,∠BAD =∠D =90°,∴DE=8,∵CD =AB =10,∴CE =DC ﹣DE =10﹣8=2;(2)证明:由旋转的性质知:∠AEF =∠BAD =90°,AE =AB ,∵点E 落在线段CF 上,∴∠AEC =∠AEF =90°,在Rt △ABC 和Rt △AEC 中,AE AB AC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △AEC (HL ),∴∠EAC =∠BAC ;(3)解:设DH =x ,在矩形ABCD 中,AB ∥CD ,AB =CD =10,∴CH =CD ﹣DH =10﹣x ,∠DCA =∠BAC ,又∵∠EAC =∠BAC ,∴∠DCA =∠EAC ,∴AH =CH =10﹣x ,在Rt △ADH 中,∵DH 2+AD 2=AH 2,∴x 2+62=(10﹣x )2,解得:x =165, ∴DH =165. 【点睛】本题是四边形综合题,考查了矩形的性质、旋转变换的性质、勾股定理、全等三角形的判定与性质、等腰三角形的判定等知识;熟练掌握旋转的性质和矩形的性质是解题的关键.22.(1)图见解析;(2)()12,4A -,()10,4B ;(3)()1,3. 【分析】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得;(2)根据绕原点逆时针旋转90︒的点坐标变换规律即可得;(3)根据中心对称的定义可得点A ,1A 的中心对称点为线段1AA 的中点,由此即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得11OA B ,如图所示:(2)绕原点逆时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将横坐标变为相反数,()()4,2,4,0A B ,()()112,4,4,0B A -∴,故答案为:()()112,4,0,4A B -;(3)由中心对称的定义得:点A ,1A 的中心对称点为线段1AA 的中点, 则对称中心的坐标为4224,22-+⎛⎫⎪⎝⎭,即()1,3, 故答案为:()1,3.【点睛】本题考查了画旋转图形、找中心对称点等知识点,熟练掌握旋转的性质是解题关键. 23.(1)22y x x =-++;(2541-+ 【分析】(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),利用待定系数法即可求得二次函数关系式;(2)先分别表示出点P 、Q 的横坐标,进而可表示出它们的纵坐标,再根据题意列出方程求解即可.【详解】解:(1)由题意可知点B 、D 的坐标分别为(2,0),(0,2),将(2,0),(0,2)代入2y x bx c =-++,得 4202b c c -++=⎧⎨=⎩解得12b c =⎧⎨=⎩∴二次函数的表达式为22y x x =-++;(2)∵正方形ABCD 向左平移m 个单位(0m >),边AD 与BC 分别与(1)中的二次函数图像交于P 、Q ,∴点P 的横坐标为-m ,点Q 的横坐标为2-m ,当x=-m 时,22y m m =--+,当x=2-m 时,2(2)22y m m +=---+ 23m m =-∵点Q 纵坐标是点P 纵坐标的2倍,∴2232(2)m m m m -=--+解得152m -=,252m -=(舍去)∴m 的值为52-+. 【点睛】本题考查了用待定系数法求二次函数关系式,正方形的性质等相关知识,熟练掌握待定系数法求二次函数关系式是解决本题的关键.24.(1)y =x 2-3x +2;(2)点P 的坐标为(32,12);(3)当t =1时,S △BCN 的最大值为1.【分析】(1)先确定c ,然后再根据OC =2OA 确定A 点的坐标,再将A 点的坐标代入解析式求得b 即可解答;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ',此时PA+PB 最小;然后求得直线BC 的解析式,最后确定P '的坐标即可;(3)先求出M 点坐标,然后再根据S △BCN =S △MNC +S △MNB 确定二次函数关系式,最后运用二次函数求最值即可.【详解】解:(1)∵抛物线y =x 2+bx +c 过点C (0,2),∴c =2又∵OC =2OA ,∴OA =1,即A (1,0);又∵点A 在抛物线y =x 2+bx +2上,∴0=12+b ×1+2,b =-3;∴抛物线对应的二次函数的解析式为y =x 2-3x +2;(2)如图:作点A 关于直线l 对称的对称点,即点B ,连接BC ,与直线l 交于点P ', 则PA +PC 的最小值为P 'B +P 'C =BC ,设BC 的解析式为y =mx +n ,令x 2-3x +2=0,解得:x =1或2,∴B (2,0),又∵C (0,2),∴202m n n +=⎧⎨=⎩,解得:12m n =-⎧⎨=⎩, ∴直线BC 的解析式为:y =-x +2,令x =32,代入,得:y =12,∴当PC +PA 最小时,点P 的坐标为(32,12); (3)如图:∵点M 是直线l '和线段BC 的交点,∴M 点的坐标为(t ,-t +2)(0<t <2),∴MN =-t +2-(t 2-3t +2)=-t 2+2t ,,∴S △BCN =S △MNC +S △MNB =12MN ▪t +12MN ▪(2-t )=12MN ▪(t +2-t )=MN =-t 2+2t (0<t <2), ∴S △BCN =-t 2+2t =-(t -1)2+1,∴当t =1时,S △BCN 的最大值为1.【点睛】本题考查了二次函数的综合应用,正确求出函数解析式并掌握数形结合思想是解答本题的关键.25.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
【鲁教版】九年级数学上期中试卷附答案
一、选择题1.以原点为中心,将点P (3,4)旋转90°,得到的点Q 所在的象限为( ) A .第二象限 B .第三象限 C .第四象限 D .第二或第四象限 2.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3) 3.如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为 ( )A .90°B .95°C .100°D .105° 4.如图,将△ABC 绕点C (0,-1)旋转180°得到△A′B′C ,设点A 的坐标为(-3,-4)则点A′的坐标为A .(3,2)B .(3,3)C .(3,4)D .(3,1) 5.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)6.如图①是3×3正方形方格,将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种,例②中四幅图就视为同一种,则得到不同共有( )A .4种B .5种C .6种D .7种7.已知二次函数22(0)y ax bx a =--≠的图象的顶点在第四象限,且过点(1,0)-,当-a b 为整数时,ab 的值为( )A .34或1B .14或1C .34或12D .14或12 8.已知二次函数()()2y x p x q =---,若m ,n 是关于x 的方程()()20x p x q ---=的两个根,则实数m ,n ,p ,q 的大小关系可能是( ) A .m <p <q <nB .m <p <n <qC .p <m <n <qD .p <m <q <n9.已知抛物线y=-x 2+bx+c 与x 轴交于A,B 两点(A 在原点O 左侧,B 在原点O 右侧),与y 轴交于C 点,且OC=OB,令CO AO=m ,则下列m 与b 的关系式正确的是( )A .m=2bB .m=b+1C .m=6bD . m=2b +1 10.如图是二次函数2(,,y ax bx c a b c =++是常数,0a ≠)图象的一部分,与x 轴的交点A 在点()2,0和()3,0之间,对称轴是1x =.对于下列说法:①0abc <;②20a b +=;③30a c +>;④()(a b m am b m +≥+为实数)﹔⑤当13x 时,0y >,其中正确的是( )A .①②⑤B .①②④C .②③④D .③④⑤ 11.一面足够长的墙,用总长为30米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块,若要围成的矩形面积为54平方米,设垂直于墙的边长为x 米,则x 的值为( )A .3B .4C .3或5D .3或4.5 12.已知三角形的两边长分别为4和6,第三边是方程217700x x -+=的根,则此三角形的周长是( )A .10B .17C .20D .17或20 13.若用配方法解方程24121x x +=,通常要在此方程两边同时加上一个“适当”的数,则下面变形恰当的是( )A .2221212412122x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭B .22241212112x x ++=+C .2412919x x ++=+D .241212112x x ++=+14.若整数a 使得关于x 的一元二次方程()222310a x a x -++=有两个实数根,并且使得关于y 的分式 方程32133ay y y y -+=--有整数解,则符合条件的整数a 的个数为( )A .2B .3C .4D .5 二、填空题15.在ABC 中,A ∠,B 所对的边分别为a ,b ,30C ∠=︒.若二次函数2()()()y a b x a b x a b =+++--的最小值为2a -,则A ∠=______︒. 16.公园广场前有一喷水池,喷水头位于水池中央,从喷头喷出水珠的路径可近似看作抛物线.如图是根据实际情境抽象出的图象,水珠在空中划出的曲线恰好是抛物线26y x x =-+(单位:m )的一部分,则水珠落地点(点P )到喷水口(点O )的距离为________m .17.若123(4,),(1,),(1,)A y B y C y --为二次函数245y x x =-+的图象上的三点,则123,,y y y 的大小关系为__________.18.已知方程2x 2+4x ﹣3=0的两根分别为出x 1和x 2,则x 1+x 2+x 1x 2=_____.19.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.20.当x=______时,−4x 2−4x+1有最大值.三、解答题21.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .22.如图,在四边形ABCD 中,∠ABC =30°,将△DCB 绕点C 顺时针旋转60°后,点D 的对应点恰好与点A 重合,得到△ACE ,若AB =3,BC =4,求BD 的长?23.某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x米,面积为S平方米.(1)求出S与x之间的函数关系式,并确定自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.24.某商场新上市一款运动鞋,每双进货价为150元,投入市场后,调研表明:当销售价为200元时,平均每天能售出10双;而当销售价每降低5元时,平均每天就能多售出5双.(1)商场要想尽快回收成本,并使这款运动鞋的销售利润平均每天均达到675元,那么这款运动鞋的销售价应定为多少元?(2)请用配方法求:这款运动鞋的销售价定为多少元时,可使商场平均每天获得的利润最大?最大利润是多少元?25.已知关于x的方程kx2﹣(3k﹣1)x+2(k﹣1)=0.(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个根x1,x2,且x12+x22=8,求k的值.26.先阅读理解下面的例题,再按要求解答下面的问题:例题:说明代数式m2+2m+4的值一定是正数.解:m2+2m+4=m2+2m+1+3=(m+1)2+3.∵(m+1)2≥0,∴(m+1)2+3≥3,∴m2+2m+4的值一定是正数.(1)说明代数式﹣a2+6a﹣10的值一定是负数.(2)设正方形面积为S1,长方形的面积为S2,正方形的边长为a,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S1与S2的大小关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据旋转的性质,以原点为中心,将点P(3,4)旋转90°,分两种情况讨论即可得到点Q 所在的象限.【详解】Q,如图,点P(3,4)按逆时针方向旋转90°,得到点1Q,按顺时针方向旋转90°,得到点2得点Q所在的象限为第二、四象限.故选:D.【点睛】本题考查了坐标与图形变化-旋转,解决本题的关键是掌握旋转的性质.注意分类讨论.2.D解析:D【分析】根据绕原点顺时针旋转90︒的点坐标变换规律即可得.【详解】绕原点顺时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将纵坐标变为相反数,A-,(3,1)A,(1,3)故选:D.【点睛】本题考查了绕原点顺时针旋转90︒的点坐标变换规律,熟练掌握绕原点顺时针旋转90︒的点坐标变换规律是解题关键.3.C解析:C【分析】直接根据四边形AEHB的四个内角和为360°即可求解.【详解】解:∵将正方形ABCD绕点A顺时针旋转35°,得到正方形AEFG,∴∠BAE=35°,∠E=90°,∠ABD=45°,∴∠ABH =135°,∴∠DHE =360°-∠E -∠BAE -∠ABH =360°-90°-35°-135°=100°.故选C .【点睛】此题考查了正方形的性质、旋转角、多边形的内角和定理,正确找出旋转角是解题关键. 4.A解析:A【解析】试题分析:根据A 与A′关于C 点对称,设A′的坐标为(a ,b ),可知302a -+=,412b -+=-,解得a=3,b=2,因此可知A′点的坐标为(3,2). 故选A考点:中心对称5.D解析:D【解析】解:作AD ⊥BC ,并作出把Rt △ABC 先绕B 点顺时针旋转180°后所得△A 1BC 1,如图所示.∵AC =2,∠ABC =30°,∴BC =4,∴AB =23,∴AD =AB AC BC ⋅=232⨯=3,∴BD =2AB BC =223()=3.∵点B 坐标为(1,0),∴A 点的坐标为(4,3).∵BD =3,∴BD 1=3,∴D 1坐标为(﹣2,0),∴A 1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A ′的坐标为(﹣2,﹣3﹣2).故选D .点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.6.B解析:B【解析】分析:根据轴对称的定义及题意要求画出所有图案后即可得出答案:得到的不同图案有:共5个.故选B .7.A解析:A【分析】由题意易得20a b +-=,且0,0a b >>,则有当x=1时,y<0,即20a b --<,进而可得22a b -<-<,然后由-a b 为整数,则有1a b -=或0或-1,最后求解即可.【详解】解:∵二次函数()220y ax bx a =--≠的图象的顶点在第四象限,且过点()1,0-, ∴20a b +-=,且0,0a b >>,当x=1时,y<0,即20a b --<,∴2a b +=,且0,2a a b >-<,∴02,02a b <<<<,∴22a b -<-<,∵-a b 为整数,∴1a b -=或0或-1,若1a b -=时,则有31,22a b ==,从而34ab =; 若0a b -=时,则有1,1a b ==,从而1ab =; 若1a b -=-时,则有13,22a b ==,从而34ab =; 故选A .【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数的图像与性质是解题的关键. 8.A解析:A【分析】根据二次函数图象性质和一元二次方程的知识结合已知条件,可以得到结论:m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间,从而解答本题.【详解】解:∵二次函数的解析式是()()2y x p x q =---∴1a =∴该二次函数的抛物线开口向上∵m 、n 是关于x 的方程()()20x p x q ---=的两个根∴当x m =或x n =时,0y =∵当x p =或x q =时,2y =-∴m 、n 一定是一个最大、一个最小,而p 、q 一定介于m 、n 之间.故选:A【点睛】本题考查了抛物线与x 轴的交点情况和一元二次方程根的关系、二次函数图象性质,解题的关键是明确题意,利用二次函数的图象性质解答.9.B解析:B【分析】利用数形结合得思想,先表示出A 、B 的横坐标,再代入到解析式建立方程,进而分别求解即可.【详解】由题意:OC c =,则OB c =,即B 的横坐标为c ,代入解析式有:20c bc c -++=, 则可解得:1c b =+, 根据CO m AO =,可得c OA m =,即A 的横坐标为c m-,代入解析式有:20c c b c m m ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭,整理得:210c b m m --+=, 将1c b =+代入可得;2110b b m m +--+=,即2210m b bm m---=, 210m b bm ∴---=,整理得:()210m bm b --+=,对其因式分解可得:()()110m b m -++=⎡⎤⎣⎦,解得:1m b =+,或1m =-(舍去),故选:B .【点睛】本题考查了二次函数与一元二次方程的关系,能够利用数形结合的思想,准确将图中的信息转化为解方程是解决问题的关键.10.B解析:B【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断出c 的大小,然后根据对称轴判断b 的大小,然后根据特殊值求出式子的大小即可;【详解】∵对称轴在y 轴的右侧,∴a 、b 异号,∵开口向下,∴0a <,0b >,∵函数图像与y 轴正半轴相交,∴0c >,∴0abc <,故①正确;∵对称轴12b x a=-=, ∴20a b +=,故②正确;∵20a b +=,∴2b a =-,∵当1x =-时,0y a b c =-+<,∴()23<0a a c a c --+=+,故③错误;根据图示,当1m =时,有最大值;当1m ≠时,有2am bm c a b c ++≤++,∴()(a b m am b m +≥+为实数),故④正确;根据图示,当13x 时,y 不只是大于0,故⑤错误;故正确的答案是①②④;故选:B .【点睛】本题主要考查了二次函数图象与系数的关系,准确分析判断是解题的关键.11.D解析:D【分析】设AD 长为x 米,四边形ABCD 是矩形,根据矩形的性质,即可求得AB 的长;根据题意可得方程x (30−4x )=54,解此方程即可求得x 的值.【详解】解:设与墙头垂直的边AD 长为x 米,四边形ABCD 是矩形,∴BC =MN =PQ =x 米,∴AB =30−AD−MN−PQ−BC =30−4x (米),根据题意得:x (30−4x )=54,解得:x =3或x =4.5,∴AD 的长为3或4.5米.故选:D .【点睛】考查了一元二次方程的应用中的围墙问题,正确列出一元二次方程,并注意解要符合实际意义.12.B解析:B【分析】根据第三边是方程x 2﹣17x +70=0的根,首先求出方程的根,再利用三角形三边关系求出即可.【详解】解:∵217700x x -+=,∴(10)(7)0x x --=,∴110x =,27x =,∵4610+=,无法构成三角形,∴此三角形的周长是:46717++=.故选B .【点睛】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,正确利用因式分解法解一元二次方程可以大大降低计算量.13.C解析:C【分析】把原方程变形为2(2)621x x +⨯=,将2x 看成未知数,方程两边都加上一次项系数一半的平方即可.【详解】解:方程24121x x +=变形为2(2)621x x +⨯=, 2(2)62+91+9x x +⨯=∴2412919x x ++=+故选:C【点睛】本题考查了解一元二次方程的应用,关键是能正确配方.14.B解析:B【分析】对于关于x 的一元二次方程()2210a x -+=有两个实数根,利用判别式的意义得到a-2≠0且2a+3≥0且△=2-4(a-2)≥0,解不等式组得到整数a 为:-1,0,1,3,4,5;接着解分式方程得到y=61a -,而y≠3,则61a -≠3,解得a≠3,从而得到当a=-1,0,4时,分式方程有整数解,然后求符合条件的所有a 的个数.【详解】解:∵整数a 使得关于x 的一元二次方程()2210a x -+=有两个实数根, ∴a-2≠0且2a+3≥0且△=2-4(a-2)≥0, ∴31122a -≤≤且a≠2, ∴整数a 为:-1,0,1,3,4,5;去分母得3-ay+3-y=-2y ,解得y=61a -, 而y≠3,则61a -≠3,解得a≠3, 当a=-1,0,4时,分式方程有整数解,∴符合条件的所有a 的个数是3.故选:B .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.二、填空题15.75【分析】根据二次函数的性质当时y 有最小值为由此得到=整理得a=b 从而将问题转化为等腰三角形底角计算问题【详解】∵ab 是的边∴a+b >0;∴有最小值且当x=时取得最小值y=根据题意得=整理得a=b解析:75【分析】 根据二次函数的性质,当1x 2=-时,y 有最小值为534a b -+,由此得到534a b -+=2a -,整理得a=b ,从而将问题转化为等腰三角形底角计算问题. 【详解】∵a ,b 是ABC 的边,∴a+b >0;∴2()()()y a b x a b x a b =+++--有最小值,且当x=()12()2a b a b +-=-+时,取得最小值, y=534a b -+,根据题意,得534a b -+=2a -, 整理,得a=b , ∴ABC 是等腰三角形,∵30C ∠=︒, ∴180180307522C A -∠-∠===︒, ∴∠A 的度数为75︒,故填75.【点睛】本题考查了二次函数的最小值,等腰三角形的判定和性质,灵活利用二次函数的最小值构造等式是解题的关键.16.6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案【详解】解:∵水在空中划出的曲线是抛物线y=-x2+6x ∴解析:6【分析】根据题意可以得到水珠落地点(点P )到喷水口(点O )的距离就是OP 的长度,利用配方法或公式法求得其顶点坐标的横坐标的2倍即为本题的答案.【详解】解:∵水在空中划出的曲线是抛物线y=-x 2+6x ,∴y=-x 2+6x=-(x-3)2+9,∴顶点坐标为:(3,9),∴水珠落地点(点P )到喷水口(点O )的距离为OP=3×2=6(米),故答案为:6.【点睛】本题考查了二次函数的应用,解决此类问题的关键是从实际问题中整理出函数模型,利用函数的知识解决实际问题.17.【分析】先将二次函数的解析式化成顶点式再根据二次函数的增减性即可得【详解】二次函数化成顶点式为由二次函数的性质可知当时y 随x 的增大而减小点在此二次函数的图象上且故答案为:【点睛】本题考查二次函数的顶 解析:123y y y >>【分析】先将二次函数的解析式化成顶点式,再根据二次函数的增减性即可得.【详解】二次函数245y x x =-+化成顶点式为22()1y x =-+,由二次函数的性质可知,当2x ≤时,y 随x 的增大而减小,点123(4,),(1,),(1,)A y B y C y --在此二次函数的图象上,且4112-<-<<, 123y y y ∴>>,故答案为:123y y y >>.【点睛】本题考查二次函数的顶点式和增减性,熟练掌握二次函数的性质是解题关键.18.﹣【分析】根据根与系数的关系得到x1+x2=﹣=﹣2x1x2=﹣然后利用整体代入的方法计算【详解】根据题意得x1+x2=﹣=﹣2x1x2=﹣所以x1+x2+x1x2=﹣2﹣=﹣故答案为:﹣【点睛】本解析:﹣72【分析】 根据根与系数的关系得到x 1+x 2=﹣42=﹣2,x 1x 2=﹣32,然后利用整体代入的方法计算.【详解】 根据题意得x 1+x 2=﹣42=﹣2,x 1x 2=﹣32, 所以x 1+x 2+x 1x 2=﹣2﹣32=﹣72. 故答案为:﹣72. 【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=c a. 19.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021;∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯1111111 =2(1) 2233420202021⨯-+-+-++-1=2(1)2021⨯-4040=2021故答案为:4040 2021.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.20.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值解析:1 2 -【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x2-4x+1有最大值是2.故答案为:-12.【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.三、解答题21.(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD.(2)依据平移的方向和距离,即可得到MN;(3)延长QO与AD的交点即为点P.【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.22.5【分析】连接BE,如图,根据旋转的性质得∠BCE=60°,CB=CE,BD=AE,再判断△BCE为等边三角形得到BE=BC=4,∠CBE=60°,从而有∠ABE=90°,然后利用勾股定理计算出AE即可.【详解】解:连接BE,如图,∵△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,∴∠BCE=60°,CB=CE,BD=AE,∴△BCE为等边三角形,∴BE=BC=4,∠CBE=60°,∵∠ABC=30°,∴∠ABE=90°,在Rt△ABE中,223+4=5,∴BD=5.故答案为:5.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.23.(1)S =﹣x 2+6x ,其中0<x <6;(2)矩形一边长为3m 时,面积最大为9m 2,9000元.【分析】(1)根据矩形的面积公式和已知条件列出S 与x 之间的函数关系式并确定自变量x 的取值范围即可;(2)根据(1)得出的关系式,利用配方法求出函数的最大值即可.【详解】解:(1)∵矩形的一边长为x 米,∴另一边长为1222x -米,即(6﹣x )米, ∴S =x (6﹣x )=﹣x 2+6x ,即S =﹣x 2+6x ,其中0<x <6; (2)根据(1)得:S =x (6﹣x )=﹣(x ﹣3)2+9,则矩形一边长为3m 时,面积最大为9m 2.则此时最大费用为9×1000=9000(元).【点睛】本题考查了二次函数在几何图形中的应用,根据题意确定S 与x 之间的函数关系式成为解答本题的关键.24.(1)商场要想尽快回收成本,这款运动鞋的销售价应定为165元;(2)这款运动鞋的销售价定为180元时,利润最大,最大利润是900元.【分析】(1)根据题意列方程即可得到结论;(2)根据销售利润=一双运动鞋的利润×销售运动鞋数量,一双运动鞋的利润=售价-进价,降低售价的同时,销售量就会提高,“一减一加”,根据每部的盈利×销售的数量=y ,即可列函数关系式;利用函数最值求法得出即可.【详解】解:(1)设这款运动鞋的销售价应定为x 元.200(150)(105)6755x x --+⨯= 解得:x 1=195,x 2=165因为商场想尽快回收成本,所以定价应为165元;(2)200(150)(105)5x y x -=-+⨯ 2(180)900x =--+∴当定价为180元时,获利最多,最大利润为900元.【点睛】此题主要考查了二次函数的应用,本题关键是找到关键描述语,找到等量关系是解决问题的关键.25.(1)见解析;(2)-1或13【分析】 (1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.26.(1)见解析;(2)S 1>S 2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a ﹣3)2﹣1,可判断其值为负数; (2)用a 分别表示出S 1与S 2,再作差比较即可.【详解】解:(1)﹣a2+6a﹣10=﹣(a2﹣6a+9)﹣1=﹣(a﹣3)2﹣1,∵(a﹣3)2≥0,∴﹣(a﹣3)2≤0,∴﹣(a﹣3)2﹣1<0,∴代数式﹣a2+6a﹣10的值一定是负数;(2)S1>S2,理由是:∵S1=a2,S2=4(a﹣3),∴S1﹣S2=a2﹣4(a﹣3)=a2﹣4a+12=a2﹣4a+4+8=(a﹣2)2+8,∵(a﹣2)2≥0,∴(a﹣2)2+8≥8,∴S1﹣S2>0,∴S1>S2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.。
【鲁教版】九年级数学上期中试题及答案
一、选择题1.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是( )A .12B .14C .16D .182.在一个不透明的口袋中,装有若干个红球和6个黄球,它们只有颜色不同,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率稳定在0.6,则估计口袋中大约有红球( )A .24个B .10个C .9个D .4个3.在四张完全相同的卡片上.分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( )A .14B .12C .34D .14.如图中的小正方形的大小都相同,随意选取图中的虚线小正方形a b c d e 、、、、五个中的一个并将其转化成实线小正方形后,六个实线小正方形恰好是一个小正方体的侧面展开图的概率是( )A .15B .25C .35D .45 5.关于x 的一元二次方程()221620k x x k k -+++-=有一个根是0,则k 的值是( )A .0B .1C .-2D .1或-2 6.关于x 的一元二次方程220x x m +-=有两个不相等的实数根,则m 的取值范围是( )A .1m >-B .1mC .1m ≥-D .1m >-且0m ≠ 7.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,又如32()x x x x px q =⋅=-=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:210x x --=,则4353x x x +-+的值为( )A .3B .4C .5D .68.受非洲猪瘟及其他因素影响,2020年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是( )A .23(1﹣x%)2=60B .23(1+x%)2=60C .23(1+x 2%)=60D .23(1+2x%)=60 9.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为( )A .12B .13C .14D .1510.下列命题中,正确的是( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .平行四边形的对角线平分且相等D .顺次连结菱形各边中点所得的四边形是矩形11.如图,小红在作线段AB 的垂直平分线时,是这样操作的:分别以点A ,B 为圆心,大于线段AB 长度一半的长为半径画弧,相交于点C ,D ,则直线CD 即为所求.连结AC ,BC ,AD ,BD ,根据她的作图方法可知,四边形ADBC 定是..( )A .梯形B .矩形C .菱形D .正方形12.如图,AC ,BD 是四边形ABCD 对角线,点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,连接EM ,MF ,NE ,要使四边形EMFN 为正方形,则需要添加的条件是( )A .,AB CD AB CD =⊥ B .,AB CD AD BC ==C .,AB CD AC BD =⊥ D .,//AB CD AD BC =二、填空题13.一个小球在如图所示的地板上自由滚动,最终停在阴影区域的概率为_______.14.在一个不透明的塑料袋中装有红色白色球共40个.除颜色外其他都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在20%左右,则口袋中红色球可能有________个.15.若关于x 的一元二次方程22(2)40m x x m ++-+=有一个根是0,则m =____. 16.用配方法解关于x 的一元二次方程2430x x --=,配方后的方程可以是__________.17.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.18.如图,矩形ABCD 中AC 交BD 于点O ,120AOB ∠=,3AD =,则BD 的长为__________.19.如图,在ABC 中,90C ∠=︒,60B ∠=︒,AD ,CE 都是ABC 的中线,点M 是CE 的中点,若1CM =,则CD =______.20.正方形111A B C O ,正方形2221A B C C ,正方形3332A B C C ,按如图所示的方式放置在平面直角坐标系中,若点1A 、2A 、3A和1C 、2C 、3C …分别在直线1y x =+和x 轴上,则点2020B 的坐标是__________.三、解答题21.如图,在电路AB 中,有三个开关:S 1、S 2、S 3.(1)当开关S 1已经是闭合状态时,开关S 2、S 3的断开与闭合是随机的,电路AB 能正常工作的概率是 ;(2)若三个开关S 1、S 2、S 3的断开与闭合都是随机的,求电路AB 能正常工作的概率. 22.某兴趣小组为了解该校学生在家做家务的情况,从全校学生中随机抽取部分学生进行调查,被调查的学生必须从洗衣服(记为A )、洗碗(记为B )、保洁(记为C )、做饭(记为D )、不做家务(记为E )中选择且只能选择一个项目,并将调查结果绘制成如下两个不完整的统计图.(1)扇形统计图中A 部分的圆心角是 度;(2)补全条形统计图;(3)兴趣小组准备开展一次“家务共同承担”的主题班会,如果在不做家务的4名学生(3名男生,1名女生)中随机抽取2名学生担任主持人,请用树状图或列表法求这2名学生恰好是1男1女的概率.23.关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根.(1)求a 的最大整数值;(2)当a 取最大整数值时,求出该方程两根.24.用适当的方法解下列方程.(1)213360x x -+=(2)()()23330x x x ---=25.如图,四边形ABCD 是平行四边形,//DE BF ,且分别交对角线AC 于点E ,F ,连接,BE DF .若BE DE =,求证:四边形EBFD 是菱形.26.如图,在平行四边形ABCD 中,点O 是BC 的中点,连接DO 并延长,交AB 延长线于点E ,连接BD ,EC .(1)求证:四边形BECD 是平行四边形;(2)若50A ∠=︒,则当ADE ∠=____°时,四边形BECD 是菱形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设大正方形的边长为2a ,从而可得大正方形的面积为24a ,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =,编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a , 22a a 2a +, 2a ,∴小正方形绿色草坪的面积为22)2a=,则跳伞运动员一次跳伞落在草坪上的概率是222142aPa==,故选:A.【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.2.D解析:D【分析】设口袋中红球有x个,用黄球的个数除以球的总个数等于摸到黄球的频率,据此列出关于x的方程,解之可得答案.【详解】解:设口袋中红球有x个,根据题意,得:66x+=0.6,解得x=4,经检验:x=4是分式方程的解,所以估计口袋中大约有红球4个,故选:D.【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.3.C解析:C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案.【详解】∵等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,∴现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率是:34.故选:C.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.也考查了中心对称图形的定义.4.C解析:C【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【详解】解:随意选取图中的虚线小正方形a b c d e 、、、、五个中的一个共有5种情况,而能够构成正方体的表面展开图的有以下3种情况,b 、c 、e ,∴能构成这个正方体的表面展开图的概率是35, 故选:C .【点睛】本题考查了概率和展开图折叠成几何体,解题的关键是熟识正方体表面展开图的结构.解题时勿忘记正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图,5.C解析:C【分析】把x=0代入方程,得到220k k +-=,解得k 值后,验证二次项系数不为零,判断即可.【详解】∵x 的一元二次方程()221620k x x k k -+++-=有一个根是0, ∴220k k +-=,且k-1≠0,解得k= -2或k=1,且k≠1,∴k= -2,故选C .【点睛】本题考查了已知一元二次方程的一个根探解字母系数问题,熟练运用根的定义,一元二次方程的定义是解题的关键.6.A解析:A【分析】根据一元二次方程220x x m +-=有两个不相等的实数根,得到440m +>,求解即可.【详解】∵一元二次方程220x x m +-=有两个不相等的实数根,∴0∆>,∴440m +>,∴1m >-,故选:A .【点睛】此题考查一元二次方程根的判别式,掌握一元二次方程根的三种情况是解题的关键.7.D解析:D【分析】先求得x 2=x+1,再代入4353x x x +-+即可得出答案.【详解】解:∵x 2-x-1=0,∴x 2=x+1,∴4353x x x +-+=(x+1)2+x(x+1)-5x+3=x 2+2x+1+x²+x-5x+3=2x 2-2x+4=2(x+1)-2x+4=2x+2-2x+4=6,故选:D .【点睛】本题考查了高次方程:通过适当的方法,把高次方程化为次数较低的方程求解.所以解高次方程一般要降次,即把它转化成二次方程或一次方程.也有的通过因式分解来解.通过把一元二次方程变形为用一次式表示二次式,从而达到“降次”的目的,这是解决本题的关键.8.B解析:B【分析】可先用x%表示第一次提价后商品的售价,再根据题意表示第二次提价后的售价,然后根据已知条件得到关于x%的方程.【详解】解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2. ∴23(1+x%)2=60.故选:B .【点睛】本题考查了一元二次方程的应用,要根据题意列出第一次提价后商品的售价,再根据题意列出第二次提价后售价的方程,令其等于60即可.9.B解析:B【解析】过点P 作PM ⊥BC 于点M ,由折叠得到PQ⊥AE,∴∠DAE+∠APQ=90°,又∠DAE+∠AED=90°,∴∠AED=∠APQ,∵AD∥BC,∴∠APQ=∠PQM,则∠PQM=∠APQ=∠AED,∠D=∠PMQ,PM=AD∴△PQM≌△ADE∴22+=.51213【点睛】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.10.D解析:D【分析】根据矩形、菱形的判定和平行四边形的性质判断即可.【详解】解:A、对角线相等的平行四边形是矩形,原命题是假命题,不符合题意;B、对角线互相垂直的平行四边形是菱形,原命题是假命题,不符合题意;C、平行四边形的对角线平分,原命题是假命题,不符合题意;D、顺次连结菱形各边中点所得的四边形是矩形,是真命题,符合题意;故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.C解析:C【分析】根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.【详解】∵分别以A和B为圆心,大于1AB的长为半径画弧,两弧相交于C、D,2∴AC=AD=BD=BC ,∴四边形ADBC 一定是菱形,故选C .【点睛】考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键. 12.A解析:A【分析】证出EN 、NF 、FM 、ME 分别是ABD △、BCD 、ABC 、ACD △的中位线,得出////EN AB FM ,////ME CD NF ,12EN AB FM ==,12ME CD NF ==,证出四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,得出平行四边形EMFN 是菱形;当AB CD ⊥时,EN ME ⊥,则90MEN ∠=︒,即可得出菱形EMFN 是正方形.【详解】 解:点E ,F 分别是AD ,BC 的中点,点M ,N 分别是AC ,BD 的中点,EN ∴、NF 、FM 、ME 分别是ABD △、BCD 、ABC 、ACD △的中位线, ∴////EN AB FM ,////ME CD NF ,12EN AB FM ==,12ME CD NF ==, ∴四边形EMFN 为平行四边形,当AB CD =时,EN FM ME NF ===,∴平行四边形EMFN 是菱形;当AB CD ⊥时,EN ME ⊥,则90MEN ∠=︒,∴菱形EMFN 是正方形;故选:A .【点睛】本题考查了正方形的判定、平行四边形的判定、菱形的判定以及三角形中位线定理;熟练掌握三角形中位线定理是解题的关键.二、填空题13.【分析】先求出黑色方砖在整个地板中所占的比值再根据其比值即可得出结论【详解】∵由图可知黑色方砖5块共有25块方砖∴黑色方砖在整个地板中所占的比值∴它停在黑色区域的概率是故答案为:【点睛】本题考查了几 解析:15【分析】先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【详解】∵由图可知,黑色方砖5块,共有25块方砖,∴黑色方砖在整个地板中所占的比值51255=, ∴它停在黑色区域的概率是15. 故答案为:15. 【点睛】 本题考查了几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A );然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A )发生的概率.14.8【分析】设有红球有x 个利用频率约等于概率进行计算即可【详解】设红球有x 个根据题意得:=20解得:x =8即红色球的个数为8个故答案为:8【点睛】本题考查了由频率估计概率的知识解题的关键是了解大量重复 解析:8【分析】设有红球有x 个,利用频率约等于概率进行计算即可.【详解】设红球有x 个, 根据题意得:40x =20%, 解得:x =8,即红色球的个数为8个,故答案为:8.【点睛】本题考查了由频率估计概率的知识,解题的关键是了解大量重复实验中事件发生的频率等于事件发生的概率. 15.2【分析】先把x =0代入方程得m2﹣4=0然后解关于m 的方程后利用一元二次方程的定义确定满足条件的m 的值【详解】解:把x =0代入方程得m2﹣4=0解得m1=2m2=﹣2因为m+2≠0所以m≠-2所以解析:2【分析】先把x =0代入方程22(2)40m x x m ++-+=得m 2﹣4=0,然后解关于m 的方程后利用一元二次方程的定义确定满足条件的m 的值.【详解】解:把x =0代入方程22(2)40m x x m ++-+=得m 2﹣4=0,解得m 1=2,m 2=﹣2,因为m +2≠0,所以m≠-2所以m 的值为2.故答案为2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.16.【分析】移项后两边配上一次项系数一半的平方即可得【详解】解:故答案为:【点睛】本题考查一元二次方程的解法解题的关键是熟练运用配方法本题属于基础题型解析:()227x -=.【分析】移项后两边配上一次项系数一半的平方即可得.【详解】解:2430x x --= 243x x -=24+43+4x x -=()227x -=故答案为:()227x -=.【点睛】本题考查一元二次方程的解法,解题的关键是熟练运用配方法,本题属于基础题型. 17.-3【分析】由于可知m 是方程的解可得将其带入求值即可;【详解】∵∴∵m 是的一个根∴∴故答案为:-3【点睛】本题考查了方程的解的定义此类型的题的特点是:利用方程解的定义找到相等的关系再把所求的代数式化 解析:-3【分析】由于2210x x +-=可知221x x +=,m 是方程的解,可得221m m += ,将其带入求值即可;【详解】∵2210x x +-=,∴ 221x x +=,∵ m 是2210x x +-=的一个根,∴ 221m m +=,∴ 224143m m +-=-=- ,故答案为:-3.【点睛】本题考查了方程的解的定义,此类型的题的特点是:利用方程解的定义找到相等的关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值;18.6【分析】根据矩形的对角线相等且互相平分可得OA=OD 再求出∠AOD=60°然后判断出△AOD 是等边三角形根据等边三角形的性质求出OD 即可得出BD 的长【详解】解:在矩形ABCD 中OA=OC=ACOB解析:6【分析】根据矩形的对角线相等且互相平分可得OA=OD ,再求出∠AOD=60°,然后判断出△AOD 是等边三角形,根据等边三角形的性质求出OD ,即可得出BD 的长.【详解】解:在矩形ABCD 中,OA=OC=12AC ,OB=OD=12BD ,AC=BD , ∴OA=OD ,∵∠AOB=120°,∴∠AOD=180°-120°=60°,∴△AOD 是等边三角形,∴OD=AD=3,∴BD=2OD=6;故答案为:6.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记矩形的性质,证出△AOD 是等边三角形是解题的关键. 19.1【分析】证明△BCE 是等边三角形求出BE=CE=BC=2由D 是BC 的中点可得结论【详解】解:在中∵是的中线∴∵∴是等边三角形∴∵点是的中点且∴∵是边上的中线∴故答案为:1【点睛】此题主要考查了等边解析:1【分析】证明△BCE 是等边三角形,求出BE =CE =BC =2,由D 是BC 的中点可得结论.【详解】解:在ABC 中,90C ∠=︒,∵CE 是ABC 的中线, ∴12==CE BE AB ∵60B ∠=︒,∴BCE ∆是等边三角形∴BC CE =∵点M 是CE 的中点,且1CM =,∴22CE CM BC ===∵AD 是BC 边上的中线,∴112122CD BC ==⨯= 故答案为:1.【点睛】此题主要考查了等边三角形的判定和三角形中线的性质,证明BCE ∆是等边三角形是解答此题的关键.20.【分析】根据直线解析式先求出OA1=1再求出第一个正方形的边长为2第三个正方形的边长为22得出规律即可求出第n 个正方形的边长从而求得点Bn 的坐标即可求得点B2020的坐标【详解】解:∵直线y=x+1解析:20202019201921,2()B ﹣【分析】根据直线解析式先求出OA 1=1,再求出第一个正方形的边长为2,第三个正方形的边长为22,得出规律,即可求出第n 个正方形的边长,从而求得点B n 的坐标,即可求得点B 2020的坐标.【详解】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,∴OA 1=1,∴B 1(1,1),∵OA 1=1,OA=1,∴∠OAA 1=45°,∴∠A 2A 1B 1=45°,∴A 2B 1=A 1B 1=1,∴A 2C 1=2=21,∴B 2(3,2)同理得:A 3C 2=4=22,…,∴B 3(7,4);B 4(24-1,24-1),即B (15,8),∴B n (2n -1,2n-1),∴B (22020-1,22019)故答案为(22020-1,22019).【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解题的关键.三、解答题21.(1)34;(2)38 【分析】先画树状图展示出所有等可能结果,从中找到使电路AB正常工作的情况数,在根据概率公式计算即可;【详解】(1)画树状图如下:由树状图知,共有4种等可能结果,其中电路AB能正常工作的有3种结果,∴电路AB能正常工作的概率是34;故答案是34.(2)画树状图如下:由树状图知,共有8种等可能结果,其中电路AB能正常工作的有3种结果,∴电路AB能正常工作的概率是38;【点睛】本题主要考查了画树状图求概率,准确分析计算是解题的关键.22.(1)108;(2)见解析;(3)1 2【分析】(1)先求出调查的学生总人数,再由360°乘以A的人数所占的比例即可;(2)求出条形统计图中D部分的学生人数,补全条形统计图即可;(3)列出表格,再由概率的公式求解即可;【详解】(1)∵调查的总人数为2040÷%=50,∴扇形统计图中A 部分的圆心角是15360=10850︒⨯︒ , 故答案为:108;(2)补全条形图中D 部分的学生人数为:50-15-5-20-4=6,补全条形图(图中虚线部分为补全图形)(3)解:列表法:男1 男2 男3 女 男1男1男2 男1男3 男1女 男2男2男1 男2男3 男2女 男3男3男1 男3男2 男3女 女 女男1 女男2 女男36种可能.61()122P M ∴==. 【点睛】 本题考查了条形条形统计图与扇形统计图的结合,以及列表法和树状图法求概率,正确掌握知识点是解题的关键;23.(1)7;(2)1247,47x x ==【分析】(1)由关于x 的一元二次方程(a ﹣6)x 2﹣8x +9=0有实数根,则a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值;(2)将a 的最大整数值代入(a ﹣6)x 2﹣8x +9=0,即可求出该方程两根.【详解】解:(1)∵关于x 的一元二次方程(a ﹣6)x 2﹣8x+9=0有实数根,∴a ﹣6≠0,且△≥0,即△=(﹣8)2﹣4(a ﹣6)×9=280﹣36a≥0, 解得:779a ≤; ∴a 的取值范围为779a ≤且a≠6, 所以a 的最大整数值为7;(2)将a =7代入(a ﹣6)x 2﹣8x +9=0,得x 2﹣8x +9=0,∵△=64﹣36=28,∴x=∴1244x x ==【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和解法.24.(1)14x =,29x =;(2)13x =,232x =-. 【分析】(1)利用因式分解法即可解方程;(2)方程左边提取公因式x−3,进一步整理后可得两个关于x 的一元一次方程,解之可得.【详解】(1)解:213360x x -+= ()()490x x --=40x -=或90x -=14x =,29x =;(2)解:()()23330x x x ---= ()()3330x x x ---=.30x -=或330x x --=13x =,232x =-. 【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法:直接开平方法、配方法、公式法以及因式分解法是解题的关键.25.见解析【分析】根据平行四边形的性质,可以得到AD=CB ,AD ∥CB ,从而可以得到∠DAE=∠BCF ,再根据DE ∥BF 和等角的补角相等,从而可以得到∠AED=∠CFB ,然后即可证明△ADE 和△CBF 全等,从而可以得到DE=BF ,再根据DE ∥BF ,即可得到四边形EBFD 是平行四边形,再根据BE=DE ,即可得到四边形EBFD 为菱形.【详解】证明:∵四边形ABCD 是平行四边形,∴AD=CB ,AD ∥CB ,∴∠DAE=∠BCF ,∵DE ∥BF ,∴∠DEF=∠BFE ,∴∠AED=∠CFB ,在△ADE 和△CBF 中,DAE BCF AED CFB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF (AAS ),∴DE=BF ,又∵DE ∥BF ,∴四边形EBFD 是平行四边形,∵BE=DE ,∴四边形EBFD 为菱形.【点睛】本题考查平行四边形的判定和性质、菱形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.26.(1)见解析;(2)90【分析】(1)由AAS 证明△△BOE COD ≅,得出OE=OD ,即可得出结论;(2)先根据三角形内角和定理得到40AED ∠=︒,在根据平行线的性质定理得到50CBE A ∠=∠=︒,求得90BOE ∠=︒,然后根据菱形的判定定理即可得到结论;【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=CD ,∴OEB ODC ∠=∠,∵O 是BC 的中点,∴BO=CO ,在△BOE 和△COD 中,OEB ODC BOE COD BO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()△△BOE COD AAS ≅,∴OE=OD ,∴四边形BECD 是平行四边形;(2)当90ADE ∠=︒时,四边形BECD 是菱形,理由如下: ∵50A ∠=︒,90ADE ∠=︒,∴40AED ∠=︒,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴50CBE A ∠=∠=︒,∴90BOE ∠=︒,∴BC DE ⊥,∴四边形BECD 是菱形.【点睛】本题主要考查了全等三角形的判定与性质、菱形的判定,准确分析计算是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013——2014学年度第一学期期中考试初四 数学试题(120分钟,150分)一、选择题:本题共12个小题,每个小题均给出A 、B 、C 、D 四个选项,只有一个是正确的,请将正确答案的标号填在选择题的答题表的相应位置.本题共48分). 1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( )A.34 B.43 C.35 D.452、如图2,某飞机于空中A 处探测到地平面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( )A 、1200mB 、2400mC 、4003mD 、12003m3、在正方形网格中,△ABC 的位置如图3所示,则cos∠B 的值为( ) A.12B .2C .2D .34、在Rt △ABC 中,∠C=90°,若tanA=43,则sinA=( ) A、34 B 、43 C 、35 D 、535.若点(2,5),(4,5)是抛物线c bx ax y ++=2上的两个点,那么这条抛物线的对称轴是( )A .直线1=xB .直线2=xC .直线3=xD .直线4=x6.若抛物线c bx ax y ++=2的顶点在第一象限,与x 轴的两个交点分布在原点两侧,则点(a ,ac)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.若双曲线)0(≠=k xky 的两个分支在第二、四象限内,则抛物线222k x kx y +-= 的图象大致是图中的( ) α图1α图3 ABC(图2初四数学 第1页 共6页8.如图4是二次函数c bx ax y ++=2的图象,则一次函数bc ax y +=的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9.函数y=ax 2+bx+c 的图象如图5所示,那么关于一元二次方程ax 2+bx+c-2=0的根的情况是( )A .有两个正实数根B .有两个异号实数根C .有两个负实数根D .没有实数根 10.给出下列四个函数:y=-2x ,y=2x-1,y=3x(x>0),y=-x 2+3(x>0),其中y 随x•的增大而减小的函数有( )A .3个B .2个C .1个D .0个11. 已知a<-1,点(a -1,y 1),(a ,y 2),(a+1,y 2)都在函数y=x 2的图象上,则( ) A .y 1<y 2<y 3 B .y 1<y 3<y 2 C .y 3<y 2<y 1 D .y 2<y 1<y 3 12.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图6所示,给出以下结论:①a+b+c<0;②a -b+c<0;③b+2a<0;④abc>0,其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③2010——2011学年度第一学期期中考试初四 数学试题(120分钟,150分)_x_y_ O_x_y_ O _x_y_ O _ O _y_x _ D_ C_ B_ A图5 图6图5二、填空题,把正确答案填在横线上(本题6个小题,每题4分,共24分):13、正方形ABCD 的边长为1,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线的 D ′处,那么tan ∠BAD ′= 。
14、如图7,在△ABC 中,∠C=90°,∠B=30°,AD 是∠BAC 的平分线,已知AB=34,那么AD= 。
15.顶点为(-2,-5)且过点(1,-14)的抛物线的 解析式为 .16.抛物线1422++-=x x y 在x 轴上截得的 线段长度是17.已知二次函数232)1(2-++-=m mx x m y ,则当=m 时,其最大值为0 18.已知抛物线c x ax y ++=22与x 轴的交点都在原点的右侧,则点M (c a ,)在 第 象限. 三、解答题(共78分):19.(8分) 计算:()3122101-+--⎪⎭⎫ ⎝⎛- +︒⋅︒︒-︒60tan 30cos 60cos 45tan20、(10分)已知抛物线262-+-=c x x y 的顶点到x 轴的距离为3,求c 的值.21.(10分)抛物线y=x 2+2mx+n 过点(2,4),且其顶点在直线y=2x+1上,求此二次函数的关系式。
22.(10分)如图15,十一国庆节某建筑物AC 上,挂着“热烈庆祝建国六十一周年”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为30°,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为60°,求宣传条幅BC 的长,(小明的身高不计,结果保留准确值)A BD图723.(12分)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件,现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价1元其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚的利润最大?并求出最大利润.24、(14分)已知抛物线y=2x2+4x-6(1)试判断抛物线与x轴交点个数情况;(2)求此抛物线上一点A(0,-6)关于对称轴的对称点B的坐标;(3)是否存在一次函数的图像与抛物线只交于B点?若存在,求出符合条件的一次函数的解析式;若不存在,请说明理由。
25.(14分)足球场上守门员在O处踢出一高球,球从地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现在自己头的正上方达到最高点M,距地面约4米高,球落地后又一次弹起,据实验,足球在草坪上弹起后的抛物线与原来的抛物线的形状相同,最大高度减少到原来最大高度的一半。
(1)求足球开始飞出到第一次落地时,该抛物线的表达式;4取7)(2)足球第一次落地点C距守门员多少米?(32取5)(3)运动员乙要抢先到达第二个落地点D,他应再向前跑多少米?(62010——2011学年度第一学期期中考试初四 数学试题 答案13、2 14、4 15、y=-(x+2)2-5 或y=-x 2-4x-9 16、6 17、2118、三 三、解答题19、(8分) 计算:()3122101-+--⎪⎭⎫⎝⎛- +︒⋅︒︒-︒60tan 30cos 60cos 45tan ==20、解:∵抛物线的顶点到x 轴的距离为3∴3146)2(142=⨯--⨯⨯c ∴12444=-c ∴C=14或C=8 21、解:由题意可得,抛物线y=x 2+2mx+n 的顶点为),(2n m m +-------2分 ∵(2,4)在抛物线上,且其顶点在直线y=2x+1上∴⎩⎨⎧+-=+-++=1)(24442m n m nm ----------4分 解得4,1=-=n m -----------2分 ∴抛物线的解析式为y=x 2-2x+4 ----2分22、宣传条幅BC 的长为310米(解略) -------------10分23、解:设售出价定为x 元,每天所赚的利润为y 元,由题意得[]1600x 280x 10y 10)10x (100)8x (y 2-+-=⨯---=即 ∵a=-10<0当x=)10(2280-⨯-=14时 360y =最大 所以,当定价为14元时,每天所赚的利润为360元。
------12分 24、解:(1)△=64>0 抛物线与x 轴有两个交点---------3分 (2)对称轴为直线x=-1所以(0,-6)关于对称轴的对称点B 的坐标为(-2,-6)------7分 (3)存在。
--------------------------------------------8分 设满足条件的一次函数的解析式为y=kx+b,∵直线过点B (-2,-6)∴-6=-2k+b , b=2k-6 ---------9分由题意可知,方程组⎪⎩⎪⎨⎧-+=+=6x 4x 2y bkx y 2只有一个解 --------10分 所以,2x 2+4x-6=kx+b 即 方程2x 2+(4-k)x-2k=0有两个相等的实根,∴△=(4-k)2-4×2×(-2k )=0, k=-4 --------------12分 ∴b=-14∴一次函数的解析式是y=-4x-14 -------------------14分25、解:(1)由题意可知足球第一次飞出时的抛物线的顶点为(6,4),且过点(0,1)∴设抛物线解析式为y=a(x-6)2+4 -----------------2分把(0,1)代入解得a=121- ∴y=4)6x (1212+---------------------4分 (2) 足球第一次落地点C 距守门员13米 ------------------------8分 (3) 求出第二次抛物线解析式为y=2)18x (1212+------------14分 求出CD=10米 ------------------------------16分。