2014年普通高等学校招生全国统一考试新课标II卷(数学文)及详细答案
普通高等学校招生全国统一考试文科数学 新课标II卷 含答案 解析
2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A I B=(A) ∅ (B ){}2 (C ){}0 (D) {}2-【答案】B 【解析】把M={0,1,2}中的数,代入等式,经检验x=2满足。
所以选B.(2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -【答案】B【解析】.∴21-242-2)1)(31(-131B i ii i i i 选+=+=++=+Θ(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件【答案】C 【解析】.,.∴0)(,;,0)(0000C q p x f x q p x x f 选所以的必要条件是命题则是极值点若的充分条件不是命题不一定是极值点则若=′∴=′ΘΘ(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5【答案】A 【解析】..1.62-∴6|-|.102∴10||2222A 选两式相减,则==+==++=+ΘΘ(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -【答案】A 【解析】...6.2,4),6()2(,,,221222228224842A A S a a d a a d a a a a a a a d 选正确经验证,仅解得,即成等比=∴==+=+=∴=Θ(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027(D) 13【答案】 C 【解析】..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴πΘΘ(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32 (C )1 (D )3 【答案】 C【解析】..13322131,//∴//111111---111111C V V V C AB D B C AB BD BD C B ABB C C AB B C AB D 故选的距离相等到面和点面=••••===∴Θ(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4(B )5 (C )6 (D )7【答案】 D 【解析】.3 7 22 5 2 13 1 ,2,2D K S M t x 故选变量变化情况如下:==(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1【答案】 B 【解析】..7,2).1,0(),2,3(),0,1(.B y x z 故选则最大值为代入两两求解,得三点坐标,可以代值画可行区域知为三角形+=(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A(B )6 (C )12 (D) 【答案】 C 【解析】..1222.6∴),3-2(23),32(233-4322,34322).0,43(2,2C n m BF AF AB n m n m n n m m F n BF m AF 故选,解得角三角形知识可得,则由抛物线的定义和直,设=+=+==+=+=•=+•===(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】 D【解析】.),∞,1[.11≥.0≥1-)(ln -)(0)(),1()(D k xk xk x f x kx x f x f x f 选所以即恒成立上递增,在+∈>=′∴=≥′∴+∞ΘΘ(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )22⎡-⎢⎣⎦,【答案】 A【解析】.].1,1-[∈x .,1)M(x 1,y O 00A 故选形外角知识,可得由圆的切线相等及三角在直线上其中和直线在坐标系中画出圆=第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考新课标全国2卷数学(文)
2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(文史类)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={2-,0,2},B={x |022=--x x },则A B= (A )∅ (B ){}2 (C ){}0 (D ){}2-(2)131ii+=- (A )12i + (B )12i -+ (C )12i - (D )12i --(3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足||a b +=,||a b -=,则a b =(A )1 (B )2 (C )3 (D )5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A )()1n n + (B )()1n n -(C )()12n n + (D )()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727 (B )59 (C )1027 (D )13(7)正三棱柱的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S = (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D)⎡⎢⎣⎦ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个考试考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大概题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为________.(14)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为________.(15)偶函数)(x f y =的图像关于直线x =2对称,3)3(=f ,则(1)f -=________. (16)数列{}n a 满足111n na a +=-,82a =,则1a =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的角A 与C 互补,AB =1,BC =3,CD =DA =2. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA 平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P-ABD 的体积V =43,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :12222=+by a x (0>>b a )的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数()f x =3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.4 97 97665332110 98877766555554443332100 6655200 632220 甲部门 乙部门 59 0448 122456677789 011234688 00113449 123345 011456 000 3 4 56 7 8910请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. (22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (Ⅰ)BE =EC ; (Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,2π].(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l:2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x =|x +a1|+|x a -|(a >0). (Ⅰ)证明:()f x ≥2;(Ⅱ)若(3)5f <,求a 的取值围.2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(文科)参考答案一、选择题 1.B解析:把2-,0,2代入202x x --=验证,只有2满足不等式.故选B . 考点:考查集合的知识.简单题. 2.B 解析:13(13)(1)121(1)(12)42i i i i i i i i+++===-+---++.故选B . 考点:考查复数的基本知识.简单题.3.C解析:函数()f x 在0x=x 处导数存在,则极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/,从而p 是q 的必要但不充分的条件.故选C .考点:考查充要条件与极值的基础知识.简单题. 4.A解析:222210,226,a a b b a a b b ⋅-+++=⋅=44a b ∴⋅=,1a b ∴⋅=.故选A . 考点:考查平面向量的数量积.中等题. 5.A解析:∵数列{}n a 是等差数列,公差等于2,∴2141812,6,14a a a a a a =+=+=+.∵248,,a a a 成等比数列,∴22428111()6)214()(a a a a a a ⋅⇒=++=+,解得122(221)n a a n n ==+-⇒⋅=,∴(1)(222)=n n nS n n ⋅=++.故选A . 考点:考查等差数列的通项公式与求和公式.中等题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为134********V V ππ-=-=.故选C . 考点:考查三视图于空间几何体的体积.中等题. 7.C解析:∵正三棱柱的底面边长为2,D 为BC 中点,∴AD ==∵1112,BC CC ==1111111222B DC B C S C C ⋅=⋅⋅==,∴111111133AB C B DC V S AD ⋅⋅===.故选C . 考点:考查空间点,线,面关系和棱锥体积公式.中等题. 8.D解析:第1次循环M=2,S=5,k=1. 第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7.故选D . 考点:考查算法的基本知识.简单题. 9.B解析:作图即可.考点:考查二元一次不等式组的应用.中等题. 10.C解析:∵23y x =,∴抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,故23),343,y x y x ⎧=-⎪⎨⎪=⎩从而2122161689012x x x x -+=+=⇒, ∴弦长12||=3122x x AB ++=.故选C . 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力.中等题. 11.D 解析:()ln f x kx x =-,1()(0)f x k x x∴'=->.()f x 在区间(1,)+∞上递增,()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞,1k ∴≥.故选D . 考点:考查导数与函数单调性的关系.中等题. 12.A解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ,即22≥OM ON ,2120≤+x ,011x -≤≤.故选A . 考点:三角不等式,两点间距离公式.难题. 二、填空题 13.13解析:1.3333P =⋅=考点:考查古典概型的概念.简单题. 14.1解析:因为()f x si s n in cos s n c (o i )s x x x ϕϕϕ==--,所以最大值为1. 考点:考查和差角公式.简单题. 15.3解析:因()f x 是偶函数,所以(1)(1)f f -=.因()f x 图像关于2x =,所以(1)(2)(332)1f f f ⋅-===. 考点:考查偶函数的概念,轴对称的概念.简单题. 16.12解析:∵111n na a +=-,122111111(1)111n n n n n a a a a a +----∴==-=--=--, 822a a ∴==,12111112112a a a a =⇒-==⇒-. 考点:考查递推数列的概念.简单题. 三、解答题17.解析:(Ⅰ)由题设及余弦定理得222cos 1312c s 2o BD C BC CD BC D C C =+⋅=--, ① 2222cos 54cos AD AB BD AB AD A C =⋅=++-. ② 由①,②得1cos 2C =,故60C =︒,BD =(Ⅱ)四边形ABCD 的面积S =11sin sin 22AB DA A BC CD C ⋅+⋅111232)sin 6022(⨯⨯+⨯︒==⨯ 考点:考查余弦定理的应用.中等题.18.解析:(Ⅰ)设BD 与AC 的交点为O ,连结EO .因为四边形ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥AEC .(Ⅱ)616PA AB A V AD B ⋅⋅⋅==.由V =,可得32AB =.作AH ⊥PB 交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 到面PBC考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的数是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计数是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的数是66,68,故样本中位数为6668627+=,所以该市的市民对乙部门评分的中位数的估计数是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为50.150=,850=0.16,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异大.(注:考生利用其他统计量进行分析,结论合理的同样给分)考点:考查使用茎叶图及样本的数字特征估计总体的能力.中等题.20.解析:(Ⅰ)根据c =2(,)b M c a,223b ac =.将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得222911c a b+=. ②将①及c =229(4)1144a a a a-+=. 解得7a =,2428b a ==.故7a =,b =考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题. 21.解析:(Ⅰ)26()3f x x x a =-'+,'(0)f a =. 曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,∴1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++. 设32()()(2)3(1)4g x f x kx x x k x =--=-+-+. 由题设知10k ->.当0x ≤时,2()36(1)x g x x k -+-'=0>,()g x 单调递增,(1)10g k -=-<,(0)4g =,所以()g x =0在(,0]-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()g x =0在(0,)+∞没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 考点:考查利用导数综合研究函数性质的能力.难题. 22.解析:(Ⅰ)连结AB ,AC . 由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,.. .... .. .. PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆. 因为C 在D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(2. 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得523a <<+. 当03a <≤时,(3)61a f a =-+,由(3)5f <3a <≤. 综上,a的取值围是15(22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。
2014年(全国卷II)(含答案)高考文科数学
2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题一、选择题 ( 本大题 共 12 题, 共计 60 分)1.已知集合2{2,0,2},{|20}A B x x x =-=--=,则A ∩B=( ) A. ∅ B. {}2 C. {0} D. {2}-2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,学科 网也不是q 的必要条件4.设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( ) A. 1 B. 2 C. 3 D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11A B DC -的体积为A.3B.32C.1D.28.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A.4 B.5 C.6 D.79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )A.8B.7C.2D.110.设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则AB =( )A.3B.6C.12D.11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( )A.(],2-∞-B.(],1-∞-C.[)2,+∞D.[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )A.[-1,1]B.11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (1)求C 和BD ;(2)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ;(2)设1,3AP AD ==,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两—部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(3)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.(本小题满分10分)选修4-1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BE EC =; (2)22AD DE PB ⋅=23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4-5:不等式选讲 设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.2014年普通高等学校招生全国统一考试(2 新课标Ⅱ卷)数学(文)试题参考答案:参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B . 考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算.3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C .考点:1、函数的极值点;2、充分必要条件. 4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d =+-2n =,故1()(n 1)2n n n a a S n +==+.【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】 试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD 是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==.考点:1、直线和平面垂直的判断和性质;2、三棱锥体积. 8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =. 考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值. 10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C 【解析】试题分析:由题意,得3(,0)4F .又因为0k tan 30==故直线AB 的方程为3y )4=-,与抛物线2=3y x 联立,得21616890x x -+=,设1122(x ,y ),(x ,y )A B ,由抛物线定义得,12x x AB p =++= 168312162+=,选C . 考点:1、抛物线的标准方程;2、抛物线的定义. 11.D 【解析】试题分析:'1()f x k x =-,由已知得'()0f x ≥在()1,x ∈+∞恒成立,故1k x≥,因为1x >,所以101x<<,故k 的取值范围是[)1,+∞. 【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13 【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式.14.1【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质.15.3【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性.16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=.三、解答题(17)解:(I )由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅=1312cos C - , ①2222cos BD AB DA AB DA A =+-⋅54cos C =+. ②由①,②得1cos 2C =,故060C =,7BD = (Ⅱ)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅ 011(1232)sin 6022=⨯⨯+⨯⨯ 23=(18)解:(I )设BD 与AC 的交点为O ,连结EO.因为ABCD 为矩形,所以O 为BD 的中点,又E 为PD 的中点,所以EO ∥PB.EO ⊂平面AEC ,PB ⊄平面AEC,所以PB ∥平面AEC.(Ⅱ)V 166PA AB AD AB =⋅⋅=.由4V =,可得32AB =.作AH PB ⊥交PB 于H 。
2014年高考全国2卷文科数学试题(含解析)
绝密★启用前2014年高考全国2卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =I ( ) A .∅ B .{}2 C .{0} D .{2}-2.131ii+=-( ) A .12i + B .12i -+ C .12i - D .12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A .1B .2C .3D .55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( )A .2717 B .95 C .2710 D .317.正三棱柱111ABC A B C -的底面边长为23,D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32(C )1 (D 31A8.执行右面的程序框图,如果输入的x,t均为2,则输出的S=()(A)4(B)5(C)6(D)79.设x,y满足约束条件10,10,330,x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y=+的最大值为()(A)8(B)7(C)2(D)110.设F为抛物线2:=3C y x的焦点,过F且倾斜角为30︒的直线交C于A,B两点,则AB=()(A)3(B)6(C)12(D)11.若函数()f x kx Inx=-在区间()1,+∞单调递增,则k的取值范围是()(A)(],2-∞-(B)(],1-∞-(C)[)2,+∞(D)[)1,+∞12.设点(),1M x,若在圆22:+1O x y=上存在点N,使得45OMN∠=︒,则x的取值范围是()(A)[]1,1--(B)11,22⎡⎤-⎢⎥⎣⎦(C)⎡⎣(D),22⎡-⎢⎣⎦。
2014年普通高等学校招生全国统一考试数学全国二卷(标准) - 文科
绝密 ★ 启用前 6月7日15:00-17:002014年普通高等学校招生全国统一考试文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =(A ) (B ){2} (C ){0} (D ){-2} (2)1+3i 1-i=(A )1+2i (B )-1+2i (C )1-2i (D )-1-2i(3)函数f (x )在x =x 0处导数存在,若p :f (x 0)=0;q :x =x 0是f (x )的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件(D )p 既不是q 的充分条件,也不是q 的必要条件 (4)设向量a ,b 满足|a +b |=10,|a -b |=6,则a ·b =(A )1 (B )2 (C )3 (D )5(5)等差数列{a n }的公差是2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =(A )n (n +1)(B )n (n -1)(C )n (n +1)2(D )n (n -1)2(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727(B )59(C )1027(D )13姓名______________________ 准考证号__________________________________贵文数2(7)正三棱柱ABC —A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A —B 1DC 1的体积为(A )3(B )32 (C )1(D )32 (8)执行右图程序框图,如果输入的x ,t 均为2(A )4 (B )5 (C )6(D )7(9)设x ,y 满足约束条件⎪⎩⎪⎨⎧≥+-≤--≥-+0330101y x y x y x ,则z =x +2y 的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |= (A )303(B )6 (C )12 (D )7 3(11)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是(A )(-∞,-2] (B )(-∞,-1] (C )[2,+∞)(D )[1,+∞)(12)设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是(A )[-1,-1] (B )[-12,12](C )[-2,2](D )[-22,22]第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考真题——文科数学(新课标II)精校版 Word版含答案
2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A I B=(A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2,,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D )(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )⎡⎢⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考数学新课标2卷(文科)答案word版-推荐下载
所以 1„ x0 „ 1,故选 A.
y AM
O
N
B
x
解法二:过 O 作 OP MN 于 P ,则 OP OM sin 45 „ 1 ,所以 OM „ 2 ,
即 x02 1 „ 2 ,所以 x02 „ 1,即 1„ x0 „ 1,故选 A.
NP
y
O
M
x
评注 本题考查直线与圆的位置关系,体现了数形结合的思想方法. 13. 解析 甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝
22
y 3
பைடு நூலகம்
2
-3 -2 -1 O 1 2 3
10. 解析
y
A x1 ,
3 3
x
3 4
-1
-2
1
焦点
,即
y1 , B x2 , y2 ,则 x1
A
F
y
的坐标为
B
3 x 3
x2
4
x
3 4
,
0
,直线
AB
的斜率为
2
3 ,代入 y2 3x ,得 1 x2 7 x 3 0 ,设
21
,所以
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014高考全国2卷数学文科试题及答案详解解析
2014高考全国2卷数学文科试题及答案详解解析D∴Sn=na1+d,=2n+×2=n(n+1),故选: A点评:本题考查等差数列的性质和求和公式,属基础题.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()(A)1727(B)59(C)1027 (D)13考点:由三视图求面积、体积.菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C .点评: 本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11DC B A -的体积为() (A )3 (B )32 (C )1 (D )32考点: 棱柱、棱锥、棱台的体积.菁优网版权所有分析: 由题意求出底面B1DC1的面积,求出A 到底面的距离,即可求解三棱锥的体积.解答: ∵正三棱柱ABC ﹣A1B1C1的底面边长为2,侧棱长为,D 为BC 中点,∴底面B1DC1的面积:=,A 到底面的距离就是底面正三角形的高:.三棱锥A ﹣B1DC1的体积为:=1.故选:C .点评: 本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.(8)执行右面的程序框图,如果如果输入的x,t均为2,则输出的S= ()(A)4 (B)5 (C)6 (D)7考点:程序框图.菁优网版权所有分析:根据条件,依次运行程序,即可得到结论.解答:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.(9)设x,y满足的约束条件1010330x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y=+的最大值为()(A)8 (B)7 (C)2 (D)1考点:简单线性规划.分析:作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.解答:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A 时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法(10)设F为抛物线2:3C y x的焦点,过F且倾斜角为°30的直线交于C于,A B两点,则AB= ()(A 30(B)6 (C)12 (D)3考点:抛物线的简单性质.分析:求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.解答: 由y2=3x 得其焦点F (,0),准线方程为x=﹣. 则过抛物线y2=3x 的焦点F 且倾斜角为30°的直线方程为y=tan30°(x ﹣)=(x ﹣).代入抛物线方程,消去y ,得16x2﹣168x+9=0.设A (x1,y1),B (x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故答案为:12.点评: 本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是()(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 考点: 函数单调性的性质.分析: 由题意可得,当x >1时,f ′(x )=k ﹣≥0,故 k ﹣1>0,由此求得k 的范围.解答: 函数f (x )=kx ﹣lnx 在区间(1,+∞)单调递增,∴当x >1时,f ′(x )=k ﹣≥0,∴k ﹣1≥0,∴k ≥1, 故选:D .点评: 本题主要考查利用导数研究函数的单调性,函数的单调性的性质,属于基础题.(12)设点0(,1)M x ,若在圆22:1O x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值范围是()(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦(D ) 22⎡⎤-⎢⎥⎣⎦,考点: 直线和圆的方程的应用.菁优网版权所有 分析: 根据直线和圆的位置关系,利用数形结合即可得到结论.解答:由题意画出图形如图:∵点M(x0,1),∴若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆上的点到MN的距离的最大值为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故选:A点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.第Ⅱ卷本卷包括必考题和选考题两部分。
2014年全国高考文科数学试题及答案-新课标2
2014年普通高等学校招生全国统一考试文科数学注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足106a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项 n S =(A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D )3(8)执行右面的程序框图,如果如果输入的x ,t均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB = (A )303(B )6 (C )12 (D )73 (11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ (12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C )2,2⎡⎤-⎣⎦ (D ) 2222⎡⎤-⎢⎥⎣⎦,第Ⅱ卷本卷包括必考题和选考题两部分。
2014年高考新课标Ⅱ卷数学(文)试卷解析(精编版)(原卷版)
2014年普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}- 2.131ii+=-( ) A.12i + B. 12i -+ C. 12i - D. 12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件 B. p 是q 的充分条件,但不是q 的必要条件 C. p 是q 的必要条件,但不是q 的充分条件 D. p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ,满足10||=+b a ,6||=-b a ,则=⋅b a( )A. 1B. 2C. 3D. 55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A. (1)n n + B. (1)n n - C.(1)2n n + D. (1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A.2717 B.95 C.2710 D.317.正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11A B DC -的体积为 (A )3 (B )32(C )1 (D 38.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( ) (A )4 (B )5 (C )6 (D )79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )110.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A )3(B )6 (C )12 (D )11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )⎡⎣ (D ),22⎡-⎢⎣⎦二、填空题:本大题共4小题,每小题5分.13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14. 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15. 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16. 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB . (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积. (18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设1,AP AD ==P ABD -的体积4V =,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评优. (20)(本小题满分12分)设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分) 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ; (Ⅱ)证明:当1k<时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。
2014高考全国2卷文科数学试题(含解析)
1 / 14绝密★启用前2014年高考全国2卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A .∅B .{}2C .{0}D .{2}- 2.131ii+=-( ) A .12i + B .12i -+ C .12i - D .12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ,满足10||=+b a ,6||=-b a,则=⋅b a ( )A .1B .2C .3D .55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .317.正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32(C )1 (D 3D 11AB 18.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )(A )4 (B )5 (C )6 (D )79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )110.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A(B )6 (C )12 (D)11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)22⎡-⎢⎣⎦3 / 14第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14.函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15.偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.三、解答题(题型注释)17.四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1,AP AD ==P ABD -的体积4V =,求A到平面PBC 的距离.19.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.20.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .21.已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BEEC =;(2)22AD DE PB ⋅=P23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标. 24.设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.1 / 14参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B .考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算. 3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C . 考点:1、函数的极值点;2、充分必要条件.4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d=+-2n =,故1()(n 1)2n n n a a S n +==+. 【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==. 考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =.考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值.10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C【解析】试题分析:由题意,得3(,0)4F.又因为0k tan303==,故直线AB的方程为3y)4=-,与抛物线2=3y x联立,得21616890x x-+=,设1122(x,y),(x,y)A B,由抛物线定义得,12x xAB p=++=168312162+=,选C.考点:1、抛物线的标准方程;2、抛物线的定义.11.D【解析】试题分析:'1()f x kx=-,由已知得'()0f x≥在()1,x∈+∞恒成立,故1kx≥,因为1x>,所以101x<<,故k的取值范围是[)1,+∞.【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN与圆O有公共点即可,即圆心O到直线MN的距离小于等于1即可,过O作OA⊥MN,垂足为A,在Rt OMA∆中,因为OMA∠045=,故0sin45OA OM==1≤,所以OM≤,解得11x-≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),3/ 14(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式. 14.1 【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质. 15.3 【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性. 16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=. 考点:数列的递推公式. 17.(1)0C 60=,BD =(2)【解析】试题分析:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC =+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得1312cos C -=54cosC +,求cos C 的值,进而求C 和BD 的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形ABCD 等于ABD ∆和CBD ∆的面积.5 / 14(1)由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅1312cos C =-.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②由①②得1cosC 2=,故0C 60=,BD = (2)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅011(1232)sin 6022S =⨯⨯+⨯⨯=.考点:1、余弦定理;2、诱导公式;3、三角形的面积公式. 18.(1)详见解析;(2)13【解析】 试题分析:(1)证明直线和平面平行往往可以采取两种方法:①利用直线和平面平行的判定定理,即证明直线和平面内的一条直线平行;②利用面面平行的性质定理,即若两个平面平行,则一个平面内的任意一条直线和另外一个平面平行.本题设BD 和AC 交于点O ,连接EO .则//EO PB ,进而证明PB //平面AEC .(2)由三棱锥P ABD -的体积4V =,可求得3=2AB ,易证明面PBC ⊥面PAB ,则在面PAB 内作AH PB ⊥交PB 于H ,由面面垂直的性质定理得AH ⊥平面PBC .在PAB ∆中求AH .(1)设BD 和AC 交于点O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以//EO PB .且EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB //平面AEC .(2)1=6V PA AB AD AB ⋅⋅=.由4V =可得3=2AB .作AH PB ⊥交PB 于H .由题设知BC ⊥平面PAB .所以BC AH ⊥,故AH ⊥平面PBC .又=PA ABAH PB⋅.所以A 到平面PBC考点:1、直线和平面平行的判定;2、点到平面的距离.19.(1)该市的市民对甲、乙两部门评分的中位数的估计值分别为75,67;(2)0.1,0.16;(3)详见解析. 【解析】试题分析:(1)把数从小到大排成一列,正中间如果是一个数,这个数就是中位数 ;正中间如果是两个数,那中位数是这两个数的平均数.本题有50位市民,故市民对甲、乙两部门评分正中间有两个数,求平均数即得中位数的估计值;(2)50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,以样本的频率值估计总体的概率;(3)样本平均数、众数、中位数、方差都是样本的数字特征,通过对这些样本数字特征的分析可以从各个方面对总体作出评价.(1)由所给茎叶图知,50位市民对这甲部门的评分由小到大排序,排在第25,26位的是75,,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对这乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+68=672,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,该市的市民对甲部门评分的中位数高于对乙部门评分的中位数,而且由所给茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市的市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(考生利用其它统计量进行分析,结论合理的同样给分) 考点:1、样本的数字特征;2、频率和概率的关系. 20.(1)12;(2)7,a b ==【解析】7 / 14试题分析:(1)由已知得2(c,)b M a ,故直线MN 的斜率为23(c)4b a kc ==--,结合222b a c =-得关于,a c 的方程,解方程得离心率的值;(2)依题意,直线MN 和y 轴的交点是线段1MF 的中点.故24b a=,① 又因为1||5||MN F N =,得112F D F N =,从而得三个点1,,D F N 坐标的关系,将点N 的坐标表示出来代入椭圆方程的,得另一个关于,a b 的方程并联立方程①求,a b 即可.(1)根据c 2(c,)b M a ,22b 3ac =.将222b a c =-代入22b 3ac =,解得12c a =, 2c a =-(舍去).故C 的离心率为12. (2)由题意,原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点.故24b a=,即2b 4a =.①由1||5||MN F N =得112F D F N =.设11(x ,y )N ,由题意得,1y 0<,则112(c )c,2y 2,x --=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b+=,②将①及c = 229(a 4a)1144a a-+=.解得7a =,2428b a ==,故7,a b == 考点:椭圆的标准方程和简单几何性质;2、中点坐标公式.21.(1)1a =;(2)详见解析.【解析】试题分析:(1)2'(x)3x 6x a f =-+,由导数的几何意义得'(0)k f a ==,故切线方程为y 2ax =+,将点-2,0()代入求a ;(2)曲线()y f x =与直线2y kx =-只有一个交点转化为函数32()()kx 23(1k)4g x f x x x x =-+=-+-+有且只有零点.一般思路往往利用导数求函数的单调区间和极值点,从而判断函数大致图象,再说明与x 轴只有一个交点.本题首先入手点为1k <,当0x ≤时,'()0g x >,且g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.只需说明当0x >时无根即可,因为(1k)x 0->,故只需说明32()340h x x x =-+>,进而转化为求函数()h x 的最小值问题处理.(1)2'(x)3x 6x a f =-+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为y 2ax =+.由题设得,22a -=-,所以1a =. (2)由(1)得,32()32f x x x x =-++.设32()()kx 23(1k)4g x f x x x x =-+=-+-+.由题设得1k 0->.当0x ≤时,2'()3610g x x x k =-+->,g()x 单调递增,g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1k)x ()g x h x h x =+->.2'()3x h x =-63(x 2)x x =-,()h x 在(0,2)单调递减;在(2,)+∞单调递增.所以()()(2)0g x h x h >≥=.所以()=0g x 在(0,)+∞没有实根,综上,()=0g x 在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.22.(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明BE EC =,只需证明弦BE EC ,所对的圆周角相等,连接,AB AC ,故只需证明=DAC BAD ∠∠.由PA PD =得PAD PDA ∠=∠,为了和所求证的角建立联系=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,从而可证明=DAC BAD ∠∠,进而证明BE EC =;(2)由结论很容易想到相交弦定理AD DE BD DC ⋅=⋅,故只需证明22PB BD DC =⋅,由切割线定理得2PA PB PC =⋅,且PA PD DC ==易证.(1)连接,AB AC .由题设知,PA PD =,故PAD PDA ∠=∠.因为=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,=DCA PAB ∠∠,所以=DAC BAD ∠∠,从而BE =EC .因此BE EC =.(2)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2,DC PB BD PB ==,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.9 / 14P考点:1、圆的切割线定理;2、相交弦定理.23.(1)1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤);(2)3(2. 【解析】试题分析:(1)由2cos ,[0,]2πρθθ=∈两边平方,且结合222x y ρ+=和cos x ρθ=得半圆C 的直角坐标方程为22(1)1(01)x y y -+=≤≤,进而写出C 的参数方程;(2)利用C的参数方程设(1cost,sint)D +,由圆的切线的性质得//GD l ,故直线GD 与l 的斜率相同,根据斜率列方程得tan 3t t π==,从而点D 的直角坐标可求. (1)C 的普通方程为22(1)1(01)x y y -+=≤≤.可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤).(2)设(1cost,sint)D +.由(1)知,C 是以(1,0)G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan 3t t π==.故D 的直角坐标为(1cos ,sin )33ππ+,即3(,22. 考点:1、圆的极坐标方程和参数方程;2、两条直线的位置关系.24.(1)详见解析;(2). 【解析】试题分析:(1)由绝对值三角不等式得11()()f x x x a x x a a a =++-≥+--1a a=+,由0a >结合基本不等式得12a a+≥,故()2f x ≥;(2)由(3)5f <,得关于a 的不等式1335a a++-<(0)a >,去绝对号解不等式即可. (1)由0a >,有11()()f x x x a x x a a a =++-≥+--12a a =+≥,所以()2f x ≥.(2)1(3)33f a a =++-.当a 3>时,1(3)f a a=+,由(3)5f <得532a +<<.当03a <≤时,1(3)6f a a =-+,由(3)5f <得132a +<≤.综上,a 的取值范围是52+. 考点:1、绝对值三角不等式;2、基本不等式;3、绝对值不等式解法.。
2014年高考文科数学全国卷2(含详细答案)
数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。
2014年高考全国2卷文科数学试题(含解析)
***⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ 装 ⋯ ⋯ 绝密★启用前 ⋯ ⋯ ⋯ ⋯ 线 ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 内2014 年高考全国 2 卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯_ _ _ _ _ _ _ _ _ _ _ : 号 考 _ _ _ _ _ _ _ _ _ _ _ : 级 班 _ _ _ _ _ _ _ _ _ _ _ : 名 姓 _ _ _ _ _ _ _ _ _ _ _ : 校 学⋯ ⋯⋯ ⋯ ○ ⋯ ⋯⋯⋯ ⋯⋯⋯ ⋯ ○⋯ ⋯ ⋯⋯线⋯ ⋯ ⋯ ⋯ ○⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯第 I 卷(选择题) 请点击修改第 I 卷的文字说明 评卷人得分 一、选择题(题型注释) 2 1.设集合A { 2,0,2}, B { x| x x 2 0}, 则 A B ( ) A . B . 2C . {0}D . { 2} 2.1 3i 1 i ( ) A .1 2i B . 1 2i C . 1 2i D . 1 2i 3.函数 f (x) 在 x x 处导数存在,若 0p : f (x ) 0; 0q : x x 是 f (x) 的极值点,则()体积为3 2C32n(n 1)D.2A.p 是q 的充分必要条件B.p 是q 的充分条件,但不是q 的必要条件C.p 是q 的必要条件,但不是q 的充分条件D.p 既不是q 的充分条件,也不是q 的必要条件4.设向量a,b 满足| a b | 10 ,| a b | 6 ,则a b ()A.1 B .2 C .3 D .5 (A)3 (B)(C)1(D)A1C1B1BA5.等差数列{a n} 的公差是2,若a a a 成等比数列,则{a } 的前n项和2, 4 , 8 S ()n nn(n 1)A.n(n 1) B .n(n 1) C .26.如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm 6cm,高为的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比D8.执行右面的程序框图,如果输入的x,t 均为2,则输出的S()7.正三棱柱ABC A1B1C1 的底面边长为2,侧棱长为3 ,D为B C 中点,则三棱锥A B1DC1 的***⋯ 外 ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 值为( ) 17 A . B.2759 C .1027D .1 3⋯ ⋯ 内 ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ ○ ⋯ 第 1页共 8页◎ 第 2页共 8 页⋯ ⋯⋯ ⋯ ⋯***⋯ ⋯⋯⋯ ⋯⋯⋯ ○⋯⋯ ⋯ ⋯ ○ ⋯ 线⋯ ⋯⋯⋯ ⋯⋯ ⋯ ※※ 题 ○ ⋯⋯ 线※ ※ 答 ※ ※ ⋯ ⋯ ⋯ 内 订 ⋯ ※ ※ ⋯ 线 ⋯⋯※ ※ 订 ⋯ ⋯ (A ) 4(B ) 5(C ) 6(D ) 7⋯※ ※ ○ x y1 0, 1 0,9.设 x , y 满足约束条件F10 .设为抛物线30 3⋯ ○ ⋯ ⋯ ⋯装 ※ ※ 在 ※ ※ 要 ※ ※ 不 ※ ※ 请 ※ ※⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○*** (A)则z x2y的最大值为()x yx3y30,(A)8(B)7(C)2(D)12C:y=3x的焦点,过F且倾斜角为30的直线交C于A,B两点,则A B()(B)6(C)12(D)7311.若函数f x kx Inx在区间1,单调递增,则k的取值范围是()⋯⋯⋯(A),2(B),1(C)2,(D)1,订⋯⋯12.设点22M x0,1,若在圆O:x+y1上存在点N,使得OMN45,则x0的取值范围是()⋯外⋯⋯(A)1,1(B)1,122(C)2,2(D)2,222⋯⋯⋯⋯○⋯第3页共8页◎第4页共8页⋯⋯⋯○⋯***⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯请点击修改第 II 卷的文字说明 评卷人得分二、填空题(题型注释) 第 II 卷(非选择题)线 ⋯ ⋯⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯_ _ _ _ _ _ _ _ _ _ _ : 号 考 _ _ _ _ _ _ _ _ _ _ _ : 级 班 _ _ _ _ _ _ _ _ _ _ _ : 名 姓 _ _ _ _ _ _ _ _ _ _ _ : 校 学⋯ 内 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 线 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 订 ⋯ ⋯ ⋯ ⋯ ○ ⋯ ⋯ ⋯ ⋯ 装 ⋯ ⋯ ⋯13.甲,乙两名运动员各自等可能地从红、白、蓝3 种颜色的运动服中选择1 种,则他们选择相同颜 色运动服的概率为 _______. 14.函数 f (x) sin( x ) 2 sin cos x 的最大值为 ________.15.偶函数 yf (x) 的图像关于直线 x 2对称, f (3) 3,则 f ( 1) =________.116.数列 { } n ,则 a 1________.a a 满足1 ,a 2 n 8 1 an评卷人得分三、解答题(题型注释) 17.四边形 ABCD 的内角 A 与 C 互补, AB 1, BC 3, CDDA2 .(1)求 C 和 BD ;(2)求四边形 ABCD 的面积. 18.如图,四棱锥P ABCD 中,底面 ABCD 为矩形, PA 平面 ABCD , E 是 PD 的中点.(1)证明: PB // 平面 AEC ; (2)设A P1, AD3 ,三棱锥P ABD 的体积3 V,求 A 到平面PBC 的距离.4PEAD(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于 90 的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.22xyF F 分别是椭圆1, 2 221(a b0)20.设a b的左右焦点, M 是 C 上一点且MF与x轴垂直,2直线 M F 与 C 的另一个交点为N .1(1)若直线MN 的斜率为 3 4,求 C 的离心率;(2)若直线MN 在 y 轴上的截距为 2 ,且 | MN | 5| F N |,求a,b .121.已知函数32f (x) x3xax 2,曲线 y f (x) 在点 (0,2) 处的切线与 x轴交点的横坐***标为2.(1)求a;(2)证明:当k1时,曲线y f(x)与直线y kx2只有一个交点.22.如图,P是O外一点,PA是切线,A为切点,割线PBC与O相交于B,C,PC2PA,D为PC的中点,AD的延长线交O于点E.证明:(1)BE EC;2AD DE2PB(2)⋯外⋯⋯⋯○⋯⋯⋯⋯B C⋯⋯内⋯⋯19.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:○⋯⋯⋯⋯○⋯第5页共8页◎第6页共8页⋯⋯⋯⋯⋯⋯⋯A⋯○⋯⋯⋯⋯PBD O○⋯⋯线⋯⋯E C⋯⋯⋯23.在直角坐标系x Oy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标⋯※※题○⋯方程为2cos, [0,]2(1)求C得参数方程;.⋯线※※答※※内⋯⋯⋯订(2)设点D在C上,C在D处的切线与直线l:y3x2垂直,根据(1)中你得到的参数方程,⋯※※⋯确定D的坐标.24.设函数1f(x)|x||x a|(a0)a(1)证明:f(x)2;(2)若f(3)5,求a的取值范围.⋯⋯⋯○⋯线※※订※※装※※在※※要※※⋯⋯⋯○⋯⋯⋯⋯装⋯⋯不※※⋯⋯⋯请※※⋯○⋯⋯⋯⋯订⋯外⋯⋯⋯○⋯第 7页共 8页◎第 8页共 8页⋯ ⋯⋯○⋯本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
2014年高考数学课标全国Ⅱ (文科) 详细答案解析
.
【答案】3
【解析】∵f (x)为偶函数,∴f (-1)=f (1).
又 f(x)的图像关于直线 x = 2 对称,
∴f(1)=f(3).
∴f(-1)=3.
16.数列{an}满足 an+1= ,a11=2,则 a1=
.
【答案】
【解析】由 a11=2 及 an+1= ,得 a10= .
同理 a9=-1,a8=2,a7= , …
的体积为( ).
A.3
B.ᾌ
C.1
D. ᾌ
【答案】C
【解析】∵D 是等边△ABC 的边 BC 的中点,∴AD⊥BC.
又 ABC-A1B1C1 为正三棱柱,∴AD⊥平面 BB1C1C. 又四边形 BB1C1C 为矩形,
∴S△DB C
S四边形 BB C C ×2× ᾌ ᾌ.
又 AD=2× ᾌ ᾌ,
∴VA B DC
过 A 作垂直于平面 PBC 的垂线的垂足应在 PB 上,而△PAB 为直角三角形,可利用等面
积法求得斜边 PB 上的高,从而求得答案.
解:(1)设 BD 与 AC 的交点为 O,连结 EO.
因为 ABCD 为矩形,所以 O 为 BD 的中点.
又 E 为 PD 的中点,所以 EO∥PB.
EO⊂平面 AEC,PB 平面 AEC,
.
【答案】1
-4-
【解析】∵f (x)=sin(x+φ)-2sin φcos x
=sin xcos φ+cos xsin φ -2sin φcos x
=sin xcos φ - cos xsin φ
=sin(x-φ),
∴ f (x)max=1.
15.偶函数 y= f (x)的图像关于直线 x = 2 对称,f (3)=3,则 f (-1) =
2014年高考文科数学全国卷2-答案
{2}AB =,选(1+3i)(1+i)-2+4i ==-1+2i i)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。
【考点】向量的数量积运算。
2428a a a =,又因为{}n a 是公差为2的等差数列,2222)(6)d a a d =+,2(a 22(12)a +,解得,所以2)n a d =2n =,故(n 1)n =+。
【考点】等差数列通项公式,等比中项,等差数列前【答案】C 【解析】由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体。
其中小圆柱底面半径为大圆柱底面半径为1=BC B,所以11313AD=⨯⨯=。
【考点】直线和平面垂直的判断和性质,三棱锥体积。
2,2t=,在程序执行过程中,3,程序结束,输出cos BC CD C =cos AB DA A =0C 60=,BD 的面积11sin sin 22S AB DA A BC CD C =+1(2S =⨯。
在ABD ∆和CBD ∆中,利用余弦定理列等式cos BC CD C 和cos AB DA A ,且c o s c o s C A =-,代入数据得13求co s C 的值,和CBD △的面积可求,故四边形ABCD 等于的面积。
【考点】余弦定理,诱导公式,三角形的面积公式。
36PA AB AD =2BC AH ⊥,故AH AA BPB 313=13【考点】直线和平面平行的判定,点到平面的距离。
1)该市的市民对甲、乙两部门评分的中位数的估计值分别为AD DE BD DC=,所以2=AD DE PB【提示】(1)要证明BE EC,只需证明弦DAC BAD∠。
由PA PD=∠=得PAD∠+∠,从而可证明=PAD BAD PAD=,故只需证明BD DC,由切割线定理得)由结论很容易想到相交弦定理AD DE BD DCPB PC,且PA【考点】圆的切割线定理,相交弦定理。
2014年高考新课标2卷文科数学试题(解析版)
2014 年普通高等学校招生全国统一考试文科数学第Ⅰ卷一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的 。
(1)已知集合 A=﹛-2,0,2﹜,B=﹛x | 2x - x -2 0﹜,则 AB=(A)(B ) 2 (C ) 0 (D)2【答案】 B 【解析】把 M={0,1,2}中的数,代入等式,经检验 x=2 满足。
所以选 B.(2)1 3i 1 i(A )1 2i(B ) 1 2i (C )1-2i (D) 1-2i【答案】 B 【解析】1+ 1- 3i i=(1+ 3i )(1 + i ) 2=- 2+ 24i =+ -12i ∴选 B.(3)函数f x 在x =x 处导数存在, 若 p :f 0‘极值点,则(A ) p 是q 的充分必要条件(B ) p 是q 的充分条件,但不是 q 的必要条件 (C ) p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是 q 的充分条件,也不是 q 的必要条件【答案】 C 【解析】若f ′(x) =0,则x 不一定是极值点∴命题不是pq的充分条件;若x是极值点0 ,则f(x ) =′0∴命题p是q的必要条件.所以, C.选(4)设向量a, b 满足|a+b|= 10,|a-b|= 6 ,则a·b= (A)1 (B) 2 (C)3 (D) 5【答案】 A【解析】|2 2 2 2a+b |=10 a + b + 2ab = 10. |a- b|= 6 a + b - 2ab= 6.两式相减,则ab = 1.选A.∴∴(5)等差数列a的公差为2,若n a ,a4 ,a8 成等比数列,则a n 的2前n 项和S=n(A)n n 1 (B)n n 1 (C)n n2 1(D)n n21【答案】 A 【解析】d = 2, a2 ,a4,a成等比82∴a4= a a ,即(a +2 8 22d) 2 = a2(a2+ 6d ), 解得a2= 4, a1= 2.∴S2 = 6.经验证,仅A正确.选A.(6)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6c m 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为(A)1727 (B) 59(C)1027(D) 13【答案】 C【解析】加工前的零件半径为3,高6,体积v1 9π654π.加工后的零件,左半部为小圆柱,半径2,高4 3,高为2.,右半部为大圆柱,半径为体积v2 4 4 9π234π.削掉部分的体积与原体积之比54 -π34π54π1027.故选C.(7)正三棱柱A BC A B C的底面边长为2,侧棱长为 3 ,D 为BC 中1 1 1点,则三棱锥 A B1DC1 的体积为(A)3 (B)32(C)1 (D)32【答案】 C 【解析】B C1 1 // BD BD //∴面A B C ,点1 1B和D到面A B C的距离相等1 11 1∴V D = V = V = ? ?2? 3? 3 = 1.故选- AB1 - -C B AB C C ABB1 1 1 1 13 2C.(8)执行右面的程序框图,如果如果输入的x,t 均为2,则输出的S=(A)4(B)5(C)6(D)7【答案】 D【解析】= =x 2,t 2,变量变化情况如下:M S K1 3 12 5 22 73 故选D.x y 1 0(9)设x,y 满足的约束条件x y 1 0,则z x 2y的最大值为x 3y 3 0(A)8 (B)7 (C)2 (D)1【答案】 B【解析】画可行区域知为三角形,可以代值.两两求解,得三点坐标(1,0), (3,2), (0,1).代入z= x+ 2y,则最大值为7.故选B.(10)设F为抛物线C 2 的焦点,过F且倾斜角为: y =3xC 2 的焦点,过F且倾斜角为°30 的直线交于C于A, B 两点,则AB =(A)303(B)6 (C)12 (D)7 3【答案】 C 【解析】设A F 2m, BF 2n F,( 34,0).则由抛物线的定义和直角三角形知识可得,2m 2 343m,2n 234- 3n,解得m32(2 3), n32(2 - 3), m∴n 3.AB AF BF 2m 2n 12. C.故选(11)若函数 f (x) kx ln x在区间(1,+ )单调递增,则k 的取值范围是(A), 2 (B), 1 (C)2, (D)1,【答案】 D【解析】f ( x)在(1,+∞)上递增,∴f ′(x) ≥0恒成立 f (x)= kx -ln x∴f ′(x) = k-1x≥7.即k 1>≥1x.所以k ∈[1,+∞), D.选(12)设点M,若在圆(x ,1)0 O 2 2 上存在点N,使得: x y =1O MN ,45°则x的取值范围是0(A)1,1 (B) 1 1,(C)2, 2 (D)2 22 2,2 2【答案】 A 【解析】在坐标系中画出圆O和直线=y 1,其中M(x ,1)在直线上.由圆的切线相等及三角形外角知识,可得x [ -1,1]. A.∈故选0第Ⅱ卷本卷包括必考题和选考题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014高考文科数学试题(新课标Ⅱ)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A=﹛-2,0,2﹜,B=﹛x |2x -x -20=﹜,则A B= (A) ∅ (B ){}2 (C ){}0 (D) {}2- (2)131ii+=- (A )12i + (B )12i -+ (C )1-2i (D) 1-2i -(3)函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则(A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是 q 的充分条件 (D) p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足a ·b=(A )1 (B ) 2 (C )3 (D) 5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = (A ) ()1n n + (B )()1n n - (C )()12n n + (D)()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件 由一个底面半径为3cm ,高为6c m 的圆柱 体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为(A )1727 (B ) 59 (C )1027 (D) 13(7)正三棱柱111ABC A B C -的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32 (C )1 (D )(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S=(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足的约束条件1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:y =3x C 的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A)3(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是 (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(x ,1)M ,若在圆22:x y =1O +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D )⎡⎢⎣⎦第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个考试考生都必须做答。
第22题~第24题为选考题,考生根据要求做答。
二、填空题:本大概题共4小题,每小题5分。
(13)甲、已两名元动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为_______.(14)函数)sin()(ϕ+=x x f —2ϕsin x cos 的最大值为_________. (15)已知函数()f x 的图像关于直线x =2对称,)3(f =3,则=-)1(f_______.(16)数列{}n a 满足1+n a =na -11,2a =2,则1a =_________.三、解答题:解答应写出文字说明过程或演算步骤。
(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,AB=1,BC=3, CD=DA=2. (I )求C 和BD;(II )求四边形ABCD 的面积。
(18)(本小题满分12分)如图,四凌锥p —ABCD 中,底面ABCD 为矩形,PA 上面ABCD ,E 为PD 的点。
(I )证明:PP//平面AEC; (II )设置AP=1,AD=3,三凌P-ABD 的体积V=43,求A 到平面PBC 的距离。
(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民。
根据这50位市民(I )分别估计该市的市民对甲、乙部门评分的中位数; (II )分别估计该市的市民对甲、乙部门的评分做于90的概率; (III )根据茎叶图分析该市的市民对甲、乙两部门的评价。
(20)(本小题满分12分)设F 1 ,F 2分别是椭圆C :12222=+by a x (a>b>0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N 。
(I )若直线MN 的斜率为43,求C 的离心率; (II )若直线MN 在y 轴上的截距为2且|MN|=5|F 1N|,求a ,b 。
(21)(本小题满分12分)已知函数f (x )=3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2. (I )求a ;(II )证明:当时,曲线()y f x =与直线2y kx =-只有一个交点。
请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号。
(22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E ,证明:(I )BE=EC ;(II )AD ·DE=2PB 2。
(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为p=2cos θ,θ∈[0,2π]。
(I )求C 的参数方程;(II )设点D 在C 上,C 在D 处的切线与直线l :y=3x+2垂直,根据(I )中你得到的参数方程,确定D 的坐标。
(24)(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x+a1|+|x-a|(a>0)。
(I )证明:f (x )≥2;(II )若f (3)<5,求a 的取值范围。
2014高考文科数学试题(新课标Ⅱ)答案(1)【答案】B把M={0,1,2}中的数,代入等式,经检验x=2满足。
所以选B. (2) 【答案】B.∴21-242-2)1)(31(-131B i ii i i i 选+=+=++=+(3)【答案】C.,.∴0)(,;,0)(0000C q p x f x q p x x f 选所以的必要条件是命题则是极值点若的充分条件不是命题不一定是极值点则若=′∴=′(4)【答案】A..1.62-∴6|-|.102∴10||2222A 选两式相减,则==+==++=+(5)【答案】A...6.2,4),6()2(,,,221222228224842A A S a a d a a d a a a a a a a d 选正确经验证,仅解得,即成等比=∴==+=+=∴=(6)【答案】 C..2710π54π34-π54π.342π944.2342π.546π96321C v v 故选积之比削掉部分的体积与原体体积,高为径为,右半部为大圆柱,半,高为小圆柱,半径加工后的零件,左半部体积,,高加工前的零件半径为==∴=•+•=∴=•=∴π(7) 【答案】 C..13322131,//∴//111111---111111C V V V C AB D B C AB BD BD C B ABB C C AB B C AB D 故选的距离相等到面和点面=••••===∴(8) 【答案】 D.3 7 2 2 5 2 1 3 1 ,2,2D K S M t x 故选变量变化情况如下:== (9)【答案】 B..7,2).1,0(),2,3(),0,1(.B y x z 故选则最大值为代入两两求解,得三点坐标,可以代值画可行区域知为三角形+=(10)【答案】 C..1222.6∴),3-2(23),32(233-4322,34322).0,43(2,2C n m BF AF AB n m n m n n m m F n BF m AF 故选,解得角三角形知识可得,则由抛物线的定义和直,设=+=+==+=+=•=+•===(11)【答案】 D.),∞,1[.11≥.0≥1-)(ln -)(0)(),1()(D k xk xk x f x kx x f x f x f 选所以即恒成立上递增,在+∈>=′∴=≥′∴+∞(12)【答案】 A.].1,1-[∈x .,1)M(x 1,y O 00A 故选形外角知识,可得由圆的切线相等及三角在直线上其中和直线在坐标系中画出圆=(13)【答案】 31.313131313131313131.3131=•+•+•••率为他们选择相同颜色的概色的概率也是同理,均选择红、或蓝为甲乙均选择红色的概率(14) 【答案】 11.1)φ-sin(φsin cos -φcos sin cos φsin 2-φsin cos φcos sin cos sin 2-)φsin()(故最大值为≤==+=+=x x x x x x x x x f φ(15)【答案】 33)1-(∴3)3()1(∴2)()1()1-()(=====∴f f f x x f f f x f 对称图像关于为偶函数(16)【答案】 21.21-11-11,211212==∴==+a a a a a a n n 解得(17)【答案】 (1) 73π==BD C , (2) 32(1)73π,,21cos ,70cos cos ∴π.322-49cos ,22-41cos ,C A,ΔBCD ΔABD,,22=====+=+••+=•+==BD C C x C A C A x C x A BD x ,所以联立上式解得则用余弦定理中,对角分别在设(2)32.32)31(23sin 21sin 2123sin in ∴3ππ,ΔΔ面积为所以,四边形面积四边形ABCD C CD CB A AD AB S S S ABCD C A s C C A BCD ABD ABCD =+=••+••=+=====+ (18) 【答案】 (1) 省略 (2) 13133【解析】(1)设AC 的中点为G, 连接EG 。
在三角形PBD 中,中位线EG//PB,且EG 在平面AEC 上,所以PB//平面AEC. (2)1313313133∴413,,PAB -C BC PB,⊥BC PAB,⊥BC A PA AB BC,⊥BC,⊥23,13213131,43,.-BC,⊥∴⊥2--Δ--的距离为到面所以,由勾股定理解得的高为三棱锥面的距离为到面设的高是三棱锥面PBC A h PB h PB BC BC AB PA V V PA AB x x PA S V V h PBD A AB x ABD P PA PA ABCD PA PBC A ABC P ABD ABD P ABD P ==••=••=∴=∩=∴••••=•=== (19)【答案】 (1) 75,77 (2) 0.1,0.16(1)两组数字是有序排列的,50个数的中位数为第25,26两个数。