常见分子、离子的立体构型
第二节 分子的立体构型
2. VSEPR模型与中心原子的杂化轨道类型
VSEPR 模型
VSEPR 直线形 模型名称 中心原子 的杂化轨 道类型 典型例子 平面三 角形 平面三 角形
四面体
四面体
正四面体
sp
sp2
sp3
sp2
3
sp3
CO2
SO2
H2 O
Ag++NH3· H2O===AgOH↓+NH4+ AgOH+2NH3===[Ag(NH3)2]++OH-
自主探究
精要解读
实验探究
要点一
|
分子结构与价层电子对互斥理论之间的关系
价层电子对互斥理论可以用来预测分子的构型,在应用该 理论时应把握住以下几个要点:
1. 在AXm型分子中,中心原子A的周围配置的原子或原子团
变红 溶液颜色_____
Fe3++3SCN-===Fe(SCN)3
自主探究
精要解读
实验探究
【慎思1】常见分子的空间构型是怎样的? 提示(1)双原子分子都是直线形,如:HCl、NO、O2、 N2等。
(2)三原子分子有直线形,如:CO2、CS2等;还有V
形,如:H2O、H2S、SO2等。 (3)四原子分子有平面三角形,如:BF3、BCl3、CH2O 等;有三角锥形,如:NH3、PH3等;也有正四面体, 如:P4。
第二节
分子的立体构型
自主探究
精要解读
实验探究
填表
电子式 σ键的类型及个数 π键个数 CO2 H2 O NH3 CH4
提示
〃〃〃 〃〃 〃 〃〃
O
C
〃〃〃〃 〃 〃〃 〃
O
2 个 p-p σ 键
2
H O H 0
常见分子、离子的立体构型
直 线 型:CO 2、C 2H 2、HCN 、BeCl 2、HgCl 2等平面三角形:包括v 型(BF 3、BCl 3、SO 3、CH 2O 、CO 32-等)、平面三角形(SO 2等);常 见 分 子 离 子 的 立 体 构 型编 号分子或离子电 子 式中心原子 axb中心原子上的孤 电 子 对 数 δ键电子对数价层电子对数VSEPR模 型VSEPR 模 型 名 称分子或离子 立 体 构 型分子或离子立体 构 型 名 称杂 化 轨 道 数 杂化轨道类 型实例1CO 2C 4 2 2 0 2 2直线型直线型0+2Sp2SO 3S 6 3 2 0 3 3平面三角形平面三角形 0+3 Sp23CH 2OC 4 3 4/333平面三角形平面三角形0+3Sp24CO 32-C 4+2=6 3 2 0 3 3平面三角形平面三角形 0+3 Sp25SO 2S 6 2 2 1 2 3平面三角形V 型1+2Sp26H 2OO 6 1 2 2 2 4四面体V 型2+2Sp37NH 3N 5 3 1 1 3 4四面体三角锥形1+3Sp38H 3O +O 6-1=5 3 1 1 3 4四面体三角锥形1+3Sp39CH 4C 4 4 1 0 4 4正四面体正四面体0+4Sp3OO Sp 杂化:得到的为直线型;Sp2杂化:得到的为平面三角形;10NH4+N5-1=441044正四面体正四面体0+4Sp3价层电子对=中心原子的孤电子对+δ键电子对数1、中心原子的孤电子对=1/2(a-xb)a:为中心原子的价电子数(原子:价电子数=原子最外层电子书;阳离子:中心原子的价电子数-离子的电荷数;阴离子:中心原子的价电子数+离子的电荷数)。
分子或离子空间构型的判断方法
分子或离子空间构型的判断方法在高考试题中,分子或离子空间构型的判断是一种常考的问题,要求“能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构”。
现将几种判断粒子空间构型的简单方法总结如下。
一、根据杂化理论判断。
即中心原子的杂化方式的判断方法。
杂化轨道数=中心原子所结合的原子数+(中心原子的价电子数﹣周边原子未成对电子总数)/2(ABm型)说明:若是离子,中心原子的价电子数还应加上负离子的电荷数或减去正离子的电荷数。
判断思路:先判断中心原子杂化方式,然后根据中心原子所结合的原子数和孤电子对数再判断分子的空间构型。
例1.推测常见分子的杂化方式与空间构型:CO2、BF3、CH4、NH3、H2O。
O2:2+(4-4)/2=2BF3:3+(3-3)/2=3CH4:4+(4-4)/2=4NH3:3+(5-3)/2=4H2O:2+(6-2)/2=4中心原子是分别采用sp、sp2、sp3、sp3、sp3杂化,杂化轨道形状分别为直线形(夹角为180º)、平面正三角形(夹角为120º)、正四面体形(夹角为109º28′)、正四面体形、正四面体形。
由于CO2、BF3、CH4中没有孤对电子,分子的空间构型与杂化轨道的空间形状一致。
由于NH3、H2O分别有1对、2对孤对电子,分子的空间构型与杂化轨道的空间形状不一致,所以NH3呈三角锥形,受1对孤对电子的排斥,键角变小,键角是107º18′;H2O呈V形,受2对孤对电子的排斥,排斥作用比NH3更强,键角变得更小些,键角是104.5º。
例2.推测下列微粒的杂化方式与空间构型:SO3、SO2、CO32-、O4。
SO3:3+(6-6)/2=3SO2:2+(6-4)/2=3CO32-:3+(6-6)/2=3O4:3+(6-6)/2=3(O4以其中1个O原子作为中心原子,其余3个O原子作为配位原子)。
杂化轨道数全是3,中心原子均是采用sp2杂化;由于SO3、O4、CO32-均没有孤对电子,均呈平面正三角形,键角等于120º。
化学 分子的立体结构
杂化轨道与形成它的原子轨道形状不同,但成键能力强。
杂化轨道与形成它的原子轨道的总数一样。
由1个s轨道和3个p轨道杂化成的轨道称为sp3杂化轨道。 共4个轨道。 由1个s轨道和2个p轨道杂化成的轨道称为sp2杂化轨道。 共3个轨道。 由1个s轨道和1个p轨道杂化成的轨道称为sp杂化轨道。 共2 个轨道。
杂化类型与价层电子对数相关。
σ键 孤 价层 VSEPR 立体构型 杂化 电子对 电子对 电子对 模型名称 名称 轨道类型
BO2-
2
0
NO2- 2
1
ClO2- 2
2
NO3- 3
0
SO32-
3
1
NH4+ 4
0
2
直线形 直线形 sp杂化
3 平面三角形 V形 sp2杂化
4 正四面体形 V形 sp3杂化
3 平面三角形平面三角形 sp2杂化
Cu(OH)2+4NH3·H2O=Cu(NH3)42++2OH-+4H2O
析出的深蓝色晶体为[Cu(NH3)4]SO4·H2O
深蓝色是由于存在[Cu(NH3)4]2+
Cu(NH3)42+的构造如下:
↓NH3
2+
H3N→C↑u←NH3
NH3
实验2-3
向盛有氯化铁溶液的试管中滴加1滴硫氰化钾〔KSCN〕 溶液,观察并记录现象。
σ键电子对=中心原子所连原子数
孤电子对=
1 2
(a-xb)
a为中心原子的价电子数;
x为中心原子结合的原子数;
分子立体构型、结构与种类
CH3OH
资料卡片: 形形色色的分子 C60
C20
C40 分子的立体构型、结构和种类
C70
分子的立体构型、结构和种类
分子的立体构型、结构和种类
思考:
同为三原子分子,CO2 和 H2O 分子的空间结 构却不同,什么原因?
分子的立体构型、结构和种类
直线形 V形
二、价层电子对互斥理论(VSEPR)- 预测分子的立体结构
价层电子对数
2
3
4
VSEPR模型
直线形 平面三角形
四面体形
5
三角双锥形
6
正八面体形
分子的立体构型、结构和种类
n
2
3
4
价
电
直线 平面三 正四面体
子 对
180 角形 109°28′
0
1200
空
间
M
构
M
M
型
分子的立体构型、结构和种类
(1)如果中心原子无孤电子对,则分子立体
构型与VSEPR模型相同
ABn(n为B原子数) 分子立体构 价层电子对数 型(VSEPR同)
三氟化硼、碳酸根离子、硫酸根离子、硝酸根 离子、甲烷、铵根离子、五氯化磷、六氟化硫
分子的立体构型、结构和种类
4.价层电子对互斥模型(VSEPR模型) 基本要点
分子(或离子)的中心原子周围的价 电子对的几何构型,主要取决于价电 子对数,价电子对尽量远离,使它们 之间斥力最小。
分子的立体构型、结构和种类
2p
sp
两个sp杂化轨道
分子的立体构型、结构和种类
sp杂化轨道的形成过程
z
z
180°
z
z
y
y
常考题空7 结构决定性质——解释原因类简答题 (附答案解析)-高考化学大题
常考题空7 结构决定性质——解释原因类简答题【方法和规律】1.晶体熔、沸点的比较(1)不同类型晶体熔、沸点的比较①不同类型晶体的熔、沸点高低的一般规律:共价晶体>离子晶体>分子晶体②金属晶体的熔、沸点差别很大,如:钨、铂等熔、沸点很高,汞、铯等熔、沸点很低(2)同种晶体类型熔、沸点的比较——比较晶体内微粒之间相互作用力的大小①共价晶体:看共价键的强弱,取决于键长,即:成键原子半径大小规律:如熔点:金刚石>碳化硅>晶体硅②离子晶体:看离子键的强弱,取决于阴、阳离子半径大小和所带电荷数规律:衡量离子晶体稳定性的物理量是晶格能。
晶格能越大,形成的离子晶体越稳定,熔点越高,硬度越大。
一般地说,阴、阳离子的电荷数越多,离子半径越小,晶格能越大,离子间的作用力就越强,离子晶体的熔、沸点就越高,如熔点:MgO>NaCl>CsCl③分子晶体:看分子间作用力(一般先氢键后范德华力最后分子的极性)a.分子间作用力越大,物质的熔、沸点越高;具有分子间氢键的分子晶体熔、沸点反常得高,如沸点:H2O>H2Te>H2Se>H2Sb.组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如沸点:SnH4>GeH4>SiH4>CH4 c.组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高,如沸点:CO>N2 d.在同分异构体中,一般支链越多,熔、沸点越低,如沸点:正戊烷>异戊烷>新戊烷④金属晶体:看金属键的强弱,取决于金属阳离子半径和所带电荷数规律:金属离子的半径越小,离子的电荷数越多,其金属键越强,金属的熔、沸点就越高如熔、沸点:Na<Mg<Al【题组训练1】1.一些氧化物的熔点如下表所示:氧化物Li2O MgO P4O6SO2熔点/°C1570280023.8−75.5解释表中氧化物之间熔点差异的原因______________________________________________2.FeF3具有较高的熔点(熔点高于1 000 ℃),其化学键类型是________,FeBr3的式量大于FeF3,但其熔点只有200 ℃,原因是__________________________________________________________3.砷化镓以第三代半导体著称,熔点为1 230 ℃,具有空间网状结构。
选修二2.2.3 解题策略 分子的空间结构及判断方法
sp
1个ns和 1个np
轨道夹角 180°
实例
CO2
sp2
1个ns和 2个np
120°
BF3
sp3
1个ns和 3个np
109°28 ′ CH4
【典例1】下列分子中,中心原子杂化轨道类型相同,分子的空间结构也相
同的是( )
A.H2O、SO2 答案 B
B.BeCl2、CO2
C.H2O、NH3
D.NH3、CH2O
VSEPR模型
分子或离子的立体构型。
2.确定分子或离子的立体构型。
①若中心原子A无孤电子对,则分子或离子的立体构型为价层电子对的立体构
型—VSEPR模型。
②若中心原子A有孤电子对,则分子或离子的立体构型为略去中心原子孤电子
对后的成键电子对的立体构型。
【三言两语话重点】
(1)1个公式:
1
中心原子的价层电子对数=σ键电子对数+ 2 (a-xb)。
空间结构 间结构
直线形 直线形
三角形
三角形 V形
正四面体形
四面体形 三角锥形
V形
实例
BeCl2 BF3
SnBr2 CH4 NH3 H2O
3.利用键角判断 一般来说,高中阶段知道了多原子分子中的键角数据,就可确 定该分子的空间几何构型。常见分子的键角与分子构型如下表:
分子 硫化氢
水
氨
甲烷
二氧化碳
键角 约90° 105°
107° 109°28′
180°
分子构型 V形
V形 三角锥形 正四面体形 直线形
分子 白磷 三氯化硼 乙烯
乙炔
苯
键角 60° 120°
120°
分子的立体构型
[知识要点]一、常见多原子分子的立体结构:(原子数目相同的分子的立体结构不一定相同)CH4 NH3 CH2O CO HbO原子数目化学式分子结构键角中心原子3CO直线形180°无孤对电子fO V形105°有孤对电子4CHO平面三角形120°无孤对电子NH三角锥形107°有孤对电子5CH正四面体形109° 28' 无孤对电子【小结】同为三原子分子或四原子分子,分子的空间构型不同。
所以多原子分子的立体结构不但与所连原子数目有关,还与其他因素(比如中心原子是否有孤对电子及孤对电子的数目)有关二、价层电子对互斥模型:(用中心原子是否有孤对电子及孤对电子的数目,预测分子的立体结构)价层电子对互斥模型认为分子的立体结构是由于分子中的价电子对(成键电子对和孤对电子对)相互排斥的结果。
中心原子价层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型这种模型把分子分为两类:1、中心原子上的价电子都用于形成共价键(中心原子无孤对电子)中心原子无孤对电子,分子中存在成键电子对与成键电子对间的相互排斥,且作用力相同,分子的空间构型以中心原子为中心呈对称分布。
如CO、CHO CH、HCN等分子。
它们的立体结构可用中心原子周围的原子数来预测:ABn立体结构范例n=2直线形COn=3平面三角形CHOn=4正四面体形CH42、中心原子上有孤对电子(未用于形成共价键的电子对)的分子。
中心原子上有孤对电子,分子中存在成键电子对与成键电子对间的相互排斥、成键电子对与孤对电子对间的相互排斥、孤对电子对与孤对电子对间的相互排斥。
孤对电子要占据中心原子周围的空间,并参与互相排斥,使分子呈现不同的立体构型如H2O和NH,中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥,中心原子周围的S键+孤对电子数=4,所以NH与H2O的VSEPF理想模型都是四面体形。
第二节分子的立体构型第1课时 形形色色的分子 价层电子对互斥理论(导学案)
第二节 分子的立体构型第1课时 形形色色的分子 价层电子对互斥理论▍课标要求▍1.认识共价分子结构的多样性和复杂性。
2.能根据价层电子对互斥理论判断简单分子或离子的构型。
要点一 形形色色的分子1.分子的立体构型:指由两个以上的原子构成的分子中的原子的问题。
2.常见的分子结构分子 类型 化学式 立体构型结构式 键角 比例模型球棍 模型三原子分子CO 2 (CS 2) _____ ________ 180°H 2O (H 2S) _____________105°四原子分子CH 2O _________NH 3 (PH 3)_____________107°五原子分子CH 4 (CCl 4)_________思考1:五原子分子都是正四面体结构吗?要点二 价层电子对互斥理论(VSEPR) 1.价层电子对互斥理论分子中的价层电子对(包括 和 )由于 作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。
电子对之间的夹角越大,排斥力越小。
2.价层电子对的确定方法中心原子上的孤电子对数= 。
(1)a表示。
对于主族元素,a=;对于阳离子,a=价电子数离子电荷数;对于阴离子,a=价电子数离子电荷数。
(2)x表示。
(3)b表示与中心原子结合的原子最多能接受的电子数,氢为,其他原子为。
3.VSEPR模型和分子的立体构型(1)由价层电子对的相互排斥,得到含有孤电子对的VSEPR模型,然后略去VSEPR模型中的中心原子上的,便可得到分子的立体构型。
(2)H2O分子和NH3分子的分子构型分子H2O NH3价层电子对数σ键电子对数中心原子孤电子对数VSEPR模型分子立体构型立体构型名称43考点一常见分子的立体构型1.三原子分子的立体构型:直线形,如CO2、CS2等;V形,如H2O、SO2等。
2.四原子分子的立体构型:平面三角形,如甲醛分子等;三角锥形如氨气分子等。
四原子分子立体构型的多样性四原子分子不一定都是平面三角形或三角锥形。
2020届高三化学选修三物质结构和性质常考题型——立体结构和杂化类型判断
2020届高三化学选修三物质结构与性质常考题型——立体结构和杂化类型判断.DOC【方法和规律】1、立体构型的判断方法——价层电子对互斥理论(1) 中心原子价层电子对数===σ键电子对数+孤电子对数中心原子的价电子数配位原子的化合价的总和(2)中心原子的价层电子对数2中心原子的最外层电子数配位原子的化合价的总和中心原子的价层电子对数2【微点拨】① 配位原子是指中心原子以外的其它原子(即与中心原子结合的原子)② 若是离子,则应加上或减去与离子所带的电荷数(阴加阳减)③氧、硫原子若为配位原子,则其化合价规定为" 零”,若为中心原子,则价电子数为6 (3)价层电子对互斥理论判断分子空间构型的具体方法PO43—H3O+2、中心原子的杂化类型判断规律:杂化轨道数==价层电子对数==σ键电子对数+孤电子对数价层电子对数杂化方式4sp3杂化3sp2杂化2sp 杂化用中心原子的价层电子对数中心原子的价电子数配位原子的化合价的总和,2来迅速判断(见上表)技巧2:若有多个中心原子时,则根据:“ 杂化轨道数==价层电子对数==σ键电子对数+孤电子对数”来判断如:三聚氰胺分子的结构简式如图所示,分析氮原子、碳原子的杂化类型杂化类型价层电子对数σ键电子对数孤电子对数孤电子对数确定方法环外氮原子sp3431氮原子最外层有5 个电子,形成了3环上氮原子sp2321对共用电子对,则有一对孤对电子环上碳原子sp2330碳原子最外层4 个电子,形成了4 对共用电子对,所以碳上无孤对电子技巧3:根据杂化轨道的空间分布构型判断①若杂化轨道在空间的分布为正四面体形或三角锥形,则分子的中心原子发生sp3杂化②若杂化轨道在空间的分布呈平面三角形,则分子的中心原子发生sp2杂化③若杂化轨道在空间的分布呈直线形,则分子的中心原子发生sp 杂化技巧4:根据杂化轨道之间的夹角判断①若杂化轨道之间的夹角为109°28,′则分子的中心原子发生sp3杂化②若杂化轨道之间的夹角为120°,则分子的中心原子发生sp2杂化③若杂化轨道之间的夹角为180°,则分子的中心原子发生sp 杂化技巧5:根据等电子原理进行判断CO 2是直线形分子,CNS -、N3-与CO 2是等电子体,所以分子构型均为直线形,中心原子均采用sp 杂化技巧6:根据分子或离子中有无π键及π键数目判断没有π键为sp3杂化,含一个π键为sp2杂化,含两个π键为sp 杂化【真题感悟】1、[2019·全国卷Ⅰ ·节选]乙二胺(H 2NCH 2CH 2NH 2)是一种有机化合物,分子中氮、碳的杂化类型分别是 _______________2、[2019 ·全国卷Ⅱ ·节选]元素As与N 同族。
选修三第二节分子立体构型
均为正四面体
因孤电子对数不同故...
思考:为什么实际分子构型中键角不同?
V排SEP斥R模力型立:体结孤构 电子对-孤电子对>孤电子对-成
键电子对>成键电子优对化-成指键导电P子25对
本节内容小结:优化指导P27 作业:教材P39思考与交流
价层电子 VSEPR模型 实际的
分子或离子 对数
的立体结构 立体结
平面三角型
同为四原子分子,HCHO或BF3与
NH3 分子的空间结构也不同,什么原因?
价层电子对互斥理论可以用来解释 或预测分子的立体结构。
二、价层电子对互斥理论(教材P37) 1、分子的立体结构是“价层电子对”相互的排结斥果。
2、价层电子对指 分子中的中心原子上的电子对 , 包括 (σ键电子对+中心原子上的孤。电子对)
孤电子对数为 0,价层电子对数为 4 。
2)VSEPR模型
3)实际的立体构型
教材P44~1 价层电子对数=σ键电子对数
(与中心原子结合的原子数)
分子或离 子
中心原子 上孤电子 对数
σ键电 价层电 VSEP 实际的 子对数 子对数 R模型 立体结
的立体 构 结构
SO2
1
CO2
0
CO32-
0
SO32NH3
21
NH4+
N 5-1=4 4
10
CO32-
C 4+2=6 3
2
0
CO2
C
42
20
SO42-
S 6+2=8 4
20
价层电子对=σ键电子对+中心原子上的孤电子对
分子或离 子
BF3 NH3 SO32H3O+
常见分子构型与杂化方式
应用反馈:
中心原子 孤对电子数
0 1 2
0 1 0 0 0
中心原子结 合的原子数
2 2 2
3 3 4
4 4
空间构型
直线形 V形 V形
平面三角形 三角锥形 正四面体 四面体 正四面体
ABn型分子空间构型快速判断方法: 1、n=2时,中心原子无孤对电子的是直线形,中心原
子有孤对电子为V形,如CO2直线形,H2O为V形。 2、n=3时,中心原子无孤对电子的为平面三角形,有
杂化方式
VSEPR 模型名称
分子或离子 立方体构型
SP2
平面三角 形
V形
SP2
平面三角 形
平面三角形
SP2
平面三角 形
平面三角形
SP2
平面三角 形
平面三角形
SP2
平面三角 形
平面三角形
SP2
平面三角 形
V形
SP
直线形
直线形
SP
直线形
直线形
SP
直线形
直线形
化学式
HCN
SO2 NH2- BF3 H3O+ SiCl4 CHCl3 NH4+ SO42-
价层电 结合的原 孤对电子
子对数 子数
对数
2
2
0
3
2
1
4
2
2
3
3
0
4
314ຫໍສະໝຸດ 4044
0
4
4
0
4
4
0
化学式
H2O SO3 NH3 CO2 SF4 SF6 PCl5 PCl3 CH4
价层电 子对数
4 3 4 2 5 6 5 4 4
人教版化学选修三分子的立体构型(荐)2
4.判断以下常见分子的中心原子的杂化轨道类型(用
序号填空)
①[NH4]+ ②CH2O ③NH3 ④SO2 ⑤BeCl2
⑥H2O ⑦CO2
sp3 杂化的是 1、3、6
(2)中心原子上有孤电子对的分子的立体构型 对于中心原子上有孤电子对(未用于形成共价键的电 子对)的分子,中心原子上的孤电子对也要占据中心原子 周围的空间,并互相排斥使分子呈现不同的立体构型。 见下表。
化学式
路易斯 结构式
含孤电子对的 VSEPR模型
分子或离 子的立体
构型
分子或离 子的立体 构型名称
D.以上说法都不正确
2.用价层电子对互斥模型判断SO3的分子构型 __D
A、正四面体形
B、V形
C、三角锥形
D、平面三角形
课堂练习:
1、多原子分子的立体结构有多种,三原子分子的立体结构有__
_直线 形和 V 形,大多数四原子分子采取 平面三角 形和 _
_三_角锥 形两种立体结构,五原子分子的立体结构中最常见的是 正四面体 形。
(4)分子构型与杂化类型的关系
①sp杂化
sp 型杂化轨道是由一个 s 轨道和一个 p 轨 道组合而成的,每个 sp 杂化轨道含有12s 和12p 的成分,杂化轨道间的夹角为 180°,呈 直线形 。 如:BeCl2 分子。
②sp2 杂化 sp2 杂化轨道是由一个 s 轨道和两 个p轨 道组合而成的,每个 sp2 杂化轨道都
三、杂化轨道理论简介
1.杂化轨道理论
(1)杂化的概念
在形成分子时,由于原子的相互影响,若干能量相近
的原子轨道混合起来,重新组合成一组新轨道的过程。
(2)杂化轨道
原子
轨道重新组合
杂化轨道类型及分子空间立体构型
杂化轨道类型及分子空间立体构型查缺补漏小专题1一、杂化轨道类型与分子构型分子结构与极性1.中心原子的杂化轨道类型与分子的空间构型参与杂化的原子轨道分子构型示例杂化轨道类型SP 一个S轨道,一个P轨道直线形CH三CHCO2BeCL2SP2一个S轨道,两个P轨道平面三角形CH2=CH2BF3\BCL3\CH2OSP3一个S轨道三个P轨道正四面体CH4\CCL4\NH4+三角锥形NH3V形H2S\H2O判断杂化轨道类型的一般方法:(1)看中心原子有没有形成双键或叁键.如果全为单键,则是SP3杂化,如果有一个双键,是SP2杂化,如果有2个双键或一个叁键,是SP杂化.(2)没有填充电子的空轨道,一般不参与杂化,1对孤电子对占据1个杂化轨道.价层电子对互斥理论几种分子或离子的立体构型:分子或离子中心原子的孤电子对数分子或离子的价层电子对数杂化轨道类型键角分子或离子的立体构型名称CO2 0 2 SP 180 直线形SO2 1 3 SP2120 V形BF3 0 3 SP2120 平面三角形CO32-0 3 SP2120 平面三角形CH4 0 4 SP3109.28 正四面体形NH4 + 0 4 SP3109.28 正四面体NH3 1 4 SP3107 三角锥形H2O 2 4 SP3105 V形另:CH3+.中心原子的价层电子对数与分子立体构型有密切的关系.对ABm型化合物,中心原子A的价层电子对数n的计算方法:n=[A的价电子数+m(8-B的价电子数)]/2;主族元素来说,价电子数等于原子的最外层电子数,计算当B为H时将式中的8改成2.高考题中考查方式:1.CO2与SO2分子的立体结构分别是和。
2.在碳酸二甲酯分子中,碳原子采用的杂化方式有,O-C-O的键角约。
3.P的氢化物的分子构型为 .其中原子采取杂化.4. 用价层电子互斥理论推断SnBr2分子中Sn-Br键的键角 120°(填大于或小于或等于),石墨晶体中,每个碳原子通过杂化与周围碳原子成键.5.丙烯腈(H2C=CH-CH三N)分子中碳原子轨道杂化类型是.6.SiF4和SO32-的中心原子杂化类型是 ,ClO3-的空间构型为 .7.甲醛分子的空间构型是C原子的轨道杂化类型是1mol甲醛分子中§键的数目为 .。
化学选修三第二章第二节分子的立体构型
化学选修三第二章第二节分子的立体构型2选修三第二章第2节 分子的立体构型 第2节 分子的立体构型一、常见分子的空间构型1.双原子分子都是直线形,如:HCl 、NO 、O 2、N 2 等。
2.三原子分子有直线形,如CO 2、CS 2等;还有“V ”形,如H 2O 、H 2S 、SO 2等。
3.四原子分子有平面三角形,如BF 3、BCl 3、CH 2O 等; 有三角锥形,如NH 3、PH 3等; 也有正四面体,如P 4。
4.五原子分子有正四面体,如CH 4、CCl 4等,也有不规则四面体,如CH 3Cl 、CH 2Cl 2、CHCl 3。
另外乙烯分子和苯分子都是平面形分子。
二、价层电子对互斥理论(Valance Shell Electron Pair Repulsion Theory )简称VSEPR 适用AD m 型分子1、理论模型分子中的价电子对(包括成键电子对和孤电子对),由于相互排斥作用,而趋向尽可能彼此远离以减小斥力,分子尽可能采取对称的空间构型。
2、用价层电子对互斥理论推断分子或离子的空间构型的一般步骤: (1)确定中心原子A 价层电子对数目 法1.经验总结中心原子的价层电子对数=21(中心离子价电子数+配对原子提供电子总数)对于AB m 型分子(A 为中心原子,B 为配位原子),计算方法如下: n =中心原子的价电子数+每个配位原子提供的价电子数×m 2注意:①氧族元素的氧做中心时:价电子数为 6, 如 H 2O ,H 2S ;做配体时:提供电子数为 0,如在 CO 2中。
②如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。
如PO -34中P 原子价层电子数5+(0×4)+3 = 8;NH +4 中N 原子的价层电子数5+(1×4)-1 = 8。
③结果为单电子时视作有一个电子对。
例:IF 5 价层电子对数为21[7+(5×1)] = 6对 正八面体(初步判断)N H +4 价层电子对数为21[5+(4×1)-1] = 4对 正四面体 PO -34 价层电子对数为21[5+(0×4)+3] = 4对 正四面体 NO 2 价层电子对数为21[5+0] = 2.5−→−3对 平面三角形 法2. 确定中心原子A 价层电子对数目-----普遍规则中心原子A 价层电子对数目=成键电子对数+孤对电子数 (VP = BP + LP )VP是价层电子对,BP是成键电子对(BOND ),LP是孤对电子对(LONE PAIR)VP = BP + LP =与中心原子成键的原子数+中心原子的孤对电子对数LP=配位原子数+LPLp =21(中心原子价电子数—配位原子未成对电子数之和)IF5Lp =21[7-(5×1)] = 1 构型由八面体−→−四方锥NH+4Lp =21[(5-1)-(4×1)] = 0 正四面体PO-34Lp =21[(5+3)-(4×2)] = 0 正四面体SO-24Lp =21[(6+2)-(4×2)] = 0 正四面体NO2Lp =21[5-(2×2)] =21−→− 1 构型由三角形−→−V形SO-23Lp =21[(6+2)-(3×2)] = 1 构型由四面体−→−三角锥法3:由Lewis结构式或结构式直接写出,双键、三键都是1对电子PClClClClCl PCl Cl ClPClClClCl+ClPClClClClCl-ClClClCl+ClPClClClClCl-VP: 5 4 4 6 4(2)价层电子对数目23456价层电子对构型直线形三角形四面体三角双锥八面体(3)价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。
磷酸根离子的立体构型
磷酸根离子的立体构型
磷酸根离子是植物细胞代谢过程中十分重要的物质,它们是人体常见的酸性物质,也是细胞结构中的关键组成部分。
磷酸根离子有三种不同的立体构型:平凡,右相隔零和左相隔零。
平凡的磷酸根离子是普通的磷酸根离子构型,它们具有C♯-O-P三角形的平面构型,并由三偶管和两个单碳所组成。
右相隔零磷酸根离子的比较特殊,它们的C-O-P构型与平时磷酸根离子相似,但分子内有一个右旋的氢键。
左相隔零磷酸根离子构型最为复杂,它们带有一个右旋的空间弯曲,使其形状跟右相隔零磷酸根离子不同,拥有C333-O-P键环结构。
在植物细胞中,磷酸根离子具有重要作用,除了对极性分布有影响外,它们还可以用来影响细胞的信号转导,催化反应以及调节生物体的矿化素代谢。
硝酸根离子的立体构型
硝酸根离子的立体构型硝酸根离子是指以硝酸为基本联结部分形成的一类无机离子。
它是有机化学中重要的分子特征之一,能够极大地影响到有机物质的特性和性能,在生物体内发挥着重要作用,这就要求我们研究硝酸根离子的立体构型。
硝酸根离子的立体构型是指硝酸根离子在三维空间中的构型,它是由硝酸根原子和其他原子构成的分子的形状。
这种构型可以由结构化学和理论计算化学研究得出。
硝酸根离子的立体构型主要受到硝酸根离子原子之间的原子间作用力和硝酸根原子与其他原子构成分子的原子间作用力的影响,而这种作用力又会受到外部因素的影响,例如温度和pH值的变化。
在研究硝酸根离子的立体构型时,首先要确定分子的构型。
常见的分子构型有八面体构型、六面体构型、椭圆构型、三角构型、鱼骨构型等。
其中,八面体构型是指硝酸根原子与其他原子之间的距离相等,形成一个八面体结构;六面体构型是指硝酸根原子与其他原子之间有三个长度相等的距离,形成一个六面体结构;椭圆构型指硝酸根原子与其他原子之间有两种距离,形成一个椭圆结构;三角构型指硝酸根原子与其他原子之间有三种距离,形成一个三角形结构;鱼骨构型指硝酸根原子与其他原子之间有多种距离,形成一个鱼骨结构。
硝酸根离子的立体构型也会受到硝酸根离子原子内部的内化学作用的影响。
内化学作用是由硝酸根原子内部的氢键作用而产生的,受到硝酸根原子的电负性的影响,硝酸根原子内部的氢键会发生变化,从而影响硝酸根原子的立体构型。
硝酸根离子的立体构型也受到外部因素的影响,例如温度、微环境等因素的变化。
另外,一些外力,例如外部电场或离子流,也会影响硝酸根离子的立体构型。
硝酸根离子的立体构型的研究可以为我们了解有机物质的性质和自然界中各种生物体的特性提供有力的支持,并为药物设计和生物技术等领域提供重要的理论依据。
同时,硝酸根离子的立体构型的研究也能够更好地帮助我们理解和控制有关硝酸根离子的反应过程,为科学技术的发展作出贡献。
因此,硝酸根离子的立体构型是一个十分重要的研究课题,它需要我们使用多种研究方法,如结构化学、理论计算化学、X射线衍射等,来研究,以期获得准确的结果。
高考化学一轮复习(第六辑)考点八十九 分子的立体构型(含解析)
考点八十九分子的立体构型聚焦与凝萃1.了解杂化轨道理论及常见的杂化轨道类型(sp,sp2,sp3);2.能用价层电子对互斥理论或者杂化轨道理论推想常见的简洁分子或离子的立体构型;3.生疏一些典形的分子构型(如:CH4、NH3、C2H4等);4.进一步了解有机化合物中碳的成键特征;5.知道配位键、配位化合物的概念;6.知道配位键、配位化合物的表示方法;7.了解配位键的形成过程;8.了解常见的配位化合物,知道配位化合物在国防及工农业中有重要作用。
解读与打通常规考点一、分子的立体构型1.价层电子对互斥理论(1)价层电子对在球面上彼此相距最远时,排斥力最小,体系的能量最低。
(2)孤电子对的排斥力较大,孤电子对越多,排斥力越强,键角越小。
电子对数成键对数孤电子对数电子对立体构型分子立体构型实例键角2 2 0 直线形直线形BeCl2180°3 3 0三角形平面正三角形BF3120°2 1 V形SnBr2105°4 4 0正四周体形正四周体形CH4109°28′3 1 三角锥形NH3107°2 2 V形H2O 105°留意:(1)价层电子对互斥理论说明的是价层电子对的立体构型,而分子的立体构型指的是成键电子对的立体构型,不包括孤电子对。
①当中心原子无孤电子对时,两者的构型全都;②当中心原子有孤电子对时,两者的构型不全都。
(2)价层电子对互斥理论能猜测分子的几何构型,但不能解释分子的成键状况,杂化轨道理论能解释分子的成键状况,但不能猜测分子的几何构型。
两者相结合,具有肯定的互补性,可达处处理问题简便、快速、全面的效果。
2.杂化轨道理论当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。
杂化轨道数不同,轨道间的夹角不同,形成分子的空间结构不同。
sp杂化:同一原子中 ns-np 杂化成新轨道:一个 s 轨道和一个 p 轨道杂化组合成两个新的 sp 杂化轨道。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
.. 直 线 型:CO 2、C 2H 2、HCN 、BeCl 2、HgCl 2等
平面三角形:包括v 型(BF 3、BCl 3、SO 3、CH 2O 、CO 32-等)、
平面三角形(SO 2等);
四 面 体:包括v 型(H 2O 、H 2S 等)、三角锥形(NH 3、H 3O +、NF 3、
SO 32-等)、正四面体(CH 4、NH 4+等)。
常 见 分 子 离 子 的 立 体 构 型
编 号
分子 或离子
电 子 式
中心原子 a
x
b
中心原子上的 孤 电 子 对 数
δ键电子对数 价层电子对数
VSEPR
模 型 VSEPR 模 型 名 称
分子或离子
立 体 构 型
分子或离子立体 构 型 名 称 杂 化 轨 道 数 杂化轨道 类 型
实例
1
CO 2
C
4 2 2 0 2 2
直线型
直线型
0+2
Sp
2
SO 3
S 6 3 2 0 3 3
平面三角形
平面三角形 0+3 Sp2
3
CH 2O
C 4 3
4/3
0 3 3
平面三角形
平面三角形 0+3 Sp2
4
CO 32-
C 4+2=6 3 2 0 3 3
平面三角形
平面三角形 0+3 Sp2
5
SO 2
S 6 2 2 1 2 3
平面三角形
V 型
1+2
Sp2
6
H 2O
O 6 1 2 2 2 4
四面体
V 型
2+2
Sp3
7
NH 3
N 5 3 1 1 3 4
四面体
三角锥形
1+3
Sp3
8
H 3O +
O 6-1=5 3 1 1 3 4
四面体
三角锥形
1+3
Sp3
9
CH 4
C 4 4 1 0 4 4
正四面体
正四面体
0+4
Sp3
10
NH 4+
N 5-1=4 4 1 0 4 4
正四面体
正四面体
0+4
Sp3
C
O
O
价层电子对=中心原子的孤电子对+δ键电子对数
1、中心原子的孤电子对=1/2(a-xb )a :为中心原子的价电子数(原子:价电子数=原子最外层电子书;阳离子:中心原子的价电子数-离子的电荷数;阴离子:中心原子的价电子数+离子的电荷数)
2、δ键电子对数有分子数确定,即中心原子形成几个δ键,就有几对。
(具体:共价单键是δ键,共价双键1个δ键,1个 键;)共价三键1个δ键,2个 键
Sp 杂化:得到的为直线型;
Sp2杂化:得到的为平面三角形; Sp3杂化:得到的为四面体。
中心原子孤电子数+相连的其他原子个。