金属工艺学重点知识点总结

合集下载

金属工艺学重点整理

金属工艺学重点整理

强度:是金属材料在力的作用下,抵抗塑形变形和断裂的能力。

屈服点:拉伸试验中。

载荷不增加,样品仍伸长时的应力。

σs=Fs/A0 σ0。

2抗拉强度:金属材料断裂前所能承受的最大应力。

σb =Fb/A塑性:金属材料在力的作用下产生不可逆永久变形的能力。

伸长率:试样拉断后,其标距的伸长与原始标距的百分比。

δ=(L1-L)/L断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始截面积的比。

ψ硬度:金属表面抗局部变形,特别是塑形变形、压痕、划痕的能力。

布氏硬度(HB)淬火钢球(HBS)硬质合金球(HBS)洛氏硬度(HR)以120°金刚石圆锥体(A、C)或淬火钢球(B)为压头,维氏硬度(HV)1360正四棱锥体金刚石压头韧性:材料断裂前吸收的变形能量的能力称为韧性。

冲击韧度:材料在冲击载荷作用抵抗变形和断裂的能力叫做冲击韧度。

ak疲劳强度:金属材料在无数次重复或交变载荷作用下而不致引起断裂的最大应力,叫做疲劳强度。

σ-1。

提高疲劳强度的措施:除改善材料的形状结构,减少应力集中外,还要采取进行表面强化措施。

如提高零件的表面质量(表面粗糙度)、喷丸处理等,同时应减少材料的内部缺陷,控制材料的内部质量。

细化金属晶粒的方法:(1)增大过冷度;(2)变质处理;(3)振动铁碳合金的基本组织可分为固溶体(置换、间隙)、金属化合物、机械混合物碳含量:0.0218%以下工业纯铁。

0.77%共析钢。

2.11%钢和铸铁。

4.3%共晶铸铁钢的热处理:钢在固态下通过加热、保温并以一定的速度冷却到室温,以改变钢的内部组织,从而获得所需性能。

最高加热温度,保温时间,冷却速度目的:1、提高零件的强度、硬度、弹性、韧性。

2、改善原材料的切削性能退火:将钢加热到适当温度,保温一定时间,随后缓慢冷却(随炉冷却)完全退火、球化退火、去应力退火(低温退火)、扩散退火退火目的:降低硬度,改善切削加工性;细化晶粒,提高塑性和韧性;消除内应力正火:将钢加热到一定温度(奥氏体区),保温后在空气中冷却正火目的:①细化晶粒,提高硬度。

金属工艺学知识点总结

金属工艺学知识点总结

第一篇金属材料的根本知识第一章金属材料的主要性能金属材料的力学性能又称机械性能,是金属材料在力的作用所表现出来的性能。

零件的受力情况有静载荷,动载荷和交变载荷之分。

用于衡量在静载荷作用下的力学性能指标有强度,塑性和硬度等;在动载荷和作用下的力学性能指标有冲击韧度等;在交变载荷作用下的力学性能指标有疲劳强度等。

金属材料的强度和塑性是通过拉伸试验测定的。

P6低碳钢的拉伸曲线图1,强度强度是金属材料在力的作用下,抵抗塑性变形和断裂的能力。

强度有多种指标,工程上以屈服点和强度最为常用。

屈服点:δs是拉伸产生屈服时的应力。

产生屈服时的应力=屈服时所承受的最大载荷/原始截面积对于没有明显屈服现象的金属材料,工程上规定以席位产生0.2%变形时的应力,作为该材料的屈服点。

抗拉强度:δb是指金属材料在拉断前所能承受的最大应力。

拉断前所能承受的最大应力=拉断前所承受的最大载荷/原始截面积2,塑性塑性是金属材料在力的作用下,产生不可逆永久变形的能力。

常用的塑性指标是伸长率和断面收缩率。

伸长率:δ试样拉断后,其标距的伸长与原始标距的百分比称为伸长率。

伸长率=〔原始标距长度-拉断后的标距长度〕÷拉断后的标距长度×100%伸长率的数值与试样尺寸有关,因而试验时应对所选定的试样尺寸作出规定,以便进行比拟。

同一种材料的δ5 比δ10要大一些。

断面收缩率:试样拉断后,缩颈处截面积的最大缩减量与原始横截面积的百分比称为断面收缩率,以ψ表示。

收缩率=〔原始横截面积-断口处横截面积〕÷原始横截面积×100%伸长率和断面收缩率的数值愈大,表示材料的塑性愈好。

3,硬度金属材料外表抵抗局部变形〔特别是塑性变形、压痕、划痕〕的能力称为硬度。

金属材料的硬度是在硬度计上测出的。

常用的有布氏硬度法和洛氏硬度法。

1,布氏硬度〔HB〕是以直径为D的淬火钢球HBS或硬质合金球HBW为压头,在载荷的静压力下,将压头压入被测材料的外表,停留假设干秒后卸去载荷,然后采用带刻度的专用放大镜测出压痕直径d,并依据d的数值从专门的表格中查出相应的HB值。

金属工艺学复习要点

金属工艺学复习要点

1.液态合金本身的流动能力,称为合金的流动性2.浇注温度:浇注温度越高合金的粘度下降且因过热度高,合金在铸型中保持流动的时光越长故充型能力强,反之充型能力差。

鉴于合金的充型能力随浇注温度的提高呈直线升高,因此对薄壁铸件或流动性较差的合金可适当提高其浇注温度,以防止浇不到或冷隔缺陷,但浇注温度过高,铸件容易产生缩孔,缩松,粘沙,析出性气孔,粗晶等缺陷,故浇注温度不宜过高。

3.充型能力:砂型铸造时,提高直浇道高度,使液态合金压力加大,充型能力可改善。

压力铸造,低压铸造和离心铸造时,因充型压力提高甚多,故充型能力强。

4..合金的收缩经历:液态收缩——从浇注温度到凝结开始温度之间的收缩;凝结收缩——从开始凝结到凝结结束之间的收缩;固态收缩——从凝结结束冷却到室温之间的收缩。

5.缩孔位置:扩散在铸件的上部,或最后凝结部位容积较大的孔洞。

6.判断缩孔产生位置的主意:1.画等温线发 2.画最大内接圆发3.计算机凝结模拟法7.消除缩孔的工艺措施:安放冒口和冷铁实现顺序凝结。

8.任何铸件厚壁或心部受拉应力,薄壁或表层受压应力。

9.对于不允许发生变形的重要件,必须举行时效处理。

天然时效是将铸件置于露天场地半年以上,使其缓慢的发生变形,从而使内应力消除。

人工时效是将铸铁加热到550-650举行去应力退火。

时效处理宜在粗加工之后举行,以便将粗加工所产生的内应力一并消除。

10.高温出炉,低温浇注11.下列铸件宜选用哪类铸造合金,请阐述理由:(1)车床床身:宜选用灰铸铁HT300-350 因为车床需要承受高负载(2)摩托车气缸体:铸造铝合金ZL 因为气缸要求气密性好质量要轻(3)火车轮:铸钢车轮要求耐磨性好(4)压气机曲轴:可锻铸铁或球墨铸铁因为曲轴负荷大,受力复杂(5)气缸套:球墨铸铁或孕育铸铁因为要求高负荷高速工作耐磨(6)自来水管道弯头:黑心可锻铸铁承受冲压震动扭转负荷(7)减速器涡轮:铸造锡青铜用于高负荷和高滑速工作的耐磨件12.造型材料必备性能:1 一定的强度 2 一定得透气性 3较高的耐火性 4 一定的退让性13.提高耐火性和防黏沙:铸铁涂石墨水铅粉等铸钢涂石灰粉铬铁矿粉有色金属涂滑石粉14.解决透气性和退让性措施:给砂型加锯木屑,草木粉,煤粉。

金属工艺汇总知识点

金属工艺汇总知识点

第一章工程材料的应用基础§1、工程材料的力学性能强度:抗拉强度(弹性极限σe 屈服强度σs 抗拉强度σb) 抗弯强度塑性:伸长率δ断面收缩率ψ硬度:布氏硬度(HBW)洛氏硬度(HR)维氏硬度(HV)肖氏硬度冲击韧度ak疲劳强度σr断裂韧度KIC§2 材料学基础金属的单晶体结构:体心立方晶体结构面心立方晶体结构密排六方晶体结构晶体缺陷:点缺陷线缺陷面缺陷合金的组织结构:固溶体(置换固溶体间隙固溶体) 金属间化合物机械混合物1.ACD以上为液相区L2. AESGA为奥氏体区A3. GPQG为铁素体区F4. DFK为渗碳体区Fe3C ACD线—液相线AECF线—固相线AC—奥氏体开始析出线AE—奥氏体析出终了线CD—Fe3C析出开始线ECF—共晶线PSK线—共析线ES线—C在γ-Fe中的溶解度曲线。

析出二次Fe3CⅡGS线—铁素体开始析出线GP线—铁素体析出终了线PQ线—碳在α-Fe中的溶解度曲线,析出三次渗碳体Fe3CⅢC —共晶点,1148℃ 4.3%C 共晶点:发生共晶反应的点。

共晶反应:在一定的温度下,由一定成分的液体同时结晶出一定成分的两个固相的反应。

S —共析点,727℃0.77%C 共析点:发生共析反应的点。

共析反应:在一定的温度下,由一定成分的固相同时结晶出一定成分的另外两个固相的反应。

§3 钢的热处理热处理过程:加热、保温、冷却热处理的工艺参数有:加热温度保温时间冷却方式冷却方式:等温冷却方式和连续冷却方式。

退火:将钢材或钢件加热到适当温度,保温一定时间后缓慢冷却以获得接近平衡状态组织的热处理工艺。

相同成分条件下,粒状P强硬度较低,塑韧性较好.正火:将钢加热到Ac3线(亚共析钢)、Ac1线(共析钢)、Accm线(过共析钢)以上30-50℃,保温一定时间后,在空气中冷却的热处理工艺。

获得的珠光体组织较细,强度、硬度较高;冷却速度快,生产效率高。

淬火:提高钢的硬度和强度回火:消除淬火钢的残余内应力退火和正火区别:1、冷却方式:前者炉冷,后者空气中冷却正火冷却速度大于退火2、组织:前者接近平衡状态,后者较细珠光体。

金属工艺学重点

金属工艺学重点

铸造-----用于制造受力较简单,形状复杂的零件毛坯。

液态合金的充型:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力,称为液态金属的充型能力。

影响液态金属充型能力的因素:1、合金的流动性2、浇注条件3、铸型填充条件化学成分对流动性的影响最为显著。

其中共晶成分的合金由于是在恒定的温度完成结晶,凝固的温区窄,液态的流动性最好合金的收缩收缩阶段:1、液态收缩:从浇注温度到凝固开始温度(即液相线温度)间的收缩。

(T浇→T液)2、凝固收缩:从凝固开始到凝固终止温度(即固相线温度)间的收缩。

(T液→T固)使液面下降,是铸件产生缩孔、缩松的基本原因。

3、固态收缩:从凝固终止到室温间的收缩。

(T固→T室),使铸件外部尺寸的减小,是铸件产生内应力、变形和裂纹的基本原因。

顺序凝固法:在铸件的厚壁处设置冒口使缩孔集中在冒口中,从而获得致密的铸件,但铸件各部的温差大,会引起较大的热应力,金属的消耗大。

同时凝固法:铸件的热应力小但易产生缩松。

铸造内应力、变形与裂纹的形成与防止:)防止,a.尽量使壁厚均匀,结构对称,避免尖角结构。

b.采用同时凝固(冷铁)c.提高型(芯)砂的退让性d.进行时效处理:人工时效(钢、铸铁的去应力退火)自然时效.E.采用反变形法f.严格控制s.p含量(根据石墨的形状)铸铁:白口铸铁 Fe3c灰口铸铁石墨.麻口铸铁(白口+灰)普通灰口铸铁片状.可锻铸铁团絮状.球墨铸铁球状.蠕墨铸铁蠕虫状影响铸铁组织与性能的因素(石墨化):①化学成分②冷却速度、球墨铸铁:1、组织.金属基体+球状石墨.应力集中基本消除,同样体积的石墨圆球形的表面积最小,石墨孤立存在于基体中,基体不再被割裂成不连续状,σb可以发挥80~90%性能①机械性能比其他铸铁高②仍具有灰口铸铁的许多优点如:减振、耐磨、缺口敏感性小、切削加工性好。

③铸造性能有优于铸钢④热处理性能好。

制取方法①熔化普通灰口铸铁②球化处理和孕育处理a.球化剂──稀土镁合金b.孕育剂──75%si的硅铁c.冲入法4、铸型工艺①易产生缩孔、缩松a.采用浇口、冒口、冷铁系统对铸件实现顺序疑固b.增加铸型刚度②易产生皮下气孔a.严格控制型砂水分和铁水的含硫量b.提高型砂的透气性牌号Q T ×××-××6、热处理①退火──获得铁素体球铁②正火──获得珠光体球铁③调质──获得良好的综合机械性能型砂应具备的性能:强度、透气性、耐久性、退让性、韧性1、手工造型①整模造型:适于形状简单且横截面依次减少的铸件②分模造型:适于最大截面在中间的铸件③挖砂造型:分型面不是平面铸件的单件小批生产。

金属工艺学重点知识点

金属工艺学重点知识点

金属工艺学第五版上册纲要强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。

指标:屈服点(σs)、抗拉强度(σb)。

塑性:金属材料在力的作用下产生不可逆永久变形的能力。

指标:伸长率(δ)、断面收缩率(ψ)硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。

1布氏硬度:HBS(淬火钢球)。

HBW(硬质合金球)指标:2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球)3韦氏硬度习题:1什么是应力,什么是应变?答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。

5、下列符号所表示的力学性能指标名称和含义是什么?答:σb:抗拉强度,材料抵抗断裂的最大应力。

σs:屈服强度,塑性材料抵抗塑性变形的最大应力。

σ0.2:条件屈服强度,脆性材料抵抗塑性变形的最大应力σ-1:疲劳强度,材料抵抗疲劳断裂的最大应力。

δ:延伸率,衡量材料的塑性指标。

αk:冲击韧性,材料单位面积上吸收的冲击功。

HRC:洛氏硬度,HBS:压头为淬火钢球的布氏硬度。

HBW:压头为硬质合金球的布氏硬度。

过冷度:理论结晶温度与实际结晶温度之差。

冷却速度越快,实际结晶温度越低,过冷度越大。

纯金属的结晶包括晶核的形成和晶核的长大。

同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。

原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。

1提高冷却速度,以增加晶核的数目。

2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。

3采用机械、超声波振动,电磁搅拌等合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。

组成元素成为组员。

1、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型的金属晶体。

铁碳合金组织可分为:2、金属化合物:各组员按一定整数比结合而成、并具有金属性质的均匀物质(渗碳体)3、机械混合物:结晶过程所形成的两相混合组织。

金属工艺学重点知识

金属工艺学重点知识

金属工艺学重点知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、什么是铸造合金的收缩性有哪些因素影响铸件的收缩性答:合金在从液态冷却至室温的过程中,其体积或尺寸缩小的现象称为收缩。

从浇注温度冷却到室温分为液态收缩、凝固收缩和固态收缩三个阶段。

铸件收缩的大小主要取决于合金成分、浇注温度、铸件结构和铸型。

2、铸件中产生缩孔和缩松的主要原因是什么生产工艺上有哪些预防措施答:铸件中产生缩孔和缩松的主要原因是固态收缩。

为了减小铸件内应力,在铸件工艺上坷采取同时凝固原则。

所谓同时凝固原则,就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小,使各部分同时凝固。

此外,还可以采取去应力退火或自然时效等方法,将残余应力消除。

3、什么是铸件的冷裂纹和热裂纹防止裂纹的主要措施有哪些答:如果铸件内应力超过合金的强渡极限时,铸件便会产生裂纹。

裂纹分为热裂和冷裂两种。

(1)热裂:热裂实在凝固后期高温下形成的,主要是由于收缩收到机械阻碍作用而产生的。

它具有裂纹短、形状曲折、缝隙宽、断面有严重氧化、无金属光泽、裂纹沿晶界产生和发展等特性,在铸钢和铝合金铸件中常见。

防止热裂的主要措施是:除了使铸件结构合理外,还应合理选用型砂或芯砂的防结剂,以改善其退让性;大的型芯可采用中空结构或内部填以焦炭;严格限制铸钢和铸铁中硫的含量;选用收缩率小的合金。

(2)冷裂:冷裂是在较低温度下形成的,常出现在铸件受拉伸部位,特别是有应力集中的地方。

其裂缝细小,成连续直线状,缝内干净,有时呈轻微氧化色。

壁厚差别大,形状复杂或大而暴的铸件易产生冷裂。

因此,凡是能减少铸件内应力或降低合金脆性的因素,都能防止冷裂的形成。

同时在铸铜和铸铁中严格控制合金中的磷含量。

4、什么是砂型铸造的手工造型和及其造型各有什么特点答:(1)手工造型:指全部用手工或手动工具完成的造型工序。

手工造型按起模特点分为整模、挖沙、分模、活块、嵌箱、三箱等造型方法.手工造型方法比较灵活,适用性较强,生产准备时间较短,但生产率低、劳动强度大,铸件质量较差。

金属工艺学

金属工艺学

一、概念1.弹性:金属材料受外力作用时产生变形,当外力去掉后能恢复其本来形状旳性能。

塑性:金属材料受外力作用时产生永久变形而不至于引起破坏旳性能。

刚度:金属材料在受力时抵御弹性变形旳能力强度:金属材料在外力作用下抵御塑性变形和断裂旳能力.硬度:是指材料抵御比它更硬物体压入其表面旳能力,即抵御局部变形,尤其是塑性变形、压痕或划痕旳能力。

冲击韧性(韧度、韧性):材料抵御冲击载荷旳能力疲劳强度:当金属材料在无多次交变载荷作用下而不致于引起断裂旳最大应力。

2.σe——弹性极限σs——塑性极限,s——屈服点σb——强度极限,材料能承受旳最大载荷时旳应力。

延伸率:δ断面收缩率:ψ条件屈服极限:σ0.2抗拉强度σ+ 抗压强度σ- 抗弯强度σw 抗剪强度τb 抗扭强度σn3.常用来表达金属材料强度旳指标:屈服强度: (Pa N/m2) Ps-产生屈服时最大外力, F0-原截面抗拉强度:(Pa N/m2) Pb-断裂前最大外力.4.表达硬度旳指标:布氏硬度(HBS),洛氏硬度 (HR)5.金属晶格旳基本类型:体心立方晶格(2),面心立方晶格(4),密排六方晶格(6)6.同素异构性:多数金属在结晶后旳晶格类型都保持不变,但有些金属旳晶格类型,因温度而异。

一种金属能以几种晶格类型存在旳性质。

金属旳同素异构转变:金属在固态下变化其晶格类型旳过程。

这一转变与液态金属旳结晶过程很相似,也包括晶核旳形成和晶核旳成长两个阶段,又叫做重结晶。

7.四把火退火:将钢件加热到高于或低于钢旳临界点,保温一定期间,随即在炉内或埋入导热性较差旳介质中缓慢冷却,以获得靠近平衡旳组织。

正火:亚共析钢加热至Ac3以上30~50℃,过共析钢加热至Accm以上30~50℃,保温,然后在空气中冷却,得到珠光体类组织旳热处理工艺。

淬火:将钢奥氏体化后迅速冷却获得马氏体组织旳热处理工艺。

回火:将淬火钢加热到临界点(A1)如下旳某一温度,保温,然后冷却旳热处理工艺。

金属工艺学重点知识点

金属工艺学重点知识点
碳在YFe中的取大溶解度
F
1148
6.69
渗碳体的成分点
G
912
0
a-Fe=Y-Fe同素异晶转变点
S
727
0.77
\^L-共析点
P
727
0.0218
碳在a-Fe中的取大溶解度
Q
600
0.006
600C时碳在a-Fe中的最大溶解度
ACD――液相线
ACEF――固相线
ECF――共晶线,含碳量2.11%~6.69%的所有合金经过此线都要发生共晶反应。
30~50C,保温后在淬火介质中快速冷-2、合理选择淬火介质
却,以获得马氏体的组织的热处理工艺。.3、正确选择淬火方法
回火:将钢加热到Ac1下某个温度,保温后冷却到室温的热处理工艺。
温度
目的
低温回火
250C下
降低淬火钢的内应力和 脆性
各种刀具、模具、滚动轴承 和耐磨件
中温回火
250~500C
使钢获得高弹性,保持较 高的硬度和一定的韧性
弹簧、发条、锻模
高温回火
500C上
淬火并高温回火的符合;
热处理工艺称调制处理
用于承受循环应力的中碳 钢重要件,连杆、曲轴、主 轴、齿轮、重要螺钉
r表面淬火:通过快速加热,使刚的表层很快达到淬火温度,在热量来不及传到钢件心部时就
立即淬火,从而表层获得马氏体组织,而心部保持原始组织。(电感应)
彳化学热处理:将钢件置于适合的化学介质中加热和保温,使介质中的活性原子渗入钢件表层,
GS奥氏体在冷却过程中洗出铁素体的开始线。(A3线)
ES碳在奥氏体中的溶解曲线。(Acm线)
PSK共析线(A1线,共析反应:As=727CP)

金属工艺学知识点总结资料讲解

金属工艺学知识点总结资料讲解

金属工艺学知识点总结资料讲解1.金属材料的分类和特性:-金属材料的分类:金属材料分为黑色金属和有色金属两大类。

黑色金属包括铁、钢和铸铁等,有色金属包括铜、铝、镁、锌、铅等。

-金属材料的特性:金属材料具有导电性、导热性、延展性、可塑性、机械性能好等特点,适用于各种加工工艺。

2.金属加工方法:-切削加工:包括车削、铣削、钻削、刨削等,通过切削废料的去除改变工件形状和尺寸。

-成形加工:包括锻造、拉伸、锤压、挤压等,通过对金属材料的塑性变形改变工件形状。

-组合加工:包括焊接、铆接、螺纹连接等,通过将多个部件组合在一起形成复杂的工件。

-热处理加工:包括淬火、回火、退火等,通过控制材料的结构和性能来改变其力学性能和使用性能。

3.金属成形工艺:-钣金工艺:包括剪切、冲裁、弯曲等,用于制造薄板金属构件。

-铸造工艺:包括砂铸、压铸、精密铸造等,通过将熔融金属注入模具中,得到所需形状的铸件。

-高温成形工艺:包括真空热压、粉末冶金等,通过在高温条件下对金属进行成形,得到复杂形状的工件。

-冷镦工艺:通过在室温下使用特殊的冷镦机械设备,将金属材料进行快速塑性变形,得到各种螺纹、螺栓等小尺寸工件。

4.金属热处理工艺:-淬火:通过将加热至临界温度的金属材料迅速冷却,使其得到高硬度和高强度。

-回火:在淬火后,将金属加热至适当温度,然后冷却,以减轻淬火后的脆性和应力。

-退火:将金属材料加热至一定温度,保持一段时间后缓慢冷却,以改善其组织和性能。

-焊后热处理:焊接后的金属材料会产生应力和变形,通过热处理可以消除这些问题,提高焊接接头的强度和耐腐蚀性。

5.金属表面处理工艺:-镀层:通过在金属表面镀上一层金属或非金属涂层,增加其耐腐蚀性、装饰性和机械性能。

-涂装:通过在金属表面涂上油漆、涂料等防护层,保护金属不受氧化、腐蚀等损害。

-喷砂:通过在金属表面喷射高压喷砂颗粒,清除污物和氧化层,改善表面质量和光泽度。

-抛光:通过机械或化学方法对金属表面进行抛光,使其光洁度达到要求,提高外观质量。

金属工艺学 考试重点

金属工艺学 考试重点

第一章一.切削运动 1.定义:要想加工出不同的表面,工件和刀具之间必须具有定的相对运动,才能保证完整的加工出各种表面,这种运动叫做切削运动。

2.主运动:是切下切屑最基本的运动进给运动:使金属层不断投入切削,从而加工出完整表面的运动。

二.切削用量三要素 1.切削速度:单位时间内工件与刀具沿主运动方向的相对位移 2.进给量:工件或刀具在单位时间内,刀具与工件之间沿进给运动方向的相对位移 3.切削深度:待加工表面与已加工表面之间的垂直距离。

三.切削层几何参数 1.切削厚度:两相邻加工表面之间的垂直距离2.切削宽度:沿主刀刃度量的切削层的尺寸3.切削面积:切削层在垂直于切削速度的截面内的面积。

四.刀具材料及刀具角度对材料的基本要求:1.较高的硬度2.较高的强度及韧性3.较好的耐磨性4.良好的耐热性5.良好的工艺性6经济性。

常用刀具材料:1.碳素工具钢2.合金工具钢3.高速钢4.硬质合金五.车刀切削部分的组成(三面两刃一尖):前刀面主后刀面副后刀面主切削刃副切削刃刀尖六.标注角度 1.前角:主剖面中测量的前刀面与基面的夹角 2.后角:主剖面中测量的,主后刀面与切削平面之间的夹角 3.主偏角:主切削刃在基面上投影与进给反方向所夹的角度4.副偏角:副切削刃在基面上投影与进给方向所夹的角度 5.刃倾角:切削平面中测量的,主切削刃鱼基面之间的夹角。

各角度的作用:1.前角:可减小前刀面挤压切削层时的塑性变形,减小切屑流经前刀面的摩擦阻力,从而减小了切削力.切削热和功率。

选择原则:锐字当先,锐中求固 2.后角:减小刀具后刀面与加工表面之前的摩擦,并且配合前角调整切削刃的锋利与强固。

选择原则:保证加工质量和刀具耐用度的前提下,取小值。

3.主偏角:影响切削层截面形状的几何参数,影响切削分力的变化副偏角:减小副切削刃和副后刀面与已加工表面摩擦的作用主偏角还和副偏角一起影响已加工表面的粗糙度。

选择原则:在不产生振动的条件下,取小值。

金属工艺学知识点

金属工艺学知识点

金属工艺学知识点第一章:工程材料级热处理1:碳素钢碳含量低于2.11%,铸铁碳含量2.11%-6.69%2:金属材料的性能使用性能{物理性能,化学性能,力学性能(强度,硬度,塑性,冲击韧度,疲劳强度)},工艺性能。

3:拉伸过程----弹性,塑性,强化,缩颈。

4: 钢的热处理;它是将固态金属或合金,采用适当的方式进行加热、保温、和冷却,改变其表面的或内部的组织结构以获得所需要的组织结构与性能。

5:钢的对货、正火、淬火和回火。

调质处理=淬火+高温回火。

第二章:铸造1:砂型铸造、特种铸造2:型砂与芯砂的基本性能:可塑性、强度、透气性、耐火性、退让性。

3:合金铸造性能:流动性、收缩性。

第三章:锻压1:锻压加工工艺的特点:1)改善金属的组织,提高力学性能。

2)材料的利用率高。

3)较高的生产率。

4)毛坯或零件的精度较高。

5)具有良好的塑性。

6)不适合合成形状较复杂的零件。

2:影响金属的锻造性能的因素:1.合金的充型能力,充型能力的决定因数合金的流动性、型性质、浇注条件、铸件结构。

2.液态金属的凝固与收缩,凝固方式有:逐层凝固,糊状凝固,中间凝固.。

影响凝固的主要因素:合金的结晶温度范围、铸件的温度梯度。

影响收缩的因素:化学成分(c含量)、铸型条件、铸件结构、浇注温度。

3.液态成形内应力、变形与裂纹,防止变形的方法与防止应力的方法基本相同。

带有残余应力的铸件,变形使残余应力减小而趋于稳定。

3:提高金属锻造性能的途径:金属内在因素,变形温度和速度。

第四章:焊接1:焊条的组成和作用:焊芯、药皮。

1)焊芯是焊接用专用的金属丝,是组成焊缝金属的主要材料。

焊接时焊芯的主要作用:一是作为一个电极起传导电流和引燃电弧的作用。

二是熔化后作为填充金属与熔化后的母材一起形成焊缝。

焊条药皮的作用(1)提高焊接电弧的稳定性,保证焊接过程顺利进行;(2)具有造气、造渣能力,防止空气侵入熔滴及熔池;(3)使焊缝金属顺利进行脱氧、脱硫及脱磷;(4)具有向焊缝渗合金的作用。

金属工艺学复习要点

金属工艺学复习要点

第一篇金属材料的物理性能应力:单位面积上所承受的附加内力应变:当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变就称为应变强度:金属材料在力的作用下,抵抗塑性变形的和断裂的能力。

塑形:金属材料在力的作用写,产生不可逆永久变形的能力。

断面收缩率:缩颈处截面积的最大缩减量与原始横截面积的百分比。

韧性:金属材料断裂前吸收的变形能量的能力。

疲劳强度:当循环应力低于某定值时,疲劳曲线呈水平线,表示该金属材料在此应力下可经受无数次应力循环仍不发生断裂,此应力称疲劳强度。

弹性阶段、屈服阶段、强化阶段、缩颈阶段铁碳合金的组织:固溶体(铁素体、奥氏体)、金属化合物(渗碳体)、机械混合物(珠光体、莱氏体)碳素结构钢:Q+数字(厚度小于16毫米时的最低屈服点)+AB(普通)CD(磷硫低含量)+(F 沸腾钢;b半镇定;Z镇定刚)优质碳素结构钢:两位数(平均碳含量万分数)低:08;10;15;20 塑形优良中:40;45 强度、硬度、塑性韧性均较适中高:60;65 强度、硬度提高,且弹性优良。

碳素工具钢:含碳量0.7%~1.3%,淬火、回火后有高硬度和耐磨性。

“碳”T+数字(含碳量千分数)+(A)A:硫磷含量更低的高级优质碳素工具钢。

T8; T10、T10A;T12。

第二篇铸造铸造:1.砂型铸造2.特种铸造:熔模、消失模、金属型、压力、离心。

充型能力:液态合金充满铸型型腔,获得形状准确,轮廓清晰铸件的能力。

影响因素:1.合金的流动性2.浇注条件(浇注温度、充型压力)3.铸型填充条件(铸型材料、铸型温度、铸型中的气体、铸件结构)铸件的凝固方式:1.逐层凝固2.糊状凝固3.中间凝固缩孔:集中在铸件上部或最后凝固部位容积较大的孔洞。

缩松:分散在铸件某区域内的细小缩孔。

宏观缩松:肉眼、放大镜,铸件中心轴线处或缩松下方。

显微缩松:显微镜,分布在晶粒之间的微小孔洞。

内应力:1.热应力2.机械应力裂纹:热裂、冷裂。

金属工艺学复习重点

金属工艺学复习重点

金属工艺学复习重点第一章切削加工1. 零件的种类(1)轴类(2)盘套类(3)支架箱体(4)六面体(5)机身基座(6)特殊类2. 切削运动(1)主运动(2)进给运动3. 切削用量三要素、公式4. 零件表面的成型方法(1)轨迹法(2)成形法(3)展成法5. 刀具的组成6. 刀具的参考系7. 刀具的几何角度?如何标注?8. 常见的刀具材料及用途9.第二章特种加工1.特种加工有那些?举出3个加工实例第三章特性表面的加工1.螺纹的种类、用途和标注2.螺纹的基本要素3.螺纹的加工方法4.常见的齿轮种类?5.齿轮的主要参数6.齿轮的加工方法有那些?7.插齿和滚齿有那些运动?8.成形面的种类有那些?(1)回转(2)直线(3)立体第四章常见表面加工方案需选择1.外圆加工方案2.内孔加工方案3.平面加工方案4.表面加工方案的依据(1)根据表面的尺寸精度和表面粗度(2)零件结构形状和尺寸选择(3)根据零件热处理状态选择(4)根据零件材料的性能选择(5)根据零件的批量选择5.轴加工方案、盘套类加工方案、V形铁加工方案实例第五章数控加工技术第六章第七章其他新技术新工艺一、爆炸成形二、液压成形三、旋压成形四、喷丸成形五、滚挤压加工六、滚扎成形加工七、胶接第八章零件的结构工艺性零件的结构工艺性1. 尽量采用标准化参数2. 便于装夹3. 便于进刀和退刀4. 避免给加工带来困难5. 零件结构要有足够的刚度6. 减少装夹次数7. 减少机床调整8. 减少刀具种类9. 减少加工面积10. 便于测量11. 热处理12. 便于装配13. 分解独立装配14. 避免在箱体内装配15. 便于拆卸16. 要有正确的装配基准17. 增加调节环第九章零件的制造工艺过程第一节零件加工工艺的基本知识一、工艺过程的概念1.生产纲领(N):企业在计划期内应当生产产品、产量和年度计划。

生产纲领用年产量表示。

产品中某零件的生产纲领就是包括备品和废品在内的年产量。

金属工艺学重点知识

金属工艺学重点知识

1、什么是铸造合金的收缩性?有哪些因素影响铸件的收缩性?答:合金在从液态冷却至室温的过程中,其体积或尺寸缩小的现象称为收缩。

从浇注温度冷却到室温分为液态收缩、凝固收缩和固态收缩三个阶段。

铸件收缩的大小主要取决于合金成分、浇注温度、铸件结构和铸型。

2、铸件中产生缩孔和缩松的主要原因是什么?生产工艺上有哪些预防措施?答:铸件中产生缩孔和缩松的主要原因是固态收缩。

为了减小铸件内应力,在铸件工艺上坷采取同时凝固原则。

所谓同时凝固原则,就是采取工艺措施保证铸件结构上各部分之间没有温差或温差尽量小,使各部分同时凝固。

此外,还可以采取去应力退火或自然时效等方法,将残余应力消除。

3、什么是铸件的冷裂纹和热裂纹?防止裂纹的主要措施有哪些?答:如果铸件内应力超过合金的强渡极限时,铸件便会产生裂纹。

裂纹分为热裂和冷裂两种。

(1)热裂:热裂实在凝固后期高温下形成的,主要是由于收缩收到机械阻碍作用而产生的。

它具有裂纹短、形状曲折、缝隙宽、断面有严重氧化、无金属光泽、裂纹沿晶界产生和发展等特性,在铸钢和铝合金铸件中常见。

防止热裂的主要措施是:除了使铸件结构合理外,还应合理选用型砂或芯砂的防结剂,以改善其退让性;大的型芯可采用中空结构或内部填以焦炭;严格限制铸钢和铸铁中硫的含量;选用收缩率小的合金。

(2)冷裂:冷裂是在较低温度下形成的,常出现在铸件受拉伸部位,特别是有应力集中的地方。

其裂缝细小,成连续直线状,缝内干净,有时呈轻微氧化色。

壁厚差别大,形状复杂或大而暴的铸件易产生冷裂。

因此,凡是能减少铸件内应力或降低合金脆性的因素,都能防止冷裂的形成。

同时在铸铜和铸铁中严格控制合金中的磷含量。

4、什么是砂型铸造的手工造型和及其造型?各有什么特点?答:(1)手工造型:指全部用手工或手动工具完成的造型工序。

手工造型按起模特点分为整模、挖沙、分模、活块、嵌箱、三箱等造型方法.手工造型方法比较灵活,适用性较强,生产准备时间较短,但生产率低、劳动强度大,铸件质量较差。

金属工艺学复习资料重要知识点详解

金属工艺学复习资料重要知识点详解

⾦属⼯艺学复习资料重要知识点详解⾦属⼯艺学复习资料⼀、 1.外圆⾯、孔:直线为母线,圆为轨迹平⾯:直线为母线,直线为轨迹成形⾯:曲线为母线,圆或是直线为轨迹2.包括主远动:⼑具与⼯件产⽣相对运动,是前⼑⾯接近⼯件,速度最⼤,功率最⼤进给运动:切除切屑3.合成切削速度⾓,主运动与合成运动夹⾓4.切削⽤量:切削速度v=3.14*dn/1000或2*Ln/1000进给量f背吃⼑量ap5.⼑具:切削部分、夹持部分6.⼑具材料:碳素⼯具钢、合⾦⼯具钢—切削速度不⾼的⼿⼯⼯具---锉⼑、锯条、铰⼑⾼速钢、硬质合⾦:应⽤最⼴----⾼速钢-强度、韧度好-⿇花钻、铣⼑、拉⼑、齿轮⼑----硬质合⾦硬度好、耐磨、耐热-车⼑、刨⼑、端铣⼑7.⼑具⾓度:主、副偏⾓Kr,Kr’⼩时,表⾯粗糙度也⼩,⼑尖强度和散热条件好,利于提⾼⼑具耐⽤度,但是背向⼒⼤,易引起⼯件变形,可能产⽣振动。

前⾓:前⾯与基⾯夹⾓ro 有正、负、零度前⾓-⼤时,切削⼒Fc⼩,但过⼤,强度低,耐⽤度低,磨损加快---硬质合⾦为10-20度—灰铸铁为5-15度后⾓:道具后⾯与切削⾯的夹⾓,可减⼩摩擦,粗加⼯为6-8度刃倾⾓lanmudas8.车⼑结构形式:整体式、焊接式、机夹重磨式、机夹可转位式(1.避免因焊接引起的缺陷,相同条件下⼑具切削性能⼤为提⾼;2.卷屑、断屑稳定可靠;3.⼑体转位后,保证切削刃与⼯件相对位置,减少了调⼑停机时间,提⾼⽣产效率;4.⼑⽚⼀般不需要重磨,利于涂层⼑⽚推⼴使⽤;5.道题使⽤寿命⼤,可节约材料及制造费⽤)9.切屑:带状-⼤前⾓⼑具,⾼切削速度、⼩进给量,塑性材料,表⾯光洁节状-低速、⼤进给量、加⼯中等硬度钢材、表⾯粗糙崩碎-铸铁、黄铜等脆性材料,⼑尖易磨损,产⽣振动10.积屑瘤:⾦属材料因塑性变形⽽被强化,⽐⼯件材料硬度⾼,能代替切削刃进⾏切削,可保护切削刃,并增⼤了⼑具实际⼯作前脚,切削轻快,所以,粗加⼯希望产⽣。

金属工艺汇总知识点

金属工艺汇总知识点

第一章工程材料的应用基础§1、工程材料的力学性能强度:抗拉强度(弹性极限σe 屈服强度σs 抗拉强度σb) 抗弯强度塑性:伸长率δ断面收缩率ψ硬度:布氏硬度(HBW)洛氏硬度(HR)维氏硬度(HV)肖氏硬度冲击韧度ak疲劳强度σr断裂韧度KIC§2 材料学基础金属的单晶体结构:体心立方晶体结构面心立方晶体结构密排六方晶体结构晶体缺陷:点缺陷线缺陷面缺陷合金的组织结构:固溶体(置换固溶体间隙固溶体) 金属间化合物机械混合物1.ACD以上为液相区L2. AESGA为奥氏体区A3. GPQG为铁素体区F4. DFK为渗碳体区Fe3C ACD线—液相线AECF线—固相线AC—奥氏体开始析出线AE—奥氏体析出终了线CD—Fe3C析出开始线ECF—共晶线PSK线—共析线ES线—C在γ-Fe中的溶解度曲线。

析出二次Fe3CⅡGS线—铁素体开始析出线GP线—铁素体析出终了线PQ线—碳在α-Fe中的溶解度曲线,析出三次渗碳体Fe3CⅢC —共晶点,1148℃ 4.3%C 共晶点:发生共晶反应的点。

共晶反应:在一定的温度下,由一定成分的液体同时结晶出一定成分的两个固相的反应。

S —共析点,727℃0.77%C 共析点:发生共析反应的点。

共析反应:在一定的温度下,由一定成分的固相同时结晶出一定成分的另外两个固相的反应。

§3 钢的热处理热处理过程:加热、保温、冷却热处理的工艺参数有:加热温度保温时间冷却方式冷却方式:等温冷却方式和连续冷却方式。

退火:将钢材或钢件加热到适当温度,保温一定时间后缓慢冷却以获得接近平衡状态组织的热处理工艺。

相同成分条件下,粒状P强硬度较低,塑韧性较好.正火:将钢加热到Ac3线(亚共析钢)、Ac1线(共析钢)、Accm线(过共析钢)以上30-50℃,保温一定时间后,在空气中冷却的热处理工艺。

获得的珠光体组织较细,强度、硬度较高;冷却速度快,生产效率高。

淬火:提高钢的硬度和强度回火:消除淬火钢的残余内应力退火和正火区别:1、冷却方式:前者炉冷,后者空气中冷却正火冷却速度大于退火2、组织:前者接近平衡状态,后者较细珠光体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金属工艺学第五版上册纲要强度:金属材料在里的作用下,抵抗塑性变形和断裂的能力。

指标:屈服点(σs)、抗拉强度(σb)。

塑性:金属材料在力的作用下产生不可逆永久变形的能力。

指标:伸长率(δ)、断面收缩率(ψ)硬度:金属材料表面抵抗局部变形,特别是塑性变形压痕、划痕的能力。

1布氏硬度:HBS(淬火钢球)。

HBW(硬质合金球)指标: 2洛氏硬度:HR(金刚石圆锥体、淬火钢球或硬质和金球)3韦氏硬度习题:1什么是应力,什么是应变?答:试样单位面积上的拉称为应力,试样单位长度上的伸长量称为应变。

5、下列符号所表示的力学性能指标名称和含义是什么?答:σb:抗拉强度,材料抵抗断裂的最大应力。

σs:屈服强度,塑性材料抵抗塑性变形的最大应力。

σ0.2:条件屈服强度,脆性材料抵抗塑性变形的最大应力σ-1:疲劳强度,材料抵抗疲劳断裂的最大应力。

δ:延伸率,衡量材料的塑性指标。

αk:冲击韧性,材料单位面积上吸收的冲击功。

HRC:洛氏硬度,HBS:压头为淬火钢球的布氏硬度。

HBW:压头为硬质合金球的布氏硬度。

过冷度:理论结晶温度与实际结晶温度之差。

冷却速度越快,实际结晶温度越低,过冷度越大。

纯金属的结晶包括晶核的形成和晶核的长大。

同一成分的金属,晶粒越细气强度、硬度越高,而且塑性和韧性也越好。

原因:晶粒越细,晶界越多,而晶界是一种原子排列向另一种原子排列的过度,晶界上的排列是犬牙交错的,变形是靠位错的变移或位移来实现的,晶界越多,要跃过的障碍越多。

1提高冷却速度,以增加晶核的数目。

2在金属浇注之前,向金属液中加入变质剂进行变质处理,以增加外来晶核,还可以采用热处理或塑性加工方法,使固态金属晶粒细化。

3采用机械、超声波振动,电磁搅拌等合金:两种或两种以上的金属元素,或金属与非金属元素溶合在一起,构成具有金属特性的新物质。

组成元素成为组员。

1、固溶体:溶质原子溶入溶剂晶格而保持溶剂晶格类型的金属晶体。

铁碳合金组织可分为: 2、金属化合物:各组员按一定整数比结合而成、并具有金属性质的均匀物质(渗碳体)3、机械混合物:结晶过程所形成的两相混合组织。

ACD——液相线ACEF——固相线ECF——共晶线,含碳量2.11﹪~6.69﹪的所有合金经过此线都要发生共晶反应。

GS——奥氏体在冷却过程中洗出铁素体的开始线。

(A3线)ES——碳在奥氏体中的溶解曲线。

(Acm线)PSK——共析线(A1线,共析反应:As≒727℃ P)根据含碳量的不同,可将铁碳合金分为钢(﹤2.11﹪)和铸铁(2.11~6.69﹪)。

根据成分不同,铁碳合金可分为:工业纯钢,碳钢,白口铸铁。

钢的热处理:将钢在固态下,通过加热、保温和冷却,以获得预期的组织和性能的工艺。

退火:将钢加热、保温,然后随炉冷却或埋入灰中使其缓慢冷却的热处理工艺。

正火:将钢加热到Ac3上30~50℃(亚共析钢)或Acm上30~50℃(过共析钢),保温后在空气中冷却的热处理工艺。

1、取代部分完全退火。

用处 2、用于普通结构件的最终热处理。

3、用于过共析钢,以减少或消除二次渗碳体呈网状析出。

淬火:将钢加热到Ac3或Ac1上 1、严格控制淬火加热温度30~50℃,保温后在淬火介质中快速冷 2、合理选择淬火介质却,以获得马氏体的组织的热处理工艺。

3、正确选择淬火方法回火:将钢加热到Ac1下某个温度,保温后冷却到室温的热处理工艺。

表面淬火:通过快速加热,使刚的表层很快达到淬火温度,在热量来不及传到钢件心部时就立即淬火,从而表层获得马氏体组织,而心部保持原始组织。

(电感应)化学热处理:将钢件置于适合的化学介质中加热和保温,使介质中的活性原子渗入钢件表层,以改变钢件表层的化学成分和组织,从而获得所需的力学性能或理化性能。

(渗碳处理)(1)碳素结构钢:含碳量小于0.38﹪。

Q+三位数字(最低屈服点) 碳素钢: (2)优质碳素结构钢:两位数字(平均含碳量的万分数) (3)碳素工具钢:T+一位或两位数字(平均含碳量的千分数)(1)合金结构钢合金钢 (2)合金工具钢(3)特殊性能钢铸造:将熔炼的金属浇注到相适应的铸型空腔中,一获得一定形状、尺寸和性能的毛坯或零件的成形方法合金的铸造性能: 1合金的流动性 合金在铸造成形时 2凝固特性 获得外形准确、内 3收缩性 部健全铸件的能力。

4吸气性液态合金的充型:液态合金充满铸型型腔,获得形状准确、轮廓清晰的铸件的能力。

1合金的流动性:液态合金本身的流动能力。

(在常用铸造合金中灰铸铁、硅黄铜的流动性最好,铸钢的流动性最差。

合金成分越远离共晶点,结晶温度范围就越宽,流动性越差) 1浇注温度:浇注温度越高,合金的粘度下降,且因为过热度高,合金在铸型中保持流动的时间较长,故充型能力强。

2浇注条件:2充型压力:液态合金在流动方向上所受的压力。

3浇注系统:浇注系统越复杂,则流动阻力越大,充型能力降低1、铸型材料3铸型填充条件 2、铸型温度3、铸型中的气体4、铸件结构凝固方式 1、逐层凝固:灰铸铁、铝硅合金,易于获得紧实铸件2、糊状凝固:球墨铸铁、锡青铜、铝铜合金等3、中间凝固1、液态收缩铸件产生缩孔缩松的根本原因铸造合金的收缩: 2、凝固收缩3、固态收缩:铸件产生应力、变形的根本原因顺序凝固:主要用于必须补缩的场合,如铝青铜、硅铝合金和铸钢中。

同时凝固原则:主要用于灰铸铁、锡青铜等内应力的形成: 1热应力2机械应力铸件的变形和防止: 1自然时效:将铸件置于露天场地半年以上。

2人工时效:将铸件加热到550~650℃进行去应力退火。

1、析出性气孔2、浸入性气孔3、反应性气孔习题:2、什么是液态合金的充型能力?它与合金的流动性有何关系?不同成分的合金为何流动性不通?答:液态合金充满铸型型腔,获得形状准确、轮廓清晰的铸件的能力。

液态合金的流动性越好充型能力越强,越便于浇注出轮廓清晰,薄而复杂的铸件。

化学成分不同,凝固方式不同。

5、缩孔和缩松有何不同?为何缩孔比缩松容易防止?答:缩孔和缩松使铸件的力学性能下降,缩松还可能使铸件因渗漏而报废。

缩孔集中在铸件上部或者最后凝固的部位,而缩松分布在整个铸件中所以缩孔比缩松容易防止。

铸铁:灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁。

灰铸铁:1、优良的减震性,2、耐磨性好,3、缺口敏感性小,4、铸造性能优良。

(受化学成分和冷却速度的影响)HT+三位数字(最低抗拉强度)可锻铸铁:将白口铸铁坯件经高温根据黑心可锻铸铁 KTH+两位数石墨化退火而形成的一退火方白心可锻铸铁字(最低抗拉种铸铁。

(玛铁或玛钢)方式珠光可锻铸铁强度和伸长率球墨铸铁:向出炉的铁液中加入球化剂和孕育剂而得到的球状石墨铸铁。

(力学性能在在铸铁中最好)QT+两组数字表示最低抗拉强度和伸长率。

蠕墨铸铁:炉前处理时,先向铁液中冲入蠕化剂(稀土硅铁合金、稀土硅钙合金或镁钛合金)。

力学性能介于灰铸铁和球墨铸铁之间。

RuT+三位数字(最低抗拉强度)按照化学成分铸钢可分为铸造碳钢和铸造合金刚纯铜俗称紫铜。

机械上广泛应用的是铜合金。

三箱造型适合于两端界面大中间界面小的造型整模造型适合最大界面在其端面的零件分模造型适合形状对称的最大截面在其中间的零件型砂和芯沙统称造型材料,必须具有一定强度、耐火性、透气性、退让性。

1应尽量使分型面平直、数量少分型面的选择 2应避免不必要的型芯和活块,以简化造型工艺3应尽量使铸件全部或大部分置于下箱1要求的机械加工余量和最小铸孔:设计铸造工艺图时,为铸件预先增加要切去的金属层厚度工艺参数的选择 2起模斜度:为了便于模样从砂型中取出,凡平行起模方向的模样表面上所增加的斜度3收缩率:为保证铸件应有的尺寸,模样尺寸必须比铸件放大一个该合金的收缩量4型芯头:型芯的定位、支撑和排气的部分。

熔模铸造:用易熔材料制成模样,在模样表面包覆耐火涂料制成型壳,再将模样熔化排出型壳,从而获得无分型面的铸型,经高温焙烧后即可填沙浇注特金属型铸造:将液态金属浇入合金的铸型中,并在重力下凝固成型以获得铸件的方法种易产生浇不足、冷隔裂纹及白口等缺陷。

1喷刷涂料,2金属型应保持一定的工作温度,3适合的出型时间。

铸压力铸造:高温高压下降液态或半液态合金快速压入金属铸型中,并在压力下凝固以造获得铸件。

不适合钢铁铸铁件等高熔点金属。

离心铸造金属的塑性加工:利用金属的塑性,使其改变形状、尺寸和改善性能,获得型材、棒材、线材或锻压件的加工方法。

金属塑性变形的实质是:晶体内部产生滑移的结果。

在切应力的作用下,晶体的一部分相对另一部分沿着一定的晶面产生相对滑动,(位错运动)造成晶体的塑性变形晶粒内部缺陷:位错对塑性变形影响最为显着。

通常使用的金属都是由大量微小晶粒组成的多晶体,其塑性变形后可以看成是由组成多晶体的许多单个晶粒产生的变形(称为晶内变形)的综合效果。

同时,晶粒之间也有滑动和转动(称为晶间变形)。

每个晶粒内部都有许多滑移面,因此整块金属的变形量可以比较大。

低温时,多晶体的晶间变形不可过大,够则将引起金属的破坏。

金属在常温下进过塑性变形后,内部组织将发生变化1:晶粒沿最大变形的方向伸长;2晶格与晶粒均发生扭曲,产生内应力;3晶粒间产生碎晶。

变形强化(加工硬化):金属的力学性能将随其内部的改变而发生明显变化。

变形程度增加时,金属的强度及硬度升高,而塑性和韧性下降。

其原因是由于滑移面上的碎晶块和附近的晶格的强烈扭曲,增大了滑移阻力,使继续滑移难以进行所致。

在冷变形时,随着变形程度的增加,金属材料的所有强度指标和强敌都有所提高,但塑性和韧性有所下降。

回复:冷变形强化是一种不稳定的现象,将冷变形后的金属加热至一定温度后,因原子的活动能力增强,使原子回复平衡位置,晶内残余应力大大减小。

T回=(0.25~0.3)T熔再结晶:当温度继续升高到该金属熔点的0.4倍时,金属原子获得更过热能,使塑性变形后金属被拉长的晶粒重新生核、结晶,变为与变形前晶格结构相同的新等轴晶粒。

T再=0.4T熔。

化学成分的影响:纯金属比合金好,碳钢中含碳量越金属的本质:低可锻性越好,钢中含有形成碳化物的元素可锻性:材料在金属组织的影响:纯金属及固溶体的可锻性好,而碳锻造过程中经受化物的可锻性差,铸态柱状组织和塑性变形而不开粗晶粒结构的可锻性不如晶粒细小裂的能力。

而均匀组织的可锻性好。

加工条件: 1变形温度的影响:提高金属变形时的温度是改善金属锻性的有效措施。

但加热温度过高必将产生过热、过烧、脱碳和严重氧化等缺陷2 应变速率的影响:应变对时间的变化率3应力状态的影响:压应力的数目越多,则金属的塑性越好:拉应力的数目越多,则金属的塑性越差。

可锻性的优劣常用金属的塑性和变形抗力来综合衡量。

合金成分越复杂,可锻性越差。

锻造自由锻:只用简单的通用性工具,或在锻造设备上、下砧间直接是坯料变形而获得所需要的几何形状及内部质量锻件的方法。

相关文档
最新文档