高一数学:期中试卷新人教版必修1
山东省临沂市第一中学高一数学期中考试试题_新课标人教A版必修1
高一数学上学期期中考试试题一.选择题(本大题共12小题. 每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知全集U ={1,2,3,4,5},A ={1,2,4},B ={2,3},则(C U A )∩B 是A .{2}B .{3}C .{1,2,3,4}D .{2,3,5} 2.设集合{|1A x =-≤x ≤2},B={x |0≤x ≤4},则A ∩B=A.[0,2]B.[1,2]C.[0,4]D.[1,4] 3.下列函数中,是奇函数且在区间),0(+∞上为减函数的是A.x y -=3B. 3x y =C. 1-=x yD.xy )21(= 4.函数()lg(2)f x x =+的定义域为A.(2,1)-B.(2,1]-C.[2,1)-D.[2,1]-- 5.己知函数y=x 2的值域是[1,4],则其定义域不.可能是 A.[1,2] B.[-23,2] C.[-2,-1] D.[-2,-1]∪{1} 6.与两个变量之间的关系最接近的是下列关系式中的 A.V=log 2t B.V=-log 2t C. V=2t-2 D. V=12(t 2-1)[]()7.⇔⋅2下列说法不正确的是( )A.方程f(x)=0有实根函数y=f(x)有零点B.-x +3x+5=0有两个不同实根C.y=f(x)在a,b 上满足f(a)f(b)<0,则y=f(x)在a,b 内有零点D.单调函数若有零点,则至多有一个8.函数log (1)a y x =-(0<a <1)的图象大致是( )A B C D 9.已知x 满足方程x x lg )2lg(2=-,则x 的值是( )A . 1 B. 2 C. 1,2 D. -1,2 10.已知函数)2(lg)(>+-=a x a x a x f ,现有21)1(-=f ,则)1(-f = A. 2 B. -2 C. 12- D. 1211.若()1,10lg lg ≠≠=+b a b a 则函数x a x f =)(与x b x g =)(的图象A.关于直线y=x 对称B.关于x 轴对称C.关于y 轴对称D. 关于原点对称12.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[x ]表示 “不超过x 的最大整数”,在数轴上,当x 是整数,[x ]就是x ,当x 不是整数时,[x ]是点x 左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如[-2]=-2,[-1.5]=-2,[2.5]=2. 求2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为 A. 0 B. -2 C. -1 D. 1二.填空题(本大题共4小题,每小题4分,共16分) 13.已知8.09.07.02.1,8.0,8.0===c b a ,则a 、b 、c 按从小到大的顺序排列为 ____. 14. 函数22(0)()1(0)x x f x x x -≤⎧=⎨+>⎩,则[(2)]f f -= ___ ;若()10f x =,则x= ______ .15.已知:集合{023}A =,,,定义集合运算A ※A={|,.}x x a b a A b A =+∈∈,则A ※A=_______ . 16.下列四个命题中正确的有 .① 函数y x=-32的定义域是{0}x x ≠; ②lg(2)x =-的解集为{3};③1320x--=的解集为3{1log 2}x x =-; ④lg(1)1x -<的解集是{11}x x <. 三.解答题(本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(1)计算41320.753440.0081(4)16---++-的值.(2)计算211log 522lg 5lg 2lg 502+++的值.{提示22lg 5(lg5)=,log a NaN =}18.(本小题满分12分)已知函数21()1f x x =+,令1()g x f x =(). (1)如图,已知()f x 在区间[)0+∞,的图象,请据此在该坐标系中补全函数()f x 在定义域内的图象,并在同一坐标系中作出函数()g x 的图象.请说明你的作图依据;(2)求证:()()1(0)f x g x x +=≠.19.(本小题满分12分)已知偶函数y=f (x )定义域是[-3,3],当x ≤0时,f (x )=-x 2-2x . (1)写出函数y=f (x )的解析式; (2)写出函数y=f (x )的单调递增区间.20.(本小题满分12分)求函数的值域.21.(本小题满分12分)国家购买某种农产品的价格为120元/担,某征税标准为100元征8元,计划可购m 万担.为了减轻农民负担,决定税率降低x 个百分点,预计收购量可增加x 2个百分点.⑴ 写出税收)(x f (万元)与x 的函数关系式;⑵ 要使此税收在税率调节后达到计划的78%,求此时x 的值.22.函数2()1ax b f x x +=+是定义在(,)-∞+∞上的奇函数,且12()25f =.(1)求实数,a b ,并确定函数()f x 的解析式; (2)用定义证明()f x 在(1,1)-上是增函数;(3)写出()f x 的单调减区间,并判断()f x 有无最大值或最小值?如有,写出最大值或最小值(本小问不需说明理由).数学答案13. b<a<c ;14. 17 、3或-5 ;15.{0,2,3,4,5,6}; 16. ②③ 三.解答题:17.解:(1)原式4133424(0.75)3422(0.3)(2)(2)2-⨯-⨯-=++-3230.32220.30.250.55---=++-=+=.(2) 原式21log 52212lg 52lg 2lg5lg 222=+++⋅log 21(lg5lg 2)221=++⋅=+18.(1)图像如右图. 根据函数是偶函数,图像关于y 轴对称作图. (2)证明:22222211(),1111()() 1.11x g x f x x x x f x g x x x ⎛⎫=== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭∴+=+=++ 19. (1) ⎩⎨⎧≤-->+-=0,20,222x x x x x x y (2) y ∈[-3,1] (3) 递增区间[-3,-1],[0,1]. 20. 解:设223t x x =--+,则221223(1)4,04,log 2,2,t x x x t t y =--+=-++∴<≤∴≥-∴≥-即函数的值域为[2,)-+∞.21解:(1)调节税率后税率为(8-)x %,预计可收购%)21(x m +万担,总为%)21(120x m + 万元,可得)%8%)(21(120)(x x m x f -+= )80(≤<x(2) 计划税收为%,78%8120⨯⨯m 即088422=-+x x )80(≤<x 解得2=x。
2023-2024学年高一(上)期中数学试卷(带解析)
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高一数学(必修1)期中模拟试卷3
高一数学(必修1)期中模拟试卷一、填空题:(共14小题,每题5分,共70分)1.设非空集合{}1,2,3,4,5,6,7A ⊆ 且当a A ∈ 时,必有8a A -∈则这样的A 共有 个2.已知集合(){},2M x y x y =+=,(){},4N x y x y =-=,那么集合M N ⋂= 3.A 、B 是两个非空集合,定义集合{}A B x x A x B -=∈∉且,若{}{}231,,11M x x N y y x x =-≤≤==-≤≤,则M N -= 4.若()()2212f x ax a x =+-+在()3,3-为单调函数,则a 的取值范围是 5.函数()21,(0)()log ,(0)f x x f x x x ⎧+≤⎪=⎨>⎪⎩ ,则(2)f -=6.已知,a b 为常数,若()()2243,1024f x x x f ax b x x =+++=++,则5a b -=7.若关于x 的方程()22220x m x m +-+=的两根一个比1大一个比1小,则m 的范围是 8.设lg 2a =,lg3b =,则5log 12等于 9.函数2231y x x =-+的单调递减区间为10.函数[]141,3,22xxy x -⎛⎫=-+∈- ⎪⎝⎭,则它的值域为11.若已知()()21,1,1f x x x =+∈-则函数()21x y f =-的值域是 12.若函数()()22224y a x a x =-+-+的定义域为R ,则a 的取值范围是13.{}{}3,4,5,4,5,6,7P Q ==,定义(){},,P Q a b a P b Q *=∈∈则P Q *中元素的个数为 14.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[]x 表示 “不超过x 的最大 整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个 整数点,这个函数叫做“取整函数”,也叫高斯(Gauss )函数.如 []22-=-,[]1.52-=-,[]2.52=则2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为二、解答题:(共6道题,共90分) 15.计算下列各题:①41320.753440.0081(4)(8)16---++- ②211log 522lg 5lg 2lg 502+++16.已知集合(){}22240A x R x a x a =∈---+=,(){}2223230B x R x a x a a =∈+-+--=, 若A B ≠∅,求实数a 的取值范围.17.已知奇函数()y f x =为定义在(1,1)-上的减函数,且2(1)(1)0f a f a ++-<,求实数a 的 取值范围。
高一上学期期中考试数学试卷(必修一)
高一期中考试数学试卷考生注意:1. 本试卷分选择题和非选择题两部分。
满分120分,考试时间120分钟。
2. 答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3. 考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0. 5毫米黑色墨水签字笔在答题卡上各题 的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本试卷主要命题范围:必修1全册。
一、选择题:本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符 合题目要求的。
1.已知集合 1{2,0,,3},{2}2A B x x =--=≥-,则A B = A.10,2⎧⎫⎨⎬⎩⎭ B.12,0,2⎧⎫-⎨⎬⎩⎭ C.13,2,0,2⎧⎫--⎨⎬⎩⎭ D.12⎧⎫⎨⎬⎩⎭2.已知函数2()3(0)x f x a a -=+≠,则()f x 的图象过定点A.(0,4)B.(2,4)C. (0,3)D. (4,3)3•函数()326x f x x =+-的零点所在的区间是A. (-1,0)B. (0,1)C. (1,2)D. (2,3) 4. 已知函数在区间[5,20]上单调递增,则实数k 的取值范围是A. {40}B. [40,160]C.(,40]-∞D.[160.)+∞5. 若11221272,,log 327a b c --⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系为 A. a b c << B. a c b << C.c b a << D. c a b << 6. 函数2()log ()21x f x x g x -==-与与在同一平面直角坐标系下的图象大致是7. 某产品的总成本y (万元)与产量x (台)之间的函数关系式为20.3210(00,)x y x x N -*=⨯+<<∈,若每台产品的售价为6万元,则当产量为8台时,生产者可获得的利润为A.. 18. 8 万元B. 19. 8 万元C. 20. 8 万元D. 29. 2 万元 8.已知定义在R 上的偶函数.在上单调递减,且(2)0f =,则满足不等式()0f x x >的x 的取值范围为 A. (0,2) B.(2,)+∞C.(,2)(0.2)-∞-D.(,2)(2,)-∞-+∞9. 若函数在区间(0,1)和区间(1,2)上均存在零点,则实数的取值范围是A. ()31-,-B.3,14⎛⎫ ⎪⎝⎭C.30,4⎛⎫ ⎪⎝⎭D.31,2⎛⎫ ⎪⎝⎭10. 若函数()f x 满足()()()(,)f x y f x f y x y R +=+∈,则下列各式不恒成立的是A.()()0f x f x -<B.(4)41f f =()C.11(1)22f f ⎛⎫= ⎪⎝⎭ D.(0)0f = 二、填空题:本题共4小题,每小题5分,共20分。
高一数学期中考试测试题(必修一含答案)
高一数学期中考试测试题(必修一含答案)高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。
给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0?Φ (B ){}12Φ?,(C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ?则A B A ?=3.下列四组函数,表示同一函数的是A .f (x )=2x ,g (x )=x B .f (x )=x ,g (x )=2x xC .2(),()2ln f x lnx g x x ==D .33()log (),()xa f x a a g x x =>0,α≠1=4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .35.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3)C .11,e ?? ???和(3,4) D .(),e +∞ 8.若2log 31x =,则39xx+的值为A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x)的对应关系见下表,则函数f(x)在区间[1,6] 上的零点至少有(A) 2(B) 3(C) 4(D) 5第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题4分,共16分。
人教版高一数学上学期期中考试试题及详细答案解析全文
人教版高一数学上学期期中考试数学试题(满分150分时间120分钟)一、单选题(12小题,每题5分)。
1.已知集合(){}{}0222>==-==x ,y x B ,x x lg y x A x,是实数集,则()A.B.C.D.以上都不对2.下列函数中,是偶函数且在上为减函数的是()A.2xy = B.xy -=2C.2-=x y D.3xy -=3.下列各组函数中,表示同一函数的是()A.2xy =和()2x y =B.()12-=x lg y 和()()11-++=x lg x lg y C.2x log y a =和xlog y a 2= D.x y =和xa alog y =4.已知3110220230...c ,b ,.log a ===,则c ,b ,a 的大小关系是()A.cb a << B.b ac << C.bc a << D.ac b <<5.在同一直角坐标系中,函数()()()x log x g ,x x x f a a=≥=0的图像可能是()A. B. C. D.6.若132=log x ,则x x 93+的值为()A.3B.C.6D.7.函数()x x x f 31+-=的单调递增区间是()A.B.C.D.8.某同学求函数()62-+=x x ln x f 零点时,用计算器算得部分函数值如下表所示:则方程062=-+x x ln 的近似解(精确度0.1)可取为()A.2.52B.2.625C.2.66D.2.759.函数()xx lg x f 1-=的零点所在的区间是()A.(0,1)B.(1,10)C.(10,100)D.(100,+∞)10.已知函数()2211xxx f -+=,则有()A.()x f 是奇函数,且()x f x f -=⎪⎭⎫⎝⎛1 B.()x f 是奇函数,且()x f x f =⎪⎭⎫⎝⎛1C.()x f 是偶函数,且()x f x f -=⎪⎭⎫⎝⎛1 D.()x f 是偶函数,且()x f x f =⎪⎭⎫⎝⎛111.如图,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系,大致是()A. B. C. D.12.已知函数()⎪⎩⎪⎨⎧>+-≤<=0621100x ,x x x ,x lg x f ,若a ,b ,c 均不相等,且()()()c f b f a f ==,则abc的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题(4小题,每题5分)13.若对数函数()x f 与幂函数()x g 的图象相交于一点(2,4),则()()=+44g f ________.14.对于函数f (x )的定义域中任意的x 1,x 2(x 1≠x 2),有如下结论:①f (x 1+x 2)=f (x 1)f (x 2);②f (x 1x 2)=f (x 1)+f (x 2);③()()02121>--x x x f x f .当f (x )=e x 时,上述结论中正确结论的序号是______.15.已知3102==b,lg a ,用a,b 表示=306log _____________.16.设全集{}654321,,,,,U =,用U 的子集可表示由10,组成的6位字符串,如:{}42表示的是第2个字符为1,第4个字符为1,其余均为0的6位字符串010100,并规定空集表示的字符串为000000.(1)若,则M C U 表示6位字符串为_____________.(2)若,集合表示的字符串为101001,则满足条件的集合的个数为____个.三、解答题。
最新高一数学必修一期中考试试题及答案(1)
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .xy 2= B .x y 2log = C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛⎫⎪ ⎪⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
2023~2024学年第一学期高一期中考试数学试题[含答案]
在
上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2
或
0(舍去),
f x
故
的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )
,
2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0
高一数学必修一期中考试试题及答案
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
高一数学必修一期中试卷及答案
高一数学必修一期中试卷及答案1、已知,当时,求(). [单选题] * A.7B.-7(正确答案)C.0D.无法确定2. 下列语句中是集合的是() [单选题] *A.浙江的所有高楼大厦的全体B.面积较小的三角形的全体C.与0相差不多的数的全体D.中国队的女排运动员的全体(正确答案)3.的定义域是(). [单选题] *A.(-∞,0)B.(0,+∞)C.(-∞,+∞)(正确答案)D.∅4.函数,则当时,(). [单选题] *A.1B.10(正确答案)C.-10D.-35.已知 A={a,0},B={1,2}, A∩B={1},则(). [单选题] * A.1(正确答案)B.1,2C.2D.06.,此函数是()函数. [单选题] *A.一次函数B.二次函数(正确答案)C.反比例函数D.正比例函数7.选出下列选项中正确的一项,4(). [单选题] * A.∈(正确答案)B.∉C.D.8.,,则的结果是(). [单选题] *A.{1,2,3,4,5,6}B.{1,2,3,4,6}C.{2,6}(正确答案)D.∅9.集合,用区间的形式表示出来是(). [单选题] *A. (-∞,7)B. (0,7)C. (7, +∞)(正确答案)D.∅10.已知m,n为实数,则∣m∣=∣n∣是的()条件. [单选题] * A.充分B.必要C.既不充分也不必要D.充分必要(正确答案)11.比较大小() [单选题] *A.>B.<(正确答案)C.≥D.≤12. 下列关系正确的是() [单选题] *A.0∈c80937d345258f239c80937d345258f239b630bd428ad-20221229-13401620.png' />B.π∈QC. ∈R(正确答案)D. ∈Q13.下列关系中,正确的是() [单选题] *A. ∅∈{a}B.a∉{a}C.{a}∈{a,b}D.a∈{a,b}(正确答案)14. 设集合M={x|x},a=4,则下列正确的关系是() [单选题] *A.a∉M(正确答案)B.{a}∈MC. a∈MD.{a}∉M15. 集合M={x|2≤x≤8,且x Z},则集合M元素个数为() [单选题] *A.6B.64C.7(正确答案)D.12816. 集合A={1,2,4,7,9},B={1,3,5,6,7,9},则A B=() [单选题] *A.{1,2,3,4,5,6,7,9}B.{1,7,9}(正确答案)C.{2,4,3,5}D. ∅17. 若M={2,4,6},N={1,3},则M N=() [单选题] *A.{1,2,4}B.{1,2,3,4,6}(正确答案)C. ∅D.{ ∅}18. 集合M={(x ,y)|x+y=2},N={(x ,y)|x-y=4},则集合M N为() [单选题] *A.x=3,y=-1B.(3,-1)C.{3, -1}D.{(3,-1)}(正确答案)19. 设集合A={1},B={1,2},C={1,2,3},则(A B) C=() [单选题] *A.{1,2,3}B.{1,2}(正确答案)C.{1}D.{3}20. 已知全集U=R,A={x|x1},则=() [单选题] *A.{x|x>1}B.{x|0C.{x|x<1}(正确答案)D. ∅21.下列命题正确的是() [单选题] *A. 若a>-(正确答案)b,则c+a>c-bB.若a>b,则a-b>2d则ac>bdD.若a>b,c>b,则a>c22.若a>b,则(). [单选题] *A.b ²≤a ²B.a²>b²C.a²≤b²D.以上都不对(正确答案)23.若,则下列关系式中正确的是(). [单选题] * A. 2x>x²>xB. x²>2x>xC. 2x>x>x²(正确答案)D. x²>x>2x24.不等式的解集为(). [单选题] *A. (-∞,2)∪(3, +∞)B. (-∞,-1) ∪(6, +∞)(正确答案)C.(2,3)D.(-1,6)25.不等式+->0的解集为(). [单选题] *A.(–1,3)(正确答案)B.(–3,1)C.(-∞,–1 )∪(3,+ ∞)D.(-∞,3)26.解集为{x|x<–2或x>3}的不等式为(). [单选题] * A.(x+1)(x-2)<0B.(x+2)(x-3)>0(正确答案)C.x2–2x–3>0D.x2-2x-3<027.若不等式的解集是(-4,3),则c的值等于(). [单选题] * A.12B.-12(正确答案)C.11D.-1128.若|m-5|=5-m,则m的取值是(). [单选题] *A.m >5B.m≥5C.m<5D.m≤5.(正确答案)29.求不等式︱-1︱≤2的解集为(). [单选题] *A.(-∞,3]B.[-1,+∞)C.[-1,3](正确答案)D.(-∞,-1)∪(3,+∞)30.设不等式的解集为(-1,2),则=(). [单选题] *A.1/4B.1/2C.2/3D.3/2(正确答案)31.已知函数的定义域是() [单选题] * A.{x|x≥1}(正确答案)B.{x|x≤1}C. {x|x>1}D. {x|x<1}32.与函数相等的函数是() [单选题] * A. y=(x+1) ºB. y=t+1(正确答案)C.D. y=|x+1|33.设函数f(x)=则f(3)=() [单选题] * A.0.2B.3C.2/3(正确答案)D.13/934.函数的定义域为() [单选题] * A. (1, +∞)B. [1, +∞)C. [1,2)D.[1,2) ∪(2, +∞)(正确答案)35.已知函数,其定义域为() [单选题] *A.{x|x≥1或x≤-3}B. {x|-1≤x≤3}C.{x|x≥3或x≤-1}(正确答案)D. {x|-3≤x≤1}36.已知函数,则f(f(4))=() [单选题] *A.-2B.0C.4(正确答案)D.1637.已知函数f(x)=ax³+bx+4(a,b不为零),且,则等于() [单选题] *A.-10B.-2(正确答案)C.-6D.1438.设函数f(x)=x²+2(4-a)x+2在区间 (-∞,3]上是减函数,则实数a的取值范围是() [单选题] *A.a≥-7B.a≥7(正确答案)C.a≥3D.a≤-739.已知函数,若,则的值是(). [单选题] * A.-2(正确答案)B.2或-2.5C.2或-2D.2或-2或-2.540.一个偶函数定义在[-7,7]上,它在[0,7]上的图象如图所示,下列说法正确的是()[单选题] *A.这个函数仅有一个单调增区间B.这个函数有两个单调减区间C.这个函数在其定义域内有最大值是7(正确答案)D.这个函数在其定义域内有最小值是-741.如果偶函数在区间(0,1)上是减函数且最大值为3,则在区间(-1,0)上是() [单选题] *A.增函数且最大值为3(正确答案)B.增函数且最小值为3C.减函数且最大值为3D.减函数且最小值为342.本场考试需要2小时,在本场考试中,钟表的时针转过的弧度数为() [单选题] *A.B.(正确答案)C.D.43.930°=() [单选题] *A.B.C.D.(正确答案)44.将轴正半轴绕原点逆时针旋转30°,得到角α,则下列与α终边相同的角是() [单选题] *A.330°B.-330°(正确答案)C.210°D.-210二、判断题,正确的打√,错误的打×(每小题2分,共6题,共12分)1. 集合可以写成. [判断题] *对(正确答案)错2.是一个函数解析式. [判断题] *对错(正确答案)3.集合,集合,则集合. [判断题] *对错(正确答案)4.是空集. [判断题] *对错(正确答案)5.. [判断题] *对(正确答案)错6.,其中元素一共有5个. [判断题] *对(正确答案)错。
高一上学期期中考试数学试卷含答案(共3套,新课标版)
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
(完整版)高一数学第一学期期中考试试题及答案
A高一数学(必修1)第I 卷 选择题(共60分)一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U ={0,1,2,3,4},M ={0,1,2},N ={2,3},则(C u M )∩N =A .B .C .D .{}4,3,2{}2{}3{}4,3,2,1,02.设集合,,给出如下四个图形,其中能表示从集{}02M x x =≤≤{}02N y y =≤≤合到集合的函数关系的是M NA .B .C .D .3. 设,用二分法求方程内近似解的过程中()833-+=x x f x()2,10833∈=-+x x x在得,则方程的根落在区间()()()025.1,05.1,01<><f f f A. B. C. D. 不能确定(1,1.25)(1.25,1.5)(1.5,2)4. 二次函数的值域为])5,0[(4)(2∈-=x x x x f A. B. C. D.),4[+∞-]5,0[]5,4[-]0,4[-5. =+--3324log ln 01.0lg 2733e A .14 B .0C .1 D . 66. 在映射,,且,则中B A f →:},|),{(R y x y x B A ∈==),(),(:y x y x y x f +-→A 中的元素在集合B 中的像为)2,1(-A . B .C .D . )3,1(--)3,1()1,3()1,3(-7.三个数,,之间的大小关系为231.0=a 31.0log 2=b 31.02=c A .a <c <b B .a <b <c C .b <a <cD .b <c <a8.已知函数在上为奇函数,且当时,,则当时,()y f x=R0x≥2()2f x x x=-0x<函数的解析式为()f xA. B.()(2)f x x x=-+()(2)f x x x=-C. D.()(2)f x x x=--()(2)f x x x=+9.函数与在同一坐标系中的图像只可能是xy a=log(0,1)ay x a a=->≠且A. B. C. D.10.设,则2log2log<<baA. B.10<<<ba10<<<abC . D.1>>ba1>>ab11.函数在区间上的最大值为5,最小值为1,则实数m的取值54)(2+-=xxxf],0[m范围是A. B.[2,4] C. [0,4] D.),2[+∞]4,2(12.若函数()f x为定义在R上的奇函数,且在(0,)+∞内是增函数,又(2)f0=,则不等式的解集为)(<xxfA.(2,0)(2,)-+∞B.(,2)(0,2)-∞-C.(,2)(2,)-∞-+∞D.)2,0()0,2(-高一数学(必修1)答题卷题 号一二三总分得 分一、选择题:(本大题小共12题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)题号123456789101112答案第II 卷 非选择题(共90分)二、填空题:(本大题共4小题,每小题4分,共16分)13.函数,则的值为.⎩⎨⎧≥<--=-)2(2)2(32)(x x x x f x )]3([-f f 14.计算:.=⋅8log 3log 9415.二次函数在区间上是减少的,则实数k 的取值范围为 842--=x kx y ]20,5[.16.给出下列四个命题:①函数与函数表示同一个函数;||x y =2)(x y =②奇函数的图像一定通过直角坐标系的原点;③函数的图像可由的图像向右平移1个单位得到;2)1(3-=x y 23x y =④若函数的定义域为,则函数的定义域为;)(x f ]2,0[)2(x f ]4,0[⑤设函数是在区间上图像连续的函数,且,则方程()x f []b a ,()()0<⋅b f a f 在区间上至少有一实根;()0=x f []b a ,得分评卷人得分评卷人其中正确命题的序号是 .(填上所有正确命题的序号)三、解答题:(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)已知全集,集合,,R U ={}1,4>-<=x x x A 或{}213≤-≤-=x x B (1)求、;B A )()(BC A C U U (2)若集合是集合A 的子集,求实数k 的取值范围.{}1212+≤≤-=k x k x M 18. (本题满分12分)已知函数.1212)(+-=x x x f ⑴判断函数的奇偶性,并证明;)(x f ⑵利用函数单调性的定义证明:是其定义域上的增函数.)(x f 19. (本题满分12分)已知二次函数在区间上有最大值,求实数的值2()21f x x ax a =-++-[]0,12a 20. (本题满分12分)函数)1,0)(3(log )(≠>-=a a ax x f a (1)当时,求函数的定义域;2=a )(x f (2)是否存在实数,使函数在递减,并且最大值为1,若存在,求出的值;a )(x f ]2,1[a 若不存在,请说明理由.21. (本题满分13分)广州亚运会纪念章委托某专营店销售,每枚进价5元,同时每销售一枚这种纪念章需向广州亚组委交特许经营管理费2元,预计这种纪念章以每枚20元的价格销售时该店一年可销售2000枚,经过市场调研发现每枚纪念章的销售价格在每枚20元的基础上每减少一元则得分评卷人增加销售400枚,而每增加一元则减少销售100枚,现设每枚纪念章的销售价格为元.x (1)写出该专营店一年内销售这种纪念章所获利润(元)与每枚纪念章的销售价格(元)y x 的函数关系式(并写出这个函数的定义域);(2)当每枚纪念章销售价格为多少元时,该特许专营店一年内利润(元)最大,并求出x y 最大值.22. (本题满分13分)设是定义在R 上的奇函数,且对任意a 、b ,当时,都有)(x f R ∈0≠+b a .0)()(>++ba b f a f (1)若,试比较与的大小关系;b a >)(a f )(b f (2)若对任意恒成立,求实数k 的取值范围.0)92()329(>-⋅+⋅-k f f xx x ),0[+∞∈x 高一数学参考答案一、选择题:题号123456789101112答案CDBCBDCAABBD二、填空题:13.14. 15. 16. ③⑤8143101,0()0,( -∞三、解答题:17. (1){}{}32213≤≤-=≤-≤-=x x x x B ………2分,∴{}31≤<=x x B A ………4分{}3,1)()(>≤=x x x B C A C U U 或 ………6分(2)由题意:或, 112>-k 412-<+k ………10分解得:或. 1>k 25-<k ………12分18. (1)为奇函数.)(x f ………1分 的定义域为,,012≠+x∴)(x f R ………2分又 )(121221211212)(x f x f x x x x xx -=+--=+-=+-=--- 为奇函数.)(x f ∴………6分(2)1221)(+-=x x f 任取、,设,1x R x ∈221x x <)1221(1221()()(2121+--+-=-x x x f x f )121121(212+-+=x x )12)(12()22(22121++-=x x x x , 又,022********<-∴<∴<x x x x x x 或 12210,210x x +>+>.在其定义域R 上是增函数.)()(0)()(2121x f x f x f x f <∴<-∴或)(x f ∴………12分19. 函数的对称轴为:,)(x f x a =当时,在上递减,,即; 0<a ()f x ]1,0[2)0(=∴f 1,21-=∴=-a a ………4分当时,在上递增,,即; 1>a ()f x ]1,0[2)1(=∴f 2=a ………8分当时,在递增,在上递减,,即,01a ≤≤()f x ],0[a ]1,[a 2)(=∴a f 212=+-a a 解得:与矛盾;综上:或 251±=a 01a ≤≤1a =-2=a ………12分20. (1)由题意:,,即,)23(log )(2x x f -=023>-∴x 23<x 所以函数的定义域为;)(x f 23,(-∞………4分(2)令,则在上恒正,,在ax u -=3ax u -=3]2,1[1,0≠>a a ax u -=∴3上单调递减,]2,1[,即023>⋅-∴a )23,1()1,0( ∈a ………7分又函数在递减,在上单调递减,,即)(x f ]2,1[ax u -=3 ]2,1[1>∴a )23,1(∈a ………9分又函数在的最大值为1,, )(x f ]2,1[1)1(=∴f 即,1)13(log )1(=⋅-=a f a 23=∴a ………11分与矛盾,不存在. 23=a )23,1(∈a a ∴………12分21. (1)依题意⎩⎨⎧∈<<---∈≤<--+=++N x x x x N x x x x y ,4020),7)](20(1002000[,207),7)](20(4002000[ ∴, ⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,4020],41089)247[(100,207],81)16[(40022………5分定义域为{}407<<∈+x N x ………7分 (2) ∵,⎪⎩⎪⎨⎧∈<<---∈≤<---=++N x x x N x x x y ,402041089247[(100,207],81)16[(40022∴ 当时,则,(元)020x <≤16x =max 32400y =………10分当时,则,(元)2040x <<472x =max 27225y =综上:当时,该特许专营店获得的利润最大为32400元. 16x =………13分22. (1)因为,所以,由题意得:b a >0>-b a ,所以,又是定义在R 上的奇函数,0)()(>--+ba b f a f 0)()(>-+b f a f )(x f ,即.)()(b f b f -=-∴0)()(>-∴b f a f )()(b f a f >………6分(2)由(1)知为R 上的单调递增函数,)(x f ………7分对任意恒成立,0)92()329(>-⋅+⋅-k f f x x x ),0[+∞∈x ,即,)92()329(k f f x x x -⋅->⋅-∴)92()329(x x x k f f ⋅->⋅-………9分,对任意恒成立,x x x k 92329⋅->⋅-∴x x k 3293⋅-⋅<∴),0[+∞∈x 即k 小于函数的最小值. ),0[,3293+∞∈⋅-⋅=x u xx………11分令,则,xt 3=),1[+∞∈t 13131(323329322≥--=-=⋅-⋅=∴t t t u x x .1<∴k (13)。
人教A版 新教材高中数学必修第一册 期中检测试卷
(1)求 A∪B;
(2)若 A∩C=∅,求 m 的取值范围.
解
(1)∵A={x|x2+ax+b=0}={-1,2},即1Leabharlann a+b=0,a=-1, 解得
4+2a+b=0,
b=-2,
∴B={x|bx2+ax+1=0}={x|-2x2-x+1=0}={x|2x2+x-1=0}= -1,12 , ∴A∪B
C.当 n>0 时,幂函数 y=xn 是增函数 D.当 n<0 时,幂函数 y=xn 在第一象限内函数值随 x 值的增大而减小 答案 BD 解析 由题意,对于 A,例如幂函数 f(x)=x-1 的图象不经过点(0,0),所以不正确; 对于 B,根据幂函数的概念,可得幂函数的图象不可能过第四象限,所以是正确的; 对于 C,例如幂函数 f(x)=x2 在其定义域上不是单调函数,所以不正确; 对于 D,根据幂函数的图象与性质,可得当 n<0 时,幂函数 y=xn 在第一象限内单调递减, 所以是正确的. 故选 BD. 10.下列命题为真命题的是( ) A.∃x∈R,x2-x+1≤0 B.当 ac>0 时,∃x∈R,ax2+bx-c=0 C.|x-y|=|x|-|y|成立的充要条件是 xy≥0 D.“-2<x<3”是“(x2-2|x|+4)(x2-2x-3)<0”的必要不充分条件 答案 BD
答案 D
解析 当 a≤0 时,f(x)在(0,+∞)上单调递减,不满足条件,
当 a>0 时,ax+8x≥2 ax·8x=4 2a(x>0) ,
当且仅当 ax=8x时,函数取得最小值,解得 x=2 a2a,
即 2 a2a=4 (a>0) ,解得 a=12.
5.设 x,y∈R,则“x+y>2”是“x,y 中至少有一个数大于 1”的( )
人教版新教材高中数学高一上学期期中考试数学试卷(共四套)
人教版新教材高中数学高一上学期期中考试数学试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{0,1,2}A =,那么( ) A .0A ⊆B .0A ∈C .{1}A ∈D .{0,1,2}A2.集合{|14}A x x =∈-<<N 的真子集个数为( ) A .7B .8C .15D .163.命题“x ∀∈R ,||10x x -+≠”的否定是( ) A .x ∃∈R ,||10x x -+≠ B .x ∃∈R ,||10x x -+= C .x ∀∈R ,||10x x -+=D .x ∀∉R ,||10x x -+≠4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( ) A .62%B .56%C .46%D .42%5.已知集合{|10}A x x =-≥,2{|280}B x x x =--≥,则()AB =R( )A .[2,1]-B .[1,4]C .(2,1)-D .(,4)-∞6.甲、乙两人沿着同一方向从A 地去B 地,甲前一半的路程使用速度1v ,后一半的路程使用速度2v ;乙前一半的时间使用速度1v ,后一半的时间使用速度2v ,关于甲,乙两人从A 地到达B 地的路程与时间的函数图像及关系(其中横轴t 表示时间,纵轴s 表示路程12v v <)可能正确的图示分析为( )A .B .C .D .7.若函数24()43x f x mx mx -=++的定义域为R ,则实数m 的取值范围是( )A .3(0,]4B .3[0,]4C .3[0,)4D .3(0,)48.若定义在R 的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -≥的x 的取值范围是( ) A .[1,1][3,)-+∞ B .[3,1][0,1]-- C .[1,0][1,)-+∞ D .[1,0][1,3]-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1x ≥C .01x <≤D .11x -≤≤10.下列各项中,()f x 与()g x 表示的函数不相等的是( )A .()f x x =,()g x =B .()f x x =,2()g x =C .()f x x =,2()x g x x=D .()|1|f x x =-,1(1)()1(1)x x g x x x -≥⎧=⎨-<⎩11.若函数22,1()4,1x a x f x ax x ⎧-+≤-=⎨+>-⎩在R 上是单调函数,则a 的取值可能是( )A .0B .1C .32D .312.下列函数中,既是偶函数又在(0,3)上是递减的函数是( )A .21y x =-+B .3y x =C .1y x =-+D .y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20182018a b +=________.14.已知(1)f x +的定义域为[2,3)-,则(2)f x -的定义域是 . 15.若12a b <-≤,24a b ≤+<,则42a b -的取值范围_________.16.已知函数21()234f x x x =-++,3()|3|2g x x =-,若函数(),()()()(),()()f x f xg x F x g x f x g x <⎧=⎨≥⎩, 则(2)F = ,()F x 的最大值为 .四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)设集合{25}A x x =-≤≤,{121}B x m x m =-≤≤+. (1)若A B =∅,求m 的范围; (2)若A B A =,求m 的范围.18.(12分)已知命题:p x ∃∈R ,2(1)(1)0m x ++≤,命题:q x ∀∈R ,210x mx ++>恒成立.若,p q 至少有一个为假命题,求实数m 的取值范围.19.(12分)已知函数26,0()22,0x x f x x x x +≤⎧=⎨-+>⎩.(1)求不等式()5f x >的解集;(2)若方程2()02m f x -=有三个不同实数根,求实数m 的取值范围.20.(12分)已知奇函数222,0()0,0,0x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩. (1)求实数m 的值; (2)画出函数的图像;(3)若函数()f x 在区间[1,||2]a --上单调递增,试确定a 的取值范围.21.(12分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x 台(x 是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费. (1)求该月需用去的运费和保管费的总费用()f x ;(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.22.(12分)已知()f x 是定义在[5,5]-上的奇函数,且(5)2f -=-,若对任意的m ,[5,5]n ∈-,0m n +≠,都有()()0f m f n m n+>+.(1)若(21)(33)f a f a -<-,求a 的取值范围;(2)若不等式()(2)5f x a t ≤-+对任意[5,5]x ∈-和[3,0]a ∈-都恒成立,求t 的取值范围.【参考答案】第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】∵集合{0,1,2}A =,∴0A ∈,故A 错误,B 正确; 又∵{1}A ⊆,∴C 错误; 而{0,1,2}A =,∴D 错误. 2.【答案】C【解析】{0,1,2,3}A =中有4个元素,则真子集个数为42115-=. 3.【答案】B【解析】全称量词命题的否定是存在量词命题. 4.【答案】C【解析】由Venn 图可知,既喜欢足球又喜欢游泳的学生所占比60%82%96%46%X =+-=, 故选C .5.【答案】C【解析】∵{|10}{|1}A x x x x =-≥=≥,2{|280}{|2B x x x x x =--≥=≤-或4}x ≥,∴{|2A B x x =≤-或1}x ≥,则()(2,1)A B =-R.6.【答案】A【解析】因为12v v <,故甲前一半路程使用速度1v ,用时超过一半,乙前一半时间使用速度1v , 行走路程不到一半. 7.【答案】C【解析】2430mx mx ++≠,所以0m =或000m m Δ≠⎧⇒=⎨<⎩或2030416120m m m m ≠⎧⇒≤<⎨-<⎩. 8.【答案】D【解析】∵()f x 为R 上奇函数,在(,0)-∞单调递减,∴(0)0f =,(0,)+∞上单调递减.由(2)0f =,∴(2)0f -=,由(1)0xf x -≥,得0(1)0x f x ≥⎧⎨-≥⎩或0(1)0x f x ≤⎧⎨-≤⎩,解得13x ≤≤或10x -≤≤,∴x 的取值范围是[1,0][1,3]-,∴选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AC【解析】∵不等式21x ≤,∴11x -≤≤,“01x <≤”和“10x -≤<”是不等式21x ≤成立的一个充分不必要条件. 10.【答案】ABC【解析】A ,可知()||g x x =,()f x x =,两个函数对应关系不一样,故不是同一函数;B ,()f x x =,x ∈R ,2()g x x ==,0x ≥,定义域不一样;C ,()f x x =,x ∈R ,2()x g x x=,0x ≠,定义域不一样;D ,1(1)()|1|1(1)x x f x x x x -≥⎧=-=⎨-<⎩与()g x 表示同一函数.11.【答案】BC【解析】当1x ≤-时,2()2f x x a =-+为增函数, 所以当1x >-时,()4f x ax =+也为增函数,所以0124a a a >⎧⎨-+≤-+⎩,解得503a <≤.12.【答案】AC【解析】A :21y x =-+是偶函数,且在(0,3)上递减,∴该选项正确; B :3y x =是奇函数,∴该选项错误;C :1y x =-+是偶函数,且在(0,3)上递减,∴该选项错误;D :y =第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】由集合相等可知0ba=,则0b =, 即{}{}21,,00,,a a a =,故21a =,由于1a ≠,故1a =-,则20182018101a b +=+=. 14.【答案】[)1,6【解析】∵(1)f x +的定义域为[2,3)-,∴23x -≤<,∴114x -≤+<, ∴()f x 的定义域为[1,4)-; ∴124x -≤-<,∴16x ≤<,∴(2)f x -的定义域为[1,6). 15.【答案】(5,10)【解析】由题设42()()a b x a b y a b -=-++,42()()a b x y a y x b -=++-,则42x y y x +=⎧⎨-=-⎩,解得31x y =⎧⎨=⎩,所以423()()a b a b a b -=-++,12a b <-≤,33()6a b <-≤,24a b ≤+<,所以53()()10a b a b <-++<,故54210a b <-<. 16.【答案】0,6【解析】因为(2)6f =,(2)0g =,所以(2)0F =,画出函数()F x 的图象(实线部分),由图象可得,当6x =时,()F x 取得最大值6.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)6m >或32m <-;(2)2m <-或12m -≤≤.【解析】(1)已知{25}A x x =-≤≤,{121}B x m x m =-≤≤+. 当B =∅时,有121m m ->+,即2m <-,满足A B =∅; 当B ≠∅时,有121m m -≤+,即2m ≥-,又A B =∅,则15m ->或212m +<-,即6m >或322m -≤<-,综上可知,m 的取值范围为6m >或32m <-.(2)∵A B A =,∴B A ⊆,当B =∅时,有121m m ->+,即2m <-,满足题意;当B ≠∅时,有121m m -≤+,即2m ≥-,且12215m m -≥-⎧⎨+≤⎩,解得12m -≤≤,综上可知,m 的取值范围为2m <-或12m -≤≤. 18.【答案】2m ≤-或1m >-.【解析】当命题p 为真时,10m +≤,解得1m ≤-; 当命题q 为真时,24110Δm =-⨯⨯<,解得22m -<<,当命题p 与命题q 均为真时,则有12122m m m ≤-⎧⇒-<≤-⎨-<<⎩,命题q 与命题p 至少有一个为假命题,所以此时2m ≤-或1m >-.19.【答案】(1)(1,0](3,)-+∞;(2)(2,(2,2)-. 【解析】(1)当0x ≤时,由65x +>,得10x -<≤; 当0x >时,由2225x x -+>,得3x >, 综上所述,不等式的解集为(1,0](3,)-+∞.(2)方程2()02m f x -=有三个不同实数根, 等价于函数()y f x =与函数22m y =的图像有三个不同的交点,如图所示,由图可知,2122m <<,解得2m -<<2m <<,所以实数m 的取值范围为(2,(2,2)-.20.【答案】(1)2m =;(2)图像见解析;(3)[3,1)(1,3]--. 【解析】(1)当0x <时,0x ->,22()()2()2f x x x x x -=--+-=--, 又因为()f x 为奇函数,所以()()f x f x -=-, 所以当0x <时,2()2f x x x =+,则2m =.(2)由(1)知,222,0()0,02,0x x x f x x x x x ⎧-+>⎪==⎨⎪+<⎩,函数()f x 的图像如图所示.(3)由图像可知()f x 在[1,1]-上单调递增,要使()f x 在[1,||2]a --上单调递增, 只需1||21a -<-≤,即1||3a <≤,解得31a -≤<-或13a <≤, 所以实数a 的取值范围是[3,1)(1,3]--. 21.【答案】(1)144()4f x x x=+(036x <≤,*x ∈N );(2)只需每批购入6张书桌,可以使资金够用.【解析】(1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值为20x 元,由题意36()420f x k x x=⋅+⋅, 由4x =时,()52f x =,得161805k ==,所以144()4f x x x=+(036x <≤,*x ∈N ). (2)由(1)知,144()4f x x x=+(036x <≤,*x ∈N ),所以()48f x ≥=(元),当且仅当1444x x=,即6x =时,上式等号成立,故只需每批购入6张书桌,可以使资金够用.22.【答案】(1)8(2,]3;(2)3(,]5-∞.【解析】(1)设任意1x ,2x 满足1255x x -≤<≤, 由题意可得12121212()()()()()0()f x f x f x f x x x x x +--=-<+-,即12()()f x f x <,所以()f x 在定义域[5,5]-上是增函数,由(21)(33)f a f a -<-,得521553352133a a a a -≤-≤⎧⎪-≤-≤⎨⎪-<-⎩,解得823a <≤,故a 的取值范围为8(2,]3.(2)由以上知()f x 是定义在[5,5]-上的单调递增的奇函数,且(5)2f -=-, 得在[5,5]-上max ()(5)(5)2f x f f ==--=,在[5,5]-上不等式()(2)5f x a t ≤-+对[3,0]a ∈-都恒成立, 所以2(2)5a t ≤-+,即230at t -+≥,对[3,0]a ∈-都恒成立, 令()23g a at t =-+,[3,0]a ∈-,则只需(3)0(0)0g g -≥⎧⎨≥⎩,即530230t t -+≥⎧⎨-+≥⎩,解得35t ≤,故t 的取值范围为3(,]5-∞.人教版新教材高中数学高一上学期期中考试数学试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
高一年级期中考试数学试卷(内容:必修一第一至三章)
高一年级期中考试数学试卷(内容:必修一第一至三章)一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数与x y =有相同图象的一个函数是( ).A .2x y =B .xx y 2= C .)10(log ≠>=a a a y xa 且 D .x a a y log = (01)a a >≠且2.已知,a b 是非负整数,记集合{(,)|||1}M a b a b ab =-+=,则M 的元素的个数 为( ).A .1个B .2个C .3个D .4个 3.若1a b >>,且10log log 3a b b a +=,则log log a b b a -=( ). A .83 B .83- C .43 D .43-4.某商品1月份降价10%,此后受市场因素影响,价格连续上涨三次,使目前售价与1月份降价前相同,则三个价格平均回升率为( ).A 1B 1C .1D .1 5.若函数2()4f x x x a =--的零点个数为3,则a =( ).A .3B .4C .5D .6 6.如图,正比例函数y x =和(0)y ax a =>的图象与反比例函数(0)ky k x=>的图象分别相交于第一象限的A 点和C 点,若Rt AOB ∆和Rt COD ∆的面积分别为1S 和2S ,则1S 与2S 的关系是( ).A .12S S >B .12S S =C .12S S <D .不确定7.设{,}M a b =,{1,0,1}N =-,从M 到N 的映射f 满足()()0f a f b +=,则这样的映射f 的个数为( ).A .1B .2C .3D .48.设0,()x x e aa f x a e>=+是R 上的偶函数,则a =( ).A .12B .1C .2D .39.函数()ln(f x x =,若实数,a b 满足()(1)0f a f b +-=,则a b +=( ). A .1- B .0 C .1 D .不确定10.函数y =).A .(-∞B .C .)+∞D .[0,)+∞ 11.942--=a ax y 是偶函数,且在),0(+∞是减函数,则整数a 组成的集合为( ).A .{1,3,5}B .{1,3,5}-C .{1,1,3}-D .{1,1,3,5}-12.设函数12(),(lg )x f x a f a -==且a 的值组成的集合为( ).A .{}10B 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.若集合22{2,}{24,1,2,3}{66}a a a a -=-- ,则实数a 的值组成的集合为 . 14.已知一次函数()f x 的图象过点(0,2)-,一次函数()g x 的图象过点(0,0), 若[()][()]32f g x g f x x ==-,则()()f x g x += .15.已知函数2()680,[1,]f x x x x a =-+=∈,并且函数()f x 的最小值为()f a ,则a 的取值范围是________________.16.定义在R 上的函数()f x 是奇函数,且当0x >时,()1x f x e =+,则x R ∈时,()f x =__________.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)设集合2{|}{},{(,)}A x x ax b x a M a b =++===,求集合M . 18.(本小题满分12分)设函数21()ax f x bx c+=+是奇函数,(,,a b c Z ∈)且(1)2f =,(2)3f <,求函数的解析式.19.(本小题满分12分)设函数2()21f x x x =--在区间[,1]t t +有最小值()g t ,求函数()g t 的零点. 20.(本小题满分12分)已知函数2()||,()21(0)f x x a g x x ax a =-=++>,且函数()f x 与()g x 的图象在y 轴上的截距相等,(1)求a 的值;(2)求函数()()f x g x +的单调递增区间. 21.(本小题满分12分)已知定义在(0,)+∞上的函数 满足:①对任意的,(0,)x y ∈+∞ 都有()()()f xy f x f y =+; ②当1x >时,()0f x >.求证:(1)对任意的(0,)x ∈+∞,都有)()1(x f xf -=;(2)()f x 在(0,)+∞上是增函数.22.(本小题满分12分)设2221()2(log )2log f x x a b x =++,已知12x =时,()f x 有最小值8-, (1)求a 与b 的值;(2)在(1)的条件下,求()0f x >的解集A ; (3)设集合11[,]22B t t =-+,且A B =∅ ,求实数t 的取值范围.参考答案与解析:1.【答案】D【思路导引】有相同三要素的函数就是同一函数,应当从函数的三要素来判断,同时注意函数的定义域和函数的对应法则一起就决定了值域。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
高一上学期期中数学试卷(新题型:19题)(提高篇)(原卷版)
2024-2025学年高一上学期期中数学试卷(提高篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效;4.测试范围:必修第一册第一章、第二章、第三章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.(5分)(23-24高一上·江苏徐州·期中)设全集UU=R,集合AA={xx|4<xx−2<8},BB={xx|2+aa<xx< 1+2aa},若AA∪BB=AA,则aa的取值范围是()A.(−∞,1]B.�−∞,92�C.�4,92�D.(−∞,1]∪�4,92�2.(5分)(23-24高一上·重庆·期中)下面命题正确的是()A.已知xx∈R,则“xx>1”是“1xx<1”的充要条件B.命题“若∃xx0≥1,使得xx02<2”的否定是“∀xx<1,xx2≥2”C.已知xx,yy∈R,则“|xx|+|yy|>0”是“xx>0”的既不充分也不必要条件D.已知aa,bb∈R,则“aa−3bb=0”是“aa bb=3”的必要不充分条件3.(5分)(23-24高一上·吉林四平·期中)已知2≤2xx+3yy≤6,−3≤5xx−6yy≤9,则zz=11xx+3yy的取值范围是()A.�zz|53≤zz≤893�B.�zz|53≤zz≤27�C.�zz|3≤zz≤893�D.{zz|3≤zz≤27}4.(5分)(23-24高一上·浙江温州·期中)若幂函数ff(xx)的图象经过点�√2,12�,则下列判断正确的是()A.ff(xx)在(0,+∞)上为增函数B.方程ff(xx)=4的实根为±2C.ff(xx)的值域为(0,1)D.ff(xx)为偶函数5.(5分)(23-24高二下·浙江·期中)关于xx的不等式(aa−1)xx2−aaxx+aa+1≥0的解集为RR,则实数aa的取值范围是()A.aa>1B.aa≥2√33C.−2√33≤aa≤2√33D.aa≤−2√33或aa≥2√336.(5分)(23-24高一上·江苏苏州·期中)给定函数ff(xx)=xx2−2,gg(xx)=−12xx+1,用MM(xx)表示函数ff(xx),gg(xx)中的较大者,即MM(xx)=max{ff(xx),gg(xx)},则MM(xx)的最小值为()A.0 B.7−√178C.14D.27.(5分)(23-24高一上·河北邯郸·期中)若aa>bb,且aabb=2,则(aa−1)2+(bb+1)2aa−bb的最小值为()A.2√5−2B.2√6−4C.2√5−4D.2√6−28.(5分)(23-24高一上·云南昆明·期中)已知函数ff(xx)的定义域为R,对任意实数xx,yy满足ff(xx+yy)= ff(xx)+ff(yy)+12,且ff(12)=0,当xx>12时,ff(xx)>0.给出以下结论:①ff(0)=−12;②ff(−1)=32;③ff(xx)为R上的减函数;④ff(xx)+12为奇函数. 其中正确结论的序号是()A.①②④B.①②C.①③D.①④二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
(完整word版)((新人教版))必修一高一数学第一学期期中考试试卷
必修一高一数学第一学期期中考试试卷 试卷满分:150分 考试时间:120分钟第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.已知集合{1,2,3,4}A =,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、4 2.若()f x =则(3)f = ( )A 、10B 、4C 、D 、2 3。
不等式(x +1)(2-x )>0的解集为 ( )A 、{|12}x x x <->或B 、{|21}x x x <->或C 、{|21}x x -<<D 、{|12}x x -<<4.下列各组函数中,表示同一函数的是 ( )A 、0,1x y y == B 、11,12+-=-=x x y x yC 、33,x y x y ==D 、()2,x y x y ==5.函数)3(-=x f y 的定义域为[4,7],则)(2x f y =的定义域为A 、(1,4)B [1,2]C 、)2,1()1,2(⋃--D 、 ]2,1[]1,2[⋃-- 6.若:f A B →能构成映射,下列说法正确的有 ( )(1)A 中的任一元素在B 中必须有像且唯一;(2)B 中的多个元素可以在A 中有相同的原像;(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、1个B 、2个C 、3个D 、4个7.若函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,则实数a 的取值范围是A 、3a ≤-B 、3a ≥-C 、5a ≤D 、3a ≥8.定义域为R 的函数y=f(x )的值域为[a ,b],则函数y=f (x +a )的值域为 ( )A .[2a ,a +b]B .[a ,b ]C .[0,b -a]D .[-a ,a +b]9.下列所给4个图象中,与所给3件事吻合最好的顺序为 ( )(1)我离开家不久,发现自己把作业本忘在家里了,于是立刻返回家里取了作业本再上学; (2)我骑着车一路以常速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速。
人教版高一数学必修一期中测试题及答案
人教版高一数学必修一期中测试题及答
案
初中阶段是我们一生中学习的黄金时期。
现在的时间对同学们尤其重要。
下文为大家准备了初三期中语文试卷作文。
题目一:好想把你写成书
题目二:当父母越来越
要求:①注意先将作文标题填写在答题卡上,然后作文。
②若选题目二,先将文题补充完整,然后作文。
③结合生活实际,自选角度,自定立意,自定文体,写600字左右的文章。
④文中真实的人名、地名、校名请用字母或甲乙丙丁等表示。
精品为大家提供的初三期中语文试卷作文大家仔细阅读了吗?最后祝同学们学习进步。
初三下册语文期中复习重点:《一厘米》
初三下册语文期中复习考点之《江村小景》
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学期中试卷(1)
班级 姓名 得分
一,填空题.('
'14570⨯=) 1. 已知集合{}{}0122,M x x a a M ===∈,,,N ,则集合M ⋂N = .
2. 函数2()lg()f x x x =-的定义域为 .
3. 若函数()(1)x f x m =-在R 上是减函数,则m 的取值范围是 .
4. 函数3()2(0,1)x f x a a a -=->≠的图象恒过定点P ,则定点P 的坐标
是 .
5. 当2x ≥-时,化简233(2)(2)x x +--的结果为 .
6. 函数22()log (1)f x x =-的单调增区间为 .
7. 若12739
x x >⨯,则实数a 的取值范围是 . 8. 若函数()f x 的定义域为(1,1)-,它在定义域内既是奇函数又是增函数,且
(3)(52)0f a f a -+-<,则实数a 的取值范围是 .
9. 已知22,0,()log (1),0.
x x f x x x ⎧≤=⎨+>⎩若()4f a =,则实数a 的值为 .
10. 已知2()1x a
f x x -=-是奇函数,则实数a 的值为 .
11. 将0.3
0.30.32,log 2,log 3三个数按从小到大的顺序排列为 .
12. 已知函数()f x 是R 上的奇函数,且当(0,)x ∈+∞时,()lg(1)f x x =+,则()
f x 的表达式为 .
13. 若函数()2x f x m -=+的图象不经过第一象限,则m 的取值范围
是 .
14. 设1{1,1,,3}2α∈-,则使函数y x α=的定义域为R ,且为奇函数的所有α的值
为 .
二,解答题(共90分)
15.(14分)已知全集U R =,集合(1,3)A =,B=[a,2a+5].
(1)当a=1时,求()U A B ⋂ð;
(2)若A B B ⋃=,求实数a 的取值范围.
16. (14分)求值:lg5lg 20lg 2lg50lg 25--.
17.(14分)设,,x y z 均为正实数,且346x y z ==.
(1)若1,(1)(21)z x y =--求的值;
(2)求证:
1112z x y
-=.
18. (16分)已知函数()2(1)f x x x =-+
(1)作出()f x 的图象;
(2)指出()f x 的单调区间;
(3)若[1,3)x ∈-求()f x 的最值.
19. (16分)某公司将进货单价为8元一个的商品按10元一个出售,每天可以卖出100个,若这种商品的售价每个上涨1元,则销售量就减少10个.
(1)求售价为13元时每天的销售利润;
(2)求售价定为多少元时,每天的销售利润最大,并求最大利润.
.
20. (16分)已知函数2()(01mx f x m m x
=≠+为常数,且) (1)判断并证明()f x 的奇偶性;
(2)讨论并证明()f x 在∞(1,+)上的单调性.。