中国数学发展史
中国数学发展历史
3
算盘
中国人发明算盘
大约六、七百年前,中国人发明 了算盘,它结合了十进制计数法和 一整套计算口诀并一直沿用至今, 被许多人看作是最早的数字计算机
4
汉唐初创时期
5
《周髀算經》
6
《九章算術》
7
《海島算經》
刘徽(生于公元250年左右),是中国数学 史上一个非常伟大的数学家,在世界数学 史上,也占有杰出的地位.他的杰作《九 章算术注》和《海岛算经》,是我国最宝 贵的数学遗产
19
20
华罗庚(Hua Loo-Keng,公元1910年11月12 日─公元1985年6月12日)是近代世界有名的 中国数学家。对数学的贡献是多方面的,在数 论中,他解决了高斯完整三角和的估计,对华 林问题、塔里问题的结果做出了重大推进。他 在圆法与三角和估计法方面的结果长期居世界 领先地位。他的著作《堆垒素数论》、《数论 导引》及与王元合着的《数论在近似分析中的 应用》等都已成为经典著作。华罗庚在复分析 和典型群方面也有许多工作,其中论文《典型 域上的多元复变量函数论》被国际学术界称为 「华氏定理」。
22
15
近现代数学发展时期
16
陈省身 数学家,美国国籍 。曾获美国国家科
学奖(1975),沃尔夫数学奖(1984)等。 1994年当选为中国科学院外籍院士。陈省 身是20世纪的伟大几何学家,在微分几何 方面的成就尤为突出,被世人称为“微分 几何之父”。
17
丘成桐,1949年生,广东汕头人,1969 年毕业于香港中文大学数学系,22岁获 博士学位,27岁因证明世界数学难题卡 拉比猜想而引起轰动,华人中惟一获得 被称为世界数学领域的诺贝尔奖的菲 尔兹奖,美国哈佛大学讲座教授,中科 院外籍院士,美国科学院院士,中科院 晨兴数学研究中心、浙江大学数学研 究中心主任,香港中文大学数学研究所 所长。
中国数学发展简史
中国数学发展简史(一)中国古代数学的萌芽原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,考古发现,仰韶文化时期出土的陶器,上面就已刻有表示数字的符号。
到原始公社末期,就已开始用文字符号取代结绳记事了。
(二)春秋战国之际,筹算得到普遍的应用筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。
战国时期的百家争鸣也促进了数学的发展,一些学派还总结和概括出与数学有关的许多抽象概念。
《庄子》记载了惠施等人的名家学说和桓团、公孙龙等辩者提出的论题,强调抽象的数学思想,例如“至大无外谓之大一,至小无内谓之小一”、“一尺之棰,日取其半,万世不竭”(是我国古书中最早体现微积分思想的一段)等。
这些许多几何概念的定义、极限思想和其它数学命题是相当可贵的数学思想,但这种重视抽象性和逻辑严密性的新思想未能得到很好的继承和发展。
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。
中国古代数学体系正是形成于这个时期,它的主要标志是算术成为一个专门的学科以及《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。
例如分数四则运算,今有术(西方称三率法),开平方与开立方(包括二次方程数值解法),盈不足术(西方称双设法),各种面积和体积公式,线性方程组解法,正负数运算的加减法则,勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的,其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。
就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
(三)中国古代数学体系的发展魏、晋时期出现的玄学有利于数学从理论上加以提高。
吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注2卷(已失传),魏末晋初刘徽撰《九章算术》注10卷(263)、《九章重差图》1卷(已失传)都是出现在这个时期,赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
中国数学发展历史
文典型域上的多元复变量函数论被国际学术界 称为「华氏定理」.
陈景润,中国现代数学家,世界著名解析数论 学家之一. 1966年,陈景润攻克了世界著名数 学难题哥德巴赫猜想中的1+2,创造了距摘取 这颗数论皇冠上的明珠1+ 1只是一步之遥的 辉煌.他在哥德巴赫猜想的研究上居世界领 先地位.他研究哥德巴赫猜想和其他数论问 题的成就,至今,仍然在世界上遥遥领先.世界 级的数学大师、美国学者阿 ·威尔A Weil曾 这样称赞他:陈景润的每一项工作,都好像 是在喜马拉雅山山巅上行走. 陈景润于1978 年和1982年两次收到国际数学家大会请他作 45分钟报告的邀请,这是中国人的自豪和骄 傲
唐朝在数学教育方面有长足的发
展.656年国子监设立算学馆,设有算学
博士和助教,由太史令淳风等人编纂注
释算经十书
包括周髀算经、九章算术
海岛算经、孙子算经
张丘建算经、夏侯阳算经
缉古
算经、五曹算经
五经算术、缀术,
作为算学馆学生用的课本.对保存古代
数学经典起了重要的作用.
淳风 公元604-672年 唐代岐州雍人今陕西风翔
梅文鼎幼时注意观察天象,27岁起,始治数学、 历法,终身潜心学术.后接触西方书籍.康熙年间进 京,以学识为康熙帝赏识,曾系统考察古今中外历 法,又介绍欧洲数学,研究中西历算.其间,为明史馆 校订历志舛错10余处,撰成明史历志拟稿.近人称 梅文鼎和日本的关孝和、英国的牛顿为当时世界 的三大数学家,著有方田通法、方程论.
近现代数学发展时期
陈省身
数学家,美国国籍 .曾获美国国家科学 奖1975,沃尔夫数学奖1984等.1994年当选 为中国科学院外籍院士.陈省身是20世纪 的伟大几何学家,在微分几何方面的成就尤 为突出,被世人称为微分几何之父.
中国的数学历史
中国的数学历史中国是古代文明的重要代表之一,同时也有着光辉的数学历史。
以下是有关中国数学历史的一些重要内容:1.最早的数学发展:约在公元前11世纪,中国的商代就已开始发展数学。
商代的贡献主要包括单位的建立,长度和重量的标准化以及简单的算数。
2.数学家张丘建的贡献:在东汉末年,张丘建发表的《算经》成为了数学史上的重要经典之一。
这部作品包括594个题目,主要涵盖了算术、代数、几何和三角学四个方面的内容。
3.数学家李冶的成就:唐代数学家李冶贡献了许多重要的发现,特别是在解释和应用三角函数方面做出了重要贡献。
他还发明了多种算术方法,并开发了新的几何工具。
4.算学的发展:在宋代,算学成为了学校的主要课程之一,并且开始出现了关于代数学和几何学的研究。
宋代数学家朱世杰发明了一种新的十进制计数方法,并提出若干关于除法和乘方的原则。
5.《数学九章》的出现:明代数学家秦九韶和杨辉共同编写了《数学九章》这部长篇巨著。
这本书详细介绍了代数学、几何学和三角学的各个方面。
它不仅仍然是数学研究的必读之书,而且还影响了欧洲的数学研究。
6.数学教育的革新:在清朝,数学成为了中国的高等教育的重要课程之一。
清末时期的数学家严复通过翻译数学教材的方式,将西方的数学思想引入到中国。
总的来说,中国的数学历史相当悠久而且丰富,其成就在几何、代数以及计算机等领域对现代科学技术的发展做出了积极的贡献。
虽然现代数学已经发生了很大的变化,但中国数学所开创的理性、系统、严密的数学思想仍然有着深远的影响。
中国古代数学发展史
中国古代数学发展史一、概述中国古代数学发展源远流长,可以追溯到公元前11世纪的商代时期。
在古代数学的发展过程中,中国的数学家们积极探索,不断创新,逐渐形成了独特的数学体系。
本文将从古代数学的起源、发展阶段和主要成就三个方面,对中国古代数学发展史进行探讨。
二、起源中国古代数学的起源可以追溯到商代,商代的甲骨文中已经有了一些数学的雏形。
这些甲骨文中包含了一些计数的符号,比如“一”、“二”、“三”等,以及一些简单的数学运算符号。
这些早期的数学符号成为后来发展的基础。
三、发展阶段1. 春秋战国时期在春秋战国时期,中国古代数学开始逐渐形成体系。
这个时期的数学家们开始研究几何学和代数学。
其中,著名的数学家彭勃提出了“勾股定理”的雏形,奠定了后来几何学的基础。
2. 秦汉时期秦汉时期是中国古代数学发展的重要时期。
这个时期的数学家们在几何学和代数学方面取得了重要的成就。
李冶提出了“周公疏密术”,开始研究无穷级数的性质。
刘徽在几何学方面做出了很多重要贡献,他提出了“刘徽定理”,解决了很多几何问题。
3. 魏晋南北朝时期魏晋南北朝时期是中国古代数学发展的黄金时期。
这个时期的数学家们在几何学、代数学和数论方面取得了巨大的成就。
刘徽的弟子祖冲之提出了“祖冲之定理”,解决了一些几何问题。
刘徽和祖冲之的研究成果对后来的数学发展产生了深远的影响。
四、主要成就1. 几何学中国古代数学在几何学方面取得了很多重要的成就。
早期的数学家们研究了简单的几何图形,比如点、线、面等。
随着数学的发展,他们开始研究更复杂的几何图形,比如三角形、圆形等。
刘徽和祖冲之的研究成果对几何学的发展产生了深远的影响。
2. 代数学中国古代数学在代数学方面也取得了重要的成就。
数学家们开始研究代数方程和代数运算。
他们提出了一些代数定理和公式,解决了一些代数问题。
这些成就对后来代数学的发展起到了重要的推动作用。
3. 数论数论是中国古代数学的另一个重要领域。
数学家们开始研究数的性质和规律。
数学在中国的发展历史
数学在中国的发展历史中国的数学发展历史可以追溯到古代,最早的数学文化可以追溯到商周时期,此时已经有扁鹊算术、卜筮等各种数学科技的应用。
接下来,随着战国时期的发展,数学逐渐形成了一些基本概念和计算方法,如乘法、几何应用等。
汉代是中国数学发展的重要时期之一,汉武帝时期出现了《九章算术》,它包含了“A+B”、“一元二次方程”、“直角三角形”等数学概念。
此外,还有另一部重要的数学著作《孙子算经》,它在数学领域的发展和应用方面都有重大的作用。
这些著作的出现标志着中国数学从此开始了一个新的时期。
唐代是中国数学史上又一个伟大的时期,数学领域的繁荣要归功于宋朝的一位伟大的数学家李冶。
他的著作“欧几里德几何原本”和“数学通轨”为中国数学发展的奠基石。
在中国数学的发展史上,唐朝还出现了用于计算圆周率的平积法、线性同余方程以及大中等肋芝麻算法等重要的数学方法。
宋朝是中国数学史上的黄金时期之一,这个时期的数学领域达到了一个新的高峰。
这一时期著名的数学家有杨辉、李之仪、祖冲之、秦九韶等,他们的数学著作成为了学术研究成果的代表。
此外,宋朝还出现了加减乘除、高次方程、三角函数以及应用微积分等数学方法。
明朝是中国数学史上的又一个重要时期,明朝时期数学家朱载堉的“借芝麻将军之名开设算术课”的做法,引发了全国的数学热潮,使中国数学进入了一个新的时代。
总的来说,中国古代数学的发展历程非常悠久,这个发展过程的关键在于它不仅继承发扬了古代数学遗产,而且还对数学的发展提供了自己的贡献,成为了中华民族数学文化的一部分。
随着时代的发展与进步,如今的中国数学正在不断发展壮大。
中国数学史简述
中国数学史简述摘要:一、古代数学的发展1.古代数学的起源2.春秋战国时期的数学家及成就3.汉代数学的繁荣二、中世纪数学的兴盛1.隋唐时期的数学家及成就2.宋元时期的数学繁荣3.数学著作的涌现三、近代数学的崛起1.明清时期的数学发展2.19世纪中后期的数学突破3.20世纪数学的迅速发展四、现代数学的辉煌1.20世纪下半叶的数学成就2.数学领域的分支及应用3.中国数学家的国际影响力正文:中国数学史是一部悠久而辉煌的历程,自古以来,数学便在中华大地生根发芽,茁壮成长。
古代数学的发展可追溯至远古时期,当时的先民们为了日常生活和生产需要,逐渐发现并掌握了简单的数学知识。
春秋战国时期,数学家如墨子、荀子等开始对数学进行系统性研究,为后世奠定了基础。
汉代数学家如张衡、刘洪等人在天文、算术等领域取得了举世瞩目的成就,如发明了浑天仪和编撰了《九章算术》。
进入中世纪,数学发展迎来了又一春。
隋唐时期,数学家如祖冲之、贾宪等人致力于数学研究,为宋元时期的数学繁荣奠定了基础。
宋元时期,如秦九韶、杨辉、李冶等众多数学家涌现,他们的研究成果如《数书九章》、《算法统宗》等成为数学史上的瑰宝。
近代数学的崛起始于明清时期,数学家如梅文鼎、汪莱等人继续拓展数学领域。
19世纪中后期,随着西方数学的传入,中国数学家逐渐接触到现代数学体系,如柯西、黎曼等数学家的理论为中国数学的发展提供了新的思路。
进入20世纪,中国数学家在各个领域取得了突破性成果,如华罗庚、陈省身在代数、几何等领域的研究。
现代数学辉煌时期,中国数学家在20世纪下半叶取得了举世瞩目的成就。
数学领域不断涌现出新分支,如计算机科学、信息论、混沌理论等,这些分支的发展为我国科技进步做出了巨大贡献。
此外,中国数学家在国际舞台上的影响力逐渐提升,如陈省身荣获菲尔兹奖等荣誉。
总之,中国数学史是一部充满智慧与创新的历程,古代的摸索、中世纪的繁荣、近代的崛起和现代的辉煌共同见证了中国数学家的不懈努力。
中国数学发展史
中国数学发展史中国数学发展历史可以追溯到古代,早在商代,中国人就已经开始使用字母和数字了。
随着历史的发展,中国数学也不断发展。
下面我们来一一介绍。
1.古代数学古代数学主要有三个时期:先秦时期、汉代到隋唐时期、唐宋明清时期。
在先秦时期,尚书:“六铢”之中就包含有算术运算方法。
《九章算术》是将古代运算方法集中起来的一项数学成果。
在隋唐时期,王陂算经出现,这是一部有关算术、代数、几何、人工运算和天文理论的书籍。
唐代的《数书九章》更是囊括了古代数学大量的知识和成果。
2.八股文数学八股文是中国传统文化时期的一种标志性的文章写作形式。
在明清时期,数学教育也采用了这种形式。
后来,八股文数学成为了中国古代数学的代表性成果之一,而数学分成九科也成为了这一时期的一个标志性成果。
3.古代算术古代算术指的是古人们在生产和生活中所进行的算术运算。
在《数书九章》中,有大量关于古代算术的内容。
古代算术主要包括加法、减法、乘法、除法等计算方面的知识,还包括古人们使用的算盘、草率和算具等。
4.代数学代数学是一门古老而又现代的数学学科。
最早的代数学思想可以追溯至先秦时期的“六铢”,唐代的“大衍数学”和宋代的“忘穴”等都是代数学的成果。
代数学在古代并不是一个独立的学科,而是与其他学科如几何学和算术学紧密联系在一起的。
5.数学教育古代的数学教育主要有两种形式:家教和私塾。
在家教方面,大富豪会请最好的数学家为其子弟授课。
而在私塾方面,数学家将自己的子女和其他有志于学习数学的青年聚集在一起,进行数学教育。
6.现代数学现代数学是在西方文化的影响下,从19世纪末期到20世纪初期在中国发展壮大的一门学科。
现代数学的发展主要包括微积分、概率论、数理逻辑、数论、拓扑、代数等方面。
现代数学的发展推动了许多雷同的新学科和理论的出现。
以上是有关中国数学发展史的简介。
在古代,中国数学相当发达,与世界同步。
而在现代,中国数学在与其它强国数学学者竞争的同时,被大家逐渐所认同和赞扬。
中国传统数学史话
中国传统数学史话中国的数学史不仅在东亚范围之内,而且在全世界都享有盛誉。
中国古代数学奠定了世界古代数学发展的基础,是古代数学发展史上不朽的一部到。
一、夏商时期1、夏商时代,算术发展十分迅速,用捻筒法来做算术运算,以结构较为完整的“十倍乘计”等方法计算乘法、九宫法计算除法的算法技术,使算术计算更加便捷准确。
2、夏商时代也发明了比例4:3——三角比例,从而实现了圆周率和圆面积的应用实践,并形成了计算几何和解几何的学科体系。
另外在夏商时代,是发现了“六十甲子(公历)历法”,以及“八卦”科学。
二、战国秦汉时期1、在战国时期,发明了由三角比例4:3——三角比例发展而来的圆周率,在秦汉时期得出圆周率π值,它圆周率的估算值已经达到公约的标准水平,也可以说,秦汉时期是中国数学发展史中的重要时期。
2、还有,在战国秦汉时期,发明了叫“交叉算”的算术技术,而且提出了“等比数列递推法”的历史经典,以及多个著名的数学家出现。
三、隋唐五代1、在隋唐五代时期,数学发展很快,发明了多个技术,如立方相等法、金刚石等技术,计算方法:由半径或直径及圆坐标定义圆,最早提出等比相似多边形、正多边形、螺旋线等基本几何概念。
2、同时发明了“九章算法”,一种可以用来进行继数和解几何概算的数学技术。
五代时期数学也开始应用于测量和地图,当时出现了很多的历史名人、定等比数列的定理李世民等。
四、宋元明清时期1、宋元时期,出现了许多著名的数学家,他们把一些著名的数学理论发展得更深入,还发明了“竹算术”,并将竹木算术应用到等比数列和三角函数上。
2、除此之外,也有许多发明技术:圆表面积的应用、圆的面积的几何计算、正方形根的计算,以及著名的比例锤破尺、旋转缆轮和双端拱形等。
3、明清时期,数学研究也在不断的进步,发明了拟固线、解微分方程、应用舒尔伯斯定理解圆的方程,形成了中国历史上第一部解析几何公式。
五、新中国建立到现在1、新中国成立到现在,数学研究也在不断地进行,形成了多个数学体系,如灰色系统理论、计算数学、概率论与数理统计、拓扑学、线性空间与非线性分析等。
中国古代数学发展史
中国古代数学发展史中国传统数学的形成与兴盛:公元前1世纪至公元14世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983-1984年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100年,它虽是一部天文学著作(“盖天说”-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213年)之前,至少已有原始的本子。
数学史第十讲中国数学发展简史
数学史第十讲中国数学发展简史数学史第十讲:中国数学发展简史关键词:中国数学,历史发展,数学思想,古代数学,近现代数学一、引言中国是世界上最古老的文明之一,其数学发展源远流长,且在不断发展过程中,形成了自己独特的数学思想和体系。
从原始社会的结绳记事到现代数学,中国的数学发展见证了无数智慧的闪光。
本篇文章将带您探寻中国数学的发展历程,从古代的数学成果到近现代的数学发展,感受中国数学的魅力。
二、中国古代数学1、数学起源与背景在中国的远古时代,数学便已萌芽。
随着生产力的提高和土地测量、赋税、水利等实际需要的增加,数学逐渐成为人们日常生活中不可或缺的一部分。
2、春秋战国时期的数学成就春秋战国时期,中国的数学成就开始显现。
《周髀算经》和《九章算术》的问世,标志着中国古代数学体系的初步形成。
其中,《周髀算经》是世界上最古老的数学著作之一,阐述了勾股定理及其应用。
秦汉时期,中国的数学思想进一步发展。
这一时期,人们对分数、小数的认识日益深化,十进位值制记数法应运而生,勾股定理得到广泛应用。
此外,赵爽的“勾股圆方图”和刘徽的“割圆术”也是秦汉时期数学的重要成果。
4、三国两晋南北朝时期的数学成就三国两晋南北朝时期,中国的数学成就达到了新的高度。
祖冲之的“圆周率”和王孝光的“沈括算图”是这一时期数学的杰出代表。
此外,这一时期还出现了《算经十书》等重要的数学著作。
三、中国近现代数学1、隋唐时期的数学思想和发展隋唐时期,中国的数学思想进一步发展,唐代的《算经十书》成为了一个时代的数学经典。
这一时期,人们开始关注数学的实际应用,如天文学、工程学等。
2、宋元时期的数学成就和发展宋元时期,中国的数学成就达到了一个新的高峰。
杨辉的“杨辉三角”和朱世杰的“四元术”是这一时期数学的杰出代表。
此外,这一时期还出现了《算学启蒙》等重要的数学著作。
明清时期,中国的数学思想逐渐走向封闭和保守,但仍有不少数学家在不懈探索。
这一时期,徐光启的《几何原本》、李善兰的《代数学》等著作对于中国的数学发展起到了推动作用。
简述中国数学的发展史
简述中国数学的发展史中国数学发展史:历史与传统一直保鲜中国数学的发展史可以追溯到两千多年前,是基于当时基于当时用数学领域发展出的算法和工具而演变而成。
中国数学 but 研究的深远性及其贡献享誉全球,令它在古代文明的巅峰时期占据重要地位。
本文将重点讨论近代中国数学发展史。
一、古代中国数学的起源古代中国数学的发展可以追溯到夏朝以前,一步步演变而来,从简单计数工具到绘制有规律图形。
其中有很多方面的研究,如分形计算、比例、极坐标、等值线、相似概念等,可以追溯到秦朝以前。
《九章算术》是古代中国数学的伟大成就,记载了中国古代研究数学的基础知识,并以此为基础发展出很多数学领域的算法和工具。
二、唐宋数学的复兴唐宋时期,中国的数学研究逐渐受到重视,诸如《郑玄算经》、《裴达森算经》、《支学算经》等著作相继推出,大大推动了中国数学的发展。
值得一提的是,巫马可以将数学技术应用到天文、地理和医学等领域,把它们作为辅助手段,让中国古代数学技术的发展取得了质的飞跃。
三、明清数学的蓬勃发展明清时期,中国数学技术受到国内外的瞩目,得到大幅提升。
榜样最高的是范仲淹,《流沙池记》、《定经》以及集大成的《算学启蒙》让中国数学技术具有世界性的影响力,被公认为是专业数学著作,有很高的学术地位。
另外,著名数学家周辩和穆蔚在回归分析、拉格朗日法及新型椭圆函数领域也做出了重要贡献。
四、近代中国数学的发展近代,中国的哲学数学发展遭受中国历史的沉重打击,不得不向西方学习数学知识,从而推动了中国储存数学知识的转变。
现在,数学大多由实验研究提供的数据进行计算,而不是像以前那样,通过计算机技术来求解问题。
20世纪,中国出现了一些著名的数学家,他们在微积分、线性代数和实分析等领域做出了卓越的贡献。
五、结论提及中国数学发展史,我们不得不从古代,从夏朝开始说起,历时上千年,中国数学系统地学习了很多西方数学知识,把它应用到了日常生活中。
中国数学的传承有着悠久的历史,它的传统一直保留良好,并给后人留下了无尽的财富和影响力。
中国数学史
李善兰(清, 1811-1882)
李善兰恒等式
19世纪的中国数学
李善兰(清, 1811-1882)翻译部分西方学术著作
《几何原本》(1857) 《谈天》(1858, 赫谢尔) 《重学》(1859, 惠威尔)
徐光启等译《几何原本》 后250年
万有引力定律及天体力学 牛顿运动定律
《代微积拾级》(1859, 卢米斯)
《代数学》(1859, 德摩根)
“此书为算学中上乘功夫,此书一出,非特中
法几可尽废,即西法之古者亦无所用之矣。”
19世纪的中国数学
直线之公式,地=甲天丄乙,则地为天的函数。
dx a x ln (a x) c
禾 彳天 (甲 天)对 丙 甲 天
xdx ydy mydx
3.14159261<π<3.14159271
割之又割
《算经十书》
《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》 《夏候阳算经》、《张邱建算经》、《缀术》、《五曹算经》 《五经算术》、《缉古算经》。
《算经十书》
公元656年
汉唐千余年间中国 数学发展的水平
3.中算发展的第三次高峰
数学全盛时期
承前启后、融会中西的数学家 “历算第一名家”、“开山之袓” 《梅氏历算丛书辑要》62卷 代数(笔算)、几何、三角 康熙:历象算法,朕最留心,此 学今鲜知者,如梅文鼎实仅见也。
(清, 1633-1721)
光禄大夫、左都御史 “会通中西”、“西学中源”
18世纪的中国数学
康熙:“即西洋算法亦善,原系中国算法,
《缀术》
《隋书〃律历志》
公元462年, 祖冲之算出 3.1415926<π<3.1415927 密率355/113,约率22/7。 所著之书,名为《缀术》, 学官莫能究其深奥,是故废 而不理。 1913年起称355/113为祖率。
中国的数学发展史
肆:中国数学发展的高峰
中国数学发展的高峰
贾宪
刘益
《黄帝九章算 《议古根
法细草》
源》
11世纪中叶 12世纪中 叶
秦九韶 李冶
杨辉
朱世杰
《数书九 章》
《测圆海镜》 《详解九章 《益古演段》 算法》《日
用算法》和 《杨辉算法》
《算学启蒙》 《四元玉鉴》
1247年 1248 1261 1261〔1262〕 〔1299〕 〔1274-1275〕 〔1303〕
此中国的数学开始了自己的发 展。
文 计
数
法
手指计数法
中国数学的起源和发展
《史记·夏本纪》中就记 载了有关几何的知识
夏禹治水时期
《考工记》《墨经》《庄子》 等著作涉及到测量、论题、抽 象的数学问题。
战国时期
《周髀算经》《九章 算术》等著作现世
三国时期
春秋时期
普遍使用算筹 这种计算工具
秦汉时期
《周易》讲述阴阳八卦, 并反映出二进制思想
魏晋时期
《周髀算经》做了详尽的注释, 在《勾股圆方图注》中用几何 方法严格证明了勾股定理
中国数学的起源和发展
《九章算术》是中国古代第一部数 学专著,是算经十书中最重要的一 种。该书内容十分丰富,系统总结 了战国、秦、汉时期的数学成就。 同时,《九章算术》在数学上还有 其独到的成就,不仅最早提到分数 问题,也首先记录了盈不足等问题。
公元1088—1095年间, 北宋沈括从“酒家积罂” 数与“层坛”体积等生 产实践问题提出了“隙 积术”,开始对高阶等 差级数的求和进行研究,
伍:中国数学对世界的影响
这里是您的文本
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化 (演绎化)数学文化传统,后者是由于接受了机械化(算法化)数 学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为 代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算 术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东 西辉映,共同促进了世界数学文化的发展。 中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人 传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越 南等亚洲国家的数学发展。
中国数学发展历史
中国数学发展历史中国的数学发展可以追溯到古代,丰富而独特的发展史代表了中国古代数学的独特性和深厚的数学学问。
最早的数学发现可以追溯到公元前2000年左右的殷商时期,当时的数学主要应用于贸易、天文和农业。
在中国早期的数学发展中,标有准确的日期的最早数学文献是《九章算术》(公元前202年)和《海峡术》(公元前202年)。
这两部著作首次系统地记录了许多数学原理,并成为后来中国数学发展的基础。
在中国古代数学的发展中,最具代表性的是三国时期的“张爱玲算术”和隋唐时期的“数学算术”。
《九章算术》中记录了许多代数和几何方面的内容,如线性方程、方程求解、求根、等价转换等。
而《海韵术》则引入了很多基本的几何概念和方法。
唐代是中国古代数学发展的巅峰时期。
数学在这一时期得到很大的推动和发展。
唐代数学家刘徽的《九章算术注》和杨文韬的《算法宝鉴》都是唐代数学的重要著作,对解决问题和解决实际问题的方法进行了深入的研究。
宋代是中国数学发展的重要时期。
数学家秦九韶的《数书乘舆图说》是中国古代的一部重要数学著作。
这本书主要介绍了中国古代的天文数学、应用数学和阿拉伯数字。
此外,数学家李冶的《数书九章》也是中国古代数学的重要文献之一明代是中国数学发展的又一个重要时期。
数学家朱圣府的《数学九章》是明代中国古代数学研究的重要成果。
这本书首次提出了三角函数和对数函数的概念,并与目前所使用的三角函数和对数函数将近相同。
中国古代数学的发展还可以追溯到元代的李喜和明代的李俊楠等数学家。
李喜的《剑桥大学历数书》是一部重要的数学著作,其中主要研究了代数学、几何学和曲线学等领域的问题。
而李命南的《太学数理概要》是中国古代数学研究的重要著作之一,介绍了二次方程、角度和三角函数的基本原理和方法。
总体而言,中国古代数学发展历史丰富多样,早在几千年前就出现了一些重要的数学原理和方法。
这些数学原理和方法在古代中国的贸易、天文、农业等领域得到了广泛的应用。
中国古代数学的研究为现代数学的发展奠定了坚实的基础。
中国数学发展历史
吴文俊是中国著名的数学家和计算机科学家,他在拓扑学 和几何定理机器证明等领域做出了重要贡献,并推动了计 算机科学的发展。
感谢您的观看
THANKS
总结词
精确计算圆周率的开创者
详细描述
秦汉时期,中国的数学家开始精确计算圆周率,为后来的数学发展奠定了基础。
十进制记数法
总结词
十进制记数法的起源地
详细描述
秦汉时期,中国开始采用十进制记数 法,这种记数法在当时具有很高的精 度和便利性,对世界数学的发展产生 了重要影响。
03
隋唐数学
隋唐时期的数学教育
20世纪50年代
新中国成立后,政府开始重视数学发展,加强了 数学研究和教育,并建立了许多数学研究机构。
中国现代数学的发展
20世纪50年代至60年代
中国数学界开始独立探索和发展自己的数学 理论和方法,形成了以华罗庚、陈景润等为 代表的中国数学学派。
20世纪70年代至80年代
中国数学界开始与国际数学界接轨,参加国际数学 会议和交流活动,并取得了一系列重要成果。
计算方法
详细记载了各种计算方法,如加 减乘除、开方、乘方等,以及相 应的算法原理和运用。
数学应用
展示了数学在当时社会各方面的 应用,包括工程、建筑、医学、 天文等领域。
《四库全书》中的数学
收录内容
包含了众多古代数学著作,如《周髀算经》、《九章算术》、《孙 子算经》等,涉及数学理论、算法、应用等多个方面。
中国数学发展历史
汇报人: 202X-12-20
contents
目录
• 远古数学 • 秦汉数学 • 隋唐数学 • 宋元数学 • 明清数学 • 中国近现代数学
01
远古数学
中国数学史话
中国数学史话数学作为一门抽象而深邃的学科,其发展历程几乎与人类文明的发展紧密相连。
中国作为世界上具有悠久历史的国家之一,其数学历史也非常丰富。
本文将带您一起回顾中国的数学发展历程,探寻其中的奥秘。
早期数学:古代记数法与术数中国古代的数学发展,最早可以追溯到商代和西周时期。
古代中国人民以简单的记数法为基础,逐渐发展出了一套完整的计数系统。
以十进制为基础的计数法被广泛应用,这对数学的后续发展起到了重要作用。
在古代中国的数学发展中,术数发挥了重要的作用。
术数是指利用简单的技巧和规则求解数学问题的方法。
其中最为著名的是古代算盘的使用。
古代算盘是一种基于十进制的计算工具,通过珠子的上下移动,实现了加减乘除等基本运算。
这种简单而高效的计算工具在古代的商业交易和科学研究中发挥了巨大的作用。
古代中国的数学家也进行了诸多有意义的研究。
其中最著名的数学家之一是张邱建,在南北朝时期他创作了《算经》一书,详细阐述了古代数学中的各种术数规则和计算方法。
这部著作不仅在中国发挥了重要作用,而且还传播到了海外,在数学史上具有重要地位。
古代中国数学:几何学的崛起随着社会的发展,古代中国数学开始逐渐从术数向几何学演进。
在战国时期,一些思想家开始研究形状与空间的关系,发展出了独特的几何学理论。
《九章算术》是古代中国最早的一部有关数学的著作,其中详细介绍了几何学、代数学等多个领域的知识。
这部著作涵盖了各个层面的数学问题,对后世的数学研究起到了极大的推动作用。
古代中国的数学家还对算术和几何学进行了系统的研究。
刘徽是一个在古代中国数学发展中具有重要影响力的数学家,他整理了大量几何学和代数学的知识,形成了《海岛算经》一书,成为继《九章算术》之后又一重要的数学著作。
近代数学:中国数学的复兴中国的近代数学发展可以追溯到科学传入中国的明朝时期。
数学作为一门学科开始逐渐受到重视,取得了一系列的重要成果。
中国的数学家在近代数学发展中发挥了重要的作用。
中国数学发展史
随着国家对基础学科的重视和投入的 增加,中国数学迎来了新的发展机遇 ,如数学中心的建设、国际合作项目 的增多等。
中国当代数学的展望与趋势
展望
未来,中国数学将继续保持稳定的发展态势,并有望在某些领域取得突破性进 展。
趋势
随着科技的不断进步和应用领域的拓展,数学与其他学科的交叉将更加广泛和 深入,如人工智能、金融工程等领域的数学应用将更加广泛和深入。
魏晋南北朝的数学发展
魏晋南北朝时期,数学得到了 进一步的发展,出现了刘徽、 祖冲之等杰出的数学家。
ቤተ መጻሕፍቲ ባይዱ
刘徽在《九章算术注》中提出 了“割圆术”,为圆周率的计 算奠定了基础。
祖冲之在刘徽的基础上,进一 步精确计算出圆周率在 3.1415926和3.1415927之间, 这一成果领先世界千年之久。
02
宋元时期的数学
中国数学发展史
目 录
• 古代数学 • 宋元时期的数学 • 明清时期的数学 • 近现代数学 • 当代数学
01
古代数学
数学起源与早期发展
01
数学起源于原始社会时期,随着生产的发展和度量 衡的迫切需要,数学开始萌芽。
02
早期数学主要应用于天文、历法、算术等领域,为 农业、手工业和商业的发展提供了基础。
感谢您的观看
THANKS
概率统计等,为国际数学界的发 展做出了重要贡献。
国际合作与交流
中国积极参与国际数学交流与合作, 与世界各国数学家共同推动数学学 科的发展。
国际认可
中国数学家多次获得国际数学大奖, 如菲尔兹奖、沃尔夫奖等,得到了 国际数学界的广泛认可。
中国当代数学的挑战与机遇
挑战
随着国际数学竞争的加剧,中国数学 面临着一系列挑战,如人才流失、学 术不端等问题。
中国古代数学发展史
中国古代数学发展史中国传统数学的形成与兴盛:公元前1 世纪至公元14 世纪。
分成三个阶段:《周髀算经》与《九章算术》、刘徽与祖冲之、宋元数学,这反映了中国传统数学发展的三次高峰,简述9 位中国科学家的数学工作。
第一次高峰:数学体系的形成秦始皇陵兵马俑(中国,1983),秦汉时期形成中国传统数学体系。
我们通过一些古典数学文献说明数学体系的形成。
1983-1984 年间考古学家在湖北江陵张家山出土的一批西汉初年(即吕后至文帝初年,约为公元前170 年前后)的竹简,共千余支。
经初步整理,其中有历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》,它是中国现存最早的数学专著。
经研究,它和《九章算术》(公元1 世纪)有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。
《周髀算经》(髀:量日影的标杆)编纂于西汉末年,约公元前100 年,它虽是一部天文学著作(“盖天说-天圆地方;中国古代正统的宇宙观是“浑天说”-大地是悬浮于宇宙空间的圆球,“天体如弹丸,地如卵中黄”),涉及的数学知识有的可以追溯到公元前11 世纪(西周),其中包括两项重要的数学成就:勾股定理的普遍形式(中国最早关于勾股定理的书面记载),数学在天文测量中的应用(测太阳高或远的“陈子测日法”,陈子约公元前6、7 世纪人,相似形方法)。
勾股定理的普遍形式:求邪至日者,以日下为勾,日高为股,勾股各自乘,并而开方除之,得邪至日。
中国传统数学最重要的著作是《九章算术》(东汉,公元100 年)。
它不是出自一个人之手,是经过历代多人修订、增补而成,其中的数学内容,有些也可以追溯到周代。
中国儒家的重要经典著作《周礼》记载西周贵族子弟必学的六门课程“六艺”(礼、乐、射、御、书、数)中有一门是“九数”。
《九章算术》是由“九数”发展而来。
在秦焚书(公元前213 年)之前,至少已有原始的本子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东周时期开始利用铁器,生产力逐渐提高,生产方式有所改变。从春秋以来,奴隶制的农村公社逐渐瓦解。由于各国畴人的努力,天文、历法工作有了显著成就。战国时期,奴隶制度逐渐破坏,封建制度逐渐建立起来。算筹是我国古代人用的计算工具。“筹”就是一般粗细,一般长短的小竹棍,用算筹进行计算叫做筹算。到春秋战国时期,人们已经能熟练地进行筹算。
见于《汉书艺文志》著录的杜忠的《算术》、许商的《算术》两部数学书,早已失传。现在有传本的、最古老的中国数学经典著作之一是《九章算术》,共九卷。一般认为它是东汉初年(1世纪)编纂成的。书中总结了周朝以来的研究成果,收集了246个应用问题和解题方法。
《九章算术》的出现标志着中国数学体系开始形成。魏末晋初刘徽撰《九章算术注》十卷(3世纪),现在有传本。他还著《海岛算经》(又叫《重差术》),书中运用几何知识测量远处目标的高、远、深、广,刘徽的数学理论具有世界意义。
北宋初100多年,农业生产力有了显著的提高,工商业有了显著的发展。当时的三大发明(火药、指南针、活字印刷术)就是在这种经济高涨的情形下,人民发挥巨大创造力的成果。原始火箭在宋代出现,到了元代己使用在军事上。由于生产和科学技术的发展,要求数学提供更为精确简便的计算方法,中国数学达到了同时代世界的最高水平。
1、形成时期(公元755年以前的约3000多年)
它又可以分为两个阶段:萌芽阶段和形成阶段,数学从零星知识成为科学体系。
萌芽阶段(公元前221年秦统一以前)
从古代传说、古书记载和考古发现中可以推断,我们的祖先从上古的未开化时代开始,经过许多世代,积累了长期的实际经验,数量概念和几何概念才得到了发展。《易经》(约公元前一千)中《系辞传》上说:“上古结绳而治,后世圣人易之以书契”。结绳和书契(刻木或刻竹)是非文字记载的两种主要记数(或记事)方法。
唐朝中叶的安史之乱虽然不久就被平定,但它对于唐朝的政治、经济、文化发生了巨大的影响,封建土地占有形式发生变化,手工业和商业获得一定程度的发展。工商业的发展促进了数学知识和计算技能的普及,劳动人民简化了筹算乘除的演算手续,减轻了数字计算的工作,现在有传本的《韩延算术》就是其中的一部。
唐末政治黑暗,人民陷于严重灾难中。农民起义和军阀混战促使唐朝灭亡,接着的五代十国仍是军阀混战的继续。宋朝统一中国,建立起一个高度集权的封建国家,对于安定社会秩序、发展经济,起了一定的积极作用。
到了商代(又称殷代,约公元前17世纪~约前11世纪),奴隶主的国家正式确立,开始了比较发达的殷商文化。殷人用10干和12支组成甲子、乙丑等60个日名用来纪日。为了适应农业生产,殷人又有一定的历日制度。出于货物交换的发达,殷代已有用多量的贝壳来交换物品的习惯,这种贝壳就带有一些货币的味道。1899年在河南安阳发掘出来的殷墟龟甲和兽骨上所刻的象形文字(甲骨文)中(公元前14世纪)。自然数的记法已经毫无例外地用着10进位制,最大的数字是3万。
公元前11世纪末,周人灭殷(商)后,在原有氏族制度的基础上建立一个文明国家—周(约公元前11世纪~公元前256年),奴隶制经济获得进一步的发展。在政治经济上有实力的氏族贵族组织成了强大的政治集团,其中有所谓“士”的阶层是受过礼、乐、射、御、书、数六艺训练的人。“数”作为六艺之一,开始形成一个学科。用算筹来记数和四则运算,很可能在西周(约公元前11世纪~公元前771年)时期已经开始了。
虽然不定方程在《九章算术》中已有记载,但是一题数答却始自《张邱建算经》,这一影响一直持续到19世纪。“百鸡问题”曾传入印度,出现在摩珂呲罗(9世纪)和巴斯卡拉(12世纪)的著作中。
在隋朝,刘焯结合天文学的发展,创立了等间距二次内插法计算日、月的位置。王孝通结合土木工程的发展,建立了三、四次方程,并给出了求其正根的解法。刘焯的《皇极历》(600年)和王孝通的《缉古算术》(又叫《缉古算经》)是数学发展中的两个重大成就。
由于私有制的发展,阶级的产生,奴隶社会出现了。夏代(约公元前21世纪初~约公元前12世纪初)是私有制确立和巩固的时期,产生了农业和手工业的分工,出现了从事各种手工业(如陶器、青铜器、车辆等等)生产的氏族。手工制造、农田水利、制订历法都需要数学知识和计算技能,人们关于几何形体和数量的认识必然有所提高。
形成阶段
从公元前221年至公元755年(即从秦始皇二十六年至唐玄宗天宝十四年),以《九章算术》为中心的中国传统数学体系形成,这期间的著名数学家有刘微、祖冲之、祖搄等。主要的数学成就可以概括在“算经十书”中,主要内容有:分数的应用、整数勾股形的计算、正负数运算、开平方约零术、解联立方程组、几何图形的面积、体积的计算以及数学制度的确立等等。
伴随着原始公社的解体,私有制和货物交换已经产生。《易经·系辞传》说:“包牺氏没,神农氏作。……日中为市,致天下之民,聚天下之货,交易而退,各得其所”为了货物交换的顺利进行,人们逐渐有了统一的记数方法和简单的计算技能。
人们为了使制成的物品有规则的形状,圆的圆、方的方、平的平、直的直,创造了规、矩、准、绳。《尸子》(约公元前四世纪)说“古者,倕为规、矩、准、绳,使天下访焉”(古代传说,倕是约4500年前黄帝或唐尧时候的能工巧匠)。在汉武帝梁祠的浮雕像中,有伏羲手执矩,女娲手执规的造像。看来,在我国古代规矩的发明和使用较早,但早到什么时候,目前还没有证据可以做出结论。这对于后来的几何学的产生和发展,有很重要的意义。
这个“上古”早到什么时候,众说不一。现在看来,在新石器时代早期已普遍结绳记数,稍后便出现了书契。在西安半坡遗址中,发现多种类型的陶器及大量陶片。研究表明,约6000年前的半坡人已具有了圆、球、圆柱、圆台、同心圆等几何观念。陶片上已有了相当于5、6、7、8、10、20的数字刻划符号。
二十世纪七十年代,我国在陕西临潼姜寨遗址中发现了大量陶片,上面有更多的数字刻划符号,有一些和半坡陶片上的符号一致,但多出了表示1和30的刻划符号。该遗址与半坡遗址几乎是同时代的。研究表明,大约在6000年前,原始社会的中国人至少已经掌握了30以内的自然数,而且显然是一个10进制系统。可见在我国,数目字的出现比甲骨文要早2600年,比“黄帝时代”也要早1300年左右。
在《孙子算经》中有一个千古名题,卷下“物不知数”问:“今有物,不知其数。三、三数之剩二;五、五数之剩三;七、七数之剩二。问物几何?”答曰:“二十三”,这是一个一次同余式组问题。书中给出了这一问题的解法(“术曰”):N=70×2+21×3+15×2-105×2=23
后人为它编了一个口诀:“三人同行七十稀,五树梅花二十一,七子团圆正半月,减百零五便得知”。解的这种构设性使之容易推广到更一股的情形,即孙子的解法实际上可概括为“剩余定理”。
中国数学发展的历史表明,我国历代的数学家不仅在算术与代数的许多方面有着杰出的成就,而且大多能与实际需要相结合;对于后来传入的西洋数学,也基本上能结合本国实际情况进行研究,并取得了一些创造性的成果。因此,中国数学在世界数学发展过程中占有重要的地位,风格独特,影响深远。这里所论的中国数学是指中国的传统数学,我国现代数学家在数学方面的成就与贡献应该划归世界数学的范围内。
《周髀》是一部汉代人撰写的古人讨论“盖天说”的书,是我国最古老的天文学著作。“髀”的原意是股或股骨,这里意指长8尺用来测量太阳影子的表。这本书的内容记述了周代的问题,所以叫做《周髀》,它的成书时间大约在公元前100年(或稍晚一些)。其中第一章叙述了西周开国时候,周公同一个名叫商高的数学家的一段问答。商高在答话中提到了“勾三、股四、弦五”(即商高定理)。关于《周髀》有两点值得注意:一是用文字表示的复杂的分数计算;二是关于勾股定理和用勾股定理测量的记载,这些在世界上都是比较早的。
1852年英国传教士伟烈亚力著文介绍孙子剩余定理,引起了欧洲学者的重视。在西方数学史著作中,一直把孙子的剩余定理称为“中国剩余定理”。
《张邱建算经》提出了另一个数学史上的名题,通常称为“百鸡问题”。卷下第三十八题“今有鸡翁一值钱五;鸡母一值钱三;鸡雏三值钱一。凡百钱买百鸡,问鸡翁母雏各几何?”这是一个不定方程问题,有三组答案。书中说:“鸡翁每增四、鸡母每减七,鸡雏每益三,即得”。
《周髀》和《九章算术》是中国数学的第一批奇葩。南北朝时祖冲之(5世纪)曾注《九章》,造缀述数十篇。他与儿子祖搄合撰《缀术》六卷(已佚),在数学方面有辉煌成就。
西晋以后、隋以前(4世纪初到7世纪初)的算术书,现在有传本的,如《孙子算经》(包括算筹计算法则,计算题举例)、《张邱建算经》(包括等差级数、二次方程、不定方程等问题的解法)、《五曹算经》(叙述田亩面积、军队给养、粟米互换、租税、体积、交易等计算方法)等,都是北方人的著作。它们收集了当时人民生活中所遇到的数学问题,总结了当时的数学成果,虽属浅近易晓,但对数学教育的普及和后来的数学发展,起了很大的作用。
我国数学家在世界数学史中,曾创造过大小几十项“世界纪录”,有些还保持了千年以上。本章从宏观角度介绍中国数学的三项世界纪录。
一、数学史最长的国家
中国数学发达的历史至少有四千多年,这是其他任何国家所不能比拟的。世界上其他文明古国的数学史,印度达3500年至4000年左右;希腊的从公元前六世纪到公元四世纪,达一千年;阿拉伯的数学仅限于8至13世纪,有500多年;欧洲国家的在10世纪以后才开始;日本的则迟至17世纪以后。所以我国是世界上数学历史最长的国家。下面分三个时期对我国的数学史作一个简介。
在这个时期,中国数学在许多方面居于世界最前列。例如《九章算术》“方程”章中用到正数和负数,这是人类文明中最早出现的负量概念,比印度早700多年;关于多元联立一次方程的解法,已经类似于西方19世纪初期的方法了。在圆周率的计算方面,刘徽和祖冲之的工作是很突出的。祖冲之的计算得出3.1415926<π<3.1415927,使我国在这方面领先了1000年。祖搄关于两个几何体的体积相等的“祖搄原理”,比意大利卡瓦列利的相同原理早1200年。《孙子算经》中的“物不知数”的解法更比西方早1300年。
唐朝继承了隋朝的科举制度,在唐初的科举制度里,特设“明算”科,举行数学考试。国子监里也设立“算学”,教学生学习数学。李淳风等人选定数学课本时,认为《周髀》是一个最宝贵的数学遗产,将它作为“十部算经”的第一种书,并给它一个《周髀算经》的名称,第二部算经便是《九章算术》。其它八部算经是:《海岛算经》(公元3世纪,刘徽著);《孙子算经》(约公元4~5世纪);《夏候阳算经》(公元5世纪,夏候阳著,用乘除快算方法解日常生活中的应用题);《张邱建算经》(公元5世纪,张邱建著);《缀术》(公元5世纪,祖冲之著);《五曹算经》、《五经算经》(公元6世纪,均为甄鸾著);《缉古算经》(公元7世纪,王孝通著)。李淳风等人奉皇帝令于656年完成校注和编定“算经十书”。后来《缀术》失传,用2世纪徐岳著、6世纪甄鸾注的《数术记遗》代替。