高等数学-微积分下-分节习题册答案-华南理工大学 (43)

合集下载

微积分练习题及答案

微积分练习题及答案

微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。

在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。

下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。

一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。

答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。

答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。

答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。

答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。

答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。

答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。

答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。

2. 求解微分方程dy/dx = e^x。

答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。

3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。

答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。

微积分课后题答案习题详解

微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(33)

(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(33)

1、试将三重积分(),,f x y z dv Ω⎰⎰⎰化为三次积分,其中积分区域Ω分别为:1) 由双曲抛物面xy z =及平面10,0x y z +-==所围成的区域。

(),,f x y z dv Ω=⎰⎰⎰()110,,xxydx dy f x y z dz-⎰⎰⎰。

2) 由曲面2222,2z x y z x =+=-所围成的区域(),,f x y z dv Ω=⎰⎰⎰()2221212,,x x y dx f x y z dz --+⎰⎰。

2、计算下列三重积分 1)23xy z dv Ω⎰⎰⎰,其中Ω是由曲面xy z =与平面,1,0x y x z ===所围成的闭区域。

解:原式111235612000000111428364x xy xdx dy xy z dz dx x y dy x dx ====⎰⎰⎰⎰⎰⎰ 2)xzdxdydz Ω⎰⎰⎰,其中Ω是由平面,1,0z y y z ===及抛物柱面2y x =所围成的闭区域。

解:原式()221111127101111026yx x dx dy xzdz dx xy dy x x dx ---===-=⎰⎰⎰⎰⎰⎰ 3、利用柱面坐标计算()22x y dv Ω+⎰⎰⎰,其中Ω是由曲面222x y z +=及平面2z =所围成的区域。

解:原式22546222233000201622222123r r r r d dr r dz r dr πθπππ⎛⎫⎡⎤==-=-= ⎪⎢⎥⎝⎭⎣⎦⎰⎰⎰⎰4、利用球面坐标计算()222xy z dv Ω++⎰⎰⎰,其中Ω是由球面2221x y z ++=所围成的闭区域。

解:原式214024sin sin 55d d d d πππππθϕρϕρϕϕ===⎰⎰⎰⎰5、选用适当坐标计算Ω,其中Ω是由球面222x y z z ++=所围成区域。

解:原式522cos 3422001cos sin 2cos sin 42510d d d d ππππϕπϕπθϕρϕρπϕϕϕ⎡⎤===-=⎢⎥⎣⎦⎰⎰⎰⎰。

(完整word版)《微积分》各章习题及详细答案

(完整word版)《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x xf cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim 22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sin lim 0=→x x k x 成立的k 为 。

5、=-∞→x e x x arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

微积分课后题答案习题详解

微积分课后题答案习题详解

微积分课后题答案习题详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!n n =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在.(1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

微积分课后题答案习题详解

微积分课后题答案习题详解

第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。

微积分综合练习题及参考答案精选全文完整版

微积分综合练习题及参考答案精选全文完整版

可编辑修改精选全文完整版综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f. 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( )A .)1(+x xB .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,0,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,0,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:x xx x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ).A .x x f d )2(cos 2'B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。

华理高数下答案

华理高数下答案

第9章(之1) (总第44次)教学内容:§9.1微分方程基本概念*1. 微分方程7359)(2xy y y y =''''-''的阶数是 ( ) (A )3; (B )4; (C )6; (D )7. 答案(A )解 微分方程的阶数是未知函数导数的最高阶的阶数.*2. 下列函数中的C 、α、λ及k 都是任意常数,这些函数中是微分方程04=+''y y 的通解的函数是 ( ) (A )x C x C y 2sin )2912(2cos 3-+=; (B ))2sin 1(2cos x x C y λ+=; (C )x C k x kC y 2sin 12cos 22++=; (D ))2cos(α+=x C y . 答案 (D )解 二阶微分方程的通解中应该有两个独立的任意常数. (A )中的函数只有一个任意常数C ;(B )中的函数虽然有两个独立的任意常数,但经验算它不是方程的解;(C )中的函数从表面上看来也有两个任意常数C 及k ,但当令kC C =时,函数就变成了x C x C y 2sin 12cos 2++=,实质上只有一个任意常数;(D )中的函数确实有两个独立的任意常数,而且经验算它也确实是方程的解.*3.在曲线族 xx e c e c y -+=21中,求出与直线x y =相切于坐标原点的曲线.解 根据题意条件可归结出条件1)0(,0)0(='=y y , 由xxe c e c y -+=21, xxe c e c y --='21,可得1,02121=-=+c c c c ,故21,2121-==c c ,这样就得到所求曲线为)(21x x e e y --=,即x y sinh =.*4.证明:函数y e x x =-2333212sin 是初值问题⎪⎪⎩⎪⎪⎨⎧===++==1d d ,00d d d d 0022x x x y y y x yx y 的解.证明 '=-+--y e x e x x x 3332321212s i n c o s ,''=----y e x e x x x 3332321212sin cos ,代入方程得''+'+=y y y 0, 此外,,1)0(0)0(='=y y故y e x x =-2333212sin 是初始值问题的解.*5.验证y e e t Ce xt xx=+⎰2d (其中C 为任意常数)是方程'-=+y ye x x 2的通解.证明 '=+⋅+⎰y ee t e e Ce xt xx x x22d =++ye x x 2, 即 2x x e y y +=-',说明函数确实给定方程的解.另一方面函数y ee t Ce xt x x=+⎰2d 含有一任意常数C ,所以它是方程的通解.**6.求以下列函数为通解的微分方程: (1)31+=Cx y ;解 将等式31+=Cx y 改写为13+=Cx y ,再在其两边同时对x 求导,得C y y ='23,代入上式,即可得到所求之微分方程为1332-='y y xy . (2)xC x C y 21+=. 解 因为给定通解的函数式中有两个独立的任意常数,所以所求方程一定是二阶方程,在方程等式两边同时对x 求两次导数,得221x C C y -=',322xC y =''. 从以上三个式子中消去任意常数1C 和2C ,即可得到所求之微分方程为02=-'+''y y x y x .**7.建立共焦抛物线族)(42C x C y +=(其中C 为任意常数)所满足的微分方程[这里的共焦抛物线族是以x 轴为对称轴,坐标原点为焦点的抛物线].解 在方程)(42C x C y +=两边对x 求导有C y y 42=',从这两式中消去常数所求方程为)2(y y x y y '+'=.**8.求微分方程,使它的积分曲线族中的每一条曲线)(x y y =上任一点处的法线都经过坐标原点.解 任取)(x y y =上的点 ),(y x ,曲线在该点处的切线斜率为 y '=dxdy . 所以过点),(y x 的法线斜率为y '-1, 法线方程为y Y -=y '-1)(x X -, 因为法线过原点,所以=-y 0y '-1)0(x -从而可得所求微分方程为0='+y y x .第9章(之2)(总第45次)教学内容:§9.2 .1可分离变量的方程; §9.2 .2一阶线性方程**1.求下列微分方程的通解:(1)21)1(x y x y +-=';解: 分离变量21d 1d x x x y y +=-,两边积分⎰⎰+=-21d 1d x xx y y , 得C x y ln )1ln(21)1ln(2-+=--,即211xC y +-=.(2)222y x e yx y -='; 解:分离变量x xe y ye x y d d 222=,两边积分就得到了通解)d (21222x e xe e x x y ⎰-=c e xe x x +-=)21(2122.(3)042)12(=-+'+y y e y e x .解: 12d 42d +-=-x xe y e yy , C x e y ln 21)12ln(21)2ln(21++-=-, 即 ()()e x C y-+=221.**2.试用两种不同的解法求微分方程xy y x y +--='1的通解.解法一 (可分离变量方程的分离变量法)这是一个一阶可分离变量方程,同时也是一个一阶线性非齐次方程,这时一般作为可分离变量方程求解较为容易. 分离变量,)1)(1(y x y --=',x x yyd )1(1d -=-,并积分 x x y yd )1(1d -=-⎰⎰得c x x y +-=--221)1ln(,所求通解为 x x ce y -+=2211.解法二 (线性方程的常数变易法)将原方程改写为x y x y -=-+'1)1(,这是一个一阶线性非齐次方程.对应的齐次方程为0)1(=-+'y x y ,其通解为○1x x e C y -=221.代入原非齐次方程得x e C x x -='-1221,解得○2C e C x x +=-221,○2代入○1即可得原方程的通解xx Cey -+=2211.*3.求解下列初值问题:(1)21x yy -=',6)21(πe y -=.解: y '=21xy -,∴21d d xxy y -=(0≠y ), 21d d xx yy-=⎰⎰,∴C x y +=arcsin ln , ∴ x Ce y arcsin =,π6)21(e y -=,∴21arcsin 6Cee =-π,∴1-=C , ∴ x e y arcsin -=.(2)22x e xy y -=+',1)0(=y ;解: 22x e xy y -=+', x x p 2)(=∴,2)(x e x q -=,=∴)(x y ⎰-xx ed 2⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 222x e -=⎥⎦⎤⎢⎣⎡+⎰⎰-C dx e e x x x d 2222x x Ce xe --+=, 1)0(=y , 101=⇒+=∴c c , 2)1(x e x y -+=∴.(3)x e x y y cos cot =+',1)2(=πy ;解: x e x y y cos cot =+', ∴x x P c o t )(=,x e x Q cos )(=.∴ ⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x C y xx x x x d e e e d c o t c o s d c o t )d e e (e sin ln cos sin ln ⎰+=-x C x x x)d sin e(csc cos ⎰+=x x C x xx C x csc )e (cos -=, 由1)2(=πy , 可确定 2=C ,所以x y x csc )e 2(cos -=.(4)0d )12(d 2=+-+x x xy y x ,01==x y .解: 方程变形为 2112xx y x y -=+',是一阶线性非齐次方程,其通解为⎥⎦⎤⎢⎣⎡⎰-+⎰=⎰-dx ex x c e y dx x dx x 222)11( ⎥⎦⎤⎢⎣⎡-+=⎰dx x x x c x 222)11(1⎥⎦⎤⎢⎣⎡-+=x x c x 22211x xc 1212-+= 由 0)1(=y , 得 21=c , 所以特解为:x xy 121212-+=.**4.求微分方程 0d )ln (d ln =-+y y x x y y 的通解(提示将x 看作是y 的函数). 解:将x 看作是y 的函数,原方程可化为yx y y dy dx 1ln 1=+,这是一阶线性方程,将其中yy Q y y y P 1)( ,ln 1)(==代入一阶线性方程求解公式,得通解 1e 1)ln(ln )ln(ln ln 1ln 1⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡⎰+⎰=⎰⎰--dy e y c dy ey c e x y y dy y y dy y y y y c dy y y c y ln 21ln ln ln 1+=⎥⎦⎤⎢⎣⎡+=⎰.**5.求满足关系式)(d )(22x y x u u uy x +=⎰的可导函数)(x y .解:这是一个积分方程,在方程等式两边同对x 求导,可得微分方程xy x x yx()d d =+2,即 d d y x xy x -=-2,分离变量得d d yy x x -=2,积分得y Ce x=+222, 在原方程两边以2=x 代入,可得初试条件22-==x y.据此可得14--=e C ,所以原方程的解为 24122+-=-x e y .**6.设降落伞自塔顶自由下落,已知阻力与速度成正比(比例系数为k ),求降落伞的下落速度与时间的函数关系. 解:根据牛顿运动第二定理有kv mg tvm -=d d .这是一个可分离变量方程,分离变量并积分得--=+1k mg kv tmC ln(). 由初始条件0)0(=v , 得)ln(1mg k C -=,即得 v mg k e kmt =-⎛⎝ ⎫⎭⎪-1.**7.求一曲线,已知曲线过点)1,0(,且其上任一点),(y x 的法线在x 轴上的截距为kx . 解:曲线在点(,)x y 处的法线斜率为y '-1,所以法线方程为Y y y X x -=-'-1().只要令0=Y ,就可以得到法线在x 轴上的截距为 y y x X '+= .据题意可得微分方程x yy kx +'=,即x k y y )1(-='.这是一个可分离变量方程,分离变量并积分得所求曲线C x k y =-+22)1(,由于曲线过点)1,0(,所以1=C ,所以所求曲线方程为 y k x 2211+-=().***8.求与抛物线族2Cx y =(C 是常数)中任一抛物线都正交的曲线(族)的方程.解:在给定曲线2cx y =上任意一点),(y x 处切线斜率为cx y k 20='=,从上面两式中消去c 得x y y k 20='=,这样就得到了给定曲线族所满足的微分方程xy y 2='. 设所求曲线方程为 )(x y y =,在同一点),(y x 处切线斜率为y k '=,则根据正交要求有10-=k k ,这样就得到了所求曲线族应该满足的微分方程yx y 2-='. 这是一个可分离变量方程,分离变量xdx ydy -=2,积分得所求曲线族c x y +-=2221,即椭圆族c x y =+2221. ***9.作适当变换,求微分方程 1224+-='-x e y y的通解. 解 原方程可化为4122=++'y ye x y e ,在换元y e z =下方程可化为4122=++'x zz ,这是一个一阶线性方程,其通解为⎭⎬⎫⎩⎨⎧+=⎰+⎰+-⎰x eC ez x xx xd 412d 212d 2}44{1212x x C x +++=.***10.作适当变换,求微分方程d d tan y x y x y y x =+⎛⎝ ⎫⎭⎪2122的通解. 解:令ux y =2,代入方程整理得 x x u u d tan d =,积分得 Cx u =sin ,以 xy u 2= 代入上式,即得原方程的通解: Cx xy =2sin .第9章 (之3) (总第46次)教学内容:§9.2 .3齐次型方程;9.2.4伯努利方程.**1.求下列微分方程的通解:(1) )ln ln 1(d d x y xyx y -+=; 解: )ln ln 1(d d x y x y x y -+=, ∴ dx dy =x y (1+xy ln ),这是一个一阶齐次型方程.令 xyu =,则 ux y =,即u x u y '+=',于是原方程可化为u u u x ln ='.这是一个可分离变量方程.分离变量x dx u u du =ln ,并积分⎰⎰=xdxu u du ln ,得c x u ln ln ln ln +=,即cx e u =. 以 xy u =代入,得所求的通解为cxxe y =.(2)()arctan xy y yxx '-=. 解:方程可化为xy xy y arctan1+=',这是一个一阶齐次型方程.令 xy u =,则 ux y =,即u x u y '+=',于是原方程可化为u x u x arctan 1d d =,这是一个可分离变量方程.分离变量后积分得 x u Ce u u 12+=arctan .以 xy u =代入上式得原方程的通解:x y Ce yxyx 22+=arctan . **2.求解下列初值问题:(1)0d )2(d 22=+-y y x x xy 满足初始条件 1)2(=y 的特解. 解: 0d )2(d 22=+-y y x x xy ,dy dx =x y y x +2, 令 yxu = , 则 u u dy du yu 12+=+, u u du 1+=y dy , ∴⎰+uu du 1=⎰y dy,c y u ln ln )1ln(212+=+∴, cy u =+∴12, 即 2221y c u =+ , 代回即得22yx +1=22y c , 1)2(=y , ∴52=c , 因此 22y x +=54y .(2)⎩⎨⎧==-++=.0,0d )(d )(0x y y y x x y x解:原方程可表为11d d -+=-+=xy x yx y y x x y ,令 x y u =,u x u y '+=', 代入方程,有 11-+='+u uu x u ,即 121d d 2--+=u u u x u x , 分离变量x x u u u u d 1d 2112=-+-,积分得 C x u u ln ln )21ln(212-=-+- ⇒通解 C y xy x =-+222,令 0,0==y x ,得 0=C .所以初值问题的解为 0222=-+y xy x .***3.试证明:当1221b a b a ≠时,总能找到适当的常数h ,k ,使一阶微分方程)(222111c y b x a c y b x a f y ++++='在变换k y s -=,h x t -=之下,可化为一阶齐次型方程)(d d 2211sb t a s b t a f t s++=. 并求方程 0d )32(d )12(=++++y y x x y x 的解.证明:令⎩⎨⎧+=+++=++s b t a c y b x a sb t ac y b x a 2222211111 1221b a b a ≠ ,∴可解得:⎪⎪⎩⎪⎪⎨⎧---=---=1221122112212112b a b a c b c b x t b a b a c a c a y s 因此可取:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112212112b a b a c b c b h b a b a c a c a k解:0)32()12(=++++dy y x dx y x ,令⎩⎨⎧-=+=32x t y s ⎩⎨⎧==⇒x t ys d d d d[][]0)2(3)3(21)2(23=-++++-++∴ds s t dt s t ,()0)32(2=+++ds s t dt s t ,ts t sdt ds dtdst s t s 32210)32(21++-=⇒=+++⇒, 令dt du t u dt ds t s u +=⇒=, 23)1)(13(3221+++-=⇒++-=+∴u u u dt du t u u dt du t u ,⎰⎰-=⎥⎦⎤⎢⎣⎡+++∴-=+++⇒t dtdu u u t dt du u u u )13(23)1(21,)1)(13()23(, c t u u ln ln )13)(1ln(21+-=++即,c tst s t c t u u =++⇒=⋅++∴)13)(1()13)(1(,c x xy x y c x y x y x 243)3631)(321()3(22=+++⇒=-++-++-∴.**4.求下列微分方程的通解(1)0ln 2=+-'x y y y x ;解: 0ln '2=+-x y y xy xxy x y y ln 1'12-=-∴-- 令x x t x dx dt y t ln 11=+⇒=-, ,ln )Q( ,1)(xx x x x P ==∴ln 1 d ln )(d 1d 1⎥⎦⎤⎢⎣⎡⋅+=⎥⎦⎤⎢⎣⎡⎰+⎰=∴⎰⎰-xdx x x C x x e x x C e x t x x x x1ln C )ln (C 11-+=-+=---x x x x x x x x , 111ln --+-=Cx x y .(2)0d d )2(=+-y x x xy y .解: 0d d )2(=+-y x x xy y , x y d d +y x 1=212y x, y y '-21+211y x =x 2, 21y u =,x u d d +x 21x u 1=, ∴x x P 21)(=,xx Q 1)(.∴⎥⎦⎤⎢⎣⎡⎰+⎰=⎰-x e x C e x u x x x x d 1)(d 21d 2121-=x ⎥⎦⎤⎢⎣⎡+⎰x x x C d 121[]x C x +=-21, ∴ []x C xy +=-2121, ∴xC x y +=.(3)'=-y y xy x 3222()解一:令u y =2,原方程化为: d d u x u x u x =⎛⎝ ⎫⎭⎪⎛⎝ ⎫⎭⎪-21,解此方程得 u Ce u x =, 以u y =2代入上式,原方程通解为 y Ce y x22=.解二:原方程写成d d x y y x yx -=-2232, 令xz -=1,则方程化为:322d d yz y y z =+, 则通解 z eC y ey yy y y=+⎡⎣⎢⎢⎤⎦⎥⎥-⎰⎰⎰2322d d d ]ln 2[12y C y+= , 故原方程通解:1122x yC y =+[ln ]. **5.求下列伯努力方程满足初始条件的特解:yxy y 2-=',1)0(=y . 解:x y yy', xy y y 22'21-=-∴-=- ,令 x t dxdty t 42 2-=-⇒=, x x Q x P 4)( ,2)(-=-=∴, []12010211)0(1212 )]2[ d 4 d )4()(2022222222d 2d 2+=∴=⇒++⨯=∴=++=∴++=++=-=⎥⎦⎤⎢⎣⎡⎰-+⎰=∴----⎰⎰x y C Ce y Ce x y x Ce e xe C e xxe C e x e x C e x t xx x x x x x x x,****6.作适当的变换求方程12222212+⋅'=++x y y x y e x sin sin 的通解.解:原方程化为:12222212+=++x yxx y e x d sin d sin ,令z y =sin 2,得d d z x x x ze x x -+=++21122122,故 ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧++=⎰⎰+-+⎰+x exeC ez xx x x x x x d 1d 12212d 12222)1ln(2121222x x e Ce x x +++=++原方程的通解为 sin ln()221212221y Ce e x x x x =+++++.***7.已知)(2d )(1)(2202x y x y y x+='+⎰ξξξ,求y x ().解:两边关于x 求导得 212yy y '-=-,解得 y Ce x 21=+,由yx ==00,求得 C =-1,故原方程的解为:y e x 21=-.***8.曲线过点(,)11,其上任一点与原点的距离平方等于该点横坐标与该点的曲线的法线在x 轴上的截距乘积的两倍,求曲线方程. 解:x y x x yy y 22211+=+'=(),(), 212yy xy x '-=- 令y z 2=,解得 z y x C x ==-2()由y ()11=, 得 C =2, 曲线方程为: x y x 222+=.***9.根据托里斥利定律,液体从容器小孔中流出的速度为 gh A v 2α=,其中 g 为重力加速度,h 为液面与底部孔口之间的距离,A 为孔口面积,α为孔口收缩系数,实验确定其取值为 62.0=α.现有一直径为1m ,高为2m 的直立圆柱形容器,其中盛满的水从底部直径为1=d cm 的圆孔流出,要多长时间容器内的水才会完全流尽?解:设在时刻t 时, 容器中液面高度)(t h ,则经过t ∆后液面高度为)(t t h ∆+, 于是有t t gh A t t h t h r ∆=∆+-)(2))()((2απ,即 22)()(rghA t t h t t h πα=∆-∆+-, 令0→∆t , 得⎪⎩⎪⎨⎧==-200)0(2d d 2h gh r At h πα解得200222+=t g rAh πα, 代入0=h , 980=g , 50=r , 4π=A , 62.0=α, 得10304=t (秒).第9章 (之4)(总第47次)教学内容:§9.3可降阶的高阶微分方程**1.解下列问题:(1).微分方程'+''=''y y xy 满足条件'==y y (),()2121的解是 ( ) (A )y x =-()12(B )y x =+-()122142(C )y x =-+121122()(D )y x =--()12542解:(C )(2).微分方程''-'=y yy 203满足条件'=-=y y (),()0101的解是 ( )(A )y x 3313=+(B )x y 331=- (C )y x 3313=-+(D )x y 331=-+ 解:(C )**2.求下列微分方程的通解. (1)0='+''y y x ;解: 0='+''y y x 是一不显含因变量y 的二阶方程, 令 y p '= ⇒ y ''x p d d =∴0=+'p p x , ⇒pp d =x x d -,⇒⎰⎰-=x xp p d d ⇒ 1ln ln ln C x p +-= ⇒xC p 1=, ∴=x y d d x C 1, x x C y d d 1=, ⎰⎰=x xC y d d 1 ,21ln C x C y +=. (2)()1212+''+'=x y xy ; 解:''++'=+y x x y x 211122,'=++y x x C 1121(), y x C x C =+++121212ln()arctan .(3)()02='+''y y y ;解:∵()02='+''y y y , 令 y p '=, 则 yppy d d ='',代入方程有 0d d 2=+⋅⋅p ypp y , 0)d d (=+⋅⇒p ypy p , 因为求通解,所以 p 满足 0d d =+⋅p ypy . 由⎰⎰-=⇒-=y yp p yy p p d d d d , y C p C y p 11ln ln ln '=⇒+-=⇒, ⎰⎰'=⇒'=⇒'=⇒x C y y x C y y yC x y d d d d d d 111212C x C y +=⇒. ∴ 通解:212C x C y +=. (4)()1222+''='y y yy解:令:'=''='y p y y pp (),,得()1222+⋅'=y p p p y , 即d d p p yy y =+212, 得 p C y =+121(),所以 d d yyC x 121+=,通解为:arctan y C x C =+12.第9章 (之5)(总第48次)教学内容:§9 .4 .1二阶线性方程和解的存在性;§9 .4 .2二阶线性方程解的结构**1.若21,y y 是方程)()()(x R y x Q y x P y =+'+''的两个解,试证12y y - 必是其对应齐次方程0)()(=+'+''y x Q y x P y 的解.证明:因为21,y y 是方程)()()(x R y x Q y x P y =+'+''的解. 所以成立下式:)2()()()()1()()()(222111x R y x Q y x P y x R y x Q y x P y =+'+''=+'+''将 (1)、(2) 两式相减,得)3(0))(())(()(212121=-+'-'+''-''y y x Q y y x P y y(2) 式可写为0))(())(()(212121=-+'-+''-y y x Q y y x P y y ,所以 21y y - 是齐次方程 0)()(=+'+''y x Q y x P y 的解.***2.已知23211,1,1x y x y y +=+==是方程22222xy x y x y =+'-''的三个特解,问能否求出该方程得通解?若能则求出通解来.解:按(1)证明可知 21312,x y y x y y =-=- 分别是其对应齐次方程0222=+'-''y xy x y 的解,并且线性无关,所以221x C x C + 为齐次方程的通解. 所以原方程的通解可以表示为:1221++=x C x C y .*3.验证:22,t t e e -是微分方程''-'-=x tx t x 1402的两个线性无关特解,并求此方程的通解.证明:因为()()222241t t t e t e te -'-"0421********=-⨯-+=t t t t e t te t e t e ,()()2222"41t t t e t e te ----'-=-+-⨯--=--241240222222e t e t te t e t t t t (),故22,t t e e -是方程的解,且≠=-2222t t t e ee 常数.于是22,t t e e -是方程线性无关的解(构成基本解组),故方程的通解为2221t t e C e C x -+=,其中21,C C 为任意常数.*4.已知函数 x y e y x ==21, 是方程 0)1(=-'+''-y y x y x 的两解,试求该方程满足初始条件 0)0(,1)0(='=y y 的特解.解:方程的通解为 x c e c y x 21+=,将初始条件代入,有:,,0)0('1)0(21211=+=+===c c c e c y c y x解得21,c c 为: 1,121-==c c ,所以特解为:x e y x -=.**5.设x t 1()是非齐次线性方程''+'+=x t a t x t a t x t f t ()()()()()()()1211的解.x t 2()是方程''+'+=x t a t x t a t x t f t ()()()()()()()1222的解.试证明 x x t x t =+12()()是方程''+'+=+x t a t x t a t x t f t f t ()()()()()()()()12123的解.解:因为)(2),(1t x t x 分别为方程(1)和方程(2)的解,所以)1()()()()()()(112111'≡+'+''t f t x t a t x t a t x''+'+≡'x t a t x t a t x t f t 2122222()()()()()()()()()12'+'得:()()())()()()()()()()()()(2121221121t f t f t x t x t a t x t x t a t x t x +='++'++"+即 x x t x t =+12()() 是方程(3)的解.第9章 (之6)(总第49次)教学内容:§9 .4 .3二阶线性常系数方程的解法**1.解下列问题:(1)方程08=+''y y 的通解为=y _______________.解:x c x c y 22sin 22cos 21+=.(2)方程025'6"=++y y y 的通解为=y _______________. 解:)4sin 4cos (213x c x c e y x +=-.(3)方程0158=+'-''y y y 的通解为=y _______________. 解:x x C C y 5231e e +=.(4)方程031525=+'+''y y y 的通解为=y _______________. 解:)(21515C x C e y x +=-.(3)方程06=+'+''py y y 的通解为)2sin 2cos (e 21x C x C y kx +=,则=p ___,=k _____. 解:11,3-.**2.求解下列初值问题:(1)0)1(,)1(,01684='==+'-''y e y y y y ;解:∵0)4(16822=-=+-λλλ, ∴421=,λ, 通解为:xe x c c y 421)(+=.将初始条件代入,有 4421)()1(e e c c y =+=,04)(4)(4)1('4424214242142=+=++=++=e e c e c c e c e x c c e c y x x得到:4521-==c c ,所以特解为:xex y 4)45(-=.(2)3)2(,1)2(,0294='==+'+''ππy y y y y ;解:02942=++λλ, i i5221042116164±-=±-=-±-=λ,通解为:)5sin 5cos (212x c x c ey x+=-.代入初始条件有: πππe c c ey =⇒=+=-221)0()2(,)5c o s 55s i n 5()5s i n 5c o s (2)2(212212x c x c e x c x c ey x x+-++-='--π,得:πe c -=1. 特解为:)5sin 5cos (2x x e y x +-=-π.(3)10)0(,6)0(,034='==+'+''y y y y y ;解: 0342=++λλ, 0)3)(1(=++λλ, 所以通解为 x x e c e c y 321--+=. 代入初始条件有:6)0(21=+=c c y ,1033)0('21321=--=--=--c c e c e c y x x ,特解为:x x e e y 3814---=.**3.求解初值问题'++==⎧⎨⎪⎩⎪≥⎰y y y x y x x210100d () 解:将原方程对x 求导得''+'+=y y y 201()且有'=-=-y y ()()01201微分方程(1)的通解为:y e C x C x =+-()12,代入初始条件1)0(,1)0(-='=y y ,得1,021==C C , 故所求问题的解为:xe y -=.***4.设函数)(x ϕ二阶连续可微,且满足方程⎰-+=xu u u x x 0d )()(1)(ϕϕ,求函数ϕ()x .解:原方程关于x 求导得⎰⎰=-+='xxu u x x x x u u x 0d )()()(d )()(ϕϕϕϕϕ,0)0(='ϕ,再求导得: )()(x x ϕϕ='', 且由原方程还有:1)0(=ϕ,微分方程的通解为:x x e C e C x -+=21)(ϕ,代入条件0)0(,1)0(='=ϕϕ,得2121==C C , 故所求函数为: x e e x x xch )(21)(=+=-ϕ.***5.长为100cm 的链条从桌面上由静止状态开始无摩擦地沿桌子边缘下滑.设运动开始时,链条已有20cm 垂于桌面下,试求链条全部从桌子边缘滑下需多少时间.解:设链条单位长度的质量为ρ,则链条的质量为ρ100.再设当时刻 t 时,链条的下端距桌面的距离为)(t x ,则根据牛顿第二定律有:gx dt x d ρρ=22100, 即 010022=-x gdtx d . 又据题意知:20)0(=x , 0)0(='x ,所以 )(t x 满足下列初值问题:⎪⎩⎪⎨⎧='==-0)0(20)0(010022x x x gdt x d , 解得方程的通解为:tg tgec ec x 102101-+=.又因为有初始条件: ()()⎩⎨⎧==⇒⎩⎨⎧==1010020021'c c x x所以 tg tgeex 10101010-+=.又当链条全部从桌子边缘滑下时,100=x ,求解t ,得:tg tg e e 10101010100-+=,即: 510=t gch, 510arch gt =.***6.设弹簧的上端固定,下端挂一个质量为2千克的物体,使弹簧伸长2厘米达到平衡,现将物体稍下拉,然后放手使弹簧由静止开始运动,试求由此所产生的振动的周期. 解:取物体的平衡位置为坐标原点,x 轴竖直向下,设t 时刻物体m 位于x t ()处,由牛顿第二定律:22222d d ()xtg g x gx =-+=- , 其中g =980厘米/秒2 其解为:x C g t C g t =+1222cossin , 振动周期为 T g ==≈222490028ππ..第9章 (之7)(总第50次)教学内容:§9.4.3二阶线性常系数方程的解法; §9.4.4高阶线性常系数微分方程 **1.微分方程x x y y sin =+''的一个特解应具有形式 ( )(A )()sin Ax B x +(B )x Ax B x x Cx D x ()sin ()cos +++ (C )x Ax B x x ()(cos sin )++ (D )x Ax B C x D x ()(sin cos )++ 解:(B )**2.设A B C D ,,,是待定常数,则微分方程''+=+y y x x cos 的一个特解应具有形式 ( )(A )Ax B C x ++cos(B )Ax B C x D x +++cos sin(C )Ax B x C x D x +++(cos sin ) (D )Ax B Cx x ++cos 答:(C )**3.求下列非齐次方程的一个解 (1)122+=-'-''x y y y ; 解:∵ 022=--λλ, ∴1,22,1-=λ, 0 不是特征根.设 01b x b y p +=, 代入原方程,得:1222011+=---x b x b b ,有:1,010-=b b ,特解为:x y -=.(2)xe y y y -=+'+''2. 解: ∵ 1- 是二重特征根, ∴ 设 02b e x y xp -=, 0202b e x b xe y xxp ---=',02002022b e x b xe b e x b e y x x x x p----+--='', 代入 xe y y y -=++'2'', 解得:210=b ,特解为:xe x y -=221.**4.求微分方程''-'+=y y y xe x 32满足条件y y ()()000='=的特解. 解:特征方程0232=+-r r 的根为2,121==r r ,相应齐次方程的通解为x x h e C e C y 221+=,设特解为x p e B Ax x y )(+=,代入方程得: 1,21-=-=B A . 故方程的通解为xxx e x x eC e C y ⎪⎪⎭⎫ ⎝⎛+-+=22221,代入条件0)0()0(='=y y ,得1,121=-=C C ,因此所求特解为 x xe x x e y ⎪⎪⎭⎫ ⎝⎛++-=1222.**5. 求下列非齐次方程的通解:)(2x f y y ='+''x x f e x f x x f x cos )()3,)()2,14)()12==+=;解:特征方程:022=+λλ, 特征根:2,021-==λλ,所以方程0'2=+''y y 的通解为 x h e c c y 221-+=.1)对于方程14'2+=+''x y y , 由于0是特征方程的单根,故设其特解为:x b x b y p )(10+=,代入方程有:14242100+=++x b x b b ,解得 21110-==b b , 所以特解为:x x y p 212-=. 所以方程的通解为:x x e c c y y y xp h 212221-++=+=-.2)对于方程xe y y 2'2=+''',由于2不是特征方程的根,故设其特解为:02b e y xp =, 代入方程有:810=b , xp e y 281=, 所以方程的通解为:x xp h e ec c y y y 222181++=+=-.3)对于方程:x y y cos '2=+''',由于i ±不是特征方程的根,故设其特解为: x b x b y p sin cos 10+=, 代入方程有:x b x b y p cos sin '10+-=, x b x b y p sin cos "10--=,x x b x b x b x b cos cos sin 2sin cos 1010=+---, 得:525120=-=b b , x x y p sin 52cos 51+-=,所以方程的通解为:x x e c c y y y xp h sin 52cos 51221+-+=+=-.**6.求微分方程''-'+=y y y e x x 6925sin 的通解.解:特征方程r r 2690-+=的根为r 123,=,相应齐次方程的通解为x h e x C C y 321)(+=设特解为y e A x B x p x=+(cos sin ),代入方程得:A B ==43,故方程的通解为 y C C x e e x x x x =+++()(cos sin )12343***7.已知曲线y y x x =≥()()0过原点,位于x 轴上方,且曲线上任一点),(00y x M =处切线斜率数值上等于此曲线与x 轴,直线x x =0所围成的面积与该点横坐标的和,求此曲线方程.解:由已知y ()00=,且'=+'=⎰y y x x y xd ,()000,将此方程关于x 求导得''=+y y 1其通解为: y C e C exx=+--121 ,代入初始条件y y (),()0000='=,得 C C 1212==, 故所求曲线方程为:y e e x xx =+-=--1211()ch .***8.设一物体质量为m ,以初速v 0从一斜面滑下,若斜面与水平面成θ角,斜面摩擦系数为μμθ(tan )0<<,试求物体滑下的距离与时间的关系.解:设t 时刻物体滑过的距离为S ,由牛顿第二定律m Stmg mg d d sin cos 22=-θμθ 且 S S v (),()0000='=方程的通解为S gt C t C =-++12212(sin cos )θμθ 代入初始条件得C v C 1020==,,故物体滑下的距离与时间的关系为S gt v t =-+1220(sin cos )θμθ***9.设弹簧的上端固定,下端挂一质量为m 的物体,开始时用手托住重物,使弹簧既不伸长也不缩短,然后突然放手使物体开始运动,弹簧的弹性系数为k ,求物体的运动规律.解:取物体未发生运动时的位置为坐标原点,x 轴垂直向下,设t 时刻物体位于x t ()处,由牛顿第二定律: m xtkx mg d d 22+=, 且 0)0(0)0(='=x x ,. 方程的通解为: x C k m t C k m t m kg =++12cos sin , 代入初始条件得C mkg C 120=-=,,故物体的运动规律为x mg k k m t =-⎛⎝ ⎫⎭⎪1cos .***10. 求下列方程的通解: (1)02)4(=''+'''-y y y;解: 02234=+-λλλ,0)12(22=+-λλλ, 0)1(22=-λλ,所以通解为 x e x c c x c c y )(4321+++=.(2)0365)4(=-''+y y y .解:036524=-+λλ, 0)9)(2)(2(2=++-λλλ,所以通解为 x c x c e c e c y x x 3sin 3cos 432221+++=-.****11* 试证明,当以 x t ln =为新的自变量时,变系数线性方程(其中a,b,c 为常数,这是欧拉方程))('"2x f cy bxy y ax =++可化为常系数线性方程)()(22t e f cy dt dya b dty d a =+-+并求下列方程通解:(1)022=-''y y x ; (2)x x y y x y x ln 22=+'-''. 证明:令 x t ln =, t e x =,dtdy x dx dt dt dy dx dy 1==,⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=dt dy dt y d x dt dy dx d x dt dy x dx y d 222222111, 将y y ''',代入方程有:()()te f cy dt dy a b dt y d a cy dt dy b dt dy dt y d a cy y bx y ax =+-+=++⎪⎪⎭⎫ ⎝⎛-=+'+''22222, 得证.(1)令 x t ln =, te x =,原方程化为:0222=--y dt dydty d . 其通解为t t e c e c y -+=221.将x 代入,得:xc x c y 221+=. (2) 令 x t ln =, te x =,原方程化为:tte y dt dy dty d =+-2222, 上述方程的相应其次方程的通解为:()t c t c e y t h sin cos 21+=.令上述方程一个特解为:()10b t b e y t p +=,代入方程得:0,110==b b , 即:t e y t p =.原方程得通解为:()t t c t c e y t ++=sin cos 21,即:()()[]x x c x c x y ln ln sin ln cos 21++=.***12.一质量为m 的潜水艇在水面从静止状态开始下降,所受阻力与下降速度成正比(比例系数为k >0),浮力为常数B ,求潜水艇下降深度x 与时间t 之间的函数关系. 解: ma B F F =--阻重, a 为加速度, ma B kv mg =--, v 为下降速度,因为 22,dt x d dt dv a dt dx v ===, 所以 22dtxd m B dt dx k mg =--,即 m B g dt dx m k dtx d -=+22 , 其特征方程为: 02=+λλmk , 解得特征根为 m k-==21,0λλ.所以对应的齐次方程的通解为:21c e c x t mkh +=-.由于0是特征方程的单根,故设其特解为:t b x 01=, 代入方程有:m B g b m k -=0, 得 kB mg b -=0. 所以微分方程的通解为:t kBmg c e c x t mk-++=-21, 因为初始位置为0,初始速度为0,所以有初始条件 ()()00,00'==x x ,代入微分方程有: ⎪⎩⎪⎨⎧=-+-=++000121k Bmg c m k c c 求得:222221,kgm Bm c k Bm g m c -=-=, 所以x 与t 的关系可表示为: t k B m g e k g m Bm x t m k-+⎪⎪⎭⎫ ⎝⎛--=-122.***13.证明:若有方程'=-f x f x ()()1,则必有''+=f x f x ()()0,并求解此方程. 证明:由于'=-f x f x ()()1,两边关于x 求导得''=-'-=---=-f x f x f x f x ()()[()]()111故得''+=f x f x ()()0(1)解方程(1)得通解为 f x C x C x ()cos sin =+12(2)'=-+f x C x C x ()sin cos 12 (3) '='=f f f f ()(),()()0110,将此代入(2),(3)得C C C C C C 1221211111cos sin sin cos +=-+=⎧⎨⎩ 解得:C C 21111=+sin cos所以原方程的解为: f x C x x ()cos sin cos sin =++⎛⎝⎫⎭⎪1111.第9章 (之8) (总第51次)教学内容:§9.6 微分方程应用举例 (机动)第9章 (之9) (总第52次)教学内容:§9.7 差分方程1. 已知t t e y 3=是二阶差分方程t t t e ay y =+-+11的一个特解,求a . 解: )31(3e ea -=.2. 求下列差分方程的一般解: (1) 0721=+-t t y y ; 解:tt C y )27(-=(2) 431-=--t t y y ; 解:23+=t t C y(3) 051021=-++t y y t t ; 解:)61(125)5(-+-=t C y tt (4) t t t y y 2124=-+; 解:144-+=t t t t C y (5) t t t t y y 21⋅=-+. 解:t t t C y 2)2(-+=3. 写出下列差分方程的一个特解形式: (1) t y y t t sin 1=-+; 解:t B t B Y t cos sin 21+=(2) t y y t t πcos 31-=++. 解:)sin cos (21t B t B t Y t ππ+=4. 设t y 为第t 期国民收入,t C 为第t 期消费,I 为每期投资(I 为常数).已知t y ,t C ,I 之间有关系 I C y t t +=,βα+=-1t t y C ,其中10<<α,0>β,试求t y ,t C . 解:t y 满足:βα+=--I y y t t 1,解得 αβα-++=1I C y tt , 从而 =-=I y C t t ααβα-++1I C t.5. 已知差分方程t t t cy y by a =++1)(,其中a ,b ,c 为正的常数.设初始条件0)0(0>=y y ,证明:(1) 对任意 ,2,1=t ,有0>t y ;(2) 在变换tt y u 1=之下,原差分方程可化为有关t u 的线性差分方程,写出该线性差分方程并求其一般解;(3) 求方程t t t y y y =++1)21(的满足初始条件20=y 的解. 解:(1)归纳法证明. (2)令 t t y u 1=,即t t u y 1=,111++=t t u y , 则原方程化为线性差分方程 b au cu t t =-+1, 其一般解为 a c ≠时, ac bcaC u tt -+=)( ; a c =时, b C u t +=. (3)令 tt y u 1=,原方程化为 21=-+t t u u ,一般解为 2+=C u t , 所以原方程的一般解为 t t u y 1=21+=C ,代入 20=y ,得 23-=C ,所以 特解为 2=t y .第 10 章 (之1)(总第53次)教学内容:§10.1向量及其运算* 1. 设 a b a b ==+=2232,,,则(,)a b ∧= .答:65π. ** 2.设向量 a 与 b 不平行,c a b =+,则(,)(,) a c b c ∧∧=的充分必要条件为 .答:||||b a =.** 3.设直线L 经过点0P 且平行于向量a , 点0P 的径向量为0r ,设P 是直线L 的任意一点,试用向量0r ,a 表示点P 的径向量r . 解:∵a P ||0, ∴a t P=0, 而P r r 00+=,∴a t r r+=0∴P 点的径向量为 a t r+0.** 4.设 3,2==b a ,a 与b 的夹角等于π32,求:(1)b a ⋅; (2))2()23(b a b a +⋅-; (3)b a )(; (4)b a 23-.解:(1)〉〈=⋅b a b a a ,cos b 332cos 32-=⨯⨯=π.(2)()()b a b a223+⋅-b a b a 44322+-=()3634342322-=-⨯+⨯-⨯=.(3)()133-=-=⋅=bb a a b.(4)()()b a b a b a 2323232-⋅-=-b a b a124922-+=()108312342922=-⨯-⨯+⨯=,3610823==-b a.** 5.设5,4==b a ,a 与b 的夹角等于π31,求:(1)b a b a -+)(; (2)b a 25+与b a -的夹角.解:(1)()()b a ba b a--=-⋅2b a b a 222-+=213cos 5425422=⨯⨯-+=π,∴21=-b a,()()()b a b a b a ba ba--+=+⋅-2122b a -=215422-=7213-=. (2)()()b a ba-+⋅25b a b a 32522--=03cos543524522=⨯⨯-⨯-⨯=π,∴向量b a b a-+,25垂直.** 6. 若a ,b 为非零向量,且b a b a -=+,试证b a ⊥.解:b a b a -=+,∴ 22b a b a -=+,∴()()()()b a ba b a ba --=++⋅⋅,∴b a b a b a b a222222-+=++, ∴0=⋅b a , ∴b a ⊥.***7.用向量的方法证明半圆的圆周角必是直角. 解:如图所示,AC 为直径,B 为圆周上任一点, =→--OA →---OC , ||→--OB ==→--||OA ||→--OC ,则有 →--AB →--=OB →---OA ,→--CB →--=OB →---OC →--=OB →--+OA ,→--AB →--⋅CB →--=OB (⋅→---)OA →--OB ()→--+OA 0||||22=-=→--→--OA OB ,∴ 半圆的圆周角必为直角.第 10 章(之2)(总第54次)教学内容:§10.2空间直角坐标系与向量代数1.填空题*(1) 点A (2,-3,-1)关于点M (3,1,-2)的对称点是______ .答:(4,5,3-)**(2) 设平行四边形ABCD 的三个顶点为A B C (,,),(,,),(,,)231243313----,则 D 点为______ . 答:(5,8,7--)**(3) 已知{}{}a b z =-=-45314,,,,,,且a b a b +=-,则z =______ . 答:8-**2. A,B 两点的坐标分别为)1,3,(),,5,2(--q p ,线段AB 与y 轴相交且被y 轴平分,求qp ,之值及交点坐标.B。

(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(28)

(完整版)高等数学-微积分下-分节习题册答案-华南理工大学(28)

1、选择题1)对于级数1n n a ∞=∑,"lim 0"n n a →∞=使它收敛的( B )条件。

A 、充分B 、必要C 、充要D 、非充分且非必要 2)“部分和数列{}n S 有界”,是正项级数1nn a∞=∑收敛的( C )条件。

A 、充分B 、必要C 、充要D 、非充分且非必要 3)若级数1nn a∞=∑绝对收敛,则级数1nn a∞=∑必定( A )。

A 、收敛B 、发散C 、绝对收敛D 、条件收敛 4)若级数1nn a∞=∑条件收敛,则级数1nn a∞=∑必定( B )。

A 、收敛B 、发散C 、绝对收敛D 、条件收敛2、用适当的方法判别下列级数的敛散性 1)()11ln 1n n ∞=+∑解:用比较判别法,和调和级数11n n∞=∑比较因为()11ln 1n n >+,级数()11ln 1n n ∞=+∑发散。

2)n ∞= 解:用比较判别法,因为431n n n →∞==,而级数4131n n ∞=∑收敛,级数1n ∞=3)2n n n ∞=+解:用比较判别法,因为2322lim 12n n n n n→∞→∞⎛⎫=+= ⎪⎝⎭级数3121n n∞=∑收敛,由比较判别法极限形式可得12n n n ∞=+收敛。

4)411!n n n ∞=+∑解:用比值判别法,因为()()()4444111!111limlim 01111!n n n n n n n n n →∞→∞+++++=⋅=<+++,级数411!n n n ∞=+∑收敛 5)()112n n n n ∞=++∑解:用比较判别法,因为()121lim lim 112n n n n n n n n →∞→∞+++==+,级数()112n n n n ∞=++∑发散。

6)()11,,0n a b na b∞=>+∑解:用比较判别法,因为11lim lim 1n n na b a b a n n →∞→∞+==+,级数11n na b ∞=+∑发散。

《微积分》各章习题及详细答案

《微积分》各章习题及详细答案

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

华南理工大学《高等数学》(下册)期末试题及答案二

华南理工大学《高等数学》(下册)期末试题及答案二

《高等数学》(下册)测试题二一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母) 1.设()y z x y f x =⋅⋅,且()f u 可导,则z z xy x y∂∂+∂∂为( D ) A .2xy ;; B .2()x y z +; C .2()x y +; D .2z .2.从点(2,1,1)P --到一个平面引垂线,垂足为点(0,2,5)M ,则这个平面的方 程是( B )A .236360x y z +-+=;B .236360x y z --+=;C .236360x y z ---=;D .236360x y z -++=. 3.微分方程(1)1x y ''-=的通解是( D )A .21(1)ln |1|y x x C =--+; B .12ln |1|y x C x C =-++; C .212ln |1|y x x C x C =-++; D .12(1)ln |1|y x x C x C =--++.4.设平面曲线L为下半圆周y =22()d Lx y s +⎰等于( A )A .π;B .2π;C .3π;D .4π.5.累次积分24112211d e d d e d x xyy x x y x y y y+⎰⎰⎰=( A )A .e ;B .2e ;C .3e ;D .4e .二.填空题(每小题5分,本大题共15分)1.曲面333xyz z a -=在点(0,,)a a -处的切平面方程是0x z a ++=;.2.微分方程232e xy y y x -'''--=的待定特解形式是()*xy x ax b e -=+;3.设∑是球面2222xy z a ++=的外测,则曲面积分32222d d d d d d ()x y z y z x z x y x y z ∑++++⎰⎰=4π.三、 一条直线在平面∏:20x y +=上,且与另两条直线L 1:1141x y z -==-及L2:412201x y z ---==(即L 2:42(2)10x z y -=-⎧⎨-=⎩)都相交,求该直线方程.(本题7分) 解:先求两已知直线与平面的交点,由,120,141x y z x y t -+====- ()1,4,1,50,0,0, 1.0,0,1x t y t z t t t x y z M ⇒===-=====由41220,,201x y z x y t ---+==== ()242,1,2,4220,3,2, 1.2,1,1x t y z t t t x z M ⇒=+==+++==-=-=---由两点式方程得该直线:122x z y -==-- 四、求函数2223u x y z z =++-在点(1,1,2)0M -处的梯度及沿梯度方向上函数的方向导数.(本题7分) 解:{}{}02,2,232,2,1,M gradu x y z gradu =-=-沿梯度方向上函数的方向导数03M gradu==五、做一个容积为1立方米的有盖圆柱形桶,问尺寸应如何,才能使用料最省?(本题8分) 解:设底圆半径为r ,高为h ,则由题意,要求的是222S r rh ππ=+在条件21r h π=下的最小值。

(完整版)华南理工大学《高等数学》(下册)期末试题及答案三

(完整版)华南理工大学《高等数学》(下册)期末试题及答案三

《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。

微积分参考答案

微积分参考答案

微积分参考答案微积分参考答案微积分是数学中的一门重要学科,它研究的是函数的变化和求解问题的方法。

在学习微积分的过程中,我们常常会遇到各种各样的问题,需要通过计算来得到准确的答案。

在这篇文章中,我将为大家提供一些常见微积分问题的参考答案,希望能对大家的学习有所帮助。

一、导数与微分1. 求函数 f(x) = x^2 + 2x + 1 在 x = 2 处的导数。

解:首先,我们可以利用导数的定义来求解这个问题。

导数的定义是函数在某一点的斜率,可以通过求函数的极限来得到。

对于函数 f(x) = x^2 + 2x + 1,我们可以计算出其导数为 f'(x) = 2x + 2。

将 x = 2 代入导数公式中,得到 f'(2) = 2(2) + 2 = 6。

所以,函数 f(x) = x^2 + 2x + 1 在 x = 2 处的导数为 6。

2. 求函数 g(x) = e^x 在 x = 0 处的导数。

解:函数 g(x) = e^x 是一个指数函数,其导数等于其本身。

所以,函数 g(x) = e^x 在 x = 0 处的导数为 g'(0) = e^0 = 1。

所以,函数 g(x) = e^x 在 x = 0 处的导数为 1。

3. 求函数 h(x) = ln(x) 在 x = 1 处的导数。

解:函数 h(x) = ln(x) 是一个对数函数,其导数可以通过对数函数的导数公式得到。

根据对数函数的导数公式,我们可以计算出 h'(x) = 1/x。

将 x = 1 代入导数公式中,得到 h'(1) = 1/1 = 1。

所以,函数 h(x) = ln(x) 在 x = 1 处的导数为 1。

二、积分与定积分1. 求函数 f(x) = 2x 在区间 [0, 3] 上的定积分。

解:定积分可以理解为函数在某一区间上的面积。

对于函数 f(x) = 2x,在区间[0, 3] 上的定积分可以通过积分的定义来计算。

高等数学-微积分下-分节习题册答案-华南理工大学(3)(可编辑修改word版)

高等数学-微积分下-分节习题册答案-华南理工大学(3)(可编辑修改word版)

yxyy11、解微分方程: xy'=y lnyx解:y'=ylny,令u =y⇒y =xu ,原方程可化为x x xu +xdu=u ln u ⇒xdu=u (ln u -1)dx dx1 1变量分离两边积分得⎰u (ln u -1)du =⎰x dx ⇒ ln (ln u -1)= ln x +Cln u -1 =Cx ⇒ lny=Cx + 1 ⇒y =xe Cx+1x2、求解初值问题(y+dx -xdy = 0 (x > 0), y (1)= 0 。

dy解:dx=yxu +xdu=u,令u =⇒y=xu ,原方程可化为x⇒xdudx dx变量分离两边积分得⎰ 1 du =⎰1 dx ⇒ ln (u = ln x +C⎛ln +x = ln x +C⎝由 y (1)= 0 可得C = 0 ,所求函数为x3、做适当的变量代换,求下列方程的通解。

1)dy=(x +y )2dx解:令u =x +y ,则有u'=1 +y',原方程可化为u'-1 =u2=x 。

关于u 这是一个变量可分离微分方程,变量分离两边积分得⎰1 +u2du = ⎰dx ⇒ arctan u =x +C ⇒ arctan (x+y )=x +Cy = tan (x+C )-x2)求微分方程dy= y -x + 1dx x +y + 5⎧y -x +1= 0 ⎧x =-2解:解方程组:⎨x +y + 5 = 0得⎨y =-3⎩⎩2⎨2⎝ ⎭u 2作变换:⎧ X = x + 2⎩Y = y + 3,则有dx = dX, dy = dY ,y - x + 1 =Y - Xx + y + 5 X + Y原方程化为:YdY =Y - X dX X + Y du u -1令u =,则有XX + u = dX1 + u 变量分离: 1 + u -1 - u2 1 + u du = 1dXX 1 两边积分:解得:⎰ -1 - u 2 du = ⎰ X dX-arctan u - 1ln (1 + u 2 ) = ln X + C原方程的通解为:3) ( x + 2 y )2y ' = 1-arctan y + 3 - 1 ln x + 2 2 ( x + 2)2 + ( y + 3)2( x + 2)2= ln ( x + 2) + C解:令u = x + 2 y ,则有u ' = 1 + 2 y ' ,原方程可化为:1 u ' - 1 = 12 2 u 2⇒ ' = 2 + u 2u 这是一个变量可分离微分方程,变量分离两边积分得u 2 ⎛2 ⎫ ⎰ 2 + u 2 du = ⎰ dx ⇒ ⎰ 1 - 2 + u 2 ⎪ du = x + Cu - 2 arctanu= x + C 2x + 2 y - 2 arctan x + 2 y= x + C4、求曲线 y = y ( x ) ,使它正交于圆心在 x 轴上且过原点的任何圆(注:两曲线正交是指交点处两曲线切线相互垂直)。

高等数学-微积分下-分节习题册答案-华南理工大学 (43)

高等数学-微积分下-分节习题册答案-华南理工大学 (43)

1、用比较判别法判(或极限形式的比较判别发)定下列级数的敛散性 1)11ln 1n n ∞=+∑解:因为()1111ln 112n nn≥>++,而级数1112n n∞=∑发散,所以()11ln 1n n ∞=+∑发散。

2)3121ln n n n∞=∑解:332211ln n nn<,而级数3121n n∞=∑收敛,所以3121ln n n n∞=∑收敛。

3)()1101nn a a∞=>+∑解:当1a >时,1111nn n a a a ⎛⎫<= ⎪+⎝⎭,因为级数11nn a ∞=⎛⎫⎪⎝⎭∑收敛,所以()1101n n a a ∞=>+∑收敛。

当1a ≤时,1111122n n n a a a ⎛⎫≥= ⎪+⎝⎭,因为级数1112nn a ∞=⎛⎫ ⎪⎝⎭∑发散,所以()1101n n a a ∞=>+∑发散。

2、用比值判别法判定下列级数的敛散性 1)()11!2nn n ∞=+∑解:因为()()12!2lim 11!2n n nn n +→∞+=∞>+,所以级数()11!2n n n ∞=+∑发散。

2)12!n nn n n ∞=∑解:因为()()1121!122limlim12!11n n nnn n nn n n en n ++→∞→∞++==<⎛⎫+ ⎪⎝⎭,所以级数12!n nn n n∞=∑收敛。

3)()10!n n n n a a n ∞=>∑解:因为()1111!1limlim 1!n n nn n n nn a n a ea n n a n ++→∞→∞++⎛⎫=+= ⎪⎝⎭ 1) 当1a e <时,1ea <,级数()10!n n n n a a n ∞=>∑收敛;2) 当1a e >时,1ea >,级数()10!n n n n a a n ∞=>∑发散; 3) 当1a e=时,1ea =,级数为1!nnn n e n ∞=∑,比值判别法无法判别(注:判别正项级数0!n nn n e n ∞=∑的敛散性。

华南理工数学试题及答案

华南理工数学试题及答案

华南理工数学试题及答案一、单项选择题(每题4分,共40分)1. 函数f(x)=x^2+2x+1的最小值是()。

A. 0B. 1C. 2D. 3答案:B2. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. πD. 2答案:B3. 矩阵A=\[\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\]的行列式是()。

A. -2B. 2C. 5D. 8答案:A4. 函数y=e^x的反函数是()。

A. ln(x)B. e^xC. x^eD. x^2答案:A5. 曲线y=x^3-3x^2+2在点(1,0)处的切线斜率是()。

A. 0B. 1C. -1D. 2答案:C6. 函数f(x)=x^3-6x^2+11x-6的零点个数是()。

A. 1B. 2C. 3D. 4答案:C7. 函数f(x)=x^2-4x+4的值域是()。

A. [0, +∞)B. (-∞, 0]C. (-∞, 4]D. [4, +∞)答案:A8. 极限lim(x→∞) (x^2-3x+2)/(x^2+2x+1)的值是()。

A. 1B. 0C. 2D. -1答案:A9. 函数y=ln(x)的定义域是()。

A. (0, +∞)B. (-∞, 0)C. (-∞, +∞)D. [0, +∞)答案:A10. 函数f(x)=x^2-4x+3的对称轴是()。

A. x=2B. x=-2C. x=1D. x=-1答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3-3x的导数是______。

答案:3x^2-32. 函数f(x)=x^2-4x+4的极小值是______。

答案:03. 函数f(x)=x^2-6x+8的零点是______。

答案:2和44. 函数y=e^x的不定积分是______。

答案:e^x+C5. 函数f(x)=x^3-3x^2+2的单调递增区间是______。

高等数学-微积分下-分节习题册答案-华南理工大学

高等数学-微积分下-分节习题册答案-华南理工大学

高等数学-微积分下-分节习题册答案-华南理工大学(1)(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、写出下列条件所确定的微分方程:1)曲线在点(),M x y 处的法线与x 轴的交点为Q ,且线段QM 被y 轴平分。

解:设此曲线方程为()y y x =,由已知Q 点坐标为(),0x -,曲线在点(),M x y 处的法线方程为()1Y y X x y -=--',其与y 轴交点为0,x y y ⎛⎫+ ⎪'⎝⎭,因此 202y x y yy x y '=+⇒+='2)曲线上任意点(),M x y 处的切线与线段OM 垂直。

解:设此曲线方程为()y y x =,线段OM 的斜率为y x,因此 10y y y y x x ''⋅=-⇒+= 3)曲线上任意点(),M x y 处切线,以及M 点与原点的连线,和x 轴所围成的三角形的面积为常数2a 。

解:曲线过点(),M x y 的切线方程为()Y y y X x '-=-此切线与x 的交点为,0y x y ⎛⎫- ⎪'⎝⎭所求微分方程为 212y y x a y ⎛⎫-= ⎪'⎝⎭()2220a xy y y '-+=2、求曲线族12x x xy C e C e -=+(12,C C 为任意常数)所满足的微分方程。

解:方程两边关于x 求导得12x x y xy C e C e -'+=-两边再关于x 求导得122x x y xy C e C e -'''+=+所求微分方程为2y xy xy '''+=3、潜水艇垂直下沉时所遇到的阻力和下沉速度成正比例,如果潜水艇的质量为m ,且是在水面由静止开始下沉,求下沉的速度所满足的微分方程和初始条件。

解:设潜水艇下沉所遇阻力为F ,下沉速度为v ,由牛顿第二运动定理有mg F ma mv '-==而由已知F kv =,其中k 为常数,所以mv kv mg '+=因此此问题满足的初值问题为()00mv kv mg v '+=⎧⎪⎨=⎪⎩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、用比较判别法判(或极限形式的比较判别发)定下列级数的敛散性 1)11ln 1n n ∞=+∑解:因为()1111ln 112n nn≥>++,而级数1112n n∞=∑发散,所以()11ln 1n n ∞=+∑发散。

2)3121ln n n n∞=∑解:332211ln n nn<,而级数3121n n∞=∑收敛,所以3121ln n n n∞=∑收敛。

3)()1101nn a a∞=>+∑解:当1a >时,1111nn n a a a ⎛⎫<= ⎪+⎝⎭,因为级数11nn a ∞=⎛⎫⎪⎝⎭∑收敛,所以()1101n n a a ∞=>+∑收敛。

当1a ≤时,1111122n n n a a a ⎛⎫≥= ⎪+⎝⎭,因为级数1112nn a ∞=⎛⎫ ⎪⎝⎭∑发散,所以()1101n n a a ∞=>+∑发散。

2、用比值判别法判定下列级数的敛散性 1)()11!2nn n ∞=+∑解:因为()()12!2lim 11!2n n nn n +→∞+=∞>+,所以级数()11!2n n n ∞=+∑发散。

2)12!n nn n n ∞=∑解:因为()()1121!122limlim12!11n n nnn n nn n n en n ++→∞→∞++==<⎛⎫+ ⎪⎝⎭,所以级数12!n nn n n∞=∑收敛。

3)()10!n n n n a a n ∞=>∑解:因为()1111!1limlim 1!n n nn n n nn a n a ea n n a n ++→∞→∞++⎛⎫=+= ⎪⎝⎭ 1) 当1a e <时,1ea <,级数()10!n n n n a a n ∞=>∑收敛;2) 当1a e >时,1ea >,级数()10!n n n n a a n ∞=>∑发散; 3) 当1a e=时,1ea =,级数为1!nnn n e n ∞=∑,比值判别法无法判别(注:判别正项级数0!n nn n e n ∞=∑的敛散性。

解:利用拉贝判别法,因为()111111!1lim 1lim 112!n n n n n n n n e n n n n n e e n ++→∞→∞⎛⎫+⎛⎫⎛⎫⎪+ ⎪⎪+ ⎪⎝⎭ ⎪-=-=< ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以正项级数0!nnn n e n ∞=∑发散。

(1) 用x 替换1n,则n →∞时,0x →+()()()()1120ln 11111limlim xxx x x x x x x e x xee→+→+⎛⎫+-+-+ ⎪+-+⎝⎭=()()()2200ln 11ln 11lim lim 11x x x x x x x x x x x →+→+⎛⎫+++-=-= ⎪ ⎪++⎝⎭ ()()()120001ln 1ln 1ln 11lim lim lim 2323232x x x x x x x x x x x x →+→+→++++====+++所以()111111!1lim 1lim 12!n n n n n n n n e n n n n n e e n ++→∞→∞⎛⎫+⎛⎫⎛⎫⎪+ ⎪⎪+ ⎪⎝⎭ ⎪-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(2) 拉贝判别法对于正项级数1n n u ∞=∑,如果1lim 1n n n u n r u +→∞⎛⎫-= ⎪⎝⎭,则当 (1)1r >时,正项级数1n n u ∞=∑收敛;(2)1r <时,正项级数1n n u ∞=∑发散;(3)1r =时,不能确定正项级数1n n u ∞=∑的敛散性。

证明:我们证明2)如果1lim 11n n n u n r u +→∞⎛⎫-=< ⎪⎝⎭ 取0ε>使得1r ε+<,由极限的定义,存在自然数00N >,当0n N ≥时,有11111n n n n u u n r r n r u u εεε++⎛⎫⎛⎫--<⇒-<-<+< ⎪ ⎪⎝⎭⎝⎭111111n nu n u nn +>-=-因为11n n∞=∑发散,再利用第二节习题16题,有1n n u ∞=∑发散。

)3、用根式判别法判定下列级数的敛散性1)1121nn n n ∞=+⎛⎫⎪+⎝⎭∑解:因为1lim 12n →∞=<,级数1121nn n n ∞=+⎛⎫⎪+⎝⎭∑收敛。

2)()101nn an a n ∞=⎛⎫> ⎪+⎝⎭∑解:因为lim n a = 1) 当01a <<时,级数()101nn an a n ∞=⎛⎫> ⎪+⎝⎭∑收敛 2) 当1a >时,级数()101nn an a n ∞=⎛⎫> ⎪+⎝⎭∑发散3) 当1a =时,因为11lim lim 0111n n n n n n e n →∞→∞⎛⎫==≠ ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,级数()101nn an a n ∞=⎛⎫> ⎪+⎝⎭∑发散4、用适当的方法判定下列级数的敛散性 1)()112n n n n ∞=++∑解:因为()121lim lim 112n n n n n n n n→∞→∞+++==+,级数11n n∞=∑发散,由比较判别法()112n n n n ∞=++∑发散。

2)12sin3nnn π∞=∑解:因为22sin 2333nnnn n πππ⎛⎫≤= ⎪⎝⎭,而级数123nn π∞=⎛⎫ ⎪⎝⎭∑收敛,所以级数12sin 3nnn π∞=∑收敛。

3)11(01n nn a a a-∞=>+∑为常数)解:当1a =时,显然不满足必要条件,级数111n nn a a-∞=+∑发散。

当01a <<时,111n n na aa--<+,级数11n n a∞-=∑收敛,由比较判别法111n nn a a-∞=+∑收敛。

当1a >时,111lim lim 0111n n n n n a a a a a -→∞→∞==≠+⎛⎫+ ⎪⎝⎭,不满足收敛必要条件,111n n n a a -∞=+∑发散。

5、证明题1)设0n u ≥()1,2,n = 且数列{}n nu 有界,证明:级数21n n u ∞=∑收敛。

证明:因为数列{}n nu 有界,且0n u ≥()1,2,n = ,所以存在一正数M ,使得222222n nnM nu M n u M u n ≤⇒≤⇒≤因为级数221n M n ∞=∑收敛,由比较判别法级数21n n u ∞=∑收敛。

2)设级数1n n a ∞=∑和级数1n n b ∞=∑都收敛且n n n a c b ≤≤,是证明级数1n n c ∞=∑收敛。

证明:因为级数1n n a ∞=∑和级数1n n b ∞=∑都收敛,所以级数()1n n n b a ∞=-∑收敛,由n n na cb ≤≤有0n n n n b ac a -≥-≥,所以级数()1n n n b a ∞=-∑和级数()1n n n c a ∞=-∑,由比较判别法,级数()1n n n c a ∞=-∑收敛。

因此级数()11n n n n n n c c a a ∞∞===-+⎡⎤⎣⎦∑∑收敛。

6、判定下列级数的敛散性1)11arctann ∞=∑解:因为321arctan1arctanlimlim11n n n nn→∞→∞==,级数3121n n ∞=∑收敛,所以级数11arctan n ∞=∑2)11cosn n π∞=⎛⎫- ⎪⎝⎭∑ 解:因为2222211cos 2lim lim 112n n n n n nπππ→∞→∞-==,级数211n n ∞=∑收敛,所以级数11cos n n π∞=⎛⎫- ⎪⎝⎭∑收敛。

7、设0,0n n a b >>,且11n n nna b a b ++≤,试证明:当1n n b ∞=∑收敛时,1n n a ∞=∑也收敛。

证明:因为33224411223311,,,,n n n n a b a b a b a b a b a b a b a b --≤≤≤≤所以有11n n a b a b ≤当1n n b ∞=∑收敛时,级数111n n b b ∞=∑收敛,由比较判别法级数111n n a a ∞=∑收敛,因此1n n a ∞=∑也收敛。

相关文档
最新文档