2016年江苏省无锡市天一实验学校七年级(上)期中数学试卷与参考答案PDF

合集下载

无锡市七年级上册数学期中试卷

无锡市七年级上册数学期中试卷

无锡市七年级上册数学期中试卷一、选择题(共30分)1.根据世界食品物流组织(WFLO )制定的要求,某种冷冻食品的标准储存温度是﹣18±2℃,下列四个储藏室的温度中不适合储藏这种冷冻食品的是()A.﹣21℃B.﹣19℃C.﹣18℃D.﹣17℃【答案】A【解析】解:∵某种冷冻食品的标准储存温度是﹣18±2℃,∴某种冷冻食品的标准储存温度在﹣20℃至﹣16°C 之间,∴储藏室的温度﹣21°C 不适合储藏,故选A .2.下列各数:440,,3.14,,0.56, 2.010********π---⋅⋅⋅(相邻两个1之间的0的个数逐次增加)其中有理数的个数是()A.3B.4C.5D.6【答案】B【详解】解:0是整数,是有理数,447-是分数,是有理数,-3.14,0.56,是有限小数,是有理数,2π, 2.010010001-⋅⋅⋅是无限不循环小数不是有理数;故选:B.3.在式子211,0,,3,,3x x y a x y x ++--中,单项式共有()A.5个B.4个C.3个D.2个【答案】C 【详解】解:211,0,,3,,3x x y a x y x ++--中单项式有0,a -,23x y -共3个,故C 正确.故选:C .4.下列说法中正确的是()A.绝对值等于它本身的数只有零B.最大的负整数是1-C.任何一个有理数都有倒数D.有理数分为正有理数和负有理数,0【答案】BD【详解】解:A .绝对值等于它本身的数为非负数,即除零外还包括所有的正数.故A 错误.B .最大的负整数是1-.故B 正确.C 、属于有理数,但0没有倒数.故C 错误.D .有理数分为正有理数、零和负有理数.故D 正确.故选:BD .5.已知代数式x +2y 的值是2,则代数式1-2x -4y 的值是(▲)A.-1B.-3C.-5D.-8【答案】B【详解】1-2x -4y =1-2(x +2y )将x +2y =2代入得原式=1-2×2=-3故答案选择B .6.下列去括号正确的是()A.(2)2a b c a b c-+=-+ B.2()2a b c a b c --=-+C.3()33a b a b-+=-+ D.3()33a b a b --=-+【答案】D【详解】A.(2)2a b c a b c -+=--,故选项A 不符合题意;B.2()22a b c a b c --=-+,故选项B 不符合题意;C.3()33a b a b -+=--,故选项C 不符合题意;D.3()33a b a b --=-+,正确;故选D .7.若有理数a 、b 在数轴上的位置如图所示,则下列各式中不成立的是()A.a >﹣bB.b ﹣a <0C.|a |>|b |D.a +b <0【答案】D 【详解】解:由数轴可得b <0<a ,|b |<|a |,A、∴a >﹣b ,故选项A 正确,不符合题意;B 、b ﹣a <0,故选项B 正确,不符合题意;C 、|a |>|b |,故选项C 正确,不符合题意;D 、a +b >0,故选项D 错误,符合题意.故选:D .8.如果单项式122n a b +-与单项式47m a b +的和仍是单项式,则n m 的值为()A.-15B.15C.-125D.125【答案】C【详解】解:∵单项式122n a b +-与单项式47m a b +的和仍是单项式,∴单项式122n a b +-与单项式47m a b +是同类项,∴n+1=4,m+7=2,∴n=3,m=-5,∴n m =()35-=-125,故选C .9.有一个数字游戏,第一步:取一个自然数14n =,计算()1131n n ⋅+得1a ,第二步:算出1a 的各位数字之和得2n ,计算()2231n n ⋅+得2a ,第三步算出2a 的各位数字之和得3n ,计算()3331n n ⋅+得3a ;以此类推,则2020a 的值为()A.7B.52C.154D.310【答案】B【详解】解:由题意知:()()11114·31434152n a n n ==+=⨯⨯+=,;()225277371154n a =+==⨯⨯+=,;()3315410,103101310n a =++==⨯⨯+=;()44314434152n a =+==⨯⨯+=,;······;由上可知,123,,,···a a a 是按照52、154、310、···,52、154、310三个数的组合重复出现的数列,∵202020203673152a =⨯+∴=,,故选B .10.如图,在矩形ABCD 中放入正方形AEFG ,正方形MNRH ,正方形CPQN ,点E 在AB 上,点M 、N 在BC 上,若4AE =,3MN =,2CN =,则图中右上角阴影部分的周长与左下角阴影部分的周长的差为()A.5B.6C.7D.8【答案】B 【详解】解∶在正方形AEFG ,正方形MNRH ,正方形CPQN 中,AE =AG =4,MN =HM =3,NC =PC =2,在矩形ABCD 中AD =BC ,AB =CD ,设BM =x ,BE =y ,∵4AE =,3MN =,2CN =,∴DG =3+2+x -4=1+x ,DP =4+y -2=2+y ,∴C 右上角=(DG +DP )×2=(1+x +2+y )×2=6+2x +2y ,C 左下角=(BE +BM )×2=2x +2y ,∴C 右上角-C 左下角=6+2x +2y -(2x +2y )=6.故选:B .二、填空题(24分)11.12-的倒数是________.【答案】-2【详解】解:12-的倒数是:1212=--,故答案为:-2.12.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.【答案】1.738×10613.若关于xy 的多项式323232mx nxy x xy y +--+中不含三次项,23m n +的值为________.【答案】5【详解】解:323232mx nxy x xy y+--+()()32=231m x n xy y -+-+,∵关于xy 的多项式323232mx nxy x xy y +--+中不含三次项,∴20,310m n -=-=,解得12,3m n ==,∴23m n +12234+153=⨯+⨯==,故答案为:5.14.若有理数a ,b 满足ab >0,则||||||a b ab a b ab ++=___.【答案】−1或3【详解】解:∵ab >0,∴a 、b 同号,①当a >0,b >0时,则||||||a b ab a b ab ++=1+1+1=3;②当a <0,b <0时,则||||||a b ab a b ab ++=−1+(−1)+1=−1;故答案为:−1或3.15.已知a ,b ,c 在数轴上的位置如图所示,化简:22a b c b c a +----=______.【答案】3a c--【详解】解:由题意得0b a c <<<,∴20a b +<,20c b ->,0c a ->,∴22a b c b c a+----()()()22a b c b c a =-+----22a b c b c a=---+-+3a c =--,故答案为:3a c --.16.已知如图,点A 表示的数是﹣2,点B 表示的数是8,现将该数轴折叠,使得点A 与点B 重合,若点C 表示的数是9,则折叠后与点C 重合的点表示的数为_____.【答案】-3【详解】解:由题意得:对称轴与数轴的交点表示的数是2832-+=,设折叠后与点C 重合的点表示的数为x ,可得:3﹣x =9﹣3,解得x =﹣3,故答案为:﹣3.17.如图所示是计算机程序计算,若开始输入12x =-,则最后输出的结果是________.【答案】3-【详解】解:把12x =-代入计算程序中得:14121122⎛⎫-⨯+=-+=->- ⎪⎝⎭,把1x =-代入计算程序中得:()1414132-⨯+=-+=-<-,则最后输出的结果是3-.18.已知一列数a 1,a 2,a 3…,具体如下规律:a 2n +1=a n +a n +1,a 2n =a n (n 是正整数).若a 1=1,则a 39的值为_____.【答案】10【详解】解:∵a 2n +1=a n +a n +1,a 2n =a n (n 是正整数),∴a 39=a 19+a 20=a 10+a 9+a 10=2a 5+a 4+a 5=3(a 2+a 3)+a 2=4a 1+3(a 1+a 2)=10a 1,∵a 1=1,∴a 39=10,故答案为:10.三、解答题(共66分)19.画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来.()24 3.53----,,,.【答案】数轴见详解,()3.5234-<-<<--【详解】解:()44--=,如图所示:∴()3.5234-<-<<--20.计算(1)()17288⎛⎫⎛⎫-+--- ⎪ ⎪⎝⎭⎝⎭;(2)()22323-⨯--⨯;(3)()157242612⎛⎫+-⨯- ⎪⎝⎭;(4)()2412335⎡⎤⎛⎫---+-÷- ⎪⎢⎥⎝⎭⎣⎦.【答案】(1)1(2)30-(3)18-(4)3221.合并同类项(1)2232341x xy x xy --+-;(2)()()8745m n m n --+.【答案】(1)21xy -(2)412m n-【小问1详解】解:2232341x xy x xy --+-21xy =-;【小问2详解】解:()()8745m n m n --+8745m n m n=---412m n =-;22.先化简,再求值:()22252322x y x y xy x y xy ⎡⎤----+⎣⎦,其中1x =-,2y =-.【答案】2135x y xy -+;36【详解】()22252322x y x y xy x y xy⎡⎤----+⎣⎦()22252362x y x y xy x y xy =---++22252362x y x y xy x y xy=--+-+2135x y xy=-+当1,2x y =-=-时原式()()()()21312512=-⨯-⨯-+⨯-⨯-261036=+=23.亮亮家买了新房,如图是房屋的平面图,根据图中的数据(单位:m ),解答下列问题:(1)用含x 、y 的代数式表示客厅的面积为________2m ;(2)亮亮的爸爸打算在两个卧室内的四周贴上墙纸(门和窗户忽略不计),已知房间的高度是3米,若图中x 、y 的值满足|3||2|0x y -+-=,求需要购买多少平方米的墙纸?【答案】(1)2142x xy ⎛⎫- ⎪⎝⎭(2)购买96平方米的墙纸24.定义一种新运算:观察下列式:131437=⨯+= () 31 34111 -=⨯= -5454424=⨯+= ()4344313-=⨯-= (1)12- =,a b =;(2)若a b <,那么a b b a -0(用“>”、“<”或“=连接”);(3)若 4(2 )a b = -,请计算()()2a b a b + -的值.【答案】(1)-2,4a+b ;(2)<;(3)6【详解】解:(1)121422-=-⨯+=- ,4a b a b =+ ,故答案为:﹣2,4a b +;(2)∵a b <,∴()()443330a b b a a b b a a b a b =+-+=-=-< -,故答案为:<;(3)由 4(2 )a b = -,得424a b -=,即22a b -=,∴()()()()4263322326a b a b a b a b a b a b =-++=--==+=⨯ -.25.如图,已知数轴上点A ,C 表示的数分别为10-,20,我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如:点A 与点C 之间的距离记作AC .(1)点A 与点C 之间的距离AC =;(2)已知点B 为数轴上一动点,且满足32CB AB +=,直接写出点B 表示的数;(3)动点D 从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A 以每秒2个单位长度向左运动,点C 以每秒3个单位长度向右在数轴上运动,运动时间为t 秒.代数式2AD m DC +⨯的值不随时间t 的变化而改变,请求出m 的值.【答案】(1)30(2)11-或21(3)3-【分析】(1)利用减法即可求出点A 与点C 之间的距离;(2)设点B 对应的数为x ,则102032x x ++-=,解方程即可得到答案;(3)用t 的代数式表示AD ,DC ,代入2AD m DC +⨯,整理得到()()2621922AD m DC m t m +⨯=+++,根据代数式2AD m DC +⨯的值不随时间t 的变化而改变,得到620m +=,解方程即可.26.如图,数轴上点A ,B 所对应的数是-4,4.对于关于x 的代数式N ,我们规定:当有理数x 在数轴上所对应的点为A ,B 之间(包括点A ,B )的任意一点时,代数式N 的最大值小于等于4,最小值大于等于-4,则称代数式N 是线段AB 的“和谐”代数式,例如,对于关于x 的代数式x ,当4x =±时,代数式x 取得最大值4;当0x =时,代数式x 取得最小值0,所以代数式x 是线段AB 的“和谐”代数式.问题:(1)关于x 的代数式2x -,当有理数x 在数轴上所对应的点为A ,B 之间(包括点A ,B )的任意一点时,取得的最大值是,最小值是.所以代数式2x -____________(填“是”或“不是”)线段AB 的“和谐”代数式.(2)关于x 的代数式3x a ++是线段AB 的“和谐”代数式,则有理数a 的最大值是____________,最小值是____________.(3)以下关于x 的代数式:①1522x -;②21x +;③211x x +---.其中是线段AB 的“和谐”代数式的是____________,并证明(只需要证明是线段AB 的“和谐”代数式的式子,不是的不需证明).【答案】(1)6,0;不是(2)-3,-4;(3)③,证明见解析详解】解:(1)当4x =-时,2x -取得最大值为6,当2x =时,2x -取得最小值为0,∵2x -最大值4>,∴2x -不是线段AB 的“和谐”代数式,故答案为:6,0,不是;(2)∵关于x 的代数式3x a ++是线段AB 的“和谐”代数式,∴34x a ++≤,解得:43a x ≤-+当4x =时,43x -+的最小值为3-,a 要不大于这个最小值才能使在4-和4之间的x 都成立,∴a 的最大值为3-;34x a ++≥-,解得:43a x ≥--+,当3x =-时,43x --+取得最大值4-,a 要不小于这个最小值才能使在4-和4之间的x 都成立,∴a 的最小值为4-,故答案为:3-,4-;(3)①∵44x -≤≤,∴1222x -≤≤,∴91512222x -≤-≤-,∵1522x -的最小值为92-,不满足大于等于4-,∴1522x -不是线段AB 的“和谐”代数式;②当4x =±时,代数式21x +取得最大值17,不满足最大值小于等于4,∴21x +不是线段AB 的“和谐”代数式;③当42x -≤<-时,原式=(2)(1)14x x -++--=-,当21x -£<时,原式=(2)(1)12x x x ++--=,∴421x -≤≤,当14x ≤≤,原式=(2)(1)12x x +---=,综上:42112x x -≤+---≤满足最大值小于等于4,最小值大于等于4-,∴211x x +---是线段AB 的“和谐”代数式,故答案为:③.。

江苏省无锡市 七校联考七年级(上)期中数学试卷

江苏省无锡市 七校联考七年级(上)期中数学试卷
四、解答题(本大题共 4 小题,共 20.0 分) 23. 画一条数轴,并把-4,-(-3.5),212,0,|−32|各数在数轴上表示出来,再用
“<”把它们连接起来.
24. 解方程 (1)4x-3(5-x)=6 (2)x+14−2x−16=1.
25. 有理数 a、b、c 在数轴上的位置如图: (1)判断正负,用“>”或“<”填空:b-c______0,a+b______0,c-a______0. (2)化简:|b-c|+|a+b|-|c-a|.
第 4 页,共 11 页
答案和解析
1.【答案】A
【解析】
解:根据相反数的定义,-2 的相反数是 2. 故选:A. 根据相反数的意义,只有符号不同的数为相反数. 本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0 的相反数 是 0. 2.【答案】C
【解析】
解:单项式有:a,-2ab,-1, ab2c3,共 4 个,
七年级(上)期中数学试卷
题号 得分




总分
一、选择题(本大题共 8 小题,共 24.0 分)
1. -2 的相反数是( )
A. 2
B. −2
C. 12
D. −12
2. 下列代数式中 a,-2ab,x+y,x2+y2,-1,12ab2c3,单项式共有( )
A. 6 个
B. 5 个
C算正确的是( )
A. 2a−a=2
B. 2a+b=2ab
C. 3x2+2x2=5x4
D. mn−2mn=−mn
4. 下列方程中,是一元一次方程的是( )
A. 1x−1=0
B. x−1=0

江苏省无锡市新区七年级数学上学期期中试题 苏科版

江苏省无锡市新区七年级数学上学期期中试题 苏科版

江苏省无锡市新区2016-2017学年七年级数学上学期期中试题(考试时间:100分钟 卷面总分:100分)一 细心选一选:要求细心(本大题共8小题,每题2分,共16题)1.2的相反数是 ( ▲ )A .2B .﹣2C .21D .21- 2.下列各个运算中,结果为负数的是 ( ▲ ) A .|﹣2| B .﹣(﹣2) C .2)2(- D .22-3.据统计,2015年上半年某港口共实现货运吞吐量92590 000吨,比去年同期增长24.5%.将 92590 000这个数用科学记数法可表示为 ( ▲ )A .61059.92⨯B .710259.9⨯C .4109259⨯D .610259.9⨯4.比a 的大5的数是 ( ▲ )A .a+5 B. )521(+a . C .+5 D .(a +5) 5. 下列合并同类项中,正确的是 ( ▲ ) A .3x +3y =6xy B .532532a a a =+ C .3mn -3nm =0 D .7x -5x =26.下列说法中,正确的个数有( ▲ ) 个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣1.A .1B .2C .3D .47.国庆期间,某商店推出全店打8折的优惠活动,持贵宾卡的客户还可在8折的基础上再打9折.某人持贵宾卡买了一件商品共花了a 元,则该商品的标价是 ( ▲ )A .a 2017元B .a 1720元C .a 2518元D .a 1825元 8.如图,小惠设计了一个电脑程序,已知x 、y 为两个不相等的有理数,当输出的值M =24时,所输入的x 、y 中较大的数为( ▲ )A .48B .24C .12D .6二.细心填一填:要求细心(每空2分,共24分)9.﹣3的倒数等于_____▲_____;绝对值不大于3的整数是____▲______.10.比较大小,用“<”“>”或“=”连接:(1)﹣|﹣43|_____▲_____﹣(﹣32); (2)﹣3.14____▲______﹣|﹣∏| 11.数轴上,到表示﹣5的点距离为2的点表示的数为_____▲_____.第8题12.多项式7324223173+--xy y x y x 最高次项的系数是_____▲_____. 13.若代数式﹣2m b a 3与413b a n +是同类项,则m+n=____▲______14.如图所示,阴影部分的面积为 ▲ .15.若32a ﹣a ﹣2=0,则2625a a -+=_____▲_____.16.对有理数a 、b 规定运算★如下:a★b=ba ab -,则﹣2★﹣4=______▲____.17.若|a|=8,|b|=5,且a+b >0,那么a ﹣b=____▲______.18.如图,在各个手指间标记字母A ,B ,C ,D .请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→…的方式)从A 开始数连续的正整数1,2,3,4,….当字母C 第2015次出现时,数到的数恰好是____▲______.二.用心做一做:并写出运算过程(本大题共8小题,共计60分)19.计算:(每题3分,共12分)(1)13)18()14(20----+- (2)20152)1(2321-⨯--+-(3))241()1276543(-÷-+- (4)2)3(3)315.01(1--⨯⎥⎦⎤⎢⎣⎡⨯--20.化简:(每题3分,共6分)(1)x x x x 352322+-+(2).先化简,再求值:)221()824(412---+-a a a ,其中21-=a .21.(本题6分) 已知a 、b 互为倒数,x 、y 互为相反数,m 是平方后得4的数.求代数式220152016)(2015)(m y x ab -+-的值.22.(本题6分) 小黄做一道题“已知两个多项式A ,B ,计算A ﹣B .小黄误将A ﹣B 看作A+B ,求得结果是9x 2﹣2x+7.若B=x 2+3x ﹣2,请你帮助小黄求出A ﹣B 的正确答案。

江苏省无锡市新区2016-2017学年七年级数学上学期期中试卷(含解析)苏科版.doc

江苏省无锡市新区2016-2017学年七年级数学上学期期中试卷(含解析)苏科版.doc

2016-2017 学年江苏省无锡市新区七年级(上)期中数学试卷一、细心选一选:要求细心(本大题共8 小题,每题 2 分,共 16 题)1.2 的相反数是()A.2 B.﹣ 2 C.D.2.下列各个运算中,结果为负数的是()A.| ﹣ 2| B.﹣(﹣ 2)C.(﹣ 2)2 D.﹣ 223.据统计,2015 年上半年某港口共实现货运吞吐量92590 000 吨,比去年同期增长 24.5%.将92590 000 这个数用科学记数法可表示为() b5E2RGbCAPA.92.59 × 106 B. 9.259 × 107 C. 9259× 104 D. 9.259 × 1064.比 a 的大 5 的数是()A.a+5 B. a C .+5 D.(a+5)5.下列合并同类项中,正确的是()A.3x+3y=6xy B. 2a2+3a3=5a3 C. 3mn﹣ 3nm=0 D. 7x﹣ 5x=26.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣ 1.A.1B. 2 C.3D.47.国庆期间,某商店推出全店打8 折的优惠活动,持贵宾卡的客户还可在8 折的基础上再打 9 折.某人持贵宾卡买了一件商品共花了 a 元,则该商品的标价是() p1EanqFDPw A.a 元 B. a 元 C. a 元 D. a 元8.如图,小惠设计了一个电脑程序,已知x、 y 为两个不相等的有理数,当输出的值M=24 时,所输入的 x、 y 中较大的数为() DXDiTa9E3dA.48B. 24C. 12D. 6二.细心填一填:要求细心(每空 2 分,共 24 分)9.﹣ 3 的倒数等于;绝对值不大于 3 的整数是.10.比较大小,用“<”“>”或“=”连接:( 1)﹣ | ﹣|﹣(﹣);(2)﹣3.14﹣|﹣π |11.数轴上,到表示﹣ 5 的点距离为 2 的点表示的数为.12.多项式3x2y﹣ 7x4y2﹣xy 3+27最高次项的系数是.13.若代数式﹣ 2a3b m与 3a n+1b4是同类项,则m+n=.14.如图所示,阴影部分的面积为.15.若 3a2﹣ a﹣2=0,则 5+2a﹣ 6a2=.16.对正有理数a、 b 规定运算★如下: a★b=,则﹣2★﹣4=.17.若 |a|=8 , |b|=5 ,且 a+b>0,那么 a﹣ b=.18.如图,在各个手指间标记字母A,B,C,D.请按图中箭头所指方向(即A→B→C→D→C→B→A→B→C→ 的方式)从 A 开始数连续的正整数1,2,3,4,.当字母 C第 2015 次出现时,数到的数恰好是. RTCrpUDGiT二.用心做一做:并写出运算过程(本大题共8 小题,共计60 分)19.计算:(1)﹣ 20+(﹣ 14)﹣(﹣ 18)﹣ 13(2)﹣ 12+|2 ﹣3| ﹣ 2×(﹣ 1)2015( 3)(﹣+﹣)÷(﹣)(4)[1 ﹣( 1﹣0.5 ×)]×|3﹣(﹣3)2|20.化简:(1) 3x2+2x﹣ 5x2+3x( 2)先化简,再求值:(﹣4a2+2a﹣8)﹣(a﹣ 2),其中 a=﹣.201521.已知 a、b 互为倒数, x、y 互为相反数, m是平方后得 4 的数.求代数式(ab)﹣2﹣ m 的值.5PCzVD7HxA22.小黄做一道题“已知两个多项式 A, B,计算 A﹣B”.小黄误将 A﹣B 看作 A+B,求得结果是9x2﹣ 2x+7.若 B=x2+3x﹣ 2,请你帮助小黄求出 A﹣ B 的正确答案.jLBHrnAILg23.已知有理数a, b 在数轴上的位置如图:(1)在数轴上标出﹣ a,﹣ b 的位置,并将 a, b,﹣ a,﹣ b 用“<”连接;(2)化简 |a+b| ﹣ |a ﹣b| ﹣ |a| .24.观察下列等式:,,,将以上三个等式两边分别相加得:=1﹣=1﹣=.( 1)猜想并写出:=.( 2)直接写出下列各式的计算结果:①+ + = ;②+ = ;( 3)探究并计算:+ .25.某商场销售一种西装和领带,西装每套定价1000 元,领带每条定价200 元.元旦打折方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20 套,领带 x 条( x> 20).( 1)若该客户按方案一购买,需付款元.(用含 x 的代数式表示)若该客户按方案二购买,需付款元.(用含 x 的代数式表示)(2)若 x 等于 30,通过计算说明此时按哪种方案更合算.(3)当 x=30,你能给出一种更为省钱的购买方案吗?26.如图:在数轴上 A 点表示数a,B 点示数 b, C点表示数c,b 是最小的正整数,且a、b 满足 |a+2|+ (c﹣ 7)2=0.xHAQX74J0X( 1) a=,b=,c=;( 2)若将数轴折叠,使得 A 点与 C 点重合,则点 B 与数表示的点重合;( 3)点 A、 B、 C 开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C 分别以每秒 2 个单位长度和 4 个单位长度的速度向右运动,假设t秒钟过后,若点 A 与点 B 之间的距离表示为AB,点 A 与点 C 之间的距离表示为AC,点 B 与点 C之间的距离表示为BC.则 AB=,AC=,BC=.(用含t的代数式表示)LDAYtRyKfE(4)请问: 3BC﹣ 2AB的值是否随着时间 t 的变化而改变?若变化,请说明理由;若不变,请求其值.2016-2017 学年江苏省无锡市新区七年级(上)期中数学试卷参考答案与试题解析一、细心选一选:要求细心(本大题共8 小题,每题 2 分,共 16 题)1.2 的相反数是()A.2B.﹣ 2 C.D.【考点】相反数.【分析】根据相反数的定义求解即可.【解答】解: 2 的相反数为:﹣2.故选: B.2.下列各个运算中,结果为负数的是()A.| ﹣ 2|B.﹣(﹣ 2)C.(﹣ 2)2 D.﹣ 22【考点】正数和负数.【分析】先把各项分别化简,再根据负数的定义,即可解答.【解答】解: A、 | ﹣ 2|=2 ,不是负数;B、﹣(﹣ 2)=2,不是负数;C、(﹣ 2)2=4,不是负数;D、﹣ 22=﹣ 4,是负数.故选: D.3.据统计,2015 年上半年某港口共实现货运吞吐量92590 000 吨,比去年同期增长 24.5%.将92590 000 这个数用科学记数法可表示为() Zzz6ZB2LtkA.92.59 × 106 B. 9.259 × 107 C. 9259× 104 D. 9.259 × 106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a× 10n的形式,其中 1≤|a| < 10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.dvzfvkwMI1【解答】解: 92 590 000=9.259× 107.故选: B.4.比 a 的大5的数是()A.a+5B. a C .+5D.(a+5)【考点】列代数式.【分析】比一个数多几等于加多少,用加法进行解答.【解答】解:比 a 的大5的数是代数式表示为:a+5 ,故选 A5.下列合并同类项中,正确的是()A.3x+3y=6xy B. 2a2+3a3=5a3C. 3mn﹣ 3nm=0D. 7x﹣ 5x=2【考点】合并同类项.【分析】直接利用合并同类项法则判断得出即可.【解答】解; A、 3x+3y 无法计算,故此选项错误;B、2a2+3a3无法计算,故此选项错误;C、3mn﹣ 3nm=0,正确;D、7x﹣ 5x=2x ,故此选项错误;故选: C.6.下列说法中,正确的个数有()个.①有理数包括整数和分数;②一个代数式不是单项式就是多项式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数.④倒数等于本身的数有1,﹣ 1.A.1B.2C.3D.4【考点】有理数;代数式.【分析】根据有理数的分类、代数式的分类、有理数的乘法、倒数的知识,直接判断即可.②一个代数式不是单项式就是多项式,错误,还有可能是分式;③几个有理数相乘,若负因数的个数是偶数个,则积为正数,错误;④倒数等于本身的数有 1,﹣ 1,正确.故选: B.7.国庆期间,某商店推出全店打8 折的优惠活动,持贵宾卡的客户还可在8 折的基础上再打 9 折.某人持贵宾卡买了一件商品共花了 a 元,则该商品的标价是()rqyn14ZNXIA. a 元B. a 元C. a 元D. a 元【考点】列代数式.【分析】本题列代数式时要注意商品打折数与商品价钱的关系,打折后价格=原价格×打折数.【解答】解:设标价为x,第一次打八折后价格为x 元,第二次打9 折后为×x=a,解得: x=a.故选 D.8.如图,小惠设计了一个电脑程序,已知x、 y 为两个不相等的有理数,当输出的值M=24 时,所输入的x、 y 中较大的数为()EmxvxOtOcoA.48B. 24C. 12D. 6【考点】代数式求值.【分析】观察流程图中的程序知,输入的x、y 的值分两种情况:①当x> y 时, a=2x;②当7/17。

2016年江苏省无锡市新区七年级(上)期中数学试卷与参考答案PDF

2016年江苏省无锡市新区七年级(上)期中数学试卷与参考答案PDF

2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃2.(2分)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.(2分)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣1 4.(2分)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab25.(2分)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个 B.2个 C.3个 D.4个6.(2分)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对7.(2分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.(2分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)﹣2的相反数是;倒数是;绝对值是.10.(4分)平方得25的数为,的立方等于﹣27.11.(2分)绝对值大于3小于6的所有整数是.12.(2分)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=.13.(2分)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是.14.(4分)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=;(2)若输出y的值为22,则输入的值x=.15.(2分)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=.16.(4分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是;第n个单项式是.17.(2分)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.19.(4分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.20.(12分)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.21.(8分)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).22.(6分)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.23.(6分)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.24.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(5分)定义一种新运算:观察下列式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.26.(8分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A 县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.2.(2分)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【解答】解:130万=1 300 000=1.3×106.故选:C.3.(2分)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣1【解答】解:A、不是同类项,不能合并,故错误;B、16y2﹣7y2=9y2,故错误;C、﹣(x﹣6)=﹣x+6,故正确;D、3(x﹣1)=3x﹣3,故错误.故选:C.4.(2分)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab2【解答】解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、所有的常数项都是同类项,故C正确;D、相同字母的指数不同,故D错误;故选:D.5.(2分)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个 B.2个 C.3个 D.4个【解答】解:(1)a和0都是单项式,正确;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项错误;(3)单项式﹣πbc4的系数是﹣π,故本项错误;(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和,正确;综上可得正确的有2个.故选:B.6.(2分)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.7.(2分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选:B.8.(2分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43【解答】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵=989,=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:B.二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)﹣2的相反数是2;倒数是﹣;绝对值是2.【解答】解:﹣2的相反数是2;倒数是﹣;绝对值是2.故答案为:2,﹣,210.(4分)平方得25的数为±5,﹣3的立方等于﹣27.【解答】解:∵(±5)2=25,(﹣3)3=﹣27,∴平方等于25的数为±5,立方根等于﹣27的数为﹣3.故答案是±5,﹣3.11.(2分)绝对值大于3小于6的所有整数是±4,±5.【解答】解:绝对值大于3小于6的所有整数是±4,±5.故答案为:±4,±5.12.(2分)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=8.【解答】解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n﹣1=4,解得:m=3,n=5,m+n=8.故填:8.13.(2分)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是﹣3.【解答】解:设点A表示的数是x.依题意,有x+8﹣5=0,解得x=﹣3.故答案:﹣3.14.(4分)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=﹣2;(2)若输出y的值为22,则输入的值x=±3.【解答】解:根据题意列得:y=3x2﹣5,(1)将x=﹣1代入得:y=35=﹣2;(2)将y=22代入得:22=3x2﹣5,即x2=9,解得:x=±3.故答案为:(1)﹣2;(2)±315.(2分)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=9.【解答】解:原式=4x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(4﹣2b)x2+(a+3)x﹣6y+7,由多项式的值与字母x的取值无关,得到4﹣2b=0,a+3=0,解得:a=﹣3,b=2,则a b=(﹣3)2=9,故答案为:916.(4分)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是﹣2015a2015;第n个单项式是(﹣1)n na n.【解答】解:第2015个单项式为:﹣2015a2015,第n个单项式为(﹣1)n na n故答案为:﹣2015a2015,(﹣1)n na n.17.(2分)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是20.【解答】解:根据题意,得当n=2015时,第1次的计算结果是3n+5=6050;第2次的计算结果是=3025;第3次的计算结果是3025×3+5=9080;第4次是计算结果是=1135;第5次的计算结果是1135×3+5=3410;第6次的计算结果是=1705,第7次的计算结果是1705×3+5=5120,第8次的计算结果是=5,第9次的计算结果是5×3+5=20,第10次的计算结果是=5,开始循环.故第2015次的计算结果是20.故答案为:20.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.19.(4分)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.【解答】解:﹣|﹣3|=﹣3,﹣(﹣2)=2,﹣(﹣1)3=1,﹣22=﹣4,在数轴上把各数表示出来为:则﹣22<﹣|﹣3|<﹣(﹣1)3<﹣(﹣2).20.(12分)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.【解答】解:(1)原式=﹣30+28﹣70﹣88=﹣100﹣60=﹣160;(2)原式=2﹣27×=2﹣45=﹣43;(3)原式=﹣14+9+54=49;(4)原式=﹣1﹣××(﹣7)=﹣1+=.21.(8分)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).【解答】解:(1)3b+5a+2a﹣4b=7a﹣b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.22.(6分)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.【解答】解:原式=5a2﹣3a+4a﹣2﹣4a2=a2+a﹣2,当a=﹣时,原式=﹣﹣2=﹣2.23.(6分)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.【解答】解:(1)∵A=x﹣2y,B=﹣x﹣4y+1,∴2(A+B)﹣(2A﹣B)=2A+2B﹣2A+B=3B=3(﹣x﹣4y+1)=﹣3x﹣12y+3;(2)∵|x+|与y2互为相反数,∴|x+|+y2=0,∴x+=0,y2=0,∴x=﹣,y=0,∴2(A+B)﹣(2A﹣B)=﹣3×(﹣)﹣12×0+3=4.24.(5分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.25.(5分)定义一种新运算:观察下列式:1⊙3=1×4+3=73⊙(﹣1)=3×4﹣1=115⊙4=5×4+4=244⊙(﹣3)=4×4﹣3=13(1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.26.(8分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A 县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

2016年江苏省无锡市天一实验学校七年级上学期数学期中试卷带解析答案

2016年江苏省无锡市天一实验学校七年级上学期数学期中试卷带解析答案

2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)﹣2的相反数是()A.2 B.﹣2 C.±2 D.2.(2分)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.3.(2分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|4.(2分)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个 B.5 个C.4 个D.3个5.(2分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)26.(2分)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣107.(2分)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个 B.2个 C.3个 D.4个8.(2分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k9.(2分)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣110.(2分)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点 C.C点 D.D点二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)如果向南走20米记为是﹣20米,那么向北走70米记为.12.(2分)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为公顷.13.(2分)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高℃.14.(2分)单项式﹣的系数是,次数是.15.(2分)比较大小:﹣(+8)﹣|﹣9|;(填“>”、“<”、或“=”符号).16.(2分)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=,n=.17.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为.18.(2分)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=.19.(2分)若a﹣b=1,则代数式a﹣(b﹣2)=;若a+b=﹣1,则代数式5﹣a﹣b=.20.(4分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.22.(4分)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,23.(16分)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].24.(6分)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.25.(4分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.26.(6分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律,求出图④中的数x.27.(4分)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当y=x=4时,求此时“囧”的面积.28.(4分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.29.(6分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?30.(4分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)﹣2的相反数是()A.2 B.﹣2 C.±2 D.【解答】解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选:A.2.(2分)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.3.(2分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|【解答】解:A、﹣(﹣3)=3,是正数,故本选项错误;B、(﹣3)2=9,是正数,故本选项错误;C、|﹣3|=3,是正数,故本选项错误;D、﹣|﹣3|=﹣3,是负数,故本选项正确.故选:D.4.(2分)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个 B.5 个C.4 个D.3个【解答】解:所给式子中单项式有:a,﹣2ab,﹣1,ab2c3 ,共,4个.故选:C.5.(2分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)2【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选:A.6.(2分)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣10【解答】解:把x=3代入2x﹣k+4=0得:6﹣k+4=0,解得:k=10,故选:B.7.(2分)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个 B.2个 C.3个 D.4个【解答】解:①﹣a表示负数,当a是负数时,﹣a就是正数,所以①不对;②若|x|=﹣x,x一定为负数或0,则x≤0,所以②不对;③根据绝对值的定义绝对值最小的有理数是0,对;④﹣3x2y+4x﹣1是关于x,y的三次三项式,对.正确的有2个.故选:B.8.(2分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k【解答】解:由数轴可知:k>1,∴k>0,1﹣k<0.∴|k|+|1﹣k|=k﹣1+k=2k﹣1.故选:B.9.(2分)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣1【解答】解:∵点M表示有理数﹣3,点M向右平移2个单位长度到达点N,∴点N表示﹣3+2=﹣1,点E在点N的左边时,﹣1﹣4=﹣5,点E在点N的右边时,﹣1+4=3.综上所述,点E表示的有理数是﹣5或3.故选:B.10.(2分)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点 C.C点 D.D点【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)如果向南走20米记为是﹣20米,那么向北走70米记为+70米.【解答】解:∵向南走20米记为是﹣20米,∴向北走70米记为+70米.故答案为:+70米.12.(2分)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 1.5×107公顷.【解答】解:15 000 000=1.5×107.13.(2分)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高21℃.【解答】解:根据题意,得:11﹣(﹣10)=21(℃),故答案为:21.14.(2分)单项式﹣的系数是﹣,次数是7.【解答】解:单项式﹣的系数是﹣,次数是7,故答案为:﹣,7.15.(2分)比较大小:﹣(+8)>﹣|﹣9|;>(填“>”、“<”、或“=”符号).【解答】解:①∵﹣(+8)=﹣8,﹣|9|=﹣9,﹣8>﹣9,∴﹣(+8)>﹣|9|;②∵|﹣|==,|﹣|==,<,∴﹣>﹣.故答案为:>;>.16.(2分)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=3,n=2.【解答】解:由题意,得,解得.即m=3,n=2.故答案为3,2.17.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为5.【解答】解:根据数轴可知:x﹣(﹣3)=8﹣0,解得x=5.故答案为:5.18.(2分)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=1.【解答】解:由题意得:|m﹣2|=1,且2m﹣6≠0,解得:m=1,故答案为:1.19.(2分)若a﹣b=1,则代数式a﹣(b﹣2)=3;若a+b=﹣1,则代数式5﹣a﹣b=6.【解答】解:∵a﹣b=1,∴原式=a﹣(b﹣2)=a﹣b+2=1+2=3;∵a+b=﹣1,∴原式=5﹣a﹣b=5﹣(a+b)=5+1=6;故答案为:3;620.(4分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为a+50(用含a的代数式表示).【解答】解:(1)(2)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.22.(4分)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,【解答】解:按照从小到大的顺序排列:<﹣2<﹣1.5<0<1<3.23.(16分)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].【解答】解:(1)原式=2+2=4;(2)原式=﹣×××=﹣;(3)原式=﹣1﹣×[3﹣9]=﹣1+1=0;(4)原式=(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×=18﹣4+15=29;(5)原式=5x+5y﹣12x+8y+6x﹣3y=﹣x+10y;(6)原式=6ab2﹣[a2b+2a2b﹣6ab2]=6ab2﹣a2b﹣2a2b+6ab2=12ab2﹣3a2b.24.(6分)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.【解答】解:(1)移项合并得:5x=5,解得:x=1;(2)去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4.25.(4分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)由|a+1|+(2﹣b)2=0,得a=﹣1,b=2.A﹣2B=a2﹣8ab=1+16=17.26.(6分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律,求出图④中的数x.【解答】解:(1)②(﹣12)×5=﹣60③(﹣2)×17×(﹣5)=170(﹣2)+17+(﹣5)=1010×17=170(2)[5+(﹣8)+(﹣9)]x=5×(﹣8)×(﹣9)解得,x=﹣30.27.(4分)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当y=x=4时,求此时“囧”的面积.【解答】解:(1)由已知得“囧”的面积为:20×20﹣xy×2﹣xy=400﹣2xy;(2)当时,x=8,y=4,S=400﹣2×8×4=336,所以此时“囧”的面积为336.28.(4分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.【解答】解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=10﹣2n,解得:n=2;(2)把m=1,n=2代入得:m+n=1+3.5=4.5,则[m+n]=[4.5]=4.29.(6分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【解答】解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣π;故答案为:无理,﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π.30.(4分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。

江苏省无锡市七年级上学期期中数学试卷

江苏省无锡市七年级上学期期中数学试卷

江苏省无锡市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·日照) |﹣5|的相反数是()A . ﹣5B . 5C .D . ﹣2. (2分)下列各式中,不正确的是()A . ﹣(﹣16)>0B . |0.2|=|﹣0.2|C . ﹣>﹣D . |﹣6|<03. (2分) (2019七上·灌阳期中) (-2)2018+(-2)2019结果为()A . -2B . 0C . -22018D . 以上都不对4. (2分)已知4个数中:(-1)2005 , |-2|,-(-1.5),-32 ,其中正数的个数有().A . 1B . 2C . 3D . 45. (2分) (2017七上·娄星期末) |﹣2|的相反数是()A . 2B . ﹣2C . ±2D .6. (2分)下列各组中,两数不相等的组数有()①(-3)2与-32 ②(-3)2与32 ③(-2)3与-23 ④|-2|3与|-23|A . 0组B . 1组C . 2组D . 3组7. (2分) (2018七上·翁牛特旗期末) 若数轴上的点A,B分别与有理数a、b对应,则下列关系正确的是()A . a<bB . ﹣a<bC . |a|<|b|D . ﹣a>﹣b8. (2分) (2017七·南通期末) 下列计算正确的是()A .B . 3aC . 2aD .9. (2分)若|m-3|+(n+1)2=0,则m+2n的值为()A . 1B . -1C . 0D . 210. (2分)下列说法中正确的是()A . 和数轴上一一对应的数是有理数B . 数轴上的点可以表示所有的实数C . 带根号的数都是无理数D . 不带根号的数都是有理数11. (2分) (2016七上·丹徒期中) 图中表示阴影部分面积的代数式是()A . ad+bcB . c(b﹣d)+d(a﹣c)C . ad+c(b﹣d)D . ab﹣cd12. (2分)下列计算结果为负数的是()A . ﹣1+3B . 5﹣2C . ﹣1×(﹣2)D . ﹣4÷2二、填空题 (共6题;共6分)13. (1分) (2016七上·和平期中) 在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记做+0.22,那么小东跳出了3.85米,记作________.14. (1分) (2019七上·咸阳期中) 比较大小:-(-0.3)________ (填“=”“>”或“<”).15. (1分) (2016八上·无锡期末) 用四舍五入法把17.8961精确到百分位,得到的近似值是________.16. (1分) (2017七上·大石桥期中) 长方形的长为a cm,宽为b cm,若长增加了2cm,面积比原来增加了________ cm2 .17. (1分) (2020七上·萧山期末) 已知a,b,c为互不相等的整数,且abc=-4,则a+b+c=________。

江苏省无锡市七年级(上)期中数学试卷

江苏省无锡市七年级(上)期中数学试卷

七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.比2℃低8℃的温度是()A. −8℃B. 8℃C. 6℃D. −6℃2.下列计算正确的是()A. 23=6B. −42=−16C. −8−8=0D. −5−2=−33.下列运算,结果正确的是()A. 2ab−2ba=0B. 2a2+3a2=6a2C. 3xy−4xy=−1D. 2x3+3x3=5x64.在下面各数中有理数的个数有()-3.14,227,0.1010010001,+1.99,-π3.A. 1个B. 2个C. 3个D. 4个5.某品牌电脑原价为m元,先降价n元,又降低20%后的售价为()A. 0.8(m+n)元B. 0.8(m−n)元C. 0.2(m+n)元D. 0.2(m−n)元6.下列各数:-6.1,-|+12|,-(-1),-22,(-2)3,-[-(-3)]中,负数的个数有()A. 3B. 4C. 5D. 67.下列说法错误的是()A. πx5的系数是15B. 3x−13是多项式C. −25m的次数是1D. −x2y−35xy3是四次二项式8.已知a,b两数在数轴上的位置如图所示,则化简代数式|a+b|-|a-1|+|b+2|的结果是()A. 1B. 2a−3C. 2b+3D. −19.已知m2+2mn=13,3mn+2n2=21,则2m2+13mn+6n2-44的值为()A. 45B. 5C. 66D. 7710.a是不为2的有理数,我们把22−a称为a的“哈利数”.如:3的“哈利数”是22−3=-2,-2的“哈利数”是22−(−2)=12,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2018=()A. 3B. −2C. 12D. 43二、填空题(本大题共8小题,共24.0分)11.“辽宁号”航空母舰的满载排水量为67500吨,将数67500用科学记数法表示为______.12.-3的绝对值是______.13.若关于x的方程2x-k+4=0的解是x=3,那么k的值是______.14.比较大小:-56______-78(填“>”或“<”)15.已知4x2m y m+n与3x6y2是同类项,则m-n=______.16.已知方程(m-3)x|m-2|+4=2m是关于x的一元一次方程,则m=______.17.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,请问:a,b,c三数之和是______.18.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为15,则满足条件的x的值分别有______.三、计算题(本大题共3小题,共18.0分)19.计算或化简:(1)-8-(-15)+(-9)-(-12)(2)(-112)+1.25+(-8.5)+10.75(3)4×(-25)+(-2)2×5-4÷(-512);(4)[-22-(79-1112+16)×36]÷5(5)2ab-3a-13+2a-2ab+1(6)5(3a2b-ab2)-4(-ab2+3a2b)20.解方程:(1)3x-4(x+1)=1(2)x−32-2x+13=1.21.先化简再求值:3x2y−[3xy2−2(xy−32x2y)+xy]+3xy2,其中x=3,y=-13.四、解答题(本大题共4小题,共32.0分)22.-4,|-2|,-2,-(-3.5),0,-112(1)在如图所示的数轴上表示出以上各数;(2)比较以上各数的大小,用“<”号连接起来;23.某商场将进货价为40元的台灯以50元的销售价售出,平均每月能售出800个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a元.(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为______元;②涨价后,商场的台灯平均每月的销售量为______台;③涨价后,商场每月销售台灯所获得总利润为______元.(2)如果商场要想销售总利润平均每月达到20000元,商场经理甲说“在原售价每台50元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台50元的基础上再上涨30元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.24.(1)在下列横线上用含有a,b的代数式表示相应图形的面积.①______②______③______④______(2)请在图④画出拼图并通过拼图,你发现前三个图形的面积与第四个图形面积之间有什么关系?请用数学式子表达:______.(3)利用(2)的结论计算10.232+20.46×9.77+9.772的值.25.已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=______,PC=______.(2)当点P运动到B点时,点Q从A出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回点A,当点Q开始运动后,请用t的代数式表示P、Q两点间的距离.(友情提醒:注意考虑P、Q的位置)答案和解析1.【答案】D【解析】解:2-8=-6(℃),故选:D.根据有理数的减法,即可解答.本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.2.【答案】B【解析】解:A、23=8≠6,错误;B、-42=-16,正确;C、-8-8=-16≠0,错误;D、-5-2=-7≠-3,错误;故选:B.根据有理数的加法、减法、乘方法则分别计算出结果,再进行比较.本题主要考查学生的运算能力,掌握运算法则是关键.3.【答案】A【解析】解:A、2ab-2ba=0,故本选项正确;B、2a2+3a2=5a2≠6a2,故本选项错误;C、3xy-4xy=-xy≠-1,故本选项错误;D、2x3+3x3=5x3≠5x6,故本选项错误.故选:A.根据合并同类项的法则对各选项进行逐一分析即可.本题考查的是合并同类项,熟知合并同类项是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变是解答此题的关键.4.【答案】D【解析】解:-3.14,,0.1010010001,+1.99,-中有理数为-3.14,,0.1010010001,+1.99共4个,故选:D.根据整数和分数统称为有理数直接找到有理数的个数即可.本题是对有理数概念的考查,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.5.【答案】B【解析】解:电脑原价为m元,先降价n元后的价格是m-n元,则又降低20%后的售价是:(m-n)(1-20%)=0.8(m-n).故选:B.首先求得原价为m元,先降价n元后的价格,然后降低20%后的售价就是m-n 元的1-20%倍.本题考查了列代数式,正确理解降低的百分率是关键.6.【答案】C【解析】解:由-6.1为负数,-|+|为负数,-(-1)=1不为负数,-22=-4为负数,(-2)3=-8为负数,-[-(-3)]=-3为负数,∴-6.1,-|+|,-22,(-2)3,-[-(-3)]共5个负数,故选:C.大于0的是正数,小于0的是负数.此题除理解负数的概念外,还要理解平方、立方、绝对值等知识点.7.【答案】A【解析】解:A、的系数是π,故原题说法错误;B、是多项式,故原题说法正确;C、-25m 的次数是1;故原题说法正确;D、-x2y-35xy3是四次二项式,故原题说法正确;故选:A.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,几个单项式的和叫做多项式;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a 项式进行分析即可.此题主要考查了单项式和多项式,关键是掌握单项式和多项式的相关定义.8.【答案】C【解析】解:根据数轴上点的位置得:b<-1<0<1<a<2,∴a+b>0,a-1>0,b+2>0,则原式=a+b-a+1+b+2=2b+3,故选:C.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.9.【答案】A【解析】解:已知等式变形得:2m2+4mn=26,9mn+6n2=63,两式相加得:2m2+13mn+6n2=89,则原式=89-44=45.故选:A.已知第一个等式两边乘以2,第二个等式两边乘以3,两式相加即可得到结果.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:∵a1=3,∴a2==-2,a3=,a4=,a5=,∴该数列每4个数为一周期循环,∵2018÷4=504…2,∴a2018=a2=-2,故选:B.分别求出数列的前5个数得出该数列每4个数为一周期循环,据此可得答案.本题主要考查数字的变换规律,根据题意得出该数列每4个数为一周期循环是关键.11.【答案】6.75×104【解析】解:67500=6.75×104,故答案为:6.75×104.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】3【解析】解:-3的绝对值是3.计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.13.【答案】10【解析】解:把x=3代入方程得:6-k+4=0,解得:k=10,故答案为:10把x=3代入方程计算即可求出k的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【答案】>【解析】解:∵<,∴->-;故答案为:>.根据两负数比较大小的法则进行比较即可.本题考查的是有理数的大小比较,熟知两个负数,绝对值大的其值反而小是解答此题的关键.15.【答案】4【解析】解:∵4x2m y m+n与3x6y2是同类项,∴2m=6,m+n=2.第一个式子减去第二个式子得:m-n=4.本题考查同类项的定义(所含字母相同,相同字母的指数相同)可得方程:2m=6,m+n=2,解方程即可求得m,n的值,再代入m-n求解即可.本题考查的知识点为:同类项中相同字母的指数是相同的.需注意观察,能不用计算出具体的值的尽量不去计算.16.【答案】1【解析】解:∵方程(m-3)x|m-2|+4=2m是关于x的一元一次方程,∴m-3≠0,|m-2|=1,解得:m=1,故答案为:1.根据一元一次方程的定义得出m-3≠0,|m-2|=1,求出即可.本题考查了对一元一次方程的定义的应用,能理解一元一次方程的定义是解此题的关键.17.【答案】0【解析】解:根据题意得:a=1,b=-1,c=0,则a+b+c=1-1+0=0.故答案为:0求出最小的正整数,最大的负整数,绝对值最小的有理数确定出a,b,c,即可求出a+b+c的值.此题考查了有理数的加法,求出a,b,c的值是解本题的关键.18.【答案】7,3,1【解析】解:若2x+1=15,即2x=14,解得:x=7,若2x+1=7,即2x=6,解得:x=3,若2x+1=3,即x=1,则满足条件的x的值有7,3,1,故答案为:7,3,1.由题中的程序框图确定出满足题意x的值即可.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)原式=-8+15-9+12=-17+27=10;(2)原式=-1.5+1.25-8.5+10.75=-10+12=2;(3)原式=-85+4×5-4×(-125)=-85+20+485=405+20=8+20=28;(4)原式=(-4-28+33-6)÷5=(-5)÷5=-1;(5)原式=(2-2)ab+(-3+2)a+(1-13)=-a+23;(6)原式=15a2b-5ab2+4ab2-12a2b=3a2b-ab2.【解析】(1)减法转化为加法,再根据加减运算法则计算可得;(2)根据加法的交换律和结合律及其运算法则计算可得;(3)先计算乘除运算和乘方运算,再计算加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得;(5)根据合并同类项的法则计算可得;(6)先去括号,再合并同类项即可得.本题主要考查有理数的混合运算与整式的加减运算,关键在于通过正确的去括号和合并同类项对整式进行化简,并熟练掌握有理数的混合运算顺序与运算法则.20.【答案】解:(1)去括号得:3x-4x-4=1,移项合并得:-x=5,解得:x=-5;(2)去分母得:3x-9-4x-2=6,移项合并得:-x=17,解得:x=-17.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.21.【答案】解:原式=3x2y-3xy2+2(xy-32x2y)-xy+3xy2=3x2y-3xy2+2xy-3x2y-xy+3xy2=xy,当x=3,y=-13时,原式=xy=3×(-13)=-1.【解析】先将原式去括号、合并同类项化简,再将x和y的值代入计算可得.本题主要考查整式的加减-化简求值,解题的关键是掌握去括号和合并同类项的运算法则.22.【答案】解:(1)各点在数轴上的位置如图所示:(2)根据数轴上左边的数小于右边的数可知:-4<-2<-112<0<|-2|<-(-3.5).【解析】在数轴上表示各数,最后根据数轴上左边的数小于右边的数.本题主要考查的是比较有理数的大小、数轴的认识,明确数轴上左边的数小于右边的数是解题的关键.23.【答案】(50+a)(800-10a)(10+a)(800-10a)【解析】解:(1)试用含a的代数式填空:①涨价后,每个台灯的销售价为(50+a)元;②涨价后,商场的台灯平均每月的销售量为(800-10a)台;③涨价后,商场每月销售台灯所获得总利润为(10+a)(800-10a)元.故答案是:(50+a);(800-10a);(10+a)(800-10a);(2)当x=40时,(10+a)(800-10a)=50×400=20000当x=30时,(10+a)(800-10a)=40×500=20000,∴甲、乙经理说法都正确.(1)根据进价和售价以及每上涨1元时,其销售量就将减少10个之间的关系,列出代数式即可;(2)根据平均每月能售出800个和销售价每上涨1元时,其销售量就将减少10个之间的关系列出式子,再分两种情况讨论,求出每月的销售利润,再进行比较即可.此题考查了一元二次方程的应用,解决问题的关键是读懂题意,找到所求的量的关系,列出方程并解答.24.【答案】a22ab b2(a+b)2a2+2ab+b2=(a+b)2【解析】解:(1)a2、2ab、b2、(a+b)2;(2)a2+2ab+b2=(a+b)2;(3)10.232+20.46×9.77+9.772=(19+1)2=400.故答案为:a2、2ab、b2、(a+b)2.(2)a2+2ab+b2=(a+b)2;(1)根据正方形、长方形面积公式即可解答;(2)前三个图形的面积之和等于第四个正方形的面积;(3)借助于完全平方公式解答即可.本题主要考查了完全平方公式及其应用,难易程度适中,注意掌握几种特殊几何图形的面积表达式.25.【答案】t36-t【解析】解:(1)PA=t,PC=36-t;(2)当16≤t≤24时 PQ=t-3(t-16)=-2t+48,当24<t≤28时 PQ=3(t-16)-t=2t-48,当28<t≤30时 PQ=72-3(t-16)-t=120-4t,当30<t≤36时 PQ=t-[72-3(t-16)]=4t-120.(1)根据两点间的距离,可得P到点A和点C的距离;(2)根据两点间的距离,要对t分类讨论,t不同范围,可得不同PQ.本题考查了数轴,对t分类讨论是解题关键.。

【6套打包】无锡市七年级上册数学期中考试单元检测试题(含答案)

【6套打包】无锡市七年级上册数学期中考试单元检测试题(含答案)

人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7 7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,故①正确,②错误;∵a<0<b,∴ab<0,故③错误;∵a<0<b,而且|a|>|b|,∴a+b<0,b﹣a>0,∴b﹣a>a+b,故④正确.综上所述,说法正确的①④.故选:B.【点评】此题主要考查了数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握,解答此题的关键是判断出:a<0<b,而且|a|>|b|.二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是﹣,次数是3.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣,3.【点评】本题考查单项式的知识,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为 4.8.【分析】把百分位上的数字8进行四舍五入即可.【解答】解:4.7893取近似数并精确到十分位,得到的数为4.8.故答案为4.8.【点评】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费(4a+10b)元.(用含a,b的代数式表示)【分析】根据单价×数量=总费用进行解答.【解答】解:依题意得:4a+10b;故答案是:(4a+10b).【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=2,b=﹣3.【分析】直接利用绝对值的性质以及偶次方的性质进而得出a,b的值.【解答】解:∵|a﹣2|+(b+3)2=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故答案为:2,﹣3.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是m+2n.【分析】根据题意可以得到所求的多项式,本题得以解决.【解答】解:2m﹣(m﹣2n)=2m﹣m+2n=m+2n,故答案为:m+2n.【点评】本题考查整式的加减,解题的关键是明确整式加减的计算方法.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:=.【分析】根据“(物品价格+多余的3元)÷每人出钱数=(物品价格﹣少的钱数)÷每人出钱数”可列方程.【解答】解:设这个物品的价格是x元,则可列方程为:=,故答案是:=.【点评】本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并据此列出方程.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是等式的性质.【分析】方程移项合并,利用等式的性质将系数化为1即可.【解答】解:“系数化为1”这一步骤的依据是等式的性质,故答案为:等式的性质【点评】此题考查了解一元一次方程,熟练掌握等式的性质是解本题的关键.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是5、26、131.【分析】根据输出的结果是656列出一元一次方程,然后依次进行计算,直至x 不是整数即可.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0(不符合题意),故x的值可取131,26,5.故答案为:5、26、131.【点评】本题考查了代数式求值,解一元一次方程,难点在于最后输出656的相应的x值不一定是第一次输入的x的值.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.【分析】先算乘方,再算乘法,最后算加法即可.【解答】解:(﹣)×(﹣8)+(﹣6)2=4+36=40.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.【分析】先算乘方与绝对值,再算除法,最后算加减即可.【解答】解:﹣14+(﹣2)÷(﹣)﹣|﹣9|=﹣1+(﹣2)×(﹣3)﹣9=﹣1+6﹣9=﹣4.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.计算4a﹣2b+3(3b﹣2a).【分析】先去括号,然后合并同类项求解.【解答】解:4a﹣2b+3(3b﹣2a)=4a﹣2b+9b﹣6a=﹣2a+7b.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.20.化简:5x2y﹣2xy﹣4(x2y﹣xy)【分析】先去括号,然后合并同类项即可.【解答】解:原式=5x2y﹣2xy﹣4x2y+2xy=x2y.【点评】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.21.解方程:7+2x=12﹣2x.【分析】根据等式的基本性质依次移项、合并同类项、系数化为1可得.【解答】解:移项,得:2x+2x=12﹣7,合并同类项,得:4x=5,系数化为1,得:x=.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22.解方程:x﹣3=﹣x﹣4.【分析】方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去分母得:2x﹣6=﹣x﹣8,移项合并得:3x=﹣2,解得:x=﹣.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解.23.先化简,再求值:,其中x=﹣3,y=.【分析】直接去括号进而合并同类项,再把已知代入求出答案.【解答】解:原式=7x2﹣3xy﹣6x2+2xy=x2﹣xy.当x=﹣3,y=时,原式==10.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.【分析】原式先去括号,再合并同类项化简,继而由x2﹣2y﹣5=0知x2﹣2y=5,代入原式=2(x2﹣2y)计算可得.【解答】解:原式=3x2﹣6xy﹣x2+6xy﹣4y=2x2﹣4y,∵x2﹣2y﹣5=0,∴x2﹣2y=5,则原式=2(x2﹣2y)=2×5=10.【点评】此题考查了整式的加减﹣化简求值,熟练掌握去括号法则与合并同类项法则是解本题的关键.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第①步开始出现错误,错误的原因是利用等式的性质漏乘.请帮小明改正错误,写出完整的解题过程.【分析】检查小明同学的解题过程,找出出错的步骤,以及错误的原因,写出正确的解题过程即可.【解答】解:第①步开始出现错误,错误的原因是利用等式的性质漏乘;故答案为:①;利用等式的性质漏乘;正确的解题过程为:解:方程两边同时乘以6,得:×6﹣×6=6,去分母,得:2(2﹣3x)﹣3(x﹣5)=6,去括号,得:4﹣6x﹣3x+15=6,移项,得:﹣6x﹣3x=6﹣4﹣15,合并同类项,得:﹣9x=﹣13,系数化1,得:x=.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=3m+2+n(用含m,n的式子表示).【分析】(1)根据a⊙b=a(a+b)﹣1,可以求得题目中所求式子的值;(2)根据题意只要写出一个符合要求的式子即可,这是一道开放性题目,答案不唯一.【解答】解:(1)∵a⊙b=a(a+b)﹣1,∴(﹣2)⊙3=(﹣2)×[(﹣2)+3]﹣1=(﹣2)×﹣1=(﹣3)﹣1=﹣4;(2)∵5⊕3=20,∴m⊕n=3m+2+n,故答案为:3m+2+n.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.【分析】先对整式A,B关于字母x进行降幂排列,再写出其各项系数,列出竖式计算A﹣B即可.【解答】解:A=2x4﹣2x3y﹣4x2y2﹣5xy3,B=3x3y+2x2y2﹣4xy3﹣y4,A的各项系数为:2+2﹣4﹣5+0,B的各项系数为:0+3+2﹣4﹣1,列竖式计算如下:,所以,A﹣B=2x4﹣x3y﹣6x2y2﹣xy3+y4.【点评】本题考查了整式的加减,多项式的排列,掌握合并同类项的法则是解题的关键.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|.(3)直接写出方程|x﹣3|+|x+1|=6的解是﹣2或4.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是4,此时x的值是1.【分析】(1)根据两点间的距离公式解答;(2)根据两点间的距离公式解答;(3)分x<﹣1,﹣1≤x≤3,x>3三种情况去掉绝对值,解之即可得出结论;(4)|x+1|+|x﹣1|+|x﹣3|可看作是数轴上表示x的点,到表示3、﹣1、1点的距离之和.【解答】解:(1)BD=|﹣2﹣3|=5;(2)数轴上表示数x和数﹣3两点之间的距离可表示为|x+3|;(3)当x<﹣1时,有﹣x+3﹣x﹣1=6,解得:x=﹣2;当﹣1≤x≤3时,有﹣x+3+x+1=4≠6,舍去;当x>3时,有x﹣3+x+1=6,解得:x=4.(4)当x=1时,|x+1|+|x﹣1|+|x﹣3|有最小值,此最小值是4.故答案为:5,|x+3|,﹣2或4.4,1.【点评】此题主要考查了绝对值,实数与数轴,解题的关键是了解两点间的距离公式和两点间距离的几何意义.人教版数学七年级上册期中考试试题(含答案)一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107 2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣223.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣35.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣26.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣77.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100 8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④二、填空题(本题共24分,每小题3分)9.单项式﹣的系数是,次数是.10.用四舍五入法,将4.7893取近似数并精确到十分位,得到的数为.11.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费元.(用含a,b的代数式表示)12.已知a,b满足|a﹣2|+(b+3)2=0,那么a=,b=.13.若一个多项式与m﹣2n的和等于2m,则这个多项式是.14.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问:共有多少人?这个物品的价格是多少?若设共有x人,则根据题意,可列方程为:.15.如图所示的框图表示解方程3﹣5x=4﹣2x的流程,其中“系数化为1”这一步骤的依据是.16.按下面的程序计算,若开始输入x的值为正整数,最后输出的结果为656,则满足条件的x的不同值是.三、解答题(本题共52分,17-20每题3分;20-22题每题4分,23-26每题5分,27-28每题6分)17.计算:(﹣)×(﹣8)+(﹣6)2.18.计算:﹣14+(﹣2)÷(﹣)﹣|﹣9|.19.计算4a﹣2b+3(3b﹣2a).20.化简:5x2y﹣2xy﹣4(x2y﹣xy)21.解方程:7+2x=12﹣2x.22.解方程:x﹣3=﹣x﹣4.23.先化简,再求值:,其中x=﹣3,y=.24.先化简,再求值:已知x2﹣2y﹣5=0,求3(x2﹣2xy)﹣(x2﹣6xy)﹣4y 的值.25.之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:解方程﹣=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:解:方程两边同时乘以6,得×6﹣×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②去括号,得:4﹣6x﹣3x+15=1……………③移项,得:﹣6x﹣3x=1﹣4﹣15…………④合并同类项,得﹣9x=﹣18……………⑤系数化1,得:x=2………………⑥上述小明的解题过程从第步开始出现错误,错误的原因是.请帮小明改正错误,写出完整的解题过程.26.对于任意有理数a,b,定义运算:a⊙b=a(a+b)﹣1,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)﹣1=13;(﹣3)⊙(﹣5)=﹣3×(﹣3﹣5)﹣1=23.(1)求(﹣2)⊙3的值;(2)对于任意有理数m,n,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m⊕n=(用含m,n的式子表示).27.小兵喜欢研究数学问题,在计算整式的加减(﹣4x2﹣7+5x)+(2x﹣3+3x2)的时候,想到了小学的列竖式加减法,令A=﹣4x2﹣7+5x,B=2x﹣3+3x2,然后将两个整式关于x进行降幂排列,A=﹣4x2+5x﹣7,B=3x2+2x﹣3,最后只要写出其各项系数对齐同类项进行竖式计算如下:所以,(﹣4x2﹣7+5x)+(2x﹣3+3x2)=﹣x2+7x﹣10若A=﹣4x2y2+2x3y﹣5xy3+2x4,B=3x3y+2x2y2﹣y4﹣4xy3,请你按照小兵的方法,先对整式A,B关于某个字母进行降幂排列,再写出其各项系数进行竖式计算A﹣B,并写出A﹣B值.28.阅读材料.点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N 之间的距离,即MN=|m﹣n|,如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.(1)BD=;(2)数轴上表示数x和数﹣3两点之间的距离可表示为.(3)直接写出方程|x﹣3|+|x+1|=6的解是.(4)小明发现代数式|x+1|+|x﹣1|+|x﹣3|引有最小值,最小值是,此时x 的值是.2018-2019学年北京市朝阳区垂杨柳片区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题共24分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.由美国主题景点协会(TEA)和国际专业技术与管理咨询服务提供商AECOM 的经济部门合作撰写的2016年《主题公园指数和博物馆指数报告》中显示,中国国家博物馆以7550000的参观人数拔得头筹,成为全世界人气最旺、最受欢迎的博物馆,请将7550000用科学记数法表示为()A.755×104B.75.5×105C.7.55×106D.0.755×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7550000用科学记数法表示为:7.55×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列各式中结果为负数的是()A.﹣(﹣2)B.|﹣2|C.(﹣2)2D.﹣22【分析】根据相反数、绝对值和乘方的定义逐一计算可得.【解答】解:A.﹣(﹣2)=2,是正数;B.|﹣2|=2,是正数;C.(﹣2)2=4,是正数;D.﹣22=﹣4,是负数;故选:D.【点评】本题解题的关键是掌握有理数的乘方的定义与相反数、绝对值的定义.3.比﹣4.5大的负整数有()A.3个B.4个C.5个D.无数个【分析】根据题意:设大于﹣4.5的负整数为x,则取值范围为﹣4.5<x<0.根据此范围易求解.【解答】解:符合此两条件:(1)x是负整数,(2)﹣4.5<x<0的数只有四个﹣4,﹣3,﹣2,﹣1.故大于﹣4.5的负整数有﹣4,﹣3,﹣2,﹣1.故选:B.【点评】本题考查了比较有理数的大小,比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.4.已知x=﹣2是方程x+4a=10的解,则a的值是()A.3B.C.2D.﹣3【分析】把x=﹣2代入方程,即可求出答案.【解答】解:把x=﹣2代入方程x+4a=10得:﹣2+4a=10,解得:a=3,故选:A.【点评】本题考查了一元一次方程的解和解一元一次方程,能得出关于a的方程是解此题的关键.5.下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣2【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.如果x=y,那么根据等式的性质下列变形正确的是()A.x+y=0B.x=y C.2﹣x=2﹣y D.x+7=y﹣7【分析】根据等式的性质逐个判断即可.【解答】解:A、∵x=y,∴x﹣y=0,而x+y不一定等于0,如2=2,2+2=4,故本选项不符合题意;B、∵x=y,∴x=y,不一定x=y,故本选项不符合题意;C、∵x=y,∴﹣x=﹣y,∴2﹣x=2﹣y,故本选项符合题意;D、∵x=y,∴x+7=y+7,x+7和y﹣7不一定相等,故本选项不符合题意;故选:C.【点评】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.7.小静喜欢逛商场,某天小静看到某商场举行促销活动,促销的方法是“消费超过1000元时,所购买的商品按原价打8折后,再减少100元”.若某商品的原价为x元(x>1000),则购买该商品实际付款的金额(单位:元)是()A.80%x﹣100B.80%(x﹣100)C.80%x﹣100D.20%x﹣100【分析】根据题意,可以用代数式表示出购买该商品实际付款的金额.【解答】解:由题意可得,购买该商品实际付款的金额是:(80%x﹣100)元,故选:A.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.8.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()①a<0<b②|a|<|b|③ab>0 ④b﹣a>a+bA.①②B.①④C.②③D.③④【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.。

江苏省无锡市新区七年级(上)期中数学试卷

江苏省无锡市新区七年级(上)期中数学试卷

2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)(2015秋•无锡期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃2.(2分)(2010•苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1073.(2分)(2015秋•无锡期中)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣14.(2分)(2015秋•无锡期中)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab25.(2分)(2015秋•无锡期中)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个6.(2分)(2015秋•鄂城区期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对7.(2分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b8.(2分)(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)(2015秋•无锡期中)﹣2的相反数是______;倒数是______;绝对值是______.10.(4分)(2015秋•无锡期中)平方得25的数为______,______的立方等于﹣27.11.(2分)(2012秋•大石桥市期末)绝对值大于3小于6的所有整数是______.12.(2分)(2015秋•无锡期中)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=______.13.(2分)(2015秋•无锡期中)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是______.14.(4分)(2015秋•无锡期中)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=______;(2)若输出y的值为22,则输入的值x=______.15.(2分)(2015秋•无锡期中)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=______.16.(4分)(2015秋•无锡期中)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是______;第n个单项式是______.17.(2分)(2015秋•无锡期中)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n 为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是______.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.19.(4分)(2015秋•无锡期中)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.20.(12分)(2015秋•无锡期中)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.21.(8分)(2015秋•无锡期中)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).22.(6分)(2015秋•满城县期末)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.23.(6分)(2015秋•无锡期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.24.(5分)(2015秋•江阴市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c______0,a+b______0,c﹣a______0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(5分)(2016•繁昌县一模)定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13 (1)请你想一想:a⊙b=______;(2)若a≠b,那么a⊙b______b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.26.(8分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车______辆,乙仓库调往A县农用车______辆.(用含x的代数式表示)(共2分)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(共3分)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?(共2分)2015-2016学年江苏省无锡市新区七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每题2分,共16分,请把正确答案的编号填在括号内.)1.(2分)(2015秋•无锡期中)室内温度10℃,室外温度是﹣3℃,那么室内温度比室外温度高()A.﹣13℃B.﹣7℃C.7℃D.13℃【分析】求室内温度比室外温度高多少度,就是用室内温度减去室外温度,列出算式.【解答】解:用室内温度减去室外温度,即10﹣(﹣3)=10+3=13.故选D.【点评】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.2.(2分)(2010•苏州)据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n 是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)(2015秋•无锡期中)下列等式一定成立的是()A.3x+3y=6xy B.16y2﹣7y2=9 C.﹣(x﹣6)=﹣x+6 D.3(x﹣1)=3x﹣1【分析】根据合并同类项法则判断A、B;根据去括号法则判断C、D.【解答】解:A、不是同类项,不能合并,故错误;B、16y2﹣7y2=9y2,故错误;C、﹣(x﹣6)=﹣x+6,故正确;D、3(x﹣1)=3x﹣3,故错误.故选C.【点评】此题根据合并同类项法则和去括号法则求解.4.(2分)(2015秋•无锡期中)下列各组中的两个项不属于同类项的是()A.3x2y和﹣2x2y B.﹣xy和2yx C.23和32D.a2b和ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A、字母相同且相同字母的指数也相同,故A正确;B、字母相同且相同字母的指数也相同,故B正确;C、所有的常数项都是同类项,故C正确;D、相同字母的指数不同,故D错误;故选:D.【点评】本题考查了同类项,同类项是字母项且相同字母的指数也相同.5.(2分)(2015秋•无锡期中)下列说法中正确的个数是()(1)a和0都是单项式(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是3(3)单项式﹣πbc4的系数是﹣(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和.A.1个B.2个C.3个D.4个【分析】根据单项式多项式的定义,结合各项进行判断即可.【解答】解:(1)a和0都是单项式,正确;(2)多项式﹣3a2b+7a2b2﹣2ab+1的次数是4,故本项错误;(3)单项式﹣πbc4的系数是﹣π,故本项错误;(4)x2+2xy﹣y2可读作x2、2xy、﹣y2的和,正确;综上可得正确的有2个.故选B.【点评】本题考查了单项式及多项式的知识,解答本题的关键是掌握单项式及多项式的定义.6.(2分)(2015秋•鄂城区期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对【分析】由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可分别得出a、b、c的值,代入计算可得结果.【解答】解:由a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,可得a=1,b=﹣1,c=0,所以a﹣b+c=1﹣(﹣1)+0=1+1+0=2,故选:A.【点评】本题主要考查有理数的概念的理解,能正确判断有关有理数的概念是解题的关键.7.(2分)(2014•南昌)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:2[a﹣b+(a﹣3b)]=4a﹣8b.故选B【点评】此题考查了整式的加减,以及列代数式,熟练掌握运算法则是解本题的关键.8.(2分)(2015•张家界)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:23=3+5,33=7+9+11,43=13+15+17+19,…按此规律,若m3分裂后其中有一个奇数是2015,则m的值是()A.46 B.45 C.44 D.43【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m3的所有奇数的个数的表达式,再求出奇数2015的是从3开始的第1007个数,然后确定出1007所在的范围即可得解.【解答】解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=2015,n=1007,∴奇数2015是从3开始的第1007个奇数,∵=989,=1034,∴第1007个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选B.【点评】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.二、填空题(本大题共9小题,每空2分,共26分,请把结果直接填在题中的横线上.)9.(4分)(2015秋•无锡期中)﹣2的相反数是2;倒数是﹣;绝对值是2.【分析】利用倒数,相反数及绝对值的定义求解即可.【解答】解:﹣2的相反数是2;倒数是﹣;绝对值是2.故答案为:2,﹣,2【点评】本题主要考查了倒数,相反数及绝对值,解题的关键是熟记它们的定义.10.(4分)(2015秋•无锡期中)平方得25的数为±5,﹣3的立方等于﹣27.【分析】根据平方根、立方根的定义进行分析解答即可.【解答】解:∵(±5)2=25,(﹣3)3=﹣27,∴平方等于25的数为±5,立方根等于﹣27的数为﹣3.故答案是±5,﹣3.【点评】本题主要考查立方根、平方根的定义,绝对值的定义,关键在于熟练掌握运用相关的性质定理,认真的进行计算.11.(2分)(2012秋•大石桥市期末)绝对值大于3小于6的所有整数是±4,±5.【分析】大于3小于6的整数绝对值是4或5,因为互为相反数的两个数的绝对值相等,所以绝对值大于3且小于6的所有整数有±4,±5.【解答】解:绝对值大于3小于6的所有整数是±4,±5.故答案为:±4,±5.【点评】考查了绝对值,解题关键是掌握互为相反数的两个数的绝对值相等.12.(2分)(2015秋•无锡期中)若3a m+2b4与﹣a5b n﹣1的和仍是一个单项式,则m+n=8.【分析】两者可以合并说明两式为同类项,根据同类项的字母相同及相同字母的指数相同可得出m和n 的值.【解答】解:由题意得,两者可以合并说明两式为同类项,可得m+2=5,n﹣1=4,解得:m=3,n=5,m+n=8.故填:8.【点评】本题考查同类项的知识,难度不大,掌握同类项的字母相同及相同字母的指数相同是关键.13.(2分)(2015秋•无锡期中)点A表示数轴上的一个点,将点A向右移动8个单位,再向左移动5个单位,终点恰好是原点,则点A表示的数是﹣3.【分析】设点A表示的数是x,根据向右移动为“+”、向左移动为“﹣”列出方程,解方程即可得出答案.【解答】解:设点A表示的数是x.依题意,有x+8﹣5=0,解得x=﹣3.故答案:﹣3.【点评】本题考查了数轴和有理数的表示方法,注意:数轴上的点向右移动表示为加,向左移动表示为减.14.(4分)(2015秋•无锡期中)如图所示是计算机程序计算,(1)若开始输入x=﹣1,则最后输出y=﹣2;(2)若输出y的值为22,则输入的值x=±3.【分析】(1)根据程序框图列出关系式,将x=﹣1代入求出结果即可;(2)将y=22代入关系式中计算,即可求出x的值.【解答】解:根据题意列得:y=3x2﹣5,(1)将x=﹣1代入得:y=35=﹣2;(2)将y=22代入得:22=3x2﹣5,即x2=9,解得:x=±3.故答案为:(1)﹣2;(2)±3【点评】此题考查了代数式求值,以及平方根的定义,列出关系式是解本题的关键.15.(2分)(2015秋•无锡期中)已知多项式(4x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1),若多项式的值与字母x的取值无关,则a b=9.【分析】原式去括号合并后,根据结果与字母x取值无关求出a与b的值,即可确定出原式的值.【解答】解:原式=4x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(4﹣2b)x2+(a+3)x﹣6y+7,由多项式的值与字母x的取值无关,得到4﹣2b=0,a+3=0,解得:a=﹣3,b=2,则a b=(﹣3)2=9,故答案为:9【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.16.(4分)(2015秋•无锡期中)观察下列单项式:﹣a,2a2,﹣3a3,4a4,﹣5a5,…可以得到第2015个单项式是﹣2015a2015;第n个单项式是(﹣1)n na n.【分析】单项式的系数是正负间隔出现,系数的绝对值等于该项字母的次数,由此规律即可解答.【解答】解:第2015个单项式为:﹣2015a2015,第n个单项式为(﹣1)n na n故答案为:﹣2015a2015,(﹣1)n na n.【点评】本题考查数字的变化规律;分别得到系数,系数的绝对值,字母及字母指数的变化规律是解决本题的关键.17.(2分)(2015秋•无锡期中)定义一种对正整数n的“F”运算:①当n为奇数时,结果是3n+5;②n 为偶数时,结果是(其中k是使为奇数的正整数),并且运算重复进行.例如取n=26,则有如图的结果,那么当n=2015,求第2015次“F”运算的结果是20.【分析】根据运算规则进行重复计算,从中发现循环的规律,得到答案.【解答】解:根据题意,得当n=2015时,第1次的计算结果是3n+5=6050;第2次的计算结果是=3025;第3次的计算结果是3025×3+5=9080;第4次是计算结果是=1135;第5次的计算结果是1135×3+5=3410;第6次的计算结果是=1705,第7次的计算结果是1705×3+5=5120,第8次的计算结果是=5,第9次的计算结果是5×3+5=20,第10次的计算结果是=5,开始循环.故第2015次的计算结果是20.故答案为:20.【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律即可求出结果.三、解答题(本大题共9小题,共58分.解答需写出必要的文字说明或演算步骤.)18.(4分)(2015秋•无锡期中)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【分析】(1)根据正数的定义选出即可;(2)根据负数的意义选出即可;(3)根据整数的定义选出即可;(4)根据无理数的定义选出即可.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.【点评】本题考查了对正数,负数,整数,无理数的定义的应用,主要考查学生的理解能力和辨析能力.19.(4分)(2015秋•无锡期中)在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3|,﹣(﹣2),﹣(﹣1)3,﹣22.【分析】原式各项计算得到结果,即可做出比较.【解答】解:﹣|﹣3|=﹣3,﹣(﹣2)=2,﹣(﹣1)3=1,﹣22=﹣4,在数轴上把各数表示出来为:则﹣22<﹣|﹣3|<﹣(﹣1)3<﹣(﹣2).【点评】此题考查了有理数的大小比较,以及数轴,将各数正确的表示在数轴上是解本题的关键.20.(12分)(2015秋•无锡期中)计算(1)(﹣30)﹣(﹣28)+(﹣70)﹣88(2)(3)(4)﹣14﹣(1﹣0.5)×.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣30+28﹣70﹣88=﹣100﹣60=﹣160;(2)原式=2﹣27×=2﹣45=﹣43;(3)原式=﹣14+9+54=49;(4)原式=﹣1﹣××(﹣7)=﹣1+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.(8分)(2015秋•无锡期中)化简:(1)3b+5a+2a﹣4b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2).【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)3b+5a+2a﹣4b=7a﹣b;(2)(a2+2ab+b2)﹣(a2﹣2ab+b2)=a2+2ab+b2﹣a2+2ab﹣b2=4ab.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.22.(6分)(2015秋•满城县期末)化简求值;5a2﹣[3a﹣2(2a﹣1)+4a2],其中a=﹣.【分析】原式去括号合并得到最简结果,将a的值代入计算即可求出值.【解答】解:原式=5a2﹣3a+4a﹣2﹣4a2=a2+a﹣2,当a=﹣时,原式=﹣﹣2=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.(6分)(2015秋•无锡期中)已知A=x﹣2y,B=﹣x﹣4y+1(1)求2(A+B)﹣(2A﹣B)的值;(结果用x、y表示)(2)当|x+|与y2互为相反数时,求(1)中代数式的值.【分析】(1)先化简,把B的值代入,即可求出答案;(2)根据相反数求出x、y的值,再代入求出即可.【解答】解:(1)∵A=x﹣2y,B=﹣x﹣4y+1,∴2(A+B)﹣(2A﹣B)=2A+2B﹣2A+B=3B=3(﹣x﹣4y+1)=﹣3x﹣12y+3;(2)∵|x+|与y2互为相反数,∴|x+|+y2=0,∴x+=0,y2=0,∴x=﹣,y=0,∴2(A+B)﹣(2A﹣B)=﹣3×(﹣)﹣12×0+3=4.【点评】本题考查了整式的加减,求代数式的值,相反数,绝对值和偶次方的非负性的应用,能正确利用知识点进行化简和计算是解此题的关键,难度适中.24.(5分)(2015秋•江阴市期中)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,c﹣a>0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.【分析】(1)根据数轴判断出a、b、c的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,a<0,b>0,c>0且|b|<|a|<|c|,所以,b﹣c<0,a+b<0,c﹣a>0;故答案为:<,<,>;(2)|b﹣c|+|a+b|﹣|c﹣a|=(c﹣b)+(﹣a﹣b)﹣(c﹣a)=c﹣b﹣a﹣b﹣c+a=﹣2b.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a、b、c的正负情况是解题的关键.25.(5分)(2016•繁昌县一模)定义一种新运算:观察下列式:1⊙3=1×4+3=7 3⊙(﹣1)=3×4﹣1=11 5⊙4=5×4+4=24 4⊙(﹣3)=4×4﹣3=13 (1)请你想一想:a⊙b=4a+b;(2)若a≠b,那么a⊙b≠b⊙a(填入“=”或“≠”)(3)若a⊙(﹣2b)=4,请计算(a﹣b)⊙(2a+b)的值.【分析】(1)根据提供的信息,⊙的运算法则是⊙前面的数乘以4再加上运算符号后面的数,然后写出即可;(2)根据运算规则把a⊙b和b⊙a分别进行计算并相减得到a、b的差,然后即可比较大小;(3)先根据运算规则与已知条件求出a、b的关系,然后再根据运算规则计算(a﹣b)⊙(2a+b)并把a、b的关系代入整理后的算式计算即可求解.【解答】解:(1)∵1⊙3=1×4+3=7,3⊙(﹣1)=3×4﹣1=11,5⊙4=5×4+4=24,4⊙(﹣3)=4×4﹣3=13,∴a⊙b=4a+b;(2)a⊙b=4a+b,b⊙a=4b+a,(4a+b)﹣(4b+a)=3a﹣3b=3(a﹣b),∵a≠b,∴3(a﹣b)≠0,即(4a+b)﹣(4b+a)≠0,∴a⊙b≠b⊙a;(3)∵a⊙(﹣2b)=4a﹣2b=4,∴2a﹣b=2,(a﹣b)⊙(2a+b)=4(a﹣b)+(2a+b)=4a﹣4b+2a+b,=6a﹣3b,=3(2a﹣b)=3×2=6.故答案为:(1)4a+b,(2)≠,(3)6.【点评】本题是对数字变化问题的考查,认真观察所给式子,发现并应用规律(4乘以第一个数再加上第二个数)做题是正确解答本题的关键.26.(8分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x辆,乙仓库调往A县农用车10﹣x辆.(用含x的代数式表示)(共2分)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(共3分)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?(共2分)【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x.(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.。

【强烈推荐】无锡天一中学七年级数学期中试卷

【强烈推荐】无锡天一中学七年级数学期中试卷

无锡天一中学七年级数学期中试卷初一数学通过一阶段的学习,你一定掌握了许多数学知识与方法.现在就请你展开思维的翅膀,细心地完成本试卷.要坚信:细心的体验、深入的思考和独特的思维,永远是最有价值的!要相信:只要努力了你就是成功者!一、填空题:(第1~12题,每空1分;第13~15题,每空2分,共28分)1、2008年9月25日21时10分,神舟七号载人航天飞船成功发射,若神七火箭发射点火前5秒记为−5秒,那么神七火箭发射点火后10秒应记为_____。

2、−4的相反数是______,−334的绝对值是________,−12的倒数是________。

3、比较大小:+(−12) ____0,−34___ −45,−(+1.5) ___32,−(−5) ____ −|−5|。

4、单项式−2x2y5的系数是______,次数是_______;5、数轴上,将表示−2的点向右移动3个单位后,对应点表示的数是_______。

6、多项式4x3−x + 24的最高次项是__________,一次项系数是_________。

7、比−3大,但不大于2的所有整数的和为________,积为_________。

8、根据图中的程序,当输入x = 3时,输出的结果是_____________。

9、若−7x m+2y2与−3x3y n是同类项,则m =_______,n = _______。

10、若代数式mx2 + 5y2− 2x2 + 3的值与字母x的取值无关,则m的值是_____。

11、用代数式表示:今年小华a岁,她的数学老师的年龄是小华年龄的2倍大4岁。

那么3年后,小华_________岁,小华的数学老师___________岁。

12、规定符号×○的意义为:a×○b = ab−a−b + 1,那么−3×○4 = ________。

13、如果a是最小的正整数,b是绝对值最小的数,c与a2互为相反数,那么(a + b)2009−c2009 = ______。

江苏省无锡市锡山区16—17学年上学期七年级期中考试数学试题(附答案)

江苏省无锡市锡山区16—17学年上学期七年级期中考试数学试题(附答案)

A .B .C .D . 七年级第一学期数学期中考试卷 2016.11说明:本试卷满分110分,考试时间:100分钟一、选择题 (本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填在答题卡上.)1.-3的相反数是( ) A .-3 B .-13 C .13 D .32. 中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为…………………………………… ( )A .6.75×104吨B .6.75×103吨C .0.675×105吨D .67.5×103吨3、把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是( ) A .-5-3+1-5 B .5-3-1-5 C .5+3+1-5 D .5-3+1-54.在下列数:+3、+(-2.1)、-12、-π、0、-9-、中,正数有 …… ( ) A .1个 B .2个 C .3个D .4个 5. 下列合并同类项中,正确的是…………………………………………………… ( )A .xy y x 633=+B .332532a a a =+C .033=-nm mnD .257=-x x6.下列说法正确的是………………………………………………………………………( )A .单项式2342x y 的次数是9;B . 1a x x++不是多项式; C .322223x x y y -+是三次三项式; D .单项式232r π的系数是32; 7.a 、b 是有理数,且||a =-a ,||b =b ,||a >||b ,用数轴上的点来表示a 、b ,正确的是 ( )8.马小虎做了6道题: ①(-1)2015=-2015; ②-2+1=-3; ③-2×32=-36; ④12÷12-⎛⎫ ⎪⎝⎭=-1;⑤12÷(2-3)=12÷2-12÷3=2;⑥-3÷12×2=-3÷1=-3. 其中他做对的题目有( )A .0道B .1道C .2道D .3道9.某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则可列方程得 ( )A.⎪⎭⎫ ⎝⎛-=6145x x B.⎪⎭⎫ ⎝⎛+=6145x x C.x x 4615=⎪⎭⎫ ⎝⎛- D.x x 4615=⎪⎭⎫ ⎝⎛+ 10下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前200位的所有数字之和是 ( )A .994B .995C .998D .999二、填空题:(本大题共10小题,每空2分,共26分.请将答案填在答题卡上)11. -3的倒数 , 3232ab c -的系数是 . 12.比较大小:① 25- 35-, ②)43(-- 54-- 13. 某冬天中午的温度是5 C ︒,下午上升到7℃,由于冷空气南下,到夜间又下降了9C ︒,则这天夜间的温度是________C ︒.14.在式子x +y ,0,-a ,-3x 2y ,13x +,1x中,单项式的个数为______________。

江苏省无锡市 七年级(上)期中数学试卷

江苏省无锡市 七年级(上)期中数学试卷

三、计算题(本大题共 4 小题,共 27.0 分) 20. 计算
(1)(12+56-712)×(-36) (2)-14-16×[3-(-3)2] (3)-113+12÷(-2)×(-83)
21. 化简 (1)-5m+4m-2n+6n+3m (2)(a2-6a-7)-3(a2-2a-4)
22. 解方程 (1)-3x+4=1 (2)2x+3=x+5
26. 如图:在数轴上 A 点表示数 0,B 点表示的数是最小的正整数,C 点表示数 5,点 A 与点 B 之间的距离表示为 AB,点 A 与点 C 之间的距离表示为 AC,点 B 与点 C 之 间的距离表示为 BC. (1)BC=______. (2)A,B,C 在数轴上同时运动,点 B 和点 C 分别以每秒 3 个单位长度和 6 个单
第 2 页,共 11 页
23. 王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作-1,王 先生从 1 楼出发,电梯上下楼层依次记录如下(单位:层):+6,-3,+10,-8, +12,-7,-10. (1)请你通过计算说明王先生最后是否回到出发点 1 楼. (2)该中心大楼每层高 3m,电梯每向上或下 1m 需要耗电 0.2 度,根据王先生现 在所处位置,请你算算,他办事时电梯需要耗电多少度?
D. 25.51 千克
4. 下列说法正确的是( )
A. 单项式 x3yz4 系数是 1,次数是 7
B. x2y+1 是三次二项式
C. 单项式−πa2b32 的系数是−12,次数是 6
D. 多项式 2x2+xy+3 是四次三项式
5. 若代数式-5x6y3 与 2x2ny3m 的和是单项式,则常数 n+m 的值( )

七年级上期中数学试卷含解析

七年级上期中数学试卷含解析

2015-2016学年江苏省无锡市宜兴市丁蜀学区八校联考七年级(上)期中数学试卷一、精心选一选(每题3分,共24分)1.下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5|B.|﹣5|和|+5|C.﹣(﹣5)和|﹣5| D.|a|和|﹣a|2.方程5(x﹣1)=5的解是()A.x=1 B.x=2 C.x=3 D.x=43.计算(﹣)3的结果是()A.B.﹣C.D.﹣4.下列代数式中,不是单项式的是()A.B.﹣C.t D.3a2b5.下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有()A.1个B.2个C.3个D.4个6.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>07.一辆汽车匀速行驶,若在a秒内行驶米,则它在2分钟内可行驶()A.米 B.米C.米D.米8.已知a+b=4,c﹣d=﹣3,则(b﹣c)﹣(﹣d﹣a)的值为()A.7 B.﹣7 C.1 D.﹣1二、细心填一填:(每空2分,共18分)9.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第一位学生的实际得分为______分.10.太阳半径大约是696 000千米,用科学记数法表示为______米.11.代数式系数为______;多项式3x2y﹣7x4y2﹣xy4的最高次项是______.12.如果﹣是五次多项式,那么k=______.13.已知2x﹣3y=3,则代数式6x﹣9y+5的值为______.14.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=______.15.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是______.16.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009的差倒数a2010=______.三、认真答一答:17.计算:①﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)②1×﹣(﹣)×2+(﹣)÷1化简:③x2+5y﹣4x2﹣3y﹣1④7a+3(a﹣3b)﹣2(b﹣3a)解方程:⑤2(3x+4)﹣3(x﹣1)=3⑥2x﹣3(10﹣2x)=6﹣4(2﹣x)18.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.19.把下列各数填在相应的大括号里:﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,负整数集合:(______ …);负分数集合:(______ …);无理数集合:(______ …).20.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?21.已知a2+b2=6,ab=﹣2,求代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值.22.已知x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是多少?23.实践与探索:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a 的代数式表示十字框框住的5个数字之和;(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.24.观察下列有规律的数:,,,,,…根据规律可知(1)第7个数______,第n个数是______(n是正整数)(2)是第______个数(3)计算++++++…+.2015-2016学年江苏省无锡市宜兴市丁蜀学区八校联考七年级(上)期中数学试卷参考答案与试题解析一、精心选一选(每题3分,共24分)1.下列各数中,一定互为相反数的是()A.﹣(﹣5)和﹣|﹣5|B.|﹣5|和|+5|C.﹣(﹣5)和|﹣5| D.|a|和|﹣a|【考点】相反数;绝对值.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣(﹣5)=5,﹣|﹣5|=﹣5,故A正确;故选:A.2.方程5(x﹣1)=5的解是()A.x=1 B.x=2 C.x=3 D.x=4【考点】解一元一次方程.【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:5x﹣5=5,移项合并得:5x=10,解得:x=2,故选B3.计算(﹣)3的结果是()A.B.﹣C.D.﹣【考点】有理数的乘方.【分析】可根据乘方的意义,先把乘方转化为乘法,再根据乘法的运算法则来计算,或者先用符号法则来确定幂的符号,再用乘法求幂的绝对值.【解答】解:(﹣)3表示3个﹣相乘,所以结果为﹣.故选D.4.下列代数式中,不是单项式的是()A.B.﹣C.t D.3a2b【考点】单项式.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是分式,所以它不是单项式;符合题意;B、﹣是数字,是单项式;不符合题意;C、t是字母,所以它是单项式;不符合题意;D、3a2b是数字与字母的积的形式,所以它是单项式;不符合题意.故选A.5.下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有()A.1个B.2个C.3个D.4个【考点】绝对值.【分析】根据绝对值的意义对各选项进行判断.【解答】解:负数的绝对值等于它的相反数,所以(1)错误;绝对值最小的有理数是0,所以(2)正确;任何数的绝对值都是非负数,所以(3)正确;互为相反数的两个数的绝对值相等,所以(4)正确.故选C.6.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.7.一辆汽车匀速行驶,若在a秒内行驶米,则它在2分钟内可行驶()A.米 B.米C.米D.米【考点】列代数式.【分析】2分钟=120秒,再根据a秒内行驶米求得速度,进一步乘时间得出答案即可.【解答】解:÷a×120=米.故选:B.8.已知a+b=4,c﹣d=﹣3,则(b﹣c)﹣(﹣d﹣a)的值为()A.7 B.﹣7 C.1 D.﹣1【考点】整式的加减—化简求值.【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a+b=4,c﹣d=﹣3,∴原式=b﹣c+d+a=(a+b)﹣(c﹣d)=4+3=7,故选A二、细心填一填:(每空2分,共18分)9.若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和﹣3分,则第一位学生的实际得分为94分.【考点】正数和负数.【分析】根据高于标准记为正,可得第一位学生的实际得分比平均分高9分,据此求解即可.【解答】解:∵85+9=94(分)∴第一位学生的实际得分为94分.故答案为:94.10.太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:696 000千米=696 000 000米=6.96×108米.11.代数式系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.【考点】多项式;单项式.【分析】根据单项式的系数是数字因数,多项式的次数是最高项的次数,可得答案.【解答】解:系数为﹣;多项式3x2y﹣7x4y2﹣xy4的最高次项是﹣7x4y2.故答案为:,﹣7x4y2.12.如果﹣是五次多项式,那么k=4.【考点】多项式.【分析】根据多项式次数的定义列方程即可求得k的值.【解答】解:∵﹣是五次多项式,1+k=5,解得k=4.故答案为4.13.已知2x﹣3y=3,则代数式6x﹣9y+5的值为14.【考点】代数式求值.【分析】观察所求代数式可知,可以将已知整体代入求代数式的值.【解答】解:∵2x﹣3y=3,∴6x﹣9y+5=3(2x﹣3y)+5=3×3+5=14.故答案为:14.14.若关于a,b的多项式3(a2﹣2ab﹣b2)﹣(a2+mab+2b2)中不含有ab项,则m=﹣6.【考点】整式的加减.【分析】可以先将原多项式合并同类项,然后根据不含有ab项可以得到关于m的方程,解方程即可解答.【解答】解:原式=3a2﹣6ab﹣3b2﹣a2﹣mab﹣2b2=2a2﹣(6+m)ab﹣5b2,由于多项式中不含有ab项,故﹣(6+m)=0,∴m=﹣6,故填空答案:﹣6.15.如图所示是计算机程序计算,若开始输入x=﹣1,则最后输出的结果是﹣11.【考点】代数式求值.【分析】首先要理解该计算机程序的顺序,即计算顺序,观察可以看出当输入﹣(﹣1)时可能会有两种结果,一种是当结果>﹣5,此时就需要将结果返回重新计算,直到结果<﹣5才能输出结果;另一种是结果<﹣5,此时可以直接输出结果.【解答】解:将x=﹣1代入代数式4x﹣(﹣1)得,结果为﹣3,∵﹣3>﹣5,∴要将﹣3代入代数式4x﹣(﹣1)继续计算,此时得出结果为﹣11,结果<﹣5,所以可以直接输出结果﹣11.16.a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是=﹣1,﹣1的差倒数是=.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,a2009的差倒数a2010=4.【考点】规律型:数字的变化类.【分析】理解差倒数的概念,要根据定义去做.通过计算,寻找差倒数出现的规律,依据规律解答即可.【解答】解:根据差倒数定义可得:a1=﹣,a2=,a3=4,a4=﹣,很明显,进入一个三个数的循环数组,只要分析2010被3整除即可知道,a2010=4,故答案为:4.三、认真答一答:17.计算:①﹣10+8÷(﹣2)2﹣(﹣4)×(﹣3)②1×﹣(﹣)×2+(﹣)÷1化简:③x2+5y﹣4x2﹣3y﹣1④7a+3(a﹣3b)﹣2(b﹣3a)解方程:⑤2(3x+4)﹣3(x﹣1)=3⑥2x﹣3(10﹣2x)=6﹣4(2﹣x)【考点】解一元一次方程;有理数的混合运算;整式的加减.【分析】①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式变形后,逆用乘法分配律计算即可得到结果;③原式合并同类项即可得到结果;④原式去括号合并即可得到结果;⑤方程去括号,移项合并,把x系数化为1,即可求出解;⑥方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:①原式=﹣10+2﹣12=﹣20;②原式=×(1+2﹣)=×=2.5;③原式=﹣3x2+2y﹣1;④原式=7a+3a﹣9b﹣2b+6a=16a﹣11b;⑤去括号得:6x+8﹣3x+3=3,移项合并得:3x=﹣8,解得:x=﹣;⑥去括号得:2x﹣30+6x=6﹣8+4x,移项合并得:4x=28,解得:x=7.18.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=3,b=﹣2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣3ab2﹣2=﹣ab2,当a=3,b=﹣2时,原式=﹣12.19.把下列各数填在相应的大括号里:﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,负整数集合:(﹣(﹣2)2,﹣|﹣2|…);负分数集合:(﹣0.101001,﹣0.,…);无理数集合:(0.202002…,,…).【考点】实数.【分析】根据题目中的数据可以分别得到题目中各个集合中的元素,本题得以解决.【解答】解:在﹣(﹣2)2,,﹣0.101001,﹣|﹣2|,﹣0.,0.202002…,,0,中,负整数集合是:(﹣(﹣2)2,﹣|﹣2|,…);负分数集合是:(﹣0.101001,﹣0.,…);无理数集合是:(0.202002…,,…).20.王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?【考点】有理数的加法.【分析】(1)把上下楼层的记录相加,根据有理数的加法运算法则进行计算,如果等于0则能回到1楼,否则不能;(2)求出上下楼层所走过的总路程,然后乘以0.2即可得解.【解答】解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3(6+3+10+8+12+7+10),=3×56,=168m,∴他办事时电梯需要耗电168×0.2=33.6度.21.已知a2+b2=6,ab=﹣2,求代数式(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)的值.【考点】整式的加减—化简求值.【分析】先把去括号然后合并同类项,最后整体代入计算即可.【解答】解:(4a2+3ab﹣b2)﹣(7a2﹣5ab+2b2)=﹣3a2+8ab﹣3b2=﹣3(a2+b2)+8ab,又知a2+b2=6,ab=﹣2即原式=﹣3×6﹣16=﹣34.22.已知x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是多少?【考点】一元一次方程的解.【分析】把x=﹣3代入方程,利用一元一次方程的解法求出k的值即可.【解答】解:由题意得,k(﹣3+4)﹣2k﹣(﹣3)=5,k﹣2k+3=5,解得,k=﹣2.23.实践与探索:将连续的奇数1,3,5,7…排列成如下的数表用十字框框出5个数(如图)(1)若将十字框上下左右平移,但一定要框住数列中的5个数,若设中间的数为a,用a 的代数式表示十字框框住的5个数字之和;(2)十字框框住的5个数之和能等于2020吗?若能,分别写出十字框框住的5个数;若不能,请说明理由;(3)十字框框住的5个数之和能等于365吗?若能,分别写出十字框框住的5个数;若不能,请说明理由.【考点】规律型:数字的变化类;解一元一次方程.【分析】(1)从表格可看出上下相邻相差12,左右相邻相差2,中间的数为a,上面的为a ﹣12,下面的为a+12,左面的为a﹣2,右面的为a+2,这5个数的和可用a来表示,(2)代入2020看看求出的结果是整数就可以,不是整数就不可以.(3)代入365看看求出的结果是整数就可以,再考虑中间数的位置,即可得出答案.【解答】解:(1)从表格知道中间的数为a,上面的为a﹣12,下面的为a+12,左面的为a ﹣2,右面的为a+2,a+(a﹣2)+(a+2)+(a﹣12)+(a+12)=5a;(2)5a=2020,a=404,这个是不可以的,因为a应为奇数;(3)5a=365,a=73,又因为73÷12=6.1,所以73在第7行第一列,因为我们设的a是十字框正中间的数,故不可能.24.观察下列有规律的数:,,,,,…根据规律可知(1)第7个数,第n个数是(n是正整数)(2)是第11个数(3)计算++++++…+.【考点】规律型:数字的变化类.【分析】(1)易得第7个数的分子是1,分母为7×8,那么第n个数的分子为1,分母为n ×(n+1);(2)把132分成n×(n+1);,是第n个数;(3)根据(1)得到结论把分数分成两个分子为1的两个分数的差,化简即可.【解答】解:(1)第1个数为:;第2个数为:;第3个数为:;…第7个数为:=;第n个数为:;故答案为:,;(2)132=11×12,∴是第11个数故答案为11;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=2016年9月20日。

无锡市天一实验学校七年级数学上学期月考试题苏科版

无锡市天一实验学校七年级数学上学期月考试题苏科版

江苏省无锡市七年级数学上学期10月月考试题一、选择题(每题3分,共30分)1.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是 ( )A.-3.5B.+2.5C.-0.6D.+0.7 2.=+++⨯⨯⨯32333222个个n m ( ) A .n m 32 B .n m 32 C .32n m D .n m 323.下列各对数中,互为相反数的是 ( )A .5--和-5B .31和-3C .π和-3.14D .43和-0.75 4.下列说法正确的有 ( )①所有的有理数都能用数轴上的点表示 ②符号不同的两个数互为相反数③有理数分为正有理数和负有理数 ④两数相减,差一定小于被减数A .1个B .2个C .3个D .4个5.丁丁做了以下4道计算题:①(-1)2010=-1;②0-(-1)=-1;③613121-=+-; ④1)2(21-=-÷.请你帮他检查一下,他一共做对了 ( ) A .1题 B .2题C .3题D .4题 6.下列各数:(-3)2,0,-(-21)2,722,(-1)2009,-22,-(-8),-|-43|中,负数有 ( )A .2个B .3个C .4个D .5个7.若0≠a ,则1+a a的值为 ( )A .2B .0C .1±D .0或28.纽约与北京的时差为-13小时(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京10月11日8时,纽约的时间是 ( )A .10月10日5时B .10月10日19时C .10月11日19时D .10月11日21时9.若两个非零的有理数a 、b ,满足:|a |=a ,|b |=-b ,a +b <0,则数a 、b 在数轴上表示正确的是 ( )A .B .C .D .10.已知m ≥2,n ≥2,且m ,n 均为正整数,如果将m n 进行如图所示的“分解”,那么下列四个叙述中正确的有 ( )①在25的“分解”中最大的数是11.②在43的“分解”中最小的数是13.③若m 3的“分解”中最小的数是23,则m =5.④若3n 的“分解”中最小的数是79,则n =5.A .1个B .2个C .3个D .4个二、填空题(第11-13题,每空1分;第14-21题,每空2分,共24分.)11.1.25的相反数是 ;-2倒数是__________.12.________的平方得25;立方得-8的数是_________.13.比大小:6- 3+ ; 23-_____45- . (填“< ”、“>”或“=”) 14.有资料表明,被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示应为 公顷.15. 某公交车原坐有23人,经过2个站点时上下车情况如下(上车为正,下车为负):(+4,-8),(-5,+6),则车上还有 人.16.在数轴上,与表示数-5的点的距离是2的点表示的数是___________.17.若()0322=++-y x ,则y x = . 18.绝对值小于2的整数是 .19.若6=a ,则a =___________;若a a =-,则a 是___________.20.若|m |=3,|n |=5,且m<n ,则m +n 的值是________________.21.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2018的点与圆周上表示数字 的点重合.三、解答题:(共6小题,共56分)22.(8分)把下列各数填在相应的大括号中:8, 83-, +2.8, π, 722, -0.003, 0,-100, -(-6), -3.626626662… 正数集合{___________________________________________________…}整数集合{___________________________________________________…}负分数集合{_________________________________________________…}无理数集合{_________________________________________________…}.23.(4分)把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, |-1.5|, 25-, 0, (-2)2.用“<”把这些数连接起来: .24.计算题(每小题3分,共24分)(1)(-20)-(+3)-(-5) (2) 51192533812812-+--(3) |-3|×(-5)÷(-321) (4) 36436597⨯-+-)((5) 2750)1(⨯-÷+- (6)(161599-)×4(7) )()()(722272297227-⨯--⨯+-⨯- (8) 6)3161()1(220182⨯-÷--25.(6分)今年8月,我国空军八一飞行表演队赴俄罗斯国际军事技术论坛上进行飞行表演,其中一架飞机起飞后的高度变化如右下表:(1) 如果飞机每上升或下降1千米需消耗2升燃油,那么这架飞机在这4个动作表演过程中,一共消耗了多少升燃油?(2) 如果飞机做特技表演时,有4个规定动作,起飞后高度变化如下:上升3.8千米,下降2.9千米,再上升1.6千米.若要使飞机最终比起飞点高出1千米,问第4个动作是上升还是下降,上升或下降多少千米?26.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.如|x -3|的几何意义是数轴上表示有理数x 的点与表示有理数3的点之间的距离.试探索:(1)求|5-(-2)|= .(2)若|x +3|=|x -1|,则x = .(3)同样道理|x +2|+|x -3|表示数轴上有理数x 所对的点到-2和3所对的两点距离之和,请你找出所有符合条件的整数x ,使得|x +2|+|x -3|= 5,这样的整数是 .27. (8分)如图在数轴上A 点表示数a ,B 点表示数b ,a 、b 满足|2a +|+|4b -|=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t (秒),①当t=1时,甲小球到原点的距离= ;乙小球到原点的距离= .当t=3时,甲小球到原点的距离= ;乙小球到原点的距离= .②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)﹣2的相反数是()A.2 B.﹣2 C.±2 D.2.(2分)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.3.(2分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|4.(2分)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个 B.5 个C.4 个D.3个5.(2分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)26.(2分)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣107.(2分)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个 B.2个 C.3个 D.4个8.(2分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k9.(2分)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣110.(2分)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点 C.C点 D.D点二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)如果向南走20米记为是﹣20米,那么向北走70米记为.12.(2分)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为公顷.13.(2分)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高℃.14.(2分)单项式﹣的系数是,次数是.15.(2分)比较大小:﹣(+8)﹣|﹣9|;(填“>”、“<”、或“=”符号).16.(2分)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=,n=.17.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为.18.(2分)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=.19.(2分)若a﹣b=1,则代数式a﹣(b﹣2)=;若a+b=﹣1,则代数式5﹣a﹣b=.20.(4分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为(用含a的代数式表示).三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.22.(4分)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,23.(16分)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].24.(6分)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.25.(4分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.26.(6分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律,求出图④中的数x.27.(4分)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当y=x=4时,求此时“囧”的面积.28.(4分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.29.(6分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?30.(4分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.2015-2016学年江苏省无锡市天一实验学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分)1.(2分)﹣2的相反数是()A.2 B.﹣2 C.±2 D.【解答】解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选:A.2.(2分)下列式子,符合代数式书写格式的是()A.a÷3 B.2x C.a×3 D.【解答】解:A、a÷3应写为,B、2a应写为a,C、a×3应写为3a,D、正确,故选:D.3.(2分)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3|D.﹣|﹣3|【解答】解:A、﹣(﹣3)=3,是正数,故本选项错误;B、(﹣3)2=9,是正数,故本选项错误;C、|﹣3|=3,是正数,故本选项错误;D、﹣|﹣3|=﹣3,是负数,故本选项正确.故选:D.4.(2分)下列代数式a,﹣2ab,x+y,x2+y2,﹣1,ab2c3 中,单项式共有()A.6个 B.5 个C.4 个D.3个【解答】解:所给式子中单项式有:a,﹣2ab,﹣1,ab2c3 ,共,4个.故选:C.5.(2分)用代数式表示“m的3倍与n的差的平方”,正确的是()A.(3m﹣n)2B.3(m﹣n)2 C.3m﹣n2D.(m﹣3n)2【解答】解:∵m的3倍与n的差为3m﹣n,∴m的3倍与n的差的平方为(3m﹣n)2.故选:A.6.(2分)若关于x的方程2x﹣k+4=0的解是x=3,那么k的值是()A.2 B.10 C.﹣2 D.﹣10【解答】解:把x=3代入2x﹣k+4=0得:6﹣k+4=0,解得:k=10,故选:B.7.(2分)现有四种说法:①﹣a表示负数;②若|x|=﹣x,则x<0;③0是绝对值最小的有理数;④﹣3x2y+4x﹣1是关于x,y的三次三项式,常数项是﹣1;其中正确的个数()A.1个 B.2个 C.3个 D.4个【解答】解:①﹣a表示负数,当a是负数时,﹣a就是正数,所以①不对;②若|x|=﹣x,x一定为负数或0,则x≤0,所以②不对;③根据绝对值的定义绝对值最小的有理数是0,对;④﹣3x2y+4x﹣1是关于x,y的三次三项式,对.正确的有2个.故选:B.8.(2分)如图,数轴上的点A所表示的数为k,化简|k|+|1﹣k|的结果为()A.1 B.2k﹣1 C.2k+1 D.1﹣2k【解答】解:由数轴可知:k>1,∴k>0,1﹣k<0.∴|k|+|1﹣k|=k﹣1+k=2k﹣1.故选:B.9.(2分)数轴上点M表示有理数﹣3,将点M向右平移2个单位长度到达点N,点E到点N的距离为4,则点E表示的有理数为()A.3 B.﹣5或3 C.﹣9或﹣1 D.﹣1【解答】解:∵点M表示有理数﹣3,点M向右平移2个单位长度到达点N,∴点N表示﹣3+2=﹣1,点E在点N的左边时,﹣1﹣4=﹣5,点E在点N的右边时,﹣1+4=3.综上所述,点E表示的有理数是﹣5或3.故选:B.10.(2分)如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点 C.C点 D.D点【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.二、填空题(本大题共10小题,每题2分,20题4分,共22分)11.(2分)如果向南走20米记为是﹣20米,那么向北走70米记为+70米.【解答】解:∵向南走20米记为是﹣20米,∴向北走70米记为+70米.故答案为:+70米.12.(2分)被称为“地球之肺”的森林正以每年15 000 000公顷的速度从地球上消失,每年森林的消失量用科学记数法表示为 1.5×107公顷.【解答】解:15 000 000=1.5×107.13.(2分)我市某一天的最高气温是11℃,最低气温是﹣10℃,那么这一天的最高气温比最低气温高21℃.【解答】解:根据题意,得:11﹣(﹣10)=21(℃),故答案为:21.14.(2分)单项式﹣的系数是﹣,次数是7.【解答】解:单项式﹣的系数是﹣,次数是7,故答案为:﹣,7.15.(2分)比较大小:﹣(+8)>﹣|﹣9|;>(填“>”、“<”、或“=”符号).【解答】解:①∵﹣(+8)=﹣8,﹣|9|=﹣9,﹣8>﹣9,∴﹣(+8)>﹣|9|;②∵|﹣|==,|﹣|==,<,∴﹣>﹣.故答案为:>;>.16.(2分)若单项式2x2m﹣3y与x3y n﹣1是同类项,则m=3,n=2.【解答】解:由题意,得,解得.即m=3,n=2.故答案为3,2.17.(2分)如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的﹣3和x,那么x的值为5.【解答】解:根据数轴可知:x﹣(﹣3)=8﹣0,解得x=5.故答案为:5.18.(2分)关于x的方程(2m﹣6)x|m﹣2|﹣2=0是一元一次方程,则m=1.【解答】解:由题意得:|m﹣2|=1,且2m﹣6≠0,解得:m=1,故答案为:1.19.(2分)若a﹣b=1,则代数式a﹣(b﹣2)=3;若a+b=﹣1,则代数式5﹣a﹣b=6.【解答】解:∵a﹣b=1,∴原式=a﹣(b﹣2)=a﹣b+2=1+2=3;∵a+b=﹣1,∴原式=5﹣a﹣b=5﹣(a+b)=5+1=6;故答案为:3;620.(4分)在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.(1)仿照图1,在图2中补全672的“竖式”;(2)仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图3所示.若这个两位数的个位数字为a,则这个两位数为a+50(用含a的代数式表示).【解答】解:(1)(2)设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为:a+50.三、解答题:(本大题共58分,解答应写出必要的计算过程、推演步骤或文字说明.)21.(4分)把下列各数分别填入相应的集合内:﹣2.5,0,8,﹣2,,,﹣0.5252252225…(每两个5之间依次增加1个2).(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)无理数集合:{…}.【解答】解:(1)正数集合:{8,,…};(2)负数集合:{﹣2.5,﹣2,﹣0.5252252225…(每两个5之间依次增加1个2)…};(3)整数集合:{0,8,﹣2,…};(4)无理数集合:{,﹣0.5252252225…(每两个5之间依次增加1个2),…}.22.(4分)在数轴上表示下列各数,并把它们按照从小到大的顺序排列:3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,【解答】解:按照从小到大的顺序排列:<﹣2<﹣1.5<0<1<3.23.(16分)计算与化简:(1)|﹣3+1|﹣(﹣2)(2)2×(﹣)×÷(3)﹣14﹣×[3﹣(﹣3)2](4)(﹣24)×(﹣+﹣)(5)5(x+y)﹣4(3x﹣2y)+3(2x﹣y)(6)6ab2﹣[a2b+2(a2b﹣3ab2)].【解答】解:(1)原式=2+2=4;(2)原式=﹣×××=﹣;(3)原式=﹣1﹣×[3﹣9]=﹣1+1=0;(4)原式=(﹣24)×(﹣)+(﹣24)×﹣(﹣24)×=18﹣4+15=29;(5)原式=5x+5y﹣12x+8y+6x﹣3y=﹣x+10y;(6)原式=6ab2﹣[a2b+2a2b﹣6ab2]=6ab2﹣a2b﹣2a2b+6ab2=12ab2﹣3a2b.24.(6分)解方程:(1)4x﹣2=3﹣x(2)3x﹣4(2x+5)=x+4.【解答】解:(1)移项合并得:5x=5,解得:x=1;(2)去括号得:3x﹣8x﹣20=x+4,移项合并得:﹣6x=24,解得:x=﹣4.25.(4分)已知:A=3a2﹣4ab,B=a2+2ab.(1)求A﹣2B;(2)若|a+1|+(2﹣b)2=0,求A﹣2B的值.【解答】解:(1)A﹣2B=(3a2﹣4ab)﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab;(2)由|a+1|+(2﹣b)2=0,得a=﹣1,b=2.A﹣2B=a2﹣8ab=1+16=17.26.(6分)观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:(2)请用你发现的规律,求出图④中的数x.【解答】解:(1)②(﹣12)×5=﹣60③(﹣2)×17×(﹣5)=170(﹣2)+17+(﹣5)=1010×17=170(2)[5+(﹣8)+(﹣9)]x=5×(﹣8)×(﹣9)解得,x=﹣30.27.(4分)“囧”(jiong)是近时期网络流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分).设剪去的小长方形长和宽分别为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”的面积;(2)当y=x=4时,求此时“囧”的面积.【解答】解:(1)由已知得“囧”的面积为:20×20﹣xy×2﹣xy=400﹣2xy;(2)当时,x=8,y=4,S=400﹣2×8×4=336,所以此时“囧”的面积为336.28.(4分)已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[2.3]=2,请在此规定下求[m+n]的值.【解答】解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=10﹣2n,解得:n=2;(2)把m=1,n=2代入得:m+n=1+3.5=4.5,则[m+n]=[4.5]=4.29.(6分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB 是圆片的直径.(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3①第几次滚动后,A点距离原点最近?第几次滚动后,A点距离原点最远?②当圆片结束运动时,A点运动的路程共有多少?此时点A所表示的数是多少?【解答】解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是﹣π;故答案为:无理,﹣π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π.30.(4分)如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于﹣3且小于0的数[画在数轴(1)上];(2)包含﹣1.5、π这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【解答】解:(1)画图如下:(2)画图如下:(3)根据题意画图如下:赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。

相关文档
最新文档