北师大版九年级数学上-反比例函数的应用

合集下载

北师大版九年级数学上册 (反比例函数的应用)反比例函数教育教学课件

北师大版九年级数学上册 (反比例函数的应用)反比例函数教育教学课件
球内气体的气压 p(kPa)是气体体积 V(m3)的反比例函数,如
图所示,则用气体体积 V 表示气压 p 的函数表达式为(
)
120
A. p= V
120
B. p=- V
96
C. p= V
96
D. p=- V
答案:C
k
2. 如图,在同一平面直角坐标系中,反比例函数 y= 与
x
一次函数 y=kx-1(k 为常数,且 k>0)的图象可能是( B )
2
m
解:把 A(2,1)代入 y= x ,得 m=2,∴反比例函数的表达式为 y=x,
2
把 B(-1,n)代入 y=x,得 n=-2,即 B(-1,-2),
2k+b=1,
k=1,

将点 A(2,1),B(-1,-2)代入 y=kx+b,得
解得
-k+b=-2,
b=-1,
∴一次函数的表达式为 y=x-1.
x≤-6或
或00
<x≤2 .
例题精讲
知识点 1
反比例函数的实际应用
例1 小芳从家骑自行车去学校,所需时间 y(min)与骑车
速度 x(m/min)之间的反比例函数关系如图.
(1)小芳家与学校之间的距离是多少?
【思路点拨】(1)直接利用反比例函数图象上点的坐标得
出小芳家与学校之间的距离;
解:小芳家与学校之间的距离是 10×140=1 400(m).
第六章
6.3
反比例函数
反比例函数的应用
教学目标
1. 经历分析实际问题中两个变量之间的关系,建立反比
例函数模型,进而解决问题的过程,进一步体会模型思想,
发展应用意识.(重点)
2. 解决反比例函数与正比例函数、一次函数综合问

九年级数学北师大版(上册)6.3 反比例函数的应用

九年级数学北师大版(上册)6.3 反比例函数的应用
S
(2)当S=2时,y=100 =50, 2
所以当面条粗2 mm2时,面条的总长度为50 m.
4.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细 (横截面积)S(mm2)的反比例函数,其图象如图所示. (1)写出y(m)与S(mm2)的函数关系式; (2)求当面条粗2 mm2时,面条的总长度是多少米?
∴y= 240 x
(2)
根据题意,若x=10,则y=
240 10
=24,
∴长为24 m
(3) 根据题意可得 240 ≤20,解得x≥12, x
∴宽至少为12 m
2.打字员要完成一篇4 200字的文章录入工作.
(1)若平均每分钟录入60个字,则完成工作需要多少分钟?
(2)写出录入时间y(分)与录入速度x(字/分)之间的函数关系式;
油0.1升的耗油速度行驶,可行驶700千米.
(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析
式,(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?
解:(1)把 a=0.1,S=700 代入
S= k 中,得 k=70,∴S= 70
a
a
(2) 把a=0.08代入 S= 70 得
(2) 不能
理由:晚上20:00到第二天早上
7:00共有11小时,
把x=11 代入 y= 225 , 得 y= 225 >20
x
11
∴不能
二、过关检测
第1关
7.将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与
平均耗油量a(单位:升/千米)之间是反比例函数关系S=k (k是常
a
数,k≠0).若某轿车油箱注满油后,以平均耗 油量为每千米耗

北师大版九年级上册 反比例函数的应用 课件(22张)

北师大版九年级上册 反比例函数的应用 课件(22张)

轻松过招
第二招
2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体
的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,
(1)求P与V之间的函数关系式;
(2)求当V=2 m3时物体承受的压强P.
(3)当气球内的气压大于120 kPa时,气球将爆炸,
为了安全,求气球体积的取值范围.
解:(1)设P与V之间的函数关系式P=

T V
,根据题意得:
60=1.T6
,T=96,∴P与V之间的函数关系式P=
96 V
轻松过招
第二招
2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体 的气压P(kPa)是气球体积V的反比例函数,其图象如图所示,
(1)求P与V之间的函数关系式; (2)求当V=2 m3时物体承受的压强P. (3)当气球内的气压大于120 kPa时,气球将爆炸,
为了安全,求气球体积的取值范围.
(2)V=2m3时,P=
96 2
=48kPa
轻松过招 第二招 2.某种气球内充满了一定质量的气体,当温度不变时,气球内气体
的气压P(kPa)是气球体积V的反比例函数,其图象如图所示, (1)求P与V之间的函数关系式; (2)求当V=2 m3时物体承受的压强P. (3)当气球内的气压大于120 kPa时,气球将爆炸,
(1)求这个反比例函数的表达式;
(2)当R=10 Ω时,电流能是4 A吗?为什么?
解:(1)设这个反比例函数的表达式为I=
k R

根据题意得:9=
k 4
;∴k=36
∴这个反比例函数的表达式为I3R=6 .
新知导航
(二)例题仿练
知识点1:反比例函数的实际应用 【例1】蓄电池的电压为定值.使用此电源时,电流I(A)是电阻

北师大版九年级数学上册:6.3反比例函数的应用(教案)

北师大版九年级数学上册:6.3反比例函数的应用(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在讲授新课的过程中,我尽量用简洁明了的语言解释反比例函数的定义,并通过案例分析让学生看到函数是如何在现实世界中发挥作用的。我认为这样的方法有助于提高学生的数学应用意识,让他们明白学习数学不仅仅是为了应付考试,而是为了解决实际问题。
实践活动环节,学生分组讨论和实验操作进行得相当顺利。我看到了他们积极思考、互相交流的场景,这让我感到很欣慰。不过,我也观察到有些小组在讨论时,个别成员参与度不高,这可能是因为他们对问题还不够理解。在未来的教学中,我需要更加关注这些学生,鼓励他们积极参与,提高他们的自信心。
北师大版九年级数学上册:6.3反比例函数的应用(教案)
一、教学内容
北师大版九年级数学上册:6.3反比例函数的应用。本节课我们将围绕以下内容展开:
1.反比例函数在实际问题中的应用。
2.利用反比例函数解决几何问题,如相似多边形的面积比、相似三角形的周长比等。
3.通过实际例子,让学生掌握反比例函数在生活中的应用,如速度与时间的关系、密度与体积的关系等。
4.分析反比例函数的性质,如函数图像、单调性、奇偶性等,并探讨其在实际问题中的应用。
5.练习题:完成教材课后练习第1、2、3题,巩固反比例函数的应用。
二、核心素养目标
1.培养学生运用反比例函数知识解决实际问题的能力,提升数学应用意识。

北师大版九年级上册数学6.3反比例函数的应用(共16张PPT)

北师大版九年级上册数学6.3反比例函数的应用(共16张PPT)

分 别 交 于 B 两A ,点 且,与 反 比 例函mx(数my0 ) 的 图
象交于点 过C点, C作CD垂轴直垂 ,于足x为D.
若 OAO BO D1 .
( 1 ) 求 点B ,AD,的 坐 标 ;
y
( 2 ) 求 一 次 函 数比和例反函 数 的 解 析C式 .
B
A OD
x
与面积有关的问题
要求:独立完成,然后互相分享,说明解题思路. 例2.如图,已知:A(-2,-2)、B(n,4)是一次函数y=kx+b的
(1)求反比例函数的解析式; (2)若点P在x轴上,AP=5,直接写出点P的坐标.
y
A
O
-4
x
象与反比例函数 y k (k 0的) 图象交于A、B两点, x
A点坐标为(1,m),连接OB,过点作BC⊥x轴,垂足为点C,
且△BOC的面积为 3 .
(1)求k的值;
2
(2)求这个一次函数的解析式.
【总结归纳】
1.这节课主要学习了什么内容?反馈】
要求:直接把答案写到检测纸上。
………5 分
【互助探究1——面积问题】
【例3】如图,在平面直角坐标系中,直线y=mx 与双曲线y= n 相交于A(-1,a),B两点,BC⊥x轴 ,
x
垂足为C,△AOC的面积是1. (1)求m、n的值; (2)求直线AC的解析式.
【互助探究2——分类讨论】
例4.如图,在平面直角坐标系
xOy
中,函数 y 4 x 0
() 利用待定系数法求一次函数及
(2)求△AOB的面积.
如图,在平面直角坐标系 中,一次函数y= -x的图象
()
判断一次函数与反比例函数在同一坐标系中的大致图像。

北师大版数学九年级上册6.3反比例函数的应用 课件(共19张PPT)

北师大版数学九年级上册6.3反比例函数的应用   课件(共19张PPT)
(2)当 = 时, =

.



= . .
例 5:为检测某品牌一次性注射器的质量,将注射器里充满一定量的
气体,当温度不变时,注射器里的气体压强 p(kPa)与气体体积
³ 的部分对应 值如下表:
V(cm³) 15
20
25
30
40
50
p(kPa) 400 300 240 200 150 120

<<
的解集是____________

.
例2:如图所示,一次函数y=-x+m与反比例函数 =

的图象相交于点A 和点

B(5,-1).
(1)求m的值和反比例函数的表达式;
解:(1)∵一次函数 ₁ = − + 与反比例函数 =
− = − + ,
的图象相交于点 − , ∴ ቐ
位置情况,可先由两者中的某一图象确定字母系数的取值情况,再与另一图象相对
照解决;
(3)已知关于一次函数或反比例函数的信息,求一次函数或反比例函数的关系式;
(4)利用反比例函数图象的几何意义求与面积有关的问题.
教师讲评
知识点 2:反比例函数与物理问题的综合应用
力学、电学等知识中存在着反比例函数,解决这类问题,要牢记物理公式.
过程
分析实际情境→建立函数模型→明
确数学问题
实际问题中的
反比例函数
实际问题中的两个变量往往都只
能取非负值;
注意
作实际问题中的函数图象时,横、
纵坐标的单位长度不一定相同
1.教材习题:完成课本159-160页习题6.4的
第1-3题
2.作业本作业:完成对应练习

6.3 反比例函数的应用(数学北师大版九年级上册)

6.3 反比例函数的应用(数学北师大版九年级上册)
解:80×6=480 (千米) 答:甲、乙两地相距 480 千米.
(2)当他按原路匀速返回时,汽车的速度 v 与时间 t 有怎样的函数关系?
解:由题意得 vt=480,
整理得 v 480 (t >0). t
新课进行时 核心知识点二 反比例函数在其他学科中的应用
例4 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂 分别为 1200 N 和 0.5 m. (1) 动力 F 与动力臂 l 有怎样的函数关系? 当动力臂为 1.5 m时,撬动石头至少需要多大的力?
北师大版九年级上册
6.3 反比例函数的应用
新课目标
【知识与技能】
使学生对反比例函数和反比例函数的图象意义理解加 深. 【过程与方法】
经历分析实际问题中变量之间的关系、建立反比例函 数模型,进而解决问题的过程. 【情感态度】
调动学生参与数学活动的积极性,体验数学活动充满 着探索性和创造性. 【教学重点】 建立反比例函数的模型,进而解决实际问题. 【教学难点】 经历探索的过程,培养学生学习数学的主动性和解决 问题的能力.
随堂演练
3. A、B两城市相距720千米,一列火车从A城去B城. (1) 火车的速度 v (千米/时) 和行驶的时间 t (时) 之间的函数关系是_v___7_2t_0__. (2)若到达目的地后,按原路匀速返回,并要求 在 3 小时内回到 A 城,则返回的速度不能低 于_2_4_0_千__米__/_时___.
R
知识小结
比实 例际 函问 数题
中 的 反
过程: 分析实际情境→建立函数模型→明确数学问题
注意: 实际问题中的两个变量往往都只能取非负值; 作实际问题中的函数图像时,横、纵坐标的单 位长度不一定相同
随堂演练

新北师大版九年级上册初中数学 6.3反比例函数的应用 教学课件

新北师大版九年级上册初中数学 6.3反比例函数的应用 教学课件
码头工人每天往一艘轮船上装载30吨货物,装载完毕恰好用了 8 天时间.
例 (1)轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/天)与卸货天数t之
间有怎样的函数关系?
(2) 由于遇到紧急情况,要求船上的货物不超过5天卸载
完毕,那么平均 每天至少要卸载多少吨?
分析:根据“平均装货速度 × 装货天数=货物的总量”,
系? (2) 公司决定把储存室的底面积S定为 500 m2,施工队施工
时应该向地下掘进多深? (3)当施工队按(2)中的计划掘进到地下15 m时,公司临
时改变计划, 把储存室的深度改为15 m.相应地,储 存室的底面积应改为多少(结果保留 小数点后两位)?
第六页,共二十一页。
新课讲解
解: (1)根据圆柱的体积公式,得Sd= 104,
(1)则y与x之间有怎样的函数关系?
(2)画函数图象
第十二页,共二十一页。
新课讲解
解:(1)煤的Biblioteka 量为:0.6×150=90吨, ∵

(2)函数的图象为:
第十三页,共二十一页。
新课讲解
典例分析
水池内原有12 m3的水,如果从排水管中每小时出x m3的水,那么经过y

h就可以把水放完.
(1)求y与x之间的函数关系式;
列车平 均速度v(单位:km/h)的变化 而变化; (2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的
变化;
第五页,共二十一页。
新课讲解
例1 市煤气公司要在地下修建一个容积 为104 m3的圆柱
形煤气储存室.
(1) 储存室的底面积S (单位:m2)与其 深度d(单位:m)有 怎样的函数关
第十八页,共二十一页。

北师大版九年级数学上册反比例函数的应用教学课件

北师大版九年级数学上册反比例函数的应用教学课件



= (/).
所以如果要排完蓄水池中的水,那么每小时的排水
量应该是.
分析:(3)求出当 = 时,的值即可.
解:(3)当 = 时, =


= . .
所以如果每小时的排水量是,那么蓄水池中
的水需要. 才能排完.
k>0时,图象位于第_________象限,在每一象限内,y的
一、三
值随x值的___________;当k<0时,图象位于第_______
增大而减小
二、四
象限,在每一象限内,y的值随x值的___________.
增大而增大
2.双曲线的两条分支逼近坐标轴但不可能与坐标轴相交.
3.反比例函数的图象是一个以_______为对称中心的中心
多少时,才能获得最大日销售利润?
分析:
(1)表中数据
=

=

解:(1)由表中数据,得 = ,即 =
所以,y与x之间的关系式为 =

.



分析:(2) 日利润=每件利润×日销售量
= − ×

= − ×

= −
解:(2) = − × = −
年度
投入资金(万元)
2016 2017 2018 2019
2.5
3
4
4.5
产品成本(万元/件) 7.2
6
4.5
4
(1)根据表中的数据,确定你学过的哪种函数能表示其变化规
律,说明确定这种函数的理由,并求出表达式;
(2)按照这种规律,若从2020年投入资金万元.
①预计生产成本比2019年降低多少万元?


(北师大版数学九上)第六章 反比例函数讲义

(北师大版数学九上)第六章  反比例函数讲义

第六章 反比例函数第5讲 反比例函数图象、性质及应用一.知识梳理知识点1 反比例函数的定义与表达式: (1)一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数 (2)反比例函数有三种表达式: ①xk y =(0k ≠) ②1kx y -=(0k ≠) ③k y x =⋅(定值)(0k ≠) 知识点2 用待定系数法求反比例函数的解析式 由于反比例函数xky =(0k ≠)中,只有一个待定系数,因此,只要一组对应值,就可以求出k 的值,从而确定反比例函数的表达式. 知识点3 反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量x ≠0,函数值y ≠0,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线. 在作反比例函数的图像时应注意以下几点: ①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确; ③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线; ④画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交.知识点4 反比例函数的性质☆关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表: 反比例函数xky =(0k ≠) k 的符号0k >0k <图像性质①x 的取值范围是0x ≠,y 的取值范围是0y ≠①x 的取值范围是0x ≠,y 的取值范围是0y ≠②当0k >时,函数图像的两个分支分别在第一、第三象限,在每个象限内,y 随x 的增大而减小.②当0k <时,函数图像的两个分支分别在第二、第四象限,在每个象限内,y 随x 的增大而增大.注意:描述函数值的增减情况时,必须指出“在每个象限内……”否则,笼统地说,当0k >时,y 随x 的增大而减小,就会与事实不符的矛盾. ☆反比例函数x k y =(0k ≠)中,k 越大,双曲线xky =越远离坐标原点;k 越小,双曲线xky =越靠近坐标原点. ☆双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线y=x 和直线y=-x. ☆反比例函数(y=xk)的图像与正比例函数(y=ax )的图像交于A(11y x ,),B(22y x ,)两点,那么这两点关于原点对称,即21-x x =,21-y y =.【补充】 中点坐标公式: 三点共线,且中间的点是中点,则:⎪⎪⎩⎪⎪⎨⎧==22两个端点的纵坐标相加中间点的纵坐标两个端点的横坐标相加中间点的横坐标即若A(1x ,1y ),B(2x ,2y ),M(x ,y)在一条直线上,且M 为线段AB 的中点,则有:⎪⎪⎩⎪⎪⎨⎧+=+=2y y y 2x x x 2121知识点5 反比例函数的应用(略)二.实战演练考点一反比例函数的概念及函数关系式的确定下列是反比例函数的有_____(填序号)①2xy-=;②xy21-=;③11-=xy;④21xy=⑤ xy=-3;⑥1--=xy考点二反比例函数的图像和性质1.反比例函数y=xa-1-2(a是常数)的图像分布在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.(1)若A(x1,y1),b(x2,y2)是双曲线y=x3上的两点,且x1>x2>0,则y1____y2.3.反比例函数y=xk的图像如右图所示,则k的值可能是()A.-1B.1C.2D.34.正方形的A1B1P1P2顶点P1、P2在反比例函数y=x2(x>0)的图象上,顶点A1、B1分别在x轴、y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=x2(x>0)的图象上,顶点A2在x轴的正半轴上,则点P3的坐标为.典例分析考点三 反比例函数的应用 1.已知点P(a ,b)在反比例函数xy 2=的图像上,若点P 关于y 轴对称的点在反比例函数xky =的图像上,则k 的值为_____. 2.李先生参加了清华同方电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为1.2万元,交了首付之后每月付款y 元,x 月结清余款.y 与x 的函数关系如图所示,试根据图象提供的信息回答下列问题.(1)确定y 与x 的函数关系式,并求出首付款的数目;(2)如打算每月付款不超过500元,李先生至少几个月才能结清余款?考点四 一次函数与反比例函数综合问题 1.函数y=k(x-1)与xky -=在同一直角坐标系内的图象大致是( )2.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=-2x+6的图象无公共点,则这个反比例函数的表达式是_____(只写出符合条件的一个即可).3.已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x=1时,y=﹣1;当x=3时,y=5.求y 与x 的函数关系式.4.如图所示,直线xy 34=与双曲线x k y =(x >0)交于点A ,将直线x y 34=向右平移29个单位后,与双曲线x k y =(x >0)交于点B ,与x 轴交于点C ,若BCAO=2,则k=____.1.已知函数|m |1xm y -=是y 关于x 的反比例函数,则m 的值是____. 2.在反比例函数xmy 21-=的图像上有A(11y x ,),B(22y x ,)两点,当021<<x x 时,21y y <,则m 的取值范围是( )A.m <0 B.m >21 C.m <21D.m >03.反比例函数的自变量x 满足-2≤x ≤-21时,函数值-1≤y ≤-41,则它的解析式是( )A.x y 21=B.xy 21-= C.x y 8= D.x y 81-=4.如图所示,等边三角形OAB 的边OA 在x 轴上,双曲线y=x3在第一象限内的图像经过边OB 的中点C,则点B 的坐标是( , ).5.双曲线y=xk经过点(-3,4),则下列点在双曲线上的是____. A.(-2,3) B.(4,3) C.(-2,-6) D.(6,-2) 6.已知一次函数b kx y +=1与反比例函数xky =2在同一直角坐标系中的图象如图所示,则当21y y <时,x 的取值范围是( )课堂训练A.x <-1或0<x <3B.-1<x <0或x >3C.-1<x <0D.x >37.如图,直线y=33-x+b 与y 轴交于点A ,与双曲线xky =在第一象限交于B 、C 两点,且AB.AC=8,则k=_____.8.某地计划用120﹣180天(含120与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y (单位:天)与平均每天的工作量x (单位:万立方米)之间的函数关系式,并给出自变量x 的取值范围;(2)由于工程进度的需要,实际平均每天运送土石比原计划多5000米3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?9.已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6) (1)求m 的值;(2)如图,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.1.已知一个反比例函数的图像位于第二、四象限内,点P(yx,)在这个反比例函数图像上,且yx>-4,请你写出这个反比例函数的表达式______.(只写出符合题意的一个即可)2.若点(-2,)1y,(-1,2y),(1,3y)在反比例函数)0(<kxky=图象上,则下列结论中,正确的是()A.3y>1y>2y B.2y>1y>3y C.1y>2y>3y D.3y>2y>1y3.如图所示,点P(2,1)是反比例函数xky=的图像上的一点,则当y<1时,自变量x的取值范围是()A.x<2 B.x>2 C.x<2且x≠0 D.x>2或x<04.已知P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,若x2=x1+2,且211112+=yy,则这个反比例函数的表达式为______.5.如图所示,矩形ABCD的对角线经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=xkk122++的图象上,若点A的坐标为(-2,-2),则k的值为_____.6.已知A(2,m-2)和B(m,4)均在反比例函数图像上,则m=___.7.如果一个正比例函数的图象与反比例函数y=x6的图象交于A(x1,y1),B(x2,y2)两点,那么(x2-x1)(y2-y1)的值为_____.8.如图,直线y=2x与双曲线y=x2在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO 绕点O旋转90°,得到△A′B′O,则点A′的坐标为( )A.(1,0)B.(1,0)或(﹣1,0)C.(2,0)或(0,﹣2)D.(﹣2.1)或(2,﹣1)课后作业※9.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( ) A .7:20 B .7:30 C .7:45 D .7:5010.某汽车油箱的容积为80升,小陈把油箱注满油后从县城载客到400千米外的省城,把客人送到目的地后马上按原路返回,请回答下列问题:(1)油箱注满后,汽车能够行驶的总路程a (单位:千米)与每千米平均耗油量b (单位:升)之间有怎样的函数关系?(2)小陈以平均每千米耗油0.1升的速度驾驶汽车到达省城,在返回走了一半路程时下起了雨,小陈降低了速度,此时每行驶1千米的耗油量增加了一倍,如果小陈一直以此速度行驶,油箱里的油是否能回到县城?如果不够用,至少还需加多少油?11.如图,已知反比例函数y=x2k和一次函数y=2x-1,其中一次函数的图象经过(a ,b ),(a+1,b+k )两点,反比例函数和一次函数的图象交于A 、B 两点. (1)求反比例函数的解析式,和△AOB 的面积; (2)结合函数图象,直接写出不等式2x >76x 2k+-的解为_______;(3)在反比例函数图象上存在_____个点P ,使得OAB PAB S S △△2=.12.已知反比例函数x2ky =和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k )两点.(1)求反比例函数的解析式;(2)若点A 在第一象限,且同时在上述两个函数的图象上,求点A 的坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,直接写出符合条件的点P 的坐标;若不存在,请说明理由.第6讲 |k|的几何意义一.知识归纳☆反比例函数xky =(0k ≠)中k 的几何意义: 如图所示,过双曲线上任一点P (x ,y )分别作x 轴、y 轴的垂线,E 、F 分别为垂足,连接OP , 则:OEPF S PE PF y x 矩形=⋅=⋅=k【补充】|k|的几何意义常见模型: 模型一:一点一垂线模型分析:如过反比例函数图象上一点作坐标轴的垂线,该点、垂足与坐标轴上一点(含原点)构成的三角形面积等于21|k|.特别补充:反比例函数图象上的两点与原点构成的三角形面积等于由这两点向x 轴作垂线构成的梯形面积.模型二:一点两垂线模型分析:如过反比例函数图象上一点作两条坐标轴的垂线,垂线与坐标轴围成的矩形面积等于|k|.模型三:原点一垂线模型分析:过正比例函数与反比例函数的一个交点作坐标轴的垂线,两交点与垂足构成的三角形的面积等于|k|.模型四:两点两垂线模型分析:反比例函数与正比例函数的两个交点的连线及由交点向不同坐标轴所作两条垂线围成的图形(或两交点及由交点向同一坐标轴所作两条垂线的垂足构成的图形)的面积等于2|k|.模型五:两点和一点模型分析:反比例函数与一次函数的交点和原点(或坐标轴上一点)所构成的三角形的面积,若两交点在同一支上,用减法;若两交点分别在两支上,用加法.模型六:两曲一平行模型分析:两条双曲线上的两点的连线与一条坐标轴平行,求该两点与原点构成或坐标轴围成的图形面积,结合k的几何意义求解.模型七:与四边形组合模型分析:反比例函数图象与四边形结合,已知面积求值,或已知值求面积.通常会用到反比例函数图象上点的横纵坐标乘积相等.二.实战演练例1:下列图形中,阴影部分面积最大的是()例2:如图所示,反比例函数y=xk(x>0)的图像经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4例3:如图,A、B两点分别在反比例函数xy1-=和xky=的图像上,连接OA、OB,若OA ⊥OB,OB=2OA,则k的值为() A.-2 B.2 C.-4 D.4例4:如图,反比例函数y=xk(x>0)的图象经过平行四边形ABCO的顶点A和对角线的交点E,点A的横坐标为3,对角线AC所在的直线交y轴于(0,6)点,则函数y=xk的表达式为_____.典例分析例5:如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=xk1(x>0)的图象经过点C,反比例函数y=xk2(x<0)的图象分别与AD,CD交于点E,F,若BEFS∆=7,21k3k+=0,则1k等于_______.例6:已知:在矩形AOBC中,OB=4,OA=3,分别以OB、OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B、C重合),过F点的反比例函数xky=(k>0)的图象与AC边交于点E.(1)用含k的代数式表示△AOE的面积是____,△BOF的面积是_____.(2)请探索:是否存在这样的点F,使得将△CEF沿EF对折后,C点恰好落在OB上?若存在,请直接写出点F的坐标,若不存在,请说明理由.1.如图所示是反比例函数xky1=和xky2=(k1<k2)在第一象限的图像,直线AB∥x轴,并分别交两条曲线于A,B两点,若2=AOBS△,则k2-k1的值是()A.1B.2C.4D.8课堂训练2.如图,P(x ,y)是反比例函数xy 3的图象在第一象限分支上的一个动点,PA ⊥x 轴于点A , PB ⊥y 轴于点B , 随着自变量x 的增大,矩形OAPB 的面积( ) A .不变 B.增大 C.减小 D.无法确定3.如图,已知四边形ABCD 是平行四边形,BC=2AB ,A 、B 两点的坐标分别是(-1,0),(0,2),C 、D 两点在反比例函数y=xk(k <0)的图象上,则k=_____.4.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,反比例函数y =xk(x >0)在第一象限内的图象经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为1,则k 的值为_____.5.如图,在△OAB 中,C 是AB 的中点,反比例函数y=xk(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为_____.6.如图,在△ABC中,∠ABC=90°,BC边在x轴正半轴上,中线BD的反向延长线交于y轴负半轴于点E.双曲线xk y=一条分支经过点A,若S△BEC=4,则k=_______.1.如图所示,直线l和双曲线y=xk(k>0)交于A,B两点,P是线段AB上的点(不与A、B 重合).过点A,B,P分别向x轴作垂线,垂足分别为C,D,E,连接OA,OB,OP,设△AOC的面积为S1,△BOD的面积为S2,△POE的面积为S3,则有()A.S1<S2<S3B.S1>S2>S3C.S1=S2<S3D.S1=S2>S32.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数xy4=的图象交于A、B两点,则四边形MAOB的面积为______.3.某反比例函数xky=的图像上有三点A(1,4),B(2,m),C(4,n),则△ABC的面积为_____.课后作业4.(1)如左下图,在Rt △OAC 中,O 为坐标原点,直角顶点C 在x 轴的正半轴上,反比例函数y=xk(k ≠0)在第一象限的图象经过OA 的中点B ,交AC 于点D ,连接OD ,若△OAD 的面积为1,则k 的值为_______.(2)如右上图,在Rt △AOB 中,两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,将△AOB 绕点B 逆时针旋转90°后得到△A ′O ′B .若反比例函数y =xk的图象恰好经过斜边A ′B 的中点C ,S △ABO=4,tan ∠BAO=2,则k 的值为______.5.如图,A 、B 两点分别在反比例函数x y 1-=和xky =的图像上,连接OA 、OB ,若OA ⊥OB ,OB=2OA ,则k 的值为( ) A.-2 B.2 C.-4 D.46.如图,A ,B 两点在反比例函数y=x k 1的图象上,C ,D 两点在反比例函数y=xk2的图象上,AC ⊥y 轴于点E ,BD ⊥y 轴于点F ,AC=2,BD=1,EF=3,则k 1﹣k 2的值是________.7.如图,在□OADB 中,对角线AB 、OD 相交于点C ,反比例函数y=kx (k >0)在第一象限的图象经过A 、C 两点,若平行四边形OADB 面积为12,则k 的值为______.8.如图所示,双曲线y=x2(x <0)经过四边形OABC 的顶点A ,C ,∠ABC=90°,OC 平分OA 与x 负半轴的夹角,AB ∥x 轴,将△ABC 沿AC 翻折得到△AB 'C ,B '点落在OA 上,则四边形OABC 的面积是 .9.如图矩形AOCB 的两边OC ,OA 分别位于x 轴,y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图像上,那么该函数的解析式是_____.10.在平面直角坐标系中,点A (﹣3,4)关于y 轴的对称点为点B ,连接AB ,反比例函数y=(x >0)的图象经过点B ,过点B 作BC ⊥x 轴于点C ,点P 是该反比例函数图象上任意一点,过点P 作PD ⊥x 轴于点D ,点Q 是线段AB 上任意一点,连接OQ 、CQ . (1)求k 的值;(2)判断△QOC 与△POD 的面积是否相等,并说明理由.。

初中数学北师大版九年级上册3 反比例函数的应用

初中数学北师大版九年级上册3 反比例函数的应用

解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小于 3.6Ω.
2.(见课本)
(1)分别写出这两个函数的表达式;
(2)你能求出点B的坐标吗?你是怎样求的?与同伴交流?
解:(1)把A点坐标 ( 3,2 3) 分别代入y=k1x,和y=—kx2
解所得以k所1=求2.的k2函=6数表达式为:y=2x,和y=—6x y 2x
2
2.
SAOB SONB SONA 4 2 6.
通过本节课的学习你有什么收获和体会? 你还有什么困惑?
课本习题6.4 1,2
为什么?
解: p
600
(s
0)
P是S的反比例函数.
s
(2)当木板面积为0.2m2时,压强是多少?
解:当S=0.2m2时,P=—60—0 =3000(Pa)
0.2
探究:
某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地. 为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木 板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们 这样做的道理吗?当人和木板对湿地的压力一定时,随着木板 面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?
解:当Q=12(m3)时,t=48/12=4(h).所以最少需4h可 将满池水全部排空.
超越自我:
已知如图,反比例函数 y 8 与一次函数 y x 2的图像 x
交于A, B两点.求(1) A, B两点的坐标 ;(2)AOB的面积.

:
(1)
y
8 x
,
y x 2.
解得xy
4,2;或xy
(2)当木板面积为0.2m2时,压强是多少?
(3)如果要求压强不超过6000Pa,木板面积至少要多大?

数学北师大版九年级上册6.3反比例函数的应用

数学北师大版九年级上册6.3反比例函数的应用
通过对学生八年级学习函数的了解,学生在学习过程中可能出现的问题是,在确定反比例函数的解析式、解答一次函数与反比例函数相结合的有关问题以及应用反比例函数的相关知识解决实际问题中,不能熟练地用待定系数法确定反比例函数的解析式,不会在实际问题中确定反比例函数的解析式,特别是应用反比例函数的性质来解决实际问题,解决问题的关键在于加强相关题型的训练,并在训练中总结归纳解题的经验与心得。
通过课堂小结,让学生能将应用反比例函数的图象及其性质解决实际问题的知识加以系统化,并对反比例函数的 图象及其性质进行巩固和强化。
七、教学评价设计
本节课采用抢答的方式给小组得分,下课后统计各小组得分,并评出本节课优胜小组和最佳组员。
八、板书设计
如板书中含有特殊符号、图片等内容,为方便展示,可将板书以附件或图片形式上传。
将满池水排空所需的时间t(h)将如何变化?
(3)写出t与Q之间的关系;
(4)如果准备在5h内将满池量为每时 12m3,那么最少多长时间可将满池水全部排空?
学生自主探究独立完成。
通过例题与练习的训练,让学生能熟练地应用反比例函数的图象及其性质解决相关问题。
(3)本节课要学习的内容之解答一次函数与反比例函数相结合的有关问题,其核心是一次函数与反比例函数相关知识的综合应用,关键是两种函数相结合的相关问题的解决,学生在之前已经学习了应用一次函数的知识解决相关问题,由于它与函数综合应用有必然的联系,所以在函数学习中有奠定基础的地位,并有承前启后的作用,是反比例函数学习的核心内容.
5、比较几个点的纵坐标的大小;
6、应用图象求不等式或不等式组的解集。
(五)作业
教材P159“习题6.4”1,2,3
在小结时,通过学生问答以下来问题完成
(1)反比例函数知识的应用主要有哪些方面?

北师大版数学九年级上册 反比例函数的应用

北师大版数学九年级上册    反比例函数的应用
的交点 ).
做一做
1. 蓄电池的电压为定值,使用此电源时,用电器的电流 I(A)与
电阻R(Ω)之间的函数关系如图1所示
(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?
图1
解:(1)因为电流I与电压U之间的关系为IR=U(U 为定值),
把图象上的点A的坐标(9,4)代入,得U=36.
36
所以蓄电池的电压U=36 V. 这一函数的表达式为: I=
将减少
48
(3)写出 t 与 Q 之间的函数关系式. t= Q
9.6 m3
(4)如果准备在 5 h 内将满池水排空,那么排水速度至少为多少?
(5)已知排水管的最大排水速度为12 m3/h,那么最少多长时间可将
满池水全部排空? 4 h
如果人和木板对湿地地面的压力合计600 N,那么
(4)在直角坐标系中,画出相应的函数图象.
(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.
600
解:(1) p=
( S >0) ,p 是 S 的反比例函数.
S
(2)当 S=0.2
m2 时,p=
600
=3 000(Pa).
0.2
600
(3)当p≤6 000时,S ≥
.
R
(2)如果以此蓄电池为电源的用电器电流不得超过10 A,
那么用电器的可变电阻应控制在什么范围内?
解:(2)当I ≤10 A时,解得R ≥3.6(Ω).
所以可变电阻应不小于3.6 Ω.
2. 如图2,正比例函数
2
y=k1x 的图象与反比例函数y=

的图象相交于A,B
两点,其中点A的坐标为 ( 3,2 3).
y
(1)分别写出这两个函数的表达式;

北师大版初中数学九年级上册6.3 反比例函数的应用

北师大版初中数学九年级上册6.3  反比例函数的应用

北师大初中数学
九年级
重点知识精选
掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!
.下列各问题中,两个变量之间的关系不是反比例函数的是
:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v()之间的关系。

:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x()的关系。

:一个玻璃容器的体积为30L时,所盛液体的质量
ρ
与所盛液体的密度之间的关系。

:压力为600N时,压强p与受力面积S之间的关

>2=
轴、y轴分别作垂
果能够,请你求出来,如果不能,请说明理由。

.你能够求出一次函数的函数关系式吗?如果能,请你求出来,如果不能,请你说明理
、这个函数图象所反映的两个变量之间是怎样的函数关系?
、请你根据所给出的图象,举出一个合乎情理且符合图象所给情形的实际例子。

、写出你所举的例子中两个变量的函数关系式,并指出自变量的取值范围。

、这两个变量之间可能是怎样的函数关系?你是怎样作出判断的?请你简要说明理由。

二、1.
的图象在第一象限。

选择
选择
三、解答题
9.6h将水排完。


平方单位。

,也就不能确定一次函数的关系式。

实际上一次函数与反比例函数的交点以及坐标原点所构成的三角形的面积应该是一个定值,从这点也可以看出一次函数的解析
1.
3.
三、综合创新应用题
、由一个分支可知:两个变量成反比例函数关系
相信自己,就能走向成功的第一步。

北师版九年级数学上册反比例函数的应用

北师版九年级数学上册反比例函数的应用

反比例函数的应用一.说教材《反比例函数的应用》是北师大版9年级上册第五章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。

这一节的内容符合新课程理念,课程要面向生活世界和社会实践。

反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。

通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。

在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。

二.说目标“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。

由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:1、知识目标使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。

2、能力目标①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。

②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。

3、情感目标①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。

②使学生树立事物是普遍联系的辩证唯物观。

③引例中让学生具有一方有难八方支援的献爱心精神。

三.说教学重难点我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。

2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6.3反比例函数应用(1)
一、课前检测: 1、己知函数2
2)12(--=m x
m y 的图像是双曲线,且在每一个象限内,y 随x 的增大而增大,则
m=( )
A 、±1
B 、小于2
1的实数 C 、-1 D 、1
2、如图是反比例函数
x
k y 3-=
的图像,则( ) A 、
0≠k B 、3≠k C 、3<k D 、3>k
二、主要练习: 【知识点】:利用反比例函数图像求几何图形的面积
过双曲线任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是一个定值。

1
、如图,在函数
的图象上有三个点A 、B 、C ,过这三个点分别向x 轴、y 轴作垂线,过每一点
所作的两条垂线段与x
轴、y 轴围成的矩形的面积分别为、

,则( ). A .
B

C .
D .
2、如图,A 、B 是函数的图象上关于原点O 对称的任意两点,AC//y 轴,BC//x 轴,△ABC 的
面积S ,则( ).
A .S=1
B .1<S <2
C .S=2
D .S >2 【课堂练习】:
1、点A 是y 轴正半轴上的一个定点,点B 是反比例函数y = 2
x
(x >0)图象上的一个动点,当点B 的
纵坐标逐渐减小时,△OAB 的面积将( )
A .逐渐增大
B .逐渐减小
C .不变
D .先增大后减小
2、如图,正比例函数y=kx (k >0)和反比例函数的图象相交于A 、C 两点,过A 作x 轴垂线交x 轴于B ,连接BC ,若△ABC 面积为S ,则S=_________. 【知识点】:反比例函数在生活中的应用 【例题】:某蓄水池的排水管每小时排水8m 3,6小时可将满池水全部排空. (1)蓄水池的容积是多少?
O
Y
X
(2)如果增加排水管,使每小时的排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化? (3)写出t 与Q 的关系式.
(4)如果准备在5小时内将满池水排空,那么每小时的排水量至少为多少? (5)已知排水管的最大排水量为每小时12m 3,那么最少需多长时间可将满池水全部排空?
【课堂练习】:
1、一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A )与电阻R (Ω)之间的函数关系如图所示,如果以此蓄电池为电源的用电器限制电流不得超过10A ,此用电器的可变电阻应( ) A .不小于4.8Ω
B .不大于4.8Ω
C .不小于14Ω
D .不大于14Ω
2、物理学知识告诉我们,一个物体所受到的压强P 与所受压力F 及受力面积S 之间的计算公式为S
F
P
. 当一个物体所受压力为定值时,那么该物体所受压强P 与受力面积S 之间的关系用图象表示大致为( )
2、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (千帕)是气体体积V (立方米)的反比例函数,其图像如图所示(千帕是一种压强单位) (1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
6 O
R /
I /A
8
第9题图
O
P S
S
O
P O
P
S
O
P
A B C D
S
【知识点】:反比例函数与一次函数的交点 1、如果一次函数
()的图像与反比例函数x
m
n y m n mx y -=
≠+=30相交于点(221,),那么该直线与双曲线的另一个交点为( ) 2、关于x 的一次函数y=-2x+m 和反比例函数y=
1
n x
+的图象都经过点A (-2,1). 求:(1)一次函数和反比例函数的解析式;(2)两函数图象的另一个交点B 的坐标;
【知识点】:反比例函数与一次函数的综合应用 1、如图7,反比例函数
1
(0)m
x x
y
=
>的图像与一次函数2
x b y
=-+的图象交于点
A 、B,其中
A(1,2). (1)求m ,b 的值; (2)求点B 的坐标,并写出2
1
y
y
>
时,x 的取值范围.
【课堂练习】: 1、反比例函数y 1=
k
x
与一次函数y 2=-x +b 的图象交于点A (2,3)和点B (m ,2).由图象可知,对于同一个x ,若y 1>y 2,则x 的取值范围是
2、如图,已知一次函数
1y x m =+(m
为常数)的图象与反比例函数
2k
y x
=
(k 为常数, 0k ≠)的图象相交于点 A (1,3). (1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值12y y ≥的自变量x 的取值范围。

3、如图所示,一次函数y =ax +b 的图象与反比例函数y =k x
的图象交于A 、B 两点,与x 轴交于点C .已知点A 的坐标为(-2,1),点B 的坐标为(12
,m ).
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.
O C
A
B
y
x B 1
-1- 1 2 3
3 1
2 A (1,3)
6.3反比例函数应用(2)
1、如图,已知(4)A n -,,(24)B -,是一次函数y kx b =+的图象和反比例函数m
y x
=
的图象
的两个交点.
(1)求反比例函数和一次函数的解析式; (2)求直线
AB 与x 轴的交点C 的坐标及△AOB 的面积;
(3)求方程0=-
+x
m
b kx 的解(请直接写出答案)
; (4)求不等式0<-+x
m
b kx 的解集(请直接写出答案).
2、如图,一次函数的图象与反比例数的图象交于A 、B 两点:A (,1),B
(1,n ).
① 求反比例函数和一次函数的解析式;
② 根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.
3、如图所示,一次函数y =ax +b 的图象与反比例函数y =k x
的图象交于A 、B 两点,与x 轴交于点C .已知点A 的坐标为(-2,1),点B 的坐标为(12
,m ).
(1)求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.
O C
A
B
4.某厂现有800吨煤,这些煤能烧的天数y 与平均每天烧的吨数x 之间的函数关系是( ) A .
x y 300=
(x >0) B .x
y 300
=(x ≥0) C .y =300x (x ≥0) D .y =300x (x >0) 5.已知甲、乙两地相s (千米),汽车从甲地匀速行驶到达乙地,如果汽车每小时耗油量为a (升),那么从甲地到乙地汽车的总耗油量y (升)与汽车的行驶速度v (千米/时)的函数图象大致是( )
6.反比例函数x
k y =)0(<k 的图象与经过原点的直线l 相交于A 、B 两点,已知A 点坐标为)1,2(-,
那么B 点的坐标为 .
B
O
x
y 图17
1 A
1 l
7.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)是体积V(单位:m3)的反比例函数,它的图象如图3所示,当
3
V=时,气体的密度是()
10m
A.5kg/m3B.2kg/m3C.100kg/m3D,1kg/m3
8、已知图中的曲线函数(m为常数)图象的一支.
(1)求常数m的取值范围;
(2)若该函数的图象与正比例函数y=2x图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.。

相关文档
最新文档