高中数学必修1综合测试卷(三套+含答案)

合集下载

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)

高一数学必修一综合测试题(含答案)一、选择题(每题5分,共50分)1、已知集合M={0,1,2},N={xx=2a,a∈M},则集合MN=A、{ }B、{0,1}C、{1,2}D、{0,2}答案:B解析:将M中的元素代入N中得到:N={2,4,8},与M 的交集为{0,1},故MN={0,1}。

2、若f(lgx)=x,则f(3)=()A、lg3B、3C、10D、310答案:C解析:将x=3代入f(lgx)=x中得到f(lg3)=3,又因为lg3=0.477,所以f(0.477)=3,即f(3)=10^0.477=3.03.3、函数f(x)=x−1x−2的定义域为()A、[1,2)∪(2,+∞)B、(1,+∞)C、[1,2)D、[1,+∞)答案:A解析:由于分母不能为0,所以x-2≠0,即x≠2.又因为对于x<1,分母小于分子,所以x-1<0,即x<1.所以定义域为[1,2)∪(2,+∞)。

4、设a=log13,b=23,则().A、a<b<cB、c<b<aC、c<a<bD、b<a<c答案:A解析:a=log13=log33-log32=1/2-log32,b=23=8,c=2^3=8,所以a<b=c。

5、若102x=25,则10−x等于()A、−15B、51C、150D、0.2答案:B解析:由102x=25可得x=log10(25)/log10(102)=1.3979,所以10^-x=1/10^1.3979=0.1995≈0.2.6、要使g(x)=3x+1+t的图象不经过第二象限,则t的取值范围为A.t≤−1B.t<−1C.t≤−3D.t≥−3答案:B解析:当x=0时,y=1+t,要使图像不经过第二象限,则1+t>0,即t>-1.又因为g(x)的斜率为正数,所以对于任意的x,g(x)的值都大于1+t,所以t< -1.7、函数y=2x,x≥1x,x<1的图像为()答案:见下图。

人教版高中一年级数学必修1测试题(含答案)

人教版高中一年级数学必修1测试题(含答案)

人教版数学必修I 测试题(含答案)一、选择题1、设集合{}{}{}1,2,3,4,5,1,2,3,2,5U A B ===,则()U AC B =( )A 、{}2B 、{}2,3C 、{}3D 、{}1,32、已知集合{}{}0,1,2,2,M N x x a a M ===∈,则集合 MN ( )A 、{}0B 、{}0,1C 、{}1,2D 、{}0,23、函数()21log ,4y x x =+≥的值域是 ( )A 、[)2,+∞B 、()3,+∞C 、[)3,+∞D 、(),-∞+∞4、关于A 到B 的一一映射,下列叙述正确的是 ( ) ① 一一映射又叫一一对应 ② A 中不同元素的像不同③ B 中每个元素都有原像 ④ 像的集合就是集合BA 、①②B 、①②③C 、②③④D 、①②③④5、在221,2,,y y x y x x y x===+=,幂函数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个6、已知函数()213f x x x +=-+,那么()1f x -的表达式是 ( )A 、259x x -+B 、23x x --C 、259x x +-D 、21x x -+7、若方程0x a x a --=有两个解,则a 的取值范围是 ( )A 、()0,+∞B 、()1,+∞C 、()0,1D 、∅ 8、若21025x =,则10x -等于 ( )A 、15-B 、15C 、150D 、1625 9、若()2log 1log 20a a a a +<<,则a 的取值范围是 ( )A 、01a <<B 、112a <<C 、102a << D 、1a >10、设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >> 11、已知()()2212f x x a x =+-+在(],4-∞上单调递减,则a 的取值范围是 ( )A 、3a ≤-B 、3a ≥-C 、3a =-D 、以上答案都不对 12、若()lg f x x =,则()3f = ( )A 、lg 3B 、3C 、310D 、103 二、填空题13、设{}{}12,0A x x B x x a =<<=-<,若A B Ø,则a 的取值范围是 ;14、函数y =的定义域为 ;15、若2x <,3x -的值是 ; 16、100lg 20log 25+= 。

人教A版高中数学必修第一册全册测试卷(含答案)

人教A版高中数学必修第一册全册测试卷(含答案)

人教A版高中数学必修第一册全册测试卷(含答案)一、单选题
1.“”是“”的( )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件
2.已知集合,则()
A.B.
C.D.
3.若集合,0,1,,则
A.B.C.D.
4.已知正数x,y满足:,则x+y的最小值为( )
A .B.C.6D.
5.函数,其中,记在区间,上的最小值为(a),则函数(a)的最大值为()
A.B.0C.1D.2
6.二次函数的图象如图所示,反比例函数与正比例函数在同一坐标系中的大致图象可能是()
A.B.
C.D.
7.设函数,则函数的定义域为()A.B.C.D.
8.函数的定义域为()A.B.C.D.
9.函数的图象大致为()
A.B.C.D.
10.设,则的大小关系是()A.B.C.D.
11.“”是“直线和直线互相垂直”的()A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件。

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题(全册含答案)

高中数学必修一综合测试题第一章至第三章(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(N)等于( )UA. B.C. D.(A∪B)【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}2.函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)3.下列图形中,不是函数图象的是( )【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x35.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)6.函数f(x)=若f(x)=2,则x的值是( )A. B.± C.0或1 D.0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )7.已知a=log2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+10010.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( ) A.3- B.3+C.2-D.2+11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.14.= .15.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.16.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【补偿训练】已知函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2).(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小). (注:总费用=途中费用+装卸费用+损耗费用)22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.(3)当x∈(-3,4]时,求函数g(x)=log2f(x)+x2-6的值域.高中数学必修一(第一至第三章) (参考答案)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合U=,集合M=,N=,则M∩(UN)等于( )A. B.C. D.【解析】选B.因为U N=,M=,所以M∩(UN)=.【补偿训练】设全集U={x|x<6且x∈N*},集合A={1,3},B={3,5},则U(A∪B)= ( )A.{1,4}B.{1,5}C.{2,4}D.{2,5}【解析】选C.由题意知U={1,2,3,4,5},又A∪B={1,3,5},所以U(A∪B)={2,4}.2.(2015·淮南高一检测)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.要使函数y=有意义,必须解得,故函数的定义域为(1,2)∪(2,+∞).【补偿训练】函数y=+的定义域是( )A.[-1,2)B.[-1,2)∪(2,+∞)C.(2,+∞)D.[-1,+∞)【解析】选B.要使函数y=+有意义,必须,解得x≥-1且x≠2,故函数的定义域为[-1,2)∪(2,+∞).3.下列图形中,不是函数图象的是( )【解析】选B.由函数的定义可知:选项B中存在给定某一实数,有两个值与之对应.【补偿训练】下列各组函数是同一函数的是( )A.y=与y=1B.y=|x-1|与y=C.y=|x|+|x-1|与y=2x-1D.y=与y=x【解析】选D.A定义域不同,故不是同一函数.B定义域不同,故不是同一函数.C对应法则不同,故不是同一函数.D定义域与对应法则均相同,所以是同一函数.4.下列函数在其定义域内既是奇函数,又是增函数的是( )A.y=B.y=3xC.y=lg|x|D.y=x3【解析】选D.选项A中函数的定义域为x≥0,故不具备奇偶性;选项B是增函数但不是奇函数;选项C是偶函数;而选项D在R上是奇函数并且单调递增.5.已知函数f(x)=,则有( )A.f(x)是奇函数,且f=-f(x)B.f(x)是奇函数,且f=f(x)C.f(x)是偶函数,且f=-f(x)D.f(x)是偶函数,且f=f(x)【解析】选C.因为f(x)=,{x|x≠±1},所以f====-=-f(x),又因为f(-x)===f(x),所以f(x)为偶函数.【误区警示】解答本题在推导f与f(x)的关系时容易出现分式变形或符号变换错误.6.(2015·绍兴高一检测)函数f(x)=若f(x)=2,则x的值是( ) A. B.± C.0或1 D.【解析】选A.当x+2=2时,解得x=0,不满足x≤-1;当x2=2时,解得x=±,只有x=时才符合-1<x<2;当2x=2时,解得x=1,不符合x≥2.故x=.7.已知a=log0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是( )2A.b>c>aB.b>a>cC.a>b>cD.c>b>a【解析】选A.由于a=log20.3<log21=0,0<0.30.2<0.30=1,20.3>20=1,故log20.3<0.30.2<20.3,即a<c<b.【补偿训练】已知函数f(x)=lo|x+2|,若a=f(lo3),b=f,c=f(ln3),则( ) A.c<b<a B.b<c<aC.c<a<bD.a<b<c【解题指南】作出函数f(x)=lo|x+2|的图象判断此函数的单调性,利用中间量0,1比较lo3,,ln3的大小,最后利用函数单调性比较a,b,c的大小.【解析】选A.函数y=lo|x|的图象如图(1),把y=lo|x|的图象向左平移2个单位得到y=lo|x+2|的图象如图(2),由图象可知函数y=lo|x+2|在(-2,+∞)上是减函数,因为lo3=-log23<-log22=-1,0<<=1,ln3>lne=1.所以-2<lo3<<ln3,所以f(lo3)>f>f(ln3),即c<b<a.8.函数f(x)=2x-1+x-5的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选 C.利用根的存在性定理进行判断,由于f(2)=2+2-5=-1,f(3)=4+3-5=2,所以f(2)·f(3)<0,又f(x)为单调递增函数,所以函数f(x)=2x-1+x-5的零点所在的区间为(2,3). 【补偿训练】函数f(x)=lnx+x3-9的零点所在的区间为( )A.(0,1)B.(1,2)C.(2,3)D.(3,4)【解析】选C.由题意知x>0,且f(x)在其定义域内为增函数,f(1)=ln1+13-9=-8<0,f(2)=ln2+23-9=ln2-1<0,f(3)=ln3+33-9=ln3+18>0,f(4)=ln4+43-9>0,所以f(2)f(3)<0,说明函数在区间(2,3)内有零点.9.某品牌电脑投放市场的第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好反映销售量y与投放市场月数x之间的关系的是( )A.y=100B.y=50x2-50x+100C.y=50×2xD.y=100log2x+100【解析】选C.对于A中的函数,当x=3或4时,误差较大.对于B中的函数,当x=4时误差也较大.对于C中的函数,当x=1,2,3时,误差为0,x=4时,误差为10,误差很小.对于D中的函数,当x=4时,据函数式得到的结果为300,与实际值790相差很远.综上,只有C中的函数误差最小.10.已知函数f(x)=满足对任意x1≠x2,都有<0成立,则a的范围是( )A. B.(0,1)C. D.(0,3)【解析】选A.由于x1≠x2,都有<0成立,即函数在定义域内任意两点的连线的斜率都小于零,故函数在定义域内为减函数,所以有解得0<a≤.【补偿训练】若函数f(x)=logm(m-x)在区间[3,5]上的最大值比最小值大1,则实数m=( )A.3-B.3+C.2-D.2+【解析】选 B.由题意知m>5,所以f(x)=log m(m-x)在[3,5]上为减函数,所以log m(m-3)-log m(m-5)=1,log m=1,即=m,m2-6m+3=0,解得m=3+或m=3-(舍去).所以m=3+.11.已知函数y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=(1+x),则当x<0时,f(x)的表达式是( )A.f(x)=(1-x)B.f(x)=-(1-x)C.f(x)=(1+x)D.f(x)=-(1+x)【解题指南】当x<0时,-x>0,由题意可知f(-x),再利用f(-x)=-f(x),可求f(x).【解析】选A.设x<0,则-x>0,f(-x)=(1-x)=-(1-x),又因为f(x)为奇函数,所以f(-x)=-f(x),所以-f(x)=-(1-x),所以f(x)=(1-x).12.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么解析式为y=2x2-1,值域为{1,7}的所有“孪生函数”的个数等于( )A.6B.7C.8D.9【解析】选D.当y=2x2-1=1时,解得x=±1,当y=2x2-1=7时,解得x=±2,由题意可知是“孪生函数”的函数的定义域应为,,,,,,,,共9个.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.函数y=a x-1+1a>0,且a≠1一定过定点.【解析】当x-1=0时,y=a x-1+1=a0+1=2,由此解得x=1,即函数恒过定点(1,2).答案:(1,2)14.= .【解析】===1.答案:115.如果函数f(x)=x2-ax+1仅有一个零点,则实数a的值是.【解析】由于函数f(x)=x2-ax+1仅有一个零点,即方程x2-ax+1=0仅有一个根,故Δ=a2-4=0,解得a=±2.答案:±2【延伸探究】若将函数改为f(x)=x2+ax-4在(0,1)内只有一个零点,则实数a的取值范围是.【解析】由于函数f(x)=x2+ax-4在(0,1)内只有一个零点,且f(0)=-4<0,函数f(x)的图象开口向上,则必有f(1)>0,即1+a-4>0,所以a>3.答案:a>316.对于定义在R上的函数f(x),有如下命题:①若f(0)=0,则函数f(x)是奇函数;②若f(-4)≠f(4),则函数f(x)不是偶函数;③若f(0)<f(4),则函数f(x)是R上的增函数;④若f(0)<f(4),则函数f(x)不是R上的减函数.其中正确的有(写出你认为正确的所有的序号).【解析】例如函数f(x)=x2,f(0)=0,但此函数不是奇函数,故①错误;若函数为偶函数,则在其定义域内的所有的x,都有f(-x)=f(x),若f(-4)≠f(4),则该函数一定不是偶函数,故②正确;对于函数f(x)=x2,f(0)<f(4),但该函数不是R上的增函数,故③错误;由于f(0)<f(4),则该函数一定不是减函数,故④正确.答案:②④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)化简:÷×(式中字母都是正数).【解析】原式=÷×=××=×a×=a2.18.(12分)已知集合A=,B=.(1)分别求R (A B)∩,(RB)∪A.(2)已知C=,若C⊆B,求实数a的取值集合. 【解析】(1)因为A∩B=,所以R (A B)∩=或,因为RB=,所以(RB)∪A=x<6或.(2)因为C⊆B,所以解之得3≤a≤8,所以a∈.19.(12分)已知函数f(x)=lg(1+x)-lg(1-x).(1)求定义域.(2)判断函数的奇偶性.【解析】(1)由已知得所以可得-1<x<1,故函数的定义域为.(2)f(-x)=lg(1-x)-lg(1+x)=-lg(1+x)+lg(1-x)=-=-f(x).所以f(x)=lg(1+x)-lg(1-x)为奇函数.20.(12分)已知函数f(x)是定义在R上的偶函数,且当x≤0时f(x)=x2+4x.(1)求函数f(x)的解析式.(2)画出函数的大致图象,并求出函数的值域.【解析】(1)当x>0时,-x<0,因为函数是偶函数,故f(-x)=f(x),所以f(x)=f(-x)=(-x)2+4(-x)=x2-4x,所以f(x)=(2)图象如图所示:函数的值域为[-4,+∞).(ax+b)的图象经过点A(2,1),B(5,2). 【补偿训练】已知函数f(x)=log3(1)求函数f(x)的解析式及定义域.(2)求f(14)÷f的值.【解析】(1)因为函数f(x)=log3(ax+b)的图象经过点A(2,1),B(5,2),所以即所以解得所以f(x)=log3(2x-1),定义域为.(2)f(14)÷f=log327÷log 3=3÷=6.21.(12分)某公司要将一批不易存放的蔬菜从A地运到B地,有汽车、火车两种运输工具可供选择,两种运输工具的主要参考数据如下表:运输工具途中速度(km/h)途中费用(元/km)装卸时间(h)装卸费用(元)汽车50 8 2 1 000火车100 4 4 2 000若这批蔬菜在运输过程(含装卸时间)中损耗为300元/h,设A,B两地距离为xkm.(1)设采用汽车与火车运输的总费用分别为f(x)与g(x),求f(x)与g(x).(2)试根据A,B两地距离大小比较采用哪种运输工具比较好(即运输总费用最小).(注:总费用=途中费用+装卸费用+损耗费用)【解析】(1)由题意可知,用汽车运输的总费用为:f(x)=8x+1000+·300=14x+1600(x>0),用火车运输的总费用为:g(x)=4x+2000+·300=7x+3200(x>0).(2)由f(x)<g(x)得x<.由f(x)=g(x)得x=.由f(x)>g(x)得x>.所以,当A,B两地距离小于km时,采用汽车运输好;当A,B两地距离等于km时,采用汽车或火车都一样;当A,B两地距离大于km时,采用火车运输好.【拓展延伸】选择数学模型分析解决实际问题(1)特点:信息由表格数据的形式给出,要求对数据进行合理的转化处理,建立数学模型,解答有关的实际问题.(2)三种常用方法:①直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;②列式比较法:若题所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;③描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.22.(12分)已知函数f(x)=a+b x(b>0,b≠1)的图象过点(1,4)和点(2,16).(1)求f(x)的表达式.(2)解不等式f(x)>.f(x)+x2-6的值域.(3)当x∈(-3,4]时,求函数g(x)=log2【解析】(1)由题知所以或(舍去),所以f(x)=4x.(2)因为4x>,所以22x>,所以2x>x2-3,所以x2-2x-3<0,所以-1<x<3,所以不等式的解集为(-1,3).(3)g(x)=log24x+x2-6=log222x+x2-6=2x+x2-6=(x+1)2-7,因为-1∈(-3,4],所以g(x)min=-7,当x=4时,g(x)max=18,所以值域为[-7,18].。

(完整word)高中数学必修1综合测试题及答案,推荐文档

(完整word)高中数学必修1综合测试题及答案,推荐文档

必修1综合检测(时间:120分钟满分:150分)一、选择题(每小题5分,共50分)1•函数y= 'xln(1 —x)的定义域为()A. (0,1)B. [0,1)C. (0,1]D. [0,1]12. 已知U = {y|y = log2x, x>1} , P= y|y= ],x>2,则?u p=( )1 1 1A. 2,+^B. 0, 2C. (0,+x)D. (", o)u 2,+^13. 设a>1,函数f(x) = log a x在区间[a,2a]上的最大值与最小值之差为q,则a=( )A. .''2B. 2C. 2 :2D. 44. 设f(x) = g(x) + 5, g(x)为奇函数,且f( —7)= —17,则f(7)的值等于()A. 17 B . 22 C . 27 D . 125 .已知函数f(x) = x2—ax—b的两个零点是2和3,则函数g(x) = bx2—ax—1的零点是()1 1 1 1A . —1 和一2B . 1 和2 C.2和3 D . —2和一36. 下列函数中,既是偶函数又是幕函数的是()A . f(x) = :xB . f(x) = x2C . f(x) = x 3D . f(x) =x 17. 直角梯形ABCD如图Z-1(1),动点P从点B出发,⑴ ⑵由B - C- D - A沿边运动,设点P运动的路程为x ,△ ABP的面积为f(x).如果函数y= f(x)的图象如图Z-1(2),那么△ ABC的面积为()A . 10B . 32C . 18D . 16 鬥?.x2+ bx+ c, x< 0,8. 设函数f(x)= 若f( —4) = f(0), f( —2)= —2,则关于x 的方程f(x) = x2, x>0,的解的个数为()A . 1个B . 2个C . 3个D . 4个9 .下列四类函数中,具有性质“对任意的x>0, y>0,函数f(x)满足f(x + y) = f(x)f(y) ”的是()A .幕函数B .对数函数C.指数函数 D . 一次函数10 .甲用1000元人民币购买了一支股票,随即他将这支股票卖给乙,获利10%,而后乙又将这支股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格九折将这支股票卖给了乙,在上述股票交易中()A •甲刚好盈亏平衡B •甲盈利1元C.甲盈利9元D •甲亏本1.1元二、填空题(每小题5分,共20分)1 111 •计算:©4—lg25 W OO ◎二_________ .12. 已知f(x) = (m —2)X2+ (m—1)x+ 3是偶函数,贝U f(x)的最大值是_________ .13. _________________________________________________________________________y= f(x)为奇函数,当x<0时,f(x) = x2+ ax,且f(2) = 6;则当x> 0时,f(x)的解析式为__________ .2x—114. ______________________________________ 函数y = x+ 1,x€ [3,5]的最小值为最大值为______________________________________ .三、解答题(共80分)15. (12 分)已知全集U = R,集合A = {x|log2(11 —x2)>1},B= {x|x2—x—6>0},M = {x|x2+ bx + c>0}。

高中数学必修1综合测试题之三

高中数学必修1综合测试题之三

高中数学必修1综合测试题之三一、选择题【共15道小题】(有答案)1、集合P={x||x|<2},Q={x+x<2}则()A.P∩Q=(0,2)B.P∩Q=[0,2]C.P QD.P Q2、设集合M={x|0<x≤3},N={x|0<x≤2},那么“a∈M”是“a∈N”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3、已知集合A={x|x2-5x+6≤0},集合B={x||2x-1|>3},则集合A∩B=()A.{x|2≤x≤3}B.{x|2≤x<3}C.{x|2<x≤3}D.{x|-1<x<3}4、设f是从集合A到集合B的映射,下列四个说法,其中正确的是()①集合A中的每一个元素在集合B中都有元素与之对应②集合B中的每一个元素在集合A中也都有元素与之对应③集合A中不同的元素在集合B中的对应元素也不同④集合B中不同的元素在集合A中的对应元素也不同A.①和②B.②和③C.③和④D.①和④5、下列各图中,可表示函数y=f(x)的图象的只可能是()6、下列各等式中,正确的是()A.=|a|B.C.a0=1D.7、已知二次函数图象的对称轴是x=2,又经过点(2,3),且与一次函数y=3x+b的图象交于点(0,-1),则过一次函数与二次函数的图象的另一个交点的坐标是()A.(1,2)B.(2,1)C.(-1,2)D.(1,-2)8、某一种商品降价10%后,欲恢复原价,则应提价()A.10%B.9%C.11%D.1119%9、函数y=的值域是()A.{x|0<x<1}B.{x|0<x≤1}C.{x|x>0}D.{x|x≥0}10、以下命题正确的是()①幂函数的图象都经过(1,1)②幂函数的图象不可能出现在第四象限③当n=0时,函数y=x n 的图象是一条直线④若y=x n(n<0)是奇函数,则y=x n在定义域内为减函数A.②③B.①②C.②④D.①③11、甲乙二人同时从A地赶往B地,甲先骑自行车到中点改为跑步,而乙则是先跑步到中点改为骑自行车,最后两人同时到达B地,又知甲骑自行车比乙骑自行车的速度快,并且二人骑车速度均比跑步速度快.若某人离开A地的距离s与所用时间t的函数关系可用图象表示,则下列给出的四个函数图象中,甲、乙各人的图象只能是()A.甲是图①,乙是图②B.甲是图①,乙是图④C.甲是图③,乙是图②D.甲是图③,乙是图④12、已知集合A={m1,m2},B={n1,n2,n3},则从A到B的不同映射共有…()A.3个B.6个C.9个D.12个13、设函数f(x)=的定义域为{x|x≥-2},则实数a的值为()A. B.0 C. D.不存在14、已知对不同的a值,函数f(x)=2+a x-1(a>0,且a≠1)的图象恒过定点P,则P点的坐标是()A.(0,3)B.(0,2)C.(1,3)D.(1,2)15、已知f(x)=是(-∞,+∞)上的减函数,那么a的取值范围是()A.(0,1)B.(0,)C.[,)D.[,1)二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的身高当函数值,如下列表,画出它的图象来.2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?一、答案:1B2B3C4D5D6D7A8D9A10B11B12C13C14C15A二、填空题【共4道小题】1、已知函数f(x)=的定义域是F,函数g(x)= log12(2+x-6x2)的定义域是G,全集U=R,那么F∩G=____________________.参考答案与解析:解析:本题考查求一个函数的定义域以及在全集基础上的集合间的求“补”运算和集合间的求“交”运算,所以要分别求出集合F和G以及G的补集,最后求F∩G.解:∵1-x2>0,∴-1<x<1,∴F=(-1,1).∵2+x-6x2>0,∴-<x<,∴G=(-,),∴ G=(-∞,-)∪[,+∞],∴F∩G=(-1,-)∩[,1].主要考察知识点:集合,函数2、①已知函数y=(x2-2x+a)定义域为R,则a的取值范围是_____________,②已知函数y=(x2-2x+a)值域为R,则a的取值范围是________________.参考答案与解析:解析:两题乍一看似乎一样,但若仔细分析,其设问角度不同,解题方法也有区别.①对x∈R,x2-2x+a>0恒成立,②由于当t∈(0,+∞)时,t∈R故要求x2-2x+a取遍每一个正实数,换言之,若x2-2x+a的取值范围为D,则(0,+∞)∈D.①x2-2x+a=(x-1)2+a-1≥a-1,故只要a-1>0则x∈R时,x2-2x+a>0恒成立.因此,填a>1;②x2-2x+a=(x-1)2+a-1≥a-1,故x2-2x+a的取值范围为[a-1, +∞),要求(0,+∞)[a-1, +∞)只要a-1≤0.因此,填a≤1.答案:a>1 a≤1主要考察知识点:对数与对数函数3、已知气压p(百帕)与海拔高度h(m)满足关系式 p=1 000,则海拔9 000 m高处的气压为________________百帕.参考答案与解析:解析:本题是与物理学有关系的一道给定函数关系式的题目,关键是理解所给公式中的各个量的含义,尤其是是“9000”对应的字母要准确.根据题意,得P=1 000=0.343.因此,填0.343.答案:0.343主要考察知识点:函数的应用4、设函数f(x)=+lnx在[1,+∞)上是增函数,则正实数a的取值范围是____________.参考答案与解析:解析:本题是函数单调性知识的逆向应用,即已知函数单调性,确定函数解析式或解析式中的待定系数.此题用到函数的导数的性质,即增区间内函数的导数非负,减区间内的函数导数非正.∴对函数进行求导后便可建立关于a的不等式.解:f′(x)=≥0对x∈[1,+∞)恒成立,∴a≥对x∈[1,+∞)恒成立,又≤1,∴a≥1为所求.答案:a≥1主要考察知识点:函数三、解答题【共6道小题】1、(1)某西瓜摊卖西瓜,6斤以下每斤4角,6斤以上每斤6角.请表示出西瓜重量x与售价y的函数关系.并画出图象.(2)一班有45名同学,每名同学都有一个确定的身高,把每个同学的学号当自变量,每个同学的参考答案与解析:解析:(1)要分情况表示.分成6斤以下,以上两种情况,这种函数叫分段函数.(2)这个问题中的自变量(学号)与变量(身高)有明确的对应关系,但这个对应关系无法用一个等式表示出来,我们采用列表法或图象法就比较简单.解:(1)这个函数的解析表示应分两种情况:y=如图:(2)图象法:主要考察知识点:函数的应用2、已知y=,a>0,a≠1,试把y+用含x的式子表示出来,并化简.参考答案与解析:解析:此题把y+用含x的式子表示出来并不难,复杂的地方在于化简,由于在化简时涉及指数式的变换和分类讨论的使用.因此分类要细致,讨论要全面.解:由y=,可知y2=(a2x+a-2x+2),y2-1=(a2x+a-2x-2)=(ax-a-x)2,∴y+=+|ax-a-x|.当x>0时,若a>1,则ax>a-x,此时y+=ax,若0<a<1,则ax<a-x,此时y+=a-x.当x=0时,y+=1.当x<0时,若a>1,则ax<a-x,此时y+=a-x,若0<a<1,则ax>a-x,此时y+=ax.主要考察知识点:指数与指数函数3、已知f(x)是定义在R上的偶函数,且在[0,+∞)上为减函数,若f()>f(2a-1),求实数a的取值范围.参考答案与解析:解析:本题的解题关键是如何使用已知条件f()>f(2a-1),即如何把这个已知条件转化成关于a的不等式,也就是把自变量“部分”要化到一个单调区间内,才能根据函数的单调性达到转化的目的.这时我们想到了“若f(x)是偶函数,那么f(x)=f(-x)=f(|x|).”于是f(2a-1)=f(|2a-1|).解:由f(x)是偶函数,且f()>f(2a-1)等价于f()>f(|2a-1|),又f(x)在[0,+∞)上是减函数,∴解得a≤-1或a≥2.主要考察知识点:函数4、已知二次函数f(x)的二次项系数为a,且不等式f(x)<-2x的解集为(1,3).(1)若方程f(x)+6a=0有两个相等的根,求f(x)的解析式;(2)若f(x)的最小值为负数,求a的取值范围.参考答案与解析:解析:本题综合考查一元二次方程、一元二次不等式和二次函数的关系及其性质,重点是互相之间的转化.在(1)中,通过不等式f(x)<-2x的解集为(1,3),用二次函数的标根式把不等式转化成函数,再根据韦达定理将问题转化成关于a的方程.在(2)中,既可以根据二次函数的最值公式将题意转化成不等式,也可以用配方法求最值.解:(1)Qf(x)+2x<0的解集为(1,3).∴设f(x)+2x=a(x-1)(x-3),则a>0.因而f(x)=a(x-1)(x-3)-2x=ax2-(2+4a)x+3a ①由方程f(x)|+6a=0得ax2-(2+4a)x+9a=0 ②∵方程②有两个相等的根,∴Δ=[-(2+4a)]2-4a·9a=0,即5a2-4a-1=0.解得a=1或a=-.由于a>0,舍去a=-.将a=1代入①得f(x)的解析式f(x)=x2-6x+3.(2)由f(x)=ax2-2(1+2a)x+3a=a(x-)2-及a>0,可得f(x)的最小值为-.由题意可得,解得a>0.故当f(x)的最小值为负数时,实数a的取值范围是a>0.主要考察知识点:函数5、已知xy<0,并且4x2-9y2=36.由此能否确定一个函数关系y=f(x)?如果能,求出其解析式、定义域和值域;如果不能,请说明理由.参考答案与解析:解析:4x2-9y2=36在解析几何中表示双曲线的方程,仅此当然不能确定一个函数关系y=f(x),但加上条件xy<0呢?看看y的值是否是唯一确定的.解:xy<0或因为4x2-9y2=36,故y2=x2-4.又x>3;或x<-3.∴y=f(x)=因此能确定一个函数关系y=f(x).其解析式为y=f(x)=其定义域为(-∞,-3)∪(3,+∞).且不难得到其值域为(-∞,0)∪(0,+∞).主要考察知识点:函数6、有一个人在他死后,只留下一千英镑的遗产,可令人惊讶的是,他竟留下一份分配几百万英镑的遗嘱,遗嘱的内容是这样的:“……一千英镑赠给波士顿的居民,他们得把这钱按每年5%的利率借给一些年轻的手工业者去生息,这款子过了100年后,用100 000英镑建立一所公共建筑物,剩下的继续生息100年,在第二个100年末,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理……”请你分析一下,这个人的遗嘱能实现吗?参考答案与解析:解析:以上的这个遗嘱就是美国著名的科学家,一生为科学和民主革命而工作的富兰克林所写的.很显然作为一个科学家是不会在遗嘱中开玩笑的.从富兰克林的遗嘱中我们可以深刻地感受到“指数爆炸”的效应,微薄的资金,低廉的利率,在神秘的“指数爆炸”效应下,可以变得令人瞠目结舌,这就是富兰克林的故事给人的启示.增加到131 000英镑,这笔款增加到4 061 000英镑,解:让我们按富兰克林非凡的设想实际计算一下,故事中实际上是指数函数y=1 000(1+5%)x值的变化,不难算得,当x=1时,y=1 050,当x=3时y=1 158,当x=100时,y=1 000(1+5%)100≈131 501,这意味着上面的故事中在头一个100年末富兰克林的财产应当增加到131 501英镑,用100 000英镑建立一所公共建筑物后,还剩31 501英镑,在第二个100年末,他拥有的财产为y=31 501(1+5%)100≈4 142 421,其中1 061 000英镑还是由波士顿的居民支配,而其余的3 000 000英镑让马萨诸州的公众来管理,还剩81 421英镑.可见富兰克林的遗嘱在科学上是站得住脚的.遗嘱是能够实现的.主要考察知识点:函数的应用。

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案

高一数学必修一综合试卷及答案【导语】高一阶段是学习高中数学的关键时期。

对于高一新生而言,在高一学好数学,不仅能为高考打好基础,同时也有助于物理、化学等学科的学习,这篇是由无忧考网-高一频道为大家整理的《高一数学必修一综合试卷及答案》希望对你有所帮助!一、选择题:(本大题共10题,每小题5分,共50分)1.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则(C)2.如果函数f(x)=x+2(a?1)x+2在区间(?∞,4]上是减函数,那么实数a的取值范围2A.U=A∪BB.U=(CUA)∪BCU=A∪(CUB)D.U=(CUA)∪(CUB)B、a≥?3C、a≤5是(A)A、a≤?3A.4x+2y=5D、a≥53.已知点A(1,2)、B(3,1),则线段AB的垂直平分线的方程是(B)B.4x?2y=5C.x+2y=5D.x?2y=54.设f(x)是(?∞,+∞)上的奇函数,且f(x+2)=?f(x),当0≤x≤1时,f(x)=x,则f( 7.5)等于(B)A.0.5yB.?0.5yC.1.5D.?1.55.下列图像表示函数图像的是(Cy)yxxxxABCD6.在棱长均为2的正四面体A?BCD中,若以三角形ABC为视角正面的三视图中,其左视图的面积是(C).A.3C.2(B).A.m⊥α,m⊥β,则α//βC.m⊥α,m//β,则α⊥β22ADBC题中不正确的是...B.263D.227.设m、n表示直线,α、β表示平面,则下列命B.m//α,αIβ=n,则m//nD.m//n,m⊥α,则n⊥αD.2?28.圆:x+y?2x?2y?2=0上的点到直线x?y=2的距离最小值是(A).A.0B.1+2C.22?29.如果函数f(x)=ax2+ax+1的定义域为全体实数集R,那么实数a的取值范围是(A).A.[0,4]B.[0,4)C.[4,+∞)D.(0,4)10.a=3是直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行且不重合的(.?A.充分非必要条件?B.必要非充分条件??C.充要条件?D.既非充分也非必要条件?二、填空题:(本大题共有5小题,每小题4分,满分20分)。

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)

(人教版A 版2017课标)高中数学必修第一册 全册综合测试卷三(附答案)第一章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,则下列关系正确的是( )A .AB =B .A B ⊆C .B A ⊆D .A B =∅∩2.已知集合{}2|320A x ax x =-+=中有且只有一个元素,那么实数a 的取值集合是( )A .98⎧⎫⎨⎬⎩⎭B .908⎧⎫⎨⎬⎩⎭,C .{}0D .203⎧⎫⎨⎬⎩⎭, 3.已知函数()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩,>,,≤,则()2f 的值等于( )A .4B .3C .2D .无意义4.已知函数()f x 的定义域为R ,则实数k 的取值范围是( )A .()()00-∞+∞,∪,B .[]04,C .[)04,D .()04,5.已知两个函数()f x 和()g x 的定义域和值域都是集合{}123,,,其定义如表所示,则()()f g x 对应的三个值依次为( )A .2,1,3B .1,2,3C .3,2,1D .1,3,26.已知函数()221x f x x =+,则()()()()1111234234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .3B .4C .72D .927.设全集为R ,函数()01x f x +=定义域为M ,则M =R ð( )A .{}|2x x ≥B .{}|21x x x -<且≠C .{}|21x x x -≥或=D .{}|21x x x ->或=8.若函数()()221341x x x f x a x a x ⎧-+⎪=⎨-+⎪⎩,<,,≥满足对任意实数12x x ≠,都有()()12120f x f x x x -->成立,则实数a 的取值范围是( )A .()1+∞,B .[)13,C .233⎡⎫-⎪⎢⎣⎭, D .()3-∞,9.已知()f x 是奇函数,()g x 是偶函数,且()()112f g -+=,()()114f g +-=,则()1g 等于( ) A .4B .3C .2D .110.已知()22f x x ax =-+与()ag x x=在区间[]12,上都是减函数,则a 的取值范围为( )A .()01,B .(]01,C .()()1001-,∪, D .[)(]1001-,∪, 11.已知(){}2min 26f x x x x x =--,,,则()f x 的值域是( )A .(]2-∞,B .(]3-∞,C .[]02,D .[)2+∞,12.已知定义域为R 的函数()f x 在区间()4+∞,上为减函数,且函数()4y f x =+为偶函数,则( ) A .()()23f f >B .()()25f f >C .()()35f f >D .()()36f f >二、填空题:本大题共4小题,每小题5分,共20分.13.设集合{}24A t =-,,集合{}591B t t =--,,,若9A B ∈∩,则实数t =________.14.)13fx =+,则()f x =________.15.若函数y =的定义域为R ,则a 的取值范围为________. 16.已知函数()y f x =在()()00-∞+∞,∪,上为奇函数,且在()0+∞,上为增函数,()20f -=,则不等式()x f x ⋅<0的解集为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()mf x x x=+,且()13f =. (1)求m ;(2)判断函数()f x 的奇偶性.18.(本小题满分12分)设全集U =R ,{}|13A x x =≤≤,{}|23B x a x a =+<<. (1)当1a =时,求()U A B ∩ð;(2)若()U A B B =∩ð,求实数a 的取值范围.19.(本小题满分12分)设函数()()21f x ax bx a b =++,为实数,()()()00.f x x F x f x x ⎧⎪=⎨-⎪⎩,>,,<(1)若()10f -=,且对任意实数x 均有()0f x ≥成立,求()F x 的表达式;(2)在(1)的条件下,当[]22x ∈-,时,()()g x f x kx =-是单调函数,求实数k 的取值范围.20.(本小题满分12分)“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2千克/年;当420x <≤时,v 是x 的一次函数;当20x >时,因缺氧等原因,v 的值为0千克/年. (1)当020x <≤时,求v 关于x 的函数表达式.(2)当养殖密度x 为多少时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值.21.(本小题满分12分)定义在()11-,上的函数()f x 满足()()f x f x -=-,且()()1120f a f a -+-<.若()f x 是()11-,上的减函数,求实数a 的取值范围.22.(本小题满分12分)已知()f x 是二次函数,()()050f f ==,且()112f -=. (1)求()f x 的解析式;(2)求()f x 在[]0m ,上的最小值()g m ;(3)对(2)中的()g m ,求不等式()()21g t g t -<的解集.第一章综合测试答案解析一、 1.【答案】C【解析】由集合{}21,0,1,2A =--,,{}|1B y y x x A ==-∈,,得{}101B =-,,.又因为集合{}21,0,1,2A =--,,所以B A ⊆,故选C .2.【答案】B【解析】Q 集合{}2|320A x ax x =-+=中有且只有一个元素,0a ∴=或0980a a ⎧⎨∆=-=⎩≠,,解得0a =或98a =,∴实数a 的取值集合是908⎧⎫⎨⎬⎩⎭,. 3.【答案】C【解析】()()12232x x x f x f x x +⎧⎪-=⎨⎪+⎩Q ,>,,≤,()()5125252f f +∴===-.故选C .4.【答案】B【解析】()f x Q 的定义域为R ,∴不等式210kx kx ++≥的解集为R .①当0k =时,10≥恒成立,满足题意;②当0k ≠时,2040k k k ⎧⎨∆=-⎩>,≤,解得04k <≤.综上,04k ≤≤.故选B . 5.【答案】A【解析】当1x =时,()11g =,()()()112f g f ==;当2x =时,()23g =,()()()231f g f ==;当3x =时,()32g =,()()()323f g f ==,故选A . 6.【答案】C【解析】因为()221x f x x =+,所以222111111x f x x x ⎛⎫⎪⎛⎫⎝⎭== ⎪+⎝⎭⎛⎫+ ⎪⎝⎭,所以()11f x f x ⎛⎫+= ⎪⎝⎭, 故()()()()1111712343234112f f f f f f f ⎛⎫⎛⎫⎛⎫++++++=+= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.故选C . 7.【答案】C【解析】要使函数有意义,则120x x +⎧⎨-⎩≠0,>,得2x <且1x -≠,所以{}|21M x x x =<且≠-,所以{}|2M x x x ==R ≥或-1ð.故选C . 8.【答案】C【解析】Q 对任意实数12x x ≠,都有()()12120f x f x x x -->成立,()f x ∴在R 上是增函数,()230314121a a a -⎧⎪∴⎨-⨯+-+⨯⎪⎩>,≥,解得233a -≤<.故选C . 9.【答案】B【解析】()f x Q 是奇函数,()()11f f -=-. 又()g x Q 是偶函数,()()11g g ∴-=.()()()()112112f g g f -+=∴-=Q ,.① ()()()()114114f g f g +-=∴+=Q ,.②由①②,得()13g =. 10.【答案】B【解析】()()2222f x x ax x a a =-+=--+,其单调递减区间为()a ∞,+,()f x 在区间[]12,上是减函数,则1a ≤.又()ag x x=在区间[]12,上是减函数,则0a >.01a ∴<≤.11.【答案】B【解析】(){}2min 26f x x x x x =--Q ,,,的同一平面直角坐标系中分别作出22y x x =-,6y x =-,y x =的图像,并取其函数值较小的部分,如图所示.则由图像可知函数(){}2min 26f x x x x x =--,,的值域为(]3-∞,,故选B . 12.【答案】D【解析】()4y f x =+Q 为偶函数,()()44f x f x ∴-+=+.令2x =,得()()()()224246f f f f =-+=+=,同理,()()35f f =.又知()f x 在()4+∞,上为减函数,56Q <,()()56f f ∴>.()()23f f ∴<,()()()265f f f =<,()()()356f f f =>.故选D . 二、13.【答案】3-【解析】{}24A t =-Q ,,{}591B t t =--,,,且9A B ∈∩,29t ∴=,解得3t =或3t =-,当3t =时,根据集合元素互异性知不符合题意,舍去;当3t =-时,符合题意.14.【答案】()()2131x x -+≥【解析】由题设1t =,()21x t ∴=-,1t ≥,()()213f t t ∴=-+,()()()2131f x x x ∴=-+≥. 15.【答案】[]19,【解析】Q函数y =的定义域为R ,()()2221101a x a x a ∴-+-++≥恒成立. 当210a -=时,1a =±,当1a =时,不等式恒成立,当1a =-时,无意义;当210a -≠时,()()22210214101a a a a ⎧-⎪⎨∆=---⋅⎪+⎩>,≤,解得19a <≤.综上所述,a 的取值范围为[]19,. 16.【答案】()()2002-,∪, 【解析】根据题意画出()f x 的大致图像,如图所示.由图像可知当20x -<<或02x <<时,()0x f x ⋅<. 三、17.【答案】解(1)()13f =Q ,13m ∴+=,2m ∴=. (2)由(1)知,()2f x x x=+,其定义域是{}|0x x x ∈R ≠,,关于原点对称. 又()()22f x x x f x x x ⎛⎫-=--=-+=- ⎪⎝⎭Q ,∴函数()f x 是奇函数. 18.【答案】解(1)当1a =时,{}|24B x x =<<.{}|13A x x =Q ≤≤,{}|13U A xx x ∴=<或>ð,(){}|34U A B x x ∴=∩<<ð.(2)若()U A B B =∩ð,则U B A ⊆ð. ①B =∅时,23a a +≥,则3a ≥;②B ∅≠时,2331a a a +⎧⎨+⎩<,≤或2323a a a +⎧⎨⎩<,≥,则2a -≤或332a ≤<.综上,实数a 的取值范围是(]322⎡⎫-∞-+∞⎪⎢⎣⎭,∪,. 19.【答案】解(1)()10f -=Q ,1b a ∴=+,由()0f x ≥恒成立,知0a >且()()22241410b a a a a ∆=-=+-=-≤,1a ∴=,从而()221f x x x =++,()()()221010.x x F x x x ⎧+⎪∴=⎨-+⎪⎩,>,,< (2)由(1)可知()221f x x x =++,()()()221g x f x kx x k x ∴=-=+-+. ()g x Q 在[]22-,上是单调函数, 222k -∴--≤或222k--≥,解得2k -≤或6k ≥. 即实数k 的取值范围是(][)26-∞-+∞,∪,. 20.【答案】解(1)由题意得当04x <≤时,2v =. 设当420x <≤时,v ax b =+,由已知得20042a b a b +=⎧⎨+=⎩,,解得1852a b ⎧=-⎪⎪⎨⎪=⎪⎩,,所以1582v x =-+.故函数20415420.82x v x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤ (2)设鱼的年生长量为()f x 千克/立方米,依题意,由(1)可得()220415420.82x x f x x x x ⎧⎪=⎨-+⎪⎩,<≤,,<≤当04x <≤时,()f x 为增函数,故()()max 4428f x f ==⨯=;当420x <≤时,()()2215125108282f x x x x =-+=--+,()()max 1012.5f x f ==.所以当020x <≤时,()f x 的最大值为12.5,即当养殖密度x 为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米. 21.【答案】解:由()()1120f a f a -+-<, 得()()112f a f a ---<.()()f x f x -=-Q ,()11x ∈-,, ()()121f a f a ∴--<. 又()f x Q 是()11-,上的减函数, 1111211121,a a a a --⎧⎪∴--⎨⎪--⎩<<,<<,>解得203a <<. 故实数a 的取值范围是203⎛⎫⎪⎝⎭,.22.【答案】解(1)因为()f x 是二次函数,且()()050f f ==, 所以设()()()50f x ax x a =-≠. 又因为()1612f a -==,所以2a =,所以()()225210f x x x x x =-=-.(2)由(1)知()f x 的对称轴为52x =, 当502m <≤时,()f x 在区间[]0m ,上单调递减,所以()f x 的最小值为()2210f m m m =-;当52m >时,()f x 在区间502⎡⎤⎢⎥⎣⎦,上单调递减,在区间52m ⎡⎤⎢⎥⎣⎦,上单调递增,所以()f x 的最小值为52522f ⎛⎫=- ⎪⎝⎭.综上所述,()()2min521002255.22m m m f x g m m ⎧-⎪⎪==⎨⎪-⎪⎩,<≤,,>(3)因为()()21g t g t -<,所以210215212t t t t ⎧⎪-⎪-⎨⎪⎪-⎩>,<,<,解得112t <<,即不等式()()21g t g t -<的解集为1|12t t ⎧⎫⎨⎬⎩⎭<<.第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( ) A .()lg lg lg xy x y =+B .222m n m n ++=C .222m n m n +⋅=D .2ln 2ln x x =2.若函数()12122m y m m x -=+-是幂函数,则m =( )A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( ) A .y x x =B .x y e =C .1y x=-D .2log y x =4.函数()ln 3y x =- )A .[)23,B .[)2+∞,C .()3-∞,D .()23,5.下列各函数中,值域为()0∞,+的是( ) A .22xy -= B.y C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是( )ABCD7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( ) A .c b a <<B .c a b <<C .a b c <<D .a c b <<8.已知()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-∞,B .138⎛⎤-∞ ⎥⎝⎦,C .()02,D .1328⎡⎫⎪⎢⎣⎭, 9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( ) A .12ln 22- B .12ln 22+ C .22ln2-D .22ln2+10.已知函数()()()x xf x x e ae x -=+∈R ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( ) A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( ) A .0a b << B .0a b << C .0b a <<D .a b =12.已知函数()221222log x mx m x m f x x x m ⎧-++⎪=⎨⎪⎩,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a =恰有三个互异的实数解,则实数m 的取值范围是( )A .104⎛⎫ ⎪⎝⎭,B .102⎛⎫ ⎪⎝⎭,C .114⎛⎫ ⎪⎝⎭,D .112⎛⎫ ⎪⎝⎭, 二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -⎛⎫⎪⎝⎭>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+∞,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =⎝⎭的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算⊗:当m n ≥时,m n m ⊗=;当m n <时,m n n ⊗=.设函数()()()2221log 2xx f x x ⎡⎤⊗-⊗⋅⎣⎦,则函数()f x 在()02,上的值域为________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)计算下列各式的值: (1)7015log 243210.06470.250.58--⎛⎫--++⨯ ⎪⎝⎭;(2)()2235lg5lg2lg5lg20log 25log 4log 9+⨯++⨯⨯.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-. (1)求()f x 的解析式;(2)若对任意的t ∈R ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -⋅+≤,函数()2log 2xf x =⋅. (1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x ∈-,时,()y f x =的最大值与最小值之和为52. (1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x ∈,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ∈R ,()10.x D x x ⎧=⎨⎩,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212xx D x x f x D x x ⎧-⎪=⎨⎪⎩+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x ⎛⎫=⋅- ⎪-⎝⎭>,且≠. (1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x ∈-∞,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、 1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C . 2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-. 3.【答案】A【解析】2200x x y x x x x ⎧⎪==⎨-⎪⎩,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R上的增函数,无奇偶性;1y x=-为奇函数且在()0-∞,和()0+∞,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+∞,上为增函数,无奇偶性.故选A . 4.【答案】A【解析】函数()ln 3y x =-x 满足条件30240x x -⎧⎨-⎩>,≥,解得32x x ⎧⎨⎩<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A . 5.【答案】A【解析】对于A,222xxy -⎛== ⎝⎭的值域为()0+∞,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y (]0-∞,,所以021x <≤,所以0121x -≤<,所以y 的值域是[)01,;对于C ,2213124y x x x ⎛⎫=++=++ ⎪⎝⎭的值域是34⎡⎫+∞⎪⎢⎣⎭,;对于D ,因为()()1001x ∈-∞+∞+,∪,,所以113x y +=的值域是()()011+∞,∪,. 6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+∞,上的单调性相同,可排除B ,D .再由关系式()()330f g ⋅<可排除A ,故选C . 7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======∴Q <,<<,><<.故选C . 8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ⎧-⎪=⎨⎛⎫-⎪ ⎪⎝⎭⎩,≥,,<是R 上的减函数,则()2201122,2a a -⎧⎪⎨⎛⎫--⨯⎪⎪⎝⎭⎩<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e ∴-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-⋅+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x xx e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ⎧-++⎪=≤⎨⎪⎩,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,∴要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-∞,【解析】由题可得,321144x --⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ⎧-⎪⎨⎪-⎩≤,>,即68.a a -⎧⎨-⎩≤,>故(]86a ∈--,. 15.【答案】1124⎛⎫ ⎪⎝⎭,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,2122A x ⎛== ⎝⎭.点()2B B x ,在函数12y x =的图像上,所以122B x =,4B x =.点()4,C C y在函数2x y ⎛= ⎝⎭的图像上,所以4124C y ==⎝⎭.又因为12D A x x ==,14D C y y ==,所以点D 的坐标为1124⎛⎫ ⎪⎝⎭,. 16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x ⊗=;当22x <,即1x <时,222x ⊗=.当2log 1x ≤,即02x <≤时,21log 1x ⊗=;当21log x <,即2x >时,221log log x x ⊗=. ()()2220122122log 2 2.x x x x xx f x x x x ⎧⎪⎪∴=-⎨⎪-⋅⎪⎩,<<,,≤≤,,> ∴①当01x <<时,()2x f x =是增函数,()12f x ∴<<; ②当12x ≤<,()221122224xxx f x ⎛⎫=-=-- ⎪⎝⎭,1222 4.x x ∴Q ≤<,≤<()221111242424f x ⎛⎫⎛⎫∴---- ⎪ ⎪⎝⎭⎝⎭≤<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,. 三、17.【答案】解(1)70515log 244321510.06470.250.51224822--⎛⎫⎛⎫--++⨯=-++⨯= ⎪ ⎪⎝⎭⎝⎭.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+⨯++⨯⨯=++++⨯⨯11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f ∴=.Q 当0x <时,0x ->,()23x xf x --∴-=-. 又Q 函数()f x 是奇函数,()()f x f x ∴-=-,()23x xf x -∴=+. 综上所述,()2030020.3xx x x f x x xx -⎧-⎪⎪==⎨⎪⎪+⎩,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x ∴在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<. ()f x Q 是奇函数,()()2222f t t f k t ∴--<.又()f x Q 是减函数,2222t t k t ∴-->, 即2320t t k -->对任意t ∈R 恒成立,4120k ∴∆=+<,解得13k -<,即实数k 的取值范围为13⎛⎫-∞- ⎪⎝⎭,. 19.【答案】解(1)由9123270x x -⋅+≤,得()23123270xx -⋅+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x>0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224x f x x x x x x ⎛⎫=⋅=--=-+=-- ⎪⎝⎭.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =; 当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x ∴的最大值与最小值之和为152a a -+=,2a ∴=或12a =. (2)1a Q >,2a ∴=.()2222x x h x m m =+-⋅,即()()2222xx h x m m =-⋅+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =. []01x ∈Q ,,[]12t ∴∈,,∴当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+; 当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+⎧⎪=-+⎨⎪-+⎩,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==; 当x 为无理数时,则为x -为无理数,则()()0D x D x -==. 故当x ∈R 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22xx x f x x ⎧⎪=⎨⎪⎩,为有理数,,为无理数.即当x ∈R 时,()2x f x =.故()f x 的值域为()0+∞,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t af t a a a -∴=--. ()()()21x x af x a a x a -∴=-∈-R .()()()()2211x x x x a af x a a a a f x a a ---=-=--=---Q ,()f x ∴为奇函数.当1a >时,xy a =为增函数,xy a -=-为增函数,且2201a a ->,()f x ∴为增函数.当01a <<时,x y a =为减函数,xy a -=-为减函数,且2201a a -<,()f x ∴为增函数.()f x ∴在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x ∴=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-∞,上恒为负数,只需()240f -≤,即()22241a a a a ---≤. 422141a a a a-∴⋅-≤,214a a ∴+≤,2410a a ∴-+≤,22a ∴≤.又1a Q ≠,a ∴的取值范围为)(21,2⎡⎣.第三章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某同学用二分法求方程338=0x x +-在()12x ∈,内近似解的过程中,设()=338x f x x +-,且计算()10f <,()20f >,()1.50f >,则该同学在第二次应计算的函数值为( ) A .()0.5fB .()1.125fC .()1.25fD .()1.75f2.函数()22=log f x x x +的零点所在的区间为( )A .1142⎛⎫ ⎪⎝⎭,B .112⎛⎫ ⎪⎝⎭,C .(D .)3.有一组实验数据如表所示:下列所给函数模型较适合的是( ) A .()=log 1a y x a >B .()=1y ax b a +>C .()2=0y ax b a +>D .()=log 1a y x b a +>4.根据表中的数据,可以判定方程x 的一个根所在的区间为( )A .()10-,B .()01,C .()12,D .()23,5.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .108元B .105元C .106元D .118元6.有一个盛水的容器,由悬在它上空的一根水管匀速向容器内注水,直至把容器注满.在注水过程中,时刻t 与水面高度y 的函数关系如图所示,图中PQ 为一线段,则与之对应的容器的形状是图中的( )AB CD7.已知()()()=2f x x a x b ---,并且α,β是函数()f x 的两个零点,则实数a ,b ,α,β的大小关系可能是( )A .a b αβ<<<B .a b αβ<<<C .a b αβ<<<D .a b αβ<<<8.函数()2230=2ln 0x x x f x x x ⎧+-⎨-+⎩,≤,,>的零点个数为( )A .0B .1C .2D .39.已知函数()231=24log f x x x x-+++,若()113x ∈,,()23x ∈+∞,,则( ) A.()10f x >,()20f x < B.()10f x <,()20f x > C.()10f x <,()20f x <D.()10f x >,()20f x >10.如图所示,ABC △为等腰直角三角形,直线l 与AB 相交且l AB ⊥,直线l 截这个三角形所得的位于直线右方的图形面积为y ,点A 到直线l 的距离为x ,则()=y f x 的图像大致为四个选项中的( )AB CD11.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正常数).公司决定从原有员工中分流()0100x x <<人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x %.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15 B .16 C .17 D .18 12.已知函数()2=e x xf x --(e 为自然对数的底数),则方程()21=0f x -的实数根的个数为( ) A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,共20分.13.用二分法求图像连续不断的函数()f x 在区间[]15,上的近似解,验证()()150f f ⋅<,给定精确度=0.01ε,取区间()15,的中点115==32x +,计算得()()110f f x ⋅<,()()150f x f ⋅>,则此时零点0x ∈________.(填区间)14.已知函数()2=log 2x f x x m +-有唯一的零点,若它的零点在区间()12,内,则实数m 的取值范围是________.15.已知关于x 的方程210=x a -有两个不同的实根1x ,2x ,且21=2x x ,则实数=a ________. 16.某市出租车收费标准如下:起步价为8元,起步里程为3km (不超过3km 按起步价付费);超过3km 但不超过8km 时,超过部分按每千米2.15元收费;超过8km 时,超过部分按每千米2.85元收费.另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶的路程为________km .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)某公司制定了一个激励销售人员的奖励方案:当销售利润不超过10万元时,按销售利润的16%进行奖励;当销售利润超过10万元时,若超出A 万元,则超出部分按()52log 1A +万元进行奖励.记奖金为y (单位:万元),销售利润为x (单位:万元).(1)写出该公司激励销售人员的奖励方案的函数模型.(2)如果业务员老张获得5.6万元的奖金,那么他的销售利润是多少万元?18.(本小题满分12分)已知函数()=211f x x x --+. (1)请在所给的平面直角坐标系中画出函数()f x 的图像.(2)根据函数()f x 的图像回答下列问题:(回答下述3个小题都只需直接写出结果,不需给出演算步骤)①求函数()f x 的单调区间;②求函数()f x 的值域;③求关于x 的方程()=2f x 在区间[]02,上解的个数.19.(本小题满分12分)已知函数()=e 1x f x -,()3=1exg x +.(1)求函数()g x 的值域;(2)求满足方程()()=0f x g x -的x 的值.20.(本小题满分12分)《污水综合排放标准》规定:污水排放企业进排污口的污水pH 值正常范围为[)69,.某化工企业对本单位污水出水口的pH 值进行全天24小时检测,根据统计资料发现pH 值的大小y 与检测时间点x 之间的函数图像如图所示,AB ,CD 为两条直线段,曲线BC 为函数y b 图像的一部分,其中()08A ,,()46B ,,()2010C ,,()248D ,.(1)请写出pH 值的大小y 与检测时间点x 之间的函数解析式;(2)试求该化工企业在一天内排放pH 值超标污水的时长.21.(本小题满分12分)已知函数()2=283f x x x m -++为R 上的连续函数.(1)若=4m -,试判断()=0f x 在()11-,上是否有根存在.若没有,请说明理由;若有,请在精确度为0.2(即根所在区间长度小于0.2)的条件下,用二分法求出使这个根0x 存在的区间.(2)若函数()f x 在区间[]11-,上存在零点,求实数m 的取值范围.22.(本小题满分12分)已知函数()()2=log 421x x f x a a +⋅++,x ∈R . (1)若=1a ,求方程()=3f x 的解集;(2)若方程()=f x x 有两个不同的实数根,求实数a 的取值范围.第三章综合测试答案解析一、 1.【答案】C【解析】()10f Q <,()20f >,()1.50f >,∴在区间()11.5,内函数()=338x f x x +-存在一个零点,因此在第二次应计算的函数值所对应的x 值为1 1.5=1.252+,故选C . 2.【答案】B【解析】Q 函数()22=log f x x x +在0x >时是连续单调递增函数,且()21=1log 1=10f +>,21113=log =02424f ⎛⎫+- ⎪⎝⎭<,()1102ff ⎛⎫∴⋅ ⎪⎝⎭<.∴函数()22=log f x x x +的零点所的在区间是112⎛⎫ ⎪⎝⎭,. 3.【答案】C【解析】由所给数据可知y 随x 的增大而增大,且增长速度越来越快,而A ,D 中的函数增长速度越来越慢,B 中的函数增长速度保持不变,故选C . 4.【答案】C【解析】设()()=2xf x e x -+,则由题设知()1=0.280f -<,()2=3.390f >,故方程2=0x e x --的一个根在区间()12,内.故选C . 5.【答案】A【解析】由题意,132元打9折,售价为()1320.9=118.8⨯元.因为这个价格相对进货价,获利10%,也就是说它是进货价的110%,所以进货价为()110118.8=108÷%元,故选A . 6.【答案】B【解析】由题中函数图像知,水面高度y 上升的速度先是由慢到快,后来速度保持不变,结合容器形状知选B . 7.【答案】C【解析】αQ ,β是函数()f x 的两个零点,()()==0f f αβ∴.又()()==20f a f b -Q <,结合二次函数的图像(如图所示)可知a ,b 必在α,β之间.故选C .8.【答案】C【解析】当0x ≤时,令223=0x x +-,得=3x -;当0x >时,令2ln =0x -+,得2=e x .所以函数有2个零点.故选C . 9.【答案】A【解析】()()23=15log f x x x --+-Q 在()1+∞,上单调递减,且()3=0f ,()10f x ∴>,()20f x <,故选A .10.【答案】C【解析】设=AB a ,则22221111==2222y a x x a --+,其图像为抛物线的一段,开口向下,顶点在y 轴上方.故选C . 11.【答案】B【解析】由题意,分流前产品A 的年产值为100t 万元,分流x 人后,产品A 的年产值为()()1001 1.2x x t -+%万元.由题意,得()()01001001 1.2100x x x x t t ∈⎧⎪⎨-+⎪⎩N <<,≥,,%解得5003x <≤,x ∈N ,所以x 的最大值为16.故选B . 12.【答案】B【解析】由函数()2=ex xf x --,可知方程()21=0f x -,即()1=2f x ,即21e =2x x --,整理可得2=ln2x x ---,即2ln 2=0x x -+或2ln 2=0x x --.在方程2ln 2=0x x -+中,1=14ln 20∆-<,方程无实数解;在方程2ln 2=0x x --中,2=14ln 20∆+>,方程有2个不等的实数解.综上可得,方程()21=0f x -的实数根的个数为2.故选B .二、13.【答案】()13,【解析】由()()150f f ⋅<,()()110f f x ⋅<及()()150f x f ⋅>可知()1f 与()1f x 异号,()1f x 与()5f 同号,则()011x x ∈,即()013x ∈,. 14.【答案】()25,【解析】由题意得()f x 在()0+∞,上单调递增,且()()120f f ⋅<,即()()250m m --<,解得25m <<. 15.【答案】6【解析】由210=x a -得2=10x a ±,由题设知12=10x a -,22=10x a +.因为21=2x x ,所以()211222=2=2x x x ,所以()210=10a a -+,解得=15a 或=6a .因为100a ->,所以=15a 不合题意,舍去,所以=6a . 16.【答案】9【解析】设乘客每次乘坐出租车需付费用为()f x 元,则由题意得()(]()(]()()8103=93 2.153895 2.158 2.858.x f x x x x x ⎧+∈⎪+-∈⎨⎪++-∈+∞⎩⨯⨯⨯,,,,,,,,令()=22.6f x ,显然()()95 2.158 2.85=22.68x x ⨯⨯++->,解得=9x . 三、17.【答案】(1)由题意得()50.16010=1.62log 910.x x y x x ⎧⎪⎨+-⎪⎩,<≤,,>(2)由(]010x ∈,,0.16 1.6x ≤,而=5.6y 可知,10x >. ()51.62log 9=5.6x ∴+-,解得=34x .∴老张的销售利润是34万元.18.【答案】(1)当10x -≥,即1x ≥时,()()=211=1f x x x x --+-; 当10x -<,即1x <时,()()=211=33f x x x x --+-.()f x 的图像如图所示.(2)①函数()f x 的单调递增区间为[)1+∞,; 函数()f x 的单调递减区间为(]1-∞,. ②函数()f x 的值域为[)0+∞,. ③方程()=2f x 在区间[]02,上解的个数为1. 19.【答案】(1)()31=1=31e e x x g x ⎛⎫++ ⎪⎝⎭,因为0x ≥,e 1x≥,所以101e x⎛⎫ ⎪⎝⎭<≤,1033e x⎛⎫⎪⎝⎭<≤,即()14g x <≤,故()g x 的值域是(]14,. (2)由()()=0f x g x -,得3e 2=0ex x--.当0x ≤时,方程无解; 当0x >时,3e 2=0ex x--,整理得()2e 2e 3=0x x --, 即()()e 1e 3=0x x+-.因为e 0x >,所以e =3x ,即=ln3x . 故满足方程()()=0f x g x -的x 的值为ln3.20.【答案】(1)()08A Q ,,()46B ,,∴线段AB 的方程是()1=8042y x x -+≤≤.将()46B ,,()2010C ,的坐标代入y b ,得b b ⎧⎪⎨⎪⎩,,解得=4=6.a b -⎧⎨⎩,故()6420y x +≤≤.()2010C Q ,,()248D ,,∴线段CD 的方程是()1=2020242y x x -+≤≤.综上,y 与x之间的函数解析式为18042=642012020242.x x y x x x ⎧-+⎪⎪-+⎪⎩,≤≤,,≤≤,,≤≤(2)由()08A ,,()46B ,知在AB 段排放污水的pH 值不超标; 在BC6=9,解得=13x ,故[)1320x ∈,时排放污水的pH 值超标, 时长是()2013=7-小时;在CD 段,令120=92x -+,解得=22x ,故[]2022x ∈,时排放污水的pH 值超标,时长是()2220=2-小时.因此该化工企业在一天内排放pH 值超标污水9小时.21.【答案】(1)当=4m -时,()=0f x ,即()2=281=0f x x x --. 可以求出()1=9f -,()1=7f -,则()()110f f -⋅<.又()f x 为R 上的连续函数,()=0f x ∴在()11-,上必有根存在.取中点0,计算得()0=10f -<,()()100f f -⋅<,∴根()010x ∈-,,取其中点12-,计算得17=022f ⎛⎫- ⎪⎝⎭>,∴根0102x ⎛⎫∈- ⎪⎝⎭,,取其中点14-,计算得19=048f ⎛⎫- ⎪⎝⎭>, ∴根0104x ⎛⎫∈- ⎪⎝⎭,,取其中点18-,计算得11=0832f ⎛⎫- ⎪⎝⎭>, ∴根0108x ⎛⎫∈- ⎪⎝⎭,,区间长度11=0.285<,符合要求.故符合要求的根0x 存在的区间为108⎛⎫- ⎪⎝⎭,.(2)()2=283f x x x m -++为开口向上的抛物线,对称轴为8==222x ⨯--, ∴在区间[]11-,上,函数()f x 单调递减.又()f x 在区间[]11-,上存在零点,只可能()()1010f f ⎧-⎪⎨⎪⎩≥,≤,即 28302830m m +++⎧⎨-++⎩≥,≤,解得133m -≤≤. 故所求实数m 的取值范围是133m -≤≤.22.【答案】(1)当=1a 时,()()2=log 422x xf x ++.由()=3f x ,得3422=2x x ++,所以426=0x x +-,因此()()2322=0x x +-,解得=1x .所以方程()=3f x 的解集为{}1.(2)方程()2log 421=x xa a x +⋅++有两个不同的实数根,即421=2x x x a a +⋅++有两个不同的实数根.设=2x t ,则()211=0t a t a +-++在()0+∞,上有两个不同的解.令()()2=11g t t a t a +-++,由已知可得()()()200102=1410g a a a ⎧⎪-⎪-⎨⎪⎪∆--+⎩>,>,>,解得13a --<<故实数a 的取值范围为(13--,.第四章综合测试一、单项选择题1.式子 )ABC .D .2.函数()lg 3f x x x =+-的零点所在区间为( ) A .(2,3)B .(3,4)C .(1,2)D .(0,1)3.设lg 2a =,lg3b =,则12log 5=( ) A .12aa b -+ B .12aa b-+ C .12aa b++ D .12aa b++ 4. 已知2log 0.1a =,0.12b =,110.2c =,则a ,b ,c 的大小关系是( ) A .a b c <<B .b c a <<C .c a b <<D .a cb <<5.函数1()(0,1)x f x a a a a=-≠>的图象可能是( )A .B .C .D .6.已知函数2,0()21,0x a x f x x x ⎧-≤=⎨->⎩,a R ∈,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞-B .(,1]-∞-C .[1,0)-D .(0,1]7.若()2()lg 21f x x ax a =-++在区间(,1]-∞上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,)+∞D .[2,)+∞8.已知函数()|lg |f x x =。

高中数学新教材必修第一册综合测试数学试题(含参考答案)

高中数学新教材必修第一册综合测试数学试题(含参考答案)

新教材必修第一册综合测试数学试题(含答案)高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.请把正确选项在答题卡中的相应位置涂黑.(1)集合2{|20}A x x x =--,{|10}B x x =-<,则()A B ⋂=A.{|1}x xB.{|11}x x -<C.{|1}x x <-D.{|21}x x -<(2)函数为()f x =的定义域( ) A.1,2⎛⎫-+∞ ⎪⎝⎭ B.1,2⎡⎫-+∞⎪⎢⎣⎭C.()1,00,2⎛⎫-⋃+∞ ⎪⎝⎭ D.()1,00,2⎡⎫-⋃+∞⎪⎢⎣⎭(3)“0lgx <”是“2x <”的 ( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(4)已已知知512x log =,1012y ⎛⎫= ⎪⎝⎭,132z =,则( )A.x y z <<B.x z y <<C.y x z <<D.z x y <<(5)下列函数中,既是偶函数又在区间()0,+∞上单调递增的函数是( ) A. 1||y lnx = B.||2x y =C.y cosx =D.3y x =(6)已知定义在R 上的函数()f x 的图象是连续不断的且有如下对应值表:那么函数()()2g x f x x =-一定存在零点的区间是( ) A.((),1-∞B.()1,2C.()2,3D.()3,4(7)将函数23y sin x π⎛⎫=-⎪⎝⎭的图象向右平移6π个的单位长度,再将所得到的函数图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),则所得到的图象的函数解析式为( ) A. 23y sin x π⎛⎫=-⎪⎝⎭ B.243y sin x π⎛⎫=-⎪⎝⎭C.2y sin x π⎛⎫=- ⎪⎝⎭D.42y sin x π⎛⎫=-⎪⎝⎭ (8)中国的5G 技术领先世界,5G 技术的数学原理之一便是著名的香农公式: 21S C Wlog N ⎛⎫=+⎪⎝⎭它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W 、信道内信号的平均功率S 、信道内部的高斯噪声功率N 的大小。其中SN叫做信噪比,当信噪比较大时,公式中真数中的1可以忽略不计。按照香农公式,若不改变带宽W,而将信噪比SN从1000提升至8000,则C 大约增加了(20.3010lg ≈,30.4771lg ≈)( ) A.10%B.30%C.60%D.90%二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分.请把正确选项在答题卡中的相应位置涂黑. (9)在下列四组函数中,()f x 与()g x 表示同一函数的是( )A.()1f x x =-,()2g x =B.()|3|,|f x x g =-(),g x =C.()f x x =,()10xg x lg =D.()f x =()g x =(10)幂函数223a a y x --=是奇函数,且在()0,+∞是减函数,则整数a 的值是( )A.0B.1C.2D.3(11)下列结论正确的是( )A.当1x 时,2B.当54x <时, 14245x x -+-的最小值是5C.当0x ≠时, 1x x+的最小值是2D.设0x >,0y >,且2x y +=,则14x y+的最小值是92(12)已知函数()()f x Asin x ωϕ=+,0,0,||2A πωϕ⎛⎫>><⎪⎝⎭部分图象如图所示,下列说法不正确是( )A.()f x 的图象关于直线23x π=对称B.()f x 的图象关于点5,012π⎛⎫-⎪⎝⎭对称 C.将函数22y x cos x =-的图象向左平移2π个单位得到函数()f x 的图象 D.若方程()f x m =在,02π⎡⎤-⎢⎥⎣⎦上有两个不相等的实数根,则m的取值范围是(2,- 三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡的相应位置上. (13)18427242cos cos cos sin ︒︒︒︒⋅-⋅=____. (14)已知3cos sin cos sin αααα+=-,则4tan πα⎛⎫+= ⎪⎝⎭____.(15)已知函数32,1()log (1),1x x f x x x ⎧≤=⎨->⎩,且()01f x =,则0x =____.(16)已知关于x 的不等式20ax bx c -+的解集为{|12}x x ,则20cx bx a ++的解集为____.四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.解答应写出文字说明、证明过程或演算步骤.必须把解答过程写在答题卡相应题号指定的区域内,超出指定区域的答案无效. (17)(本小题满分10分) 已知02πα<<,且513sin α=.(I)求tan α的值;(II)求2sin 22sin()sin 2cos ()sin 22απααπαα--++的值.已知函数()11xf x lnx-=+. (I)判断并证明函数()f x 的奇偶性; (Ⅱ)若()()2f m f m --=,求实数m 的值.(19)(本小题满分12分)已知函数()()2f x Asin x ϕ=+(A,ϕ是常数,0A >,0,x R ϕπ<<∈)在8x π=时取得最大值3.(1)求()f x 的最小正周期; (Ⅱ)求()f x 的解析式; (Ⅲ)若18f πα⎛⎫+=- ⎪⎝⎭,求sin α.(20)(本小题满分12分)某种商品在30天内每件的销售价格P(元)与时间t(天)的函数关系**20025,1002530,t t t N P t t t N⎧+<<∈=⎨-+≤≤∈⎩,该商品在30天内日销售量Q(件)与时间t(天)之间满足一次函数关系,具体数据如下表:(I)根据表中提供的数据,求出日销售量关于时间t 的函数表达式; (Ⅱ)求该商品在这30天中的第几天的日销售金额最大,最大值是多少?设函数()2f x cos x a =++ (I)写出函数()f x 的最小正周期及单调递减区间; (Ⅱ)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最大值与最小值的和32,求不等式()1f x >的解集.(22)(本小题满分12分)已知函数()313xxa f x +=+是R 上的奇函数(I)求a;(Ⅱ)用定义法讨论()f x 在R 上的单调性; (III)若21121042xx f k k f -⎛⎫⎛⎫-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立,求k 的取值范围.新教材必修第一册综合测试数学试题答案高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.(1)B (2)D (3)A (4)A (5)B (6)B(7)A(8)B二、多项选择题:本大题共4小题,每小题5分,共20分.(9)BC (10)AC (11)AD (12)ABC三、填空题:本大题共4小题,每小题5分,共20分.(13)21(14)3(15)0或4(16)1{|1,}2x x x ≤-≥-或四、解答题:本大题共6小题,第17题10分,18、19、20、21、22题各12分,共70分.(17)解:(Ⅰ)因为135sin =α,20πα<<,所以12cos 13α===,……………………………………4分故125cos sin tan ==ααα.……………………………………5分(Ⅱ)222sin 22sin()sin 2sin cos 2sin 2sin 2sin cos 2cos ()sin 22απαααααπααααα---=+++…………………7分cos sin 1tan sin cos 1tan αααααα--==++…………………9分51712517112-==+.…………………10分(18)(Ⅰ)解:()1ln 1xf x x-=+是奇函数.证明:要10,1xx->+等价于()()110,x x +->即11,x -<<故()1ln1xf x x-=+的定义域为()1,1,-关于原点对称又因为()()1111ln ln ln .111x x x f x f x x x x -+--⎛⎫-===-=- ⎪-++⎝⎭所以()1ln1xf x x-=+是奇函数.…………6分(Ⅱ)由(1)知,()f x 是奇函数,则()()0f m f m +-=,联立()()()()02f m f m f m f m +-=--=⎧⎪⎨⎪⎩得()=1f m ,即1ln 1,1m m -=+解得1.1em e-=+…………12分(19)(Ⅰ))(x f 的最小正周期ππ==22T ………………2分(列式1分,计算1分)(Ⅱ)依题意3=A ………………………………………4分3)82sin(3=+⨯ϕπ…………………………………5分因为4544πϕππ<+<且1)4sin(=+ϕπ…………………6分所以24πϕπ=+,4πϕ=…………………………………7分)42sin(3)(π+=x x f ……………………………………8分(Ⅲ)由18(-=+παf 得122sin(3-=+πα…………………9分即312cos -=α……………………………………………10分所以31sin 212-=-α……………………………………11分36sin ±=α………………………………………………12分.(20)(Ⅰ)设日销售量Q 关于时间t 的函数表达式为Q kt b =+,依题意得:3551030k b k b =+⎧⎨=+⎩,解之得:140k b =-⎧⎨=⎩,所以日销售量Q 关于时间t 的函数表达式为40Q t =-+((0,30]t ∈,t N *∈,).(Ⅱ)设商品的日销售金额为y (元),依题意:y PQ =,所以(20)(40)025,,(100)(40)2530,.t t t t N y t t t t N **⎧+-+<<∈=⎨-+-+≤≤∈⎩,即:2220800025,,14040002530,.t t t t N y t t t t N **⎧-++<<∈=⎨-+≤≤∈⎩.当(0,25)t ∈,t N *∈时,2(10)900y t =--+,当10t =时,max 900y =;当[25,30]t ∈,t N *∈时,2(70)900y t =--,当25t =时,max 1125y =;所以该商品在这30天中的第25天的日销售金额最大,为1125元.(21)解:(Ⅰ)31cos 2()sin 222xf x x a +=++……1分1sin(262x a π=+++,……3分T π∴=,……4分令3222262k x k πππππ+≤+≤+,Z k ∈,∴263k x k ππππ+≤≤+,Z k ∈,∴函数)(x f 的递减区间为:2[,],63k k k Z ππππ++∈.……6分(Ⅱ)由[,63x ππ∈-得:52666x πππ-≤+≤,max min 3(),()2f x a f x a ∴=+=,……8分33022a a a ∴++=⇒=,……9分∴1()1sin(2)62f x x π>⇒+>,52226663k x k k x k ππππππππ∴+<+<+⇒<<+,Z k ∈,……11分又⎦⎤⎢⎣⎡-∈3,6ππx ,∴不等式1)(>x f 的解集为{|0}3x x π<<.……12分(22)(Ⅰ) 函数()313xxa f x +=+是R 上的奇函数()()331313x xx x a a f x f x --++∴-==-=-++即3133113x xx xa a +--=++即()()3131xxa +=-+解得1a =-;(Ⅱ)由(1)知()3131-=+x xf x ()()12121231313131x x x x f x f x ---=-++()()()()()()122112313131313131x x x x x x -+--+=++()()()12122333131x x x x -=++设12x x <,则12033x x <<故12330x x -<,1310x +>,2310x +>故()()120f x f x -<即()()12f x f x <()f x ∴是R 上的增函数.(Ⅲ)()f x 是R 上的奇函数,()f x 是R 上的增函数21121042x x f k k f -⎛⎫⎛⎫∴-⋅++> ⎪ ⎪⎝⎭⎝⎭在x ∈R 上恒成立等价于2111122244x x xf f k k f k k -⎛⎫⎛⎫⎛⎫+>--⋅=⋅-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴等价于2112142x x k k -⋅-<+在x ∈R 上恒成立即()2212420xx k k +⋅+⋅->在x ∈R 上恒成立“*”令20x t =>则“*”式等价于()22140k t t k ++->对0t >时恒成立“**”①当210k +=,即12k =-时“**”为1402t +>对0t >时恒成立②当210k +≠,即12k ≠时,“**”对0t >时恒成立须()210164210k k k +>⎧⎨∆=++<⎩或2102021k k k +>⎧⎪⎪-≤⎨+⎪-≥⎪⎩解得102k -<≤综上,k 的取值范围是1,02⎡⎤-⎢⎥⎣⎦.。

高中数学必修一必修二综合测试题(含答案)

高中数学必修一必修二综合测试题(含答案)

Q PC'B'A'C BA高中数学必修一必修二综合测试题(时间90分钟,满分150分)姓名___________________ 总分:________________ 一、选择题(本大题共10小题,每小题5分,共50分) 1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离是( )A .12B .32 C .1 D .34.设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( )A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)5.设y1=40.9,y2=80.48,y3=(12)-1.5,则( )A .y3>y1>y2B .y2>y1>y3C .y1>y2>y3D .y1>y3>y26.圆x 2+y 2-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68 7.已知0,0ab bc <<,则直线ax by c +=通过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限8.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的大小是( )A .15B .13 C .12D 39. 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .9010.如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A .2V B .3V C .4V D .5V(10题) 二、填空题(本大题共4小题,每小题5分,共20分)11.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥12x ,x <1的值域为________.12.两圆221x y +=和22(4)()25x y a ++-=相切, 则实数a 的值为13.已知集合U ={2,3,6,8},A ={2,3},B ={2,6,8},则(∁U A )∩B =________.14.过点A (4,0)的直线l 与圆(x -2)2+y 2=1有公共点,则直线l 斜率的取值范围为 三、解答题(本大题共6小题,共80分)15.(本小题满分10分)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 与△A 1B 1C 1都为正三角形且AA 1⊥面ABC ,F 、F 1分别是AC ,A 1C 1的中点.求证:(1)平面AB 1F 1∥平面C 1BF ; (2)平面AB 1F 1⊥平面ACC 1A 1.(17题)16.(本小题满分12分)(1)定义在(-1,1)上的奇函数f (x )为减函数,且f (1-a )+f (1-a 2)>0,求实数a 的取值范围.(2)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )为减函数,若g (1-m )<g (m )成立,求m 的取值范围.17.(本小题满分12分)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值(17题)18.(本小题满分15分)已知圆C1:x2+y2-2x-4y+m=0,(1)求实数m的取值范围;(2)若直线l:x+2y-4=0与圆C相交于M、N两点,且OM⊥ON,求m的值。

数学必修1测试题及答案

数学必修1测试题及答案

数学必修1测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集的子集?A. 整数集B. 有理数集C. 无理数集D. 复数集答案:B2. 函数f(x) = 2x + 3的值域是?A. (-∞, +∞)B. [3, +∞)C. (-∞, 3]D. [0, +∞)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {4}D. {1, 2, 3}答案:B4. 计算(2x - 3)(x + 1)的结果,其中x = 2。

A. 5B. 7C. 9D. 11答案:B5. 已知a = 3,b = 4,c = 5,下列哪个等式是正确的?A. a² + b² = c²B. a² + b² > c²C. a² + b² < c²D. a² + b² = 2bc答案:C6. 函数y = sin(x)在区间[0, π]上是:A. 增函数B. 减函数C. 先增后减D. 先减后增答案:D7. 计算极限lim(x→0) (sinx/x)的值。

A. 0B. 1C. πD. ∞答案:B8. 已知等差数列{an}的首项a1 = 1,公差d = 2,则第5项a5的值是?A. 9B. 11C. 13D. 15答案:A9. 计算定积分∫(0 to 1) x² dx的值。

A. 1/3B. 1/2C. 1D. 2答案:B10. 已知函数f(x) = x³ - 3x + 2,求其导数f'(x)。

A. 3x² - 3B. x² - 3C. 3x - 3D. x³ - 3答案:A二、填空题(每题4分,共20分)1. 计算(3x + 2)(2x - 1) = ________。

答案:6x² - x - 22. 已知函数f(x) = x² - 4x + 4,求其对称轴方程。

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

(人教版A版)高中数学必修第一册 第二章综合测试试卷03及答案

第二章综合测试一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列等式一定正确的是( )A .()lg lg lg xy x y=+B .222m n m n++=C .222m n m n+×=D .2ln 2ln x x=2.若函数()12122m y m m x -=+-是幂函数,则m =()A .1B .3-C .3-或1D .23.下列函数既是增函数,图像又关于原点对称的是( )A .y x x=B .xy e =C .1y x=-D .2log y x=4.函数()ln 3y x =- )A .[)23,B .[)2+¥,C .()3-¥,D .()23,5.下列各函数中,值域为()0¥,+的是( )A .22xy -=B.y =C .21y x x =++D .113x y +=6.已知()x f x a =,()()log 01a g x x a a =>,且≠,若()()330f g <,那么()f x 与()g x 在同一坐标系内的图像可能是()A BC D7.已知0.2log 2.1a =, 2.10.2b =,0.22.1c =则( )A .c b a<<B .c a b<<C .a b c<<D .a c b<<8.已知()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则实数a 的取值范围是( )A .()2-¥,B .138æù-¥çúèû,C .()02,D .1328éö÷êëø,9.已知函数()y f x =是定义在R 上的偶函数,当0x ≥时,()2x f x e x =+,则()ln 2f -=( )A .12ln 22-B .12ln 22+C .22ln 2-D .22ln 2+10.已知函数()()()x xf x x e ae x -=+ÎR ,若()f x 是偶函数,记a m =;若()f x 是奇函数,记a n =.则2m n +的值为( )A .0B .1C .2D .1-11.已知实数a ,b 满足等式20172018a b =,则下列关系式不可能成立的是( )A .0a b <<B .0a b <<C .0b a<<D .a b=12.已知函数()221222log x mx m x m f x x x m ì-++ï=íïî,≤,,>,其中01m <<,若存在实数a ,使得关于x 的方程()f x a=恰有三个互异的实数解,则实数m 的取值范围是()A .104æöç÷èø,B .102æöç÷èø,C .114æöç÷èøD .112æöç÷èø,二、填空题:本大题共4小题,每小题5分,共20分.13.满足31164x -æöç÷èø>的x 的取值范围是________.14.若函数()212log 35y x ax =-+在[)1-+¥,上是减函数,则实数a 的取值范围是________.15.如图,矩形ABCD 的三个顶点A ,B ,C分别在函数y x =,12y x =,xy =的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.16.定义新运算Ä:当m n ≥时,m n m Ä=;当m n <时,m n n Ä=.设函数()()()2221log 2xx f x x éùÄ-Ä×ëû,则函数()f x 在()02,上的值域为________.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)计算下列各式的值:(1)7015log 243210.06470.250.58--æö--++´ç÷èø;(2)()2235lg5lg 2lg5lg 20log 25log 4log 9+´++´´.18.(本小题满分12分)已知定义域为R 的单调函数()f x 是奇函数,当0x >时,()23x xf x =-.(1)求()f x 的解析式;(2)若对任意的t ÎR ,不等式()()22220f t t f t k -+-<恒成立,求实数k 的取值范围.19.(本小题满分12分)已知实数x 满足9123270x x -×+≤,函数()2log 2xf x =×(1)求实数x 的取值范围;(2)求函数()f x 的最值,并求此时x 的值.20.(本小题满分12分)已知函数()x f x a =,()2x g x a m =+,其中0m >,0a >且1a ≠.当[]11x Î-,时,()y f x =的最大值与最小值之和为52.(1)求a 的值;(2)若1a >,记函数()()()2h x g x mf x =-,求当[]0x Î,1时,()h x 的最小值()H m .21.(本小题满分12分)以德国数学家狄利克雷(l805-1859)命名的狄利克雷函数定义如下:对任意的x ÎR ,()10.x D x x ì=íî,为有理数,,为无理数研究这个函数,并回答如下问题:(1)写出函数()D x 的值域;(2)讨论函数()D x 的奇偶性;(3)若()()()212x x D x x f x D x x ì-ï=íïî+,为有理数,+,为无理数,,求()f x 的值域.22.(本小题满分12分)若函数()f x 满足()()21log 011a a f x x a a a x æö=×-ç÷-èø>,且≠.(1)求函数()f x 的解析式,并判断其奇偶性和单调性;(2)当()2x Î-¥,时,()4f x -的值恒为负数,求a 的取值范围.第二章综合测试答案解析一、1.【答案】C【解析】对于A ,D ,若x ,y 为非正数,则不正确;对于B ,C ,根据指数幂的运算性质知C 正确,B 错误.故选C .2.【答案】B【解析】因为函数()12122m y m n x -=+-是幂函数,所以22211m m m +-=且≠,解得3m =-.3.【答案】A【解析】2200x x y x x x x ìï==í-ïî,≥,,<为奇函数且是R 上的增函数,图像关于原点对称;x y e =是R 上的增函数,无奇偶性;1y x=-为奇函数且在()0-¥,和()0+¥,上单调递增,图像关于原点对称,但是函数在整个定义域上不是增函数;2log y x =在()0+¥,上为增函数,无奇偶性.故选A .4.【答案】A【解析】函数()ln 3y x =-+x 满足条件30240xx -ìí-î>,≥,解得32x x ìíî<,≥,即23x ≤<,所以函数的定义域为[)23,,故选A .5.【答案】A【解析】对于A,22xxy -==的值域为()0+¥,;对于B ,因为120x -≥,所以21x ≤,0x ≤,y =(]0-¥,,所以021x <≤,所以0121x -≤<,所以y =[)01,;对于C ,2213124y x x x æö=++=++ç÷èø的值域是34éö+¥÷êëø,;对于D ,因为()()1001x Î-¥+¥+,∪,,所以113x y +=的值域是()()011+¥,∪,.6.【答案】C【解析】由指数函数和对数函数的单调性知,函数()x f x a =与()()log 01a g x x a a =>,且≠在()0+¥,上的单调性相同,可排除B ,D .再由关系式()()330f g ×<可排除A ,故选C .7.【答案】C【解析】 2.100.200.20.2log 2.1log 1000.20.21 2.1 2.1 1.a b c a b c ======\Q <,<<,><<.故选C .8.【答案】B【解析】由题意得,函数()()221122x a x x f x x ì-ï=íæö-ïç÷èøî,≥,,<是R 上的减函数,则()2201122,2a a -ìïíæö--´ïç÷èøî<,≥解得138a ≤,故选B .9.【答案】D【解析】Q 函数()y f x =是定义在R 上的偶函数,且当0x ≥时,()2x f x e x =+,()()ln 2ln 2ln 22ln 222ln 2f f e \-==+=+.故选D .10.【答案】B【解析】当()f x 是偶函数时,()()f x f x =-,即()()x x x x x e ae x e ae --+=-×+,即()()10x x a e e x -++=.因为上式对任意实数x 都成立,所以1a =-,即1m =-.当()f x 是奇函数时,()()f x f x =--,即()()x x x x x e ae x e ae --+=+,即()()10x x a e e x ---=.因为上式对任意实数x 都成立,所以1a =,即1n =.所以21m n +=.11.【答案】A【解析】分别画出2017x y =,2018x y =的图像如图所示,实数a ,b 满足等式20172018a b =,由图可得0a b >>或0a b <<或0a b ==,而0a b <<不成立.故选A .12.【答案】A【解析】当01m <<时,函数()221222log x mx m x m f x x x m ì-++ï=£íïî,≤,,>,的大致图像如图所示.Q 当x m ≤时,()()2222222f x x mx m x m =-++=-+≥,\要使得关于x 的方程()f x a =有三个不同的根,则12log 2m >.又01m <<,解得104m <<.故选A .二、13.【答案】()1-¥,【解析】由题可得,321144x --æöæöç÷ç÷èøèø>,则32x --<,解得1x <.14.【答案】(]86--,【解析】令()235g x x ax =-+,其图像的对称轴为直线6a x =.依题意,有()1610ag ì-ïíï-î,>,即68.a a -ìí-î≤,>故(]86a Î--,.15.【答案】1124æöç÷èø,【解析】由图像可知,点()2A A x ,在函数y x =的图像上,所以2A x =,212A x ==.点()2B B x ,在函数12y x =的图像上,所以122B x =,4x =.点()4,C C y 在函数x y =的图像上,所以414C y ==.又因为12D A xx ==,14D C y y ==,所以点D 的坐标为1124æöç÷èø,.16.【答案】()112,【解析】根据题意,当22x ≥,即1x ≥时,222x x Ä=;当22x <,即1x <时,222x Ä=.当2log 1x ≤,即02x <≤时,21log 1x Ä=;当21log x <,即2x >时,221log log x x Ä=.()()2220122122log 2 2.x x x x xx f x x x x ìïï\=-íï-×ïî,<<,,≤≤,,>\①当01x <<时,()2x f x =是增函数,()12f x \<<;②当12x ≤<,()221122224xxx f x æö=-=--ç÷èø,1222 4.x x \Q ≤<,≤<()221111242424f x æöæö\----ç÷ç÷èøèø<,即()212f x ≤<.综上,()f x 在()02,上的值域为()112,.三、17.【答案】解(1)70515log 244321510.06470.250.51224822--æöæö--++´=-++´=ç÷ç÷èøèø.(2)()()22352lg52lg 22lg3lg5lg 2lg5lg 20log 25log 4log 9lg5lg5lg 2lg 21lg 2lg3lg5+´++´´=++++´´11810=++=.18.【答案】解(1)Q 定义域为R 的函数()f x 是奇函数,()00f \=.Q 当0x <时,0x ->,()23x xf x --\-=-.又Q 函数()f x 是奇函数,()()f x f x \-=-,()23x xf x -\=+.综上所述,()2030020.3xx x x f x x xx -ì-ïï==íïï+î,>,,,,<(2)()()51003f f -==Q >,且()f x 为R 上的单调函数,()f x \在R 上单调递减.由()()22220f t t f t k -+-<得()()2222f t t f t k ---<.()f x Q 是奇函数,()()2222f t t f k t \--<.又()f x Q 是减函数,2222t t k t \-->,即2320t t k -->对任意t ÎR 恒成立,4120k \D =+<,解得13k -<,即实数k 的取值范围为13æö-¥-ç÷èø,.19.【答案】解(1)由9123270x x -×+≤,得()23123270xx -×+≤,即()()33390x x --≤,所以339x ≤≤,所以12x ≤≤,满足02x 0.所以实数x 的取值范围为[]12,.(2)()()()()2222222231log log 1log 2log 3log 2log 224xf x x x x x x æö=×=--=-+=--ç÷èø.因为12x ≤≤,所以20log 1x ≤≤.所以2log 1x =,即2x =时,()min 0f x =;当2log 0x =,即1x =时,()max 2f x =.故函数()f x 的最小值为0,此时2x =,最大值为2,此时1x =.20.【答案】解(1)()f x Q 在[]11-,上为单调函数,()f x \的最大值与最小值之和为152a a -+=,2a \=或12a =.(2)1a Q >,2a \=.()2222x x h x m m =+-×,即()()2222xx h x m m =-×+.令2x t =,则()h x 可转化为()22k t t mt m =-+,其图像对称轴为直线t m =.[]01x ÎQ ,,[]12t \Î,,\当01m <<时,()()11H m k m ==-+;当12m ≤≤时,()()2H m k m m m ==-+;当2m >时,()()234H m k m ==-+.综上所述,()21011234 2.m m H m m m m m m -+ìï=-+íï-+î,<<,,≤≤,,>21.【答案】解(1)函数()D x 的值域为{}01,.(2)当x 为有理数时,则x -为无理数,则()()1D x D x -==;当x 为无理数时,则为x -为无理数,则()()0D x D x -==.故当x ÎR 时,()()D x D x -=,所以函数()D x 为偶函数.(3)由()D x 的定义知,()22x x x f x x ìï=íïî,为有理数,,为无理数.即当x ÎR 时,()2x f x =.故()f x 的值域为()0+¥,.22.【答案】解(1)令log a x t =,则t x a =,()()21t t a f t a a a -\=--.()()()21x x a f x a a x a -\=-Î-R .()()()()2211x x x x a a f x a a a a f x a a ---=-=--=---Q ,()f x \为奇函数.当1a >时,x y a =为增函数,xy a -=-为增函数,且2201a a -,()f x \为增函数.当01a <<时,x y a =为减函数,x y a -=-为减函数,且2201a a -<,()f x \为增函数.()f x \在R 上为增函数.(2)()f x Q 是R 上的增函数,()4y f x \=-也是R 上的增函数.由2x <,得()()2f x f <,要使()4f x -在()2-¥,上恒为负数,只需()240f -≤,即()22241a a a a ---≤.422141a a a a-\×-≤,214a a \+≤,2410a a \-+≤,22a \-+≤.又1a Q ≠,a \的取值范围为)(21,2éë.。

高中数学必修第一册 第一章综合测试含答案

高中数学必修第一册 第一章综合测试含答案

第一章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B = ð()A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是()A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=()A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且,则N 中元素的个数为()A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+的否定是()A .32,10x x x ∃∈-+RB .32,10x x x ∃∈-+RC .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件;⑤r 是s 的充分条件.则正确命题的序号是()A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =,则M N = ()A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞ 9.设集合{|0}M x x m =-,{}2|(1)1,N y y x x ==--∈R .若M N =∅ ,则实数m 的取值范围是()A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是()A .(2,1)-B .[1,0)[1,2)-C .(2,1)[0,1]--D .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为()A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是()A .01a B .1a <C .1a D .01a <或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈ð,则x A ∈是x sB ∈ð的条件是__________.15.关于x 的不等式2043x ax x +++的解集为(3,1)(2,)--+∞ 的充要条件是__________.16.已知集合{|||1}A x x a =-,{}2|540B x x x =-+,若A B =∅ ,则实数a 的取值范围是__________.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<.(1)当2a =时,求A B ⋂;(2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B = ,且A B A = ,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-.(1)若()P S P ⊆ ,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.第一单元测试答案解析一、1.【答案】A【解析】由题意得uA {0,4}=ð,又{2,4}B =,所以(){0,2,4}uA B = ð,故选A .2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=.3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性).4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-,1ba=-∴,1b =.2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”.7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确.又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞ .故选B .9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅ ,1m ∴-<,故选D .10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =- ,[1,0)A B =- ,所以阴影部分表示的集合为()(2,1)[0,1]A B A B =--⋃ ð,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤.二、13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要不充分【解析】由已知得S A B ⊆ð,两边取补集,有()S S SA B ⊇痧,即S A B ⊇ð,所以S x B x A ∈⇒∈ð,反之,不一定成立,故x ∈A 是S x B ∈ð的必要不充分条件.15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞ .故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或,A B =∅ ,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x = ∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩此时1a =-;当13a =时,A =∅,使B A ⊆的a 不存在;当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩此时13a <.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}- .18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A∈∴5m -∈Z ∵,4m ∈Z ,,即B A ⊆.由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=,显然0a ≠,2x a =-∴或1x a=.[1,1]x ∈-∵,故21a ≤或11a,||1a ∴.“只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<.20.【答案】A B A = ∵,B A ⊆∴,又A B =∅ ,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得12m∴实数m 的取值范围是117|2m m ⎧-⎪⎨⎬⎪⎪⎩⎭21.【答案】{}2|320{|12}B x x x x x =∈-+=R ,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩解得22a -<.22.【答案】由28200x x --≤,得210x -,所以{|210P x x =-≤≤.由|1|x m -≤,得11m x m -+.所以{|11}S x m x m =-+≤≤.(1)要使()P S P ⊆ ,则S P ⊆①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩解得03m .综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.。

高中数学必修综合测试卷三套+含答案

高中数学必修综合测试卷三套+含答案

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,()g x ; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f 6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题:①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

(完整版)高中数学必修一试卷及答案

(完整版)高中数学必修一试卷及答案

高中数学必修一考试试卷姓名: 班别: 座位号:注意事项:⒈本试卷分为选择题、填空题和简答题三部分,共计150分,时间90分钟。

⒉答题时,请将答案填在答题卡中。

一、选择题:本大题10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知全集I ={0,1,2,3,4},集合{1,2,3}M =,{0,3,4}N =,则()I M N I ð等于( )A.{0,4}B.{3,4}C.{1,2}D. ∅ 2、设集合2{650}M xx x =-+=,2{50}N x x x =-=,则M N U 等于 ( ) A.{0} B.{0,5} C.{0,1,5} D.{0,-1,-5}3、计算:9823log log ⋅= ( )A 12B 10C 8D 64、函数2(01)xy a a a =+>≠且图象一定过点 ( )A (0,1)B (0,3)C (1,0)D (3,0)5、“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S 1、S 2分别表示乌龟和兔子所行的路程,t 为时间,则与故事情节相吻合是 ( )6、函数y = 的定义域是( )A {x |x >0}B {x |x ≥1}C {x |x ≤1}D {x |0<x ≤1}7、把函数x1y -=的图象向左平移1个单位,再向上平移2个单位后,所得函数的解析式应为 ( ) A 1x 3x 2y --=B 1x 1x 2y ---=C 1x 1x 2y ++=D 1x 3x 2y ++-= 8、设x x e 1e )x (g 1x 1x lg )x (f +=-+=,,则 ( ) A f(x)与g(x)都是奇函数 B f(x)是奇函数,g(x)是偶函数C f(x)与g(x)都是偶函数D f(x)是偶函数,g(x)是奇函数9、使得函数2x 21x ln )x (f -+=有零点的一个区间是 ( ) A (0,1) B (1,2) C (2,3) D (3,4)10、若0.52a =,πlog 3b =,2log 0.5c =,则( )A a b c >>B b a c >>C c a b >>D b c a >>二、填空题:本大题共4小题,每小题5分,满分20分11、函数5()2log (3)f x x =++在区间[-2,2]上的值域是______12、计算:2391- ⎪⎭⎫ ⎝⎛+3264=______13、函数)54(log 22++-=x x y 的值域是______14、函数122x )x (f x -+=的定义域是______三、解答题 :本大题共5小题,满分80分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修一综合测试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或02、函数1()(0)f x x x x =+≠是( )A 、奇函数,且在(0,1)上是增函数B 、奇函数,且在(0,1)上是减函数C 、偶函数,且在(0,1)上是增函数D 、偶函数,且在(0,1)上是减函数 3. 已知b ax y x f B y A x R B A +=→∈∈==:,,,是从A 到B 的映射,若1和8的原象分别是3和10,则5在f 下的象是( )A .3B .4C .5D .64. 下列各组函数中表示同一函数的是( )⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f ,52)(2-=x x fA 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸5.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数,则)252()23(2++-a a f f 与的大小关系是( )A .)23(-f >)252(2++a a f B .)23(-f <)252(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)252(2++a a f6.设⎪⎩⎪⎨⎧-=-)1(log 2)(231x ex f x )2()2(≥<x x 则[])2(f f =( ) A .2 B .3 C .9 D .187.函数1(0,1)x y a a a a=->≠的图象可能是( )8.给出以下结论:①11)(--+=x x x f 是奇函数;②221)(2-+-=x x x g 既不是奇函数也不是偶函数;③)()()(x f x f x F -= )(R x ∈是偶函数 ;④xxx h +-=11lg )(是奇函数.其中正确的有( )个A .1个B .2个C .3个D .4个9. 函数1)3(2)(2+-+=x a ax x f 在区间[)+∞-,2上递减,则实数a 的取值范围是( )A .(]3,-∞-B .[]0,3-C . [)0,3-D .[]0,2-10.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f(x)图象上的是( )A .(,())a f a --B .(,())a f a -C .(,())a f a -D .(,())a f a ---11. 若函数a x x x f +-=24)(有4个零点,则实数a 的取值范围是( )A . []0,4- B. []4,0 C. )4,0( D. )0,4(-12. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或C .{}|3003x x x -<<<<或D .{}|33x x x <->或二、填空题(本大题共4小题,每小题5分)13.若函数2()(1)3f x kx k x =+-+是偶函数,则()f x 的递减区间是 ;14.已知函数11()()142x x y =-+的定义域为[3,2]-,则该函数的值域为 ;15. 函数()()R b a x bax x f ∈+-=,25,若()55=f ,则()=-5f ;16.设函数()f x =x |x |+b x +c ,给出下列四个命题: ①若()f x 是奇函数,则c =0②b =0时,方程()f x =0有且只有一个实根 ③()f x 的图象关于(0,c )对称④若b ≠0,方程()f x =0必有三个实根 其中正确的命题是 (填序号)三、解答题(解答应写文字说明,证明过程或演算步骤)17.(10分)已知集合{}0652<--=x x x A ,集合{}01562≥+-=x x x B ,集合⎭⎬⎫⎩⎨⎧<---=09m x m x x C(1)求B A ⋂(2)若C C A =⋃,求实数m 的取值范围;18.(本小题满分12分)已知函数()log (1),()log (1)a a f x x g x x =+=-其中)10(≠>a a 且,设()()()h x f x g x =-.(1)求函数()h x 的定义域,判断()h x 的奇偶性,并说明理由; (2)若(3)2f =,求使()0h x <成立的x 的集合。

19.(本小题满分12分)有甲、乙两种商品,经营销售这两种商品所得的利润依次为M 万元和N 万元,它们与投入资金x 万元的关系可由经验公式给出:M=4x,≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?20.(12分)已知x 满足 82≤≤x ,求函数2log )1(log 2)(24xx x f ⋅-=的最大值和最小值21. 设f (x )的定义域为(0,+∞),且在(0,+∞)是递增的,)()()(y f x f yxf -=(1)求证:f (1)=0,f (xy )=f (x )+f (y );(2)设f (2)=1,解不等式2)31()(≤--x f x f 。

22.(12分)设函数21()12x xa f x ⋅-=+是实数集R 上的奇函数. (1)求实数a 的值;(2)判断()f x 在R 上的单调性并加以证明; (3)求函数()f x 的值域.2012-2013学年度高一年级数学期中考试试卷参考答案1-5DBACA 6-10ADCBB 11-12DC13.(,0]-∞(答(,0)-∞也给分) 14. [57,43] 15. -1 16.①②③18.(1)定义域为(1,1)-……………………………………………………… 2分 ()()h x h x -=-,函数()h x 为奇函数………………………………… 5分(2)2a = ……………………………………………………………………7分 110x x x +<-⇒<……………………………………………………10分又(1,1)x ∈-,(1,0)x ∴∈-……………………………………………12分19.设投入乙种商品的资金为x 万元,则投入甲种商品的资金为(8-x)万元, ………………2分 共获利润13(8)144y x x =-- …………………………………………………5分 1x t -= (0≤t 7,则x=t 2+1,∴22131337(7)()444216y t t t =-+=--+…………………………………………………8分 故当t=32时,可获最大利润 3716万元. ……………………………………………………10分此时,投入乙种商品的资金为134万元,投入甲种商品的资金为194万元. ……………………………………………………12分21、(1)证明:)()()(y f x f yxf -=,令x=y=1,则有:f (1)=f (1)-f (1)=0,…2分)()()]()1([)()1()()1()(y f x f y f f x f y f x f yx f xy f +=--=-==。

…………4分(2)解:∵)]3()1([)()31()(---=--x f f x f x f x f )3()3()(2x x f x f x f -=-+=,∵2=2×1=2f (2)=f (2)+f (2)=f (4), ∴2)31()(≤--x f x f 等价于:)4()3(2f x x f ≤-①, ………………………………8分 且x>0,x-3>0[由f (x )定义域为(0,+∞)可得]…………………………………10分 ∵03)3(2>-=-x x x x ,4>0,又f (x )在(0,+∞)上为增函数,∴①41432≤≤-⇒≤-⇔x x x 。

又x>3,∴原不等式解集为:{x|3<x ≤4}…12分 22、解:(1))(x f 是R 上的奇函数∴()f x -=()f x =-,即21211212x x x x a a --⋅-⋅-=-++,即2121212x xx xa a --⋅=++即(1)(21)0xa -+= ∴1=a 或者 )(x f 是R 上的奇函数 .0)0()0()0(=∴-=-∴f f f.0211200=+-⋅∴a ,解得1=a ,然后经检验满足要求 。

…………………………………3分(2)由(1)得212()12121x x x f x -==-++ 设12x x R <∈,则122122()()(1)(1)2121x x f x f x -=---++122112222(22)2121(21)(21)x x x x x x -=-=++++ , 12x x < 1222x x ∴<21()()0f x f x ∴-<,所以()f x 在R 上是增函数 …………………………………7分(3)212()12121x x x f x -==-++ , 122211,01,02,111212121x x x x+>∴<<∴<<∴-<-<+++ 所以212()12121x x x f x -==-++的值域为(-1,1) 或者可以设2121x x y -=+,从中解出2x=11y y +-,所以101y y +>-,所以值域为(-1,1) …12分高一数学必修1综合测试题1.集合{|1,}A y y x x R ==+∈,{|2,},x B y y x R ==∈则A B 为( )A .{(0,1),(1,2)}B .{0,1}C .{1,2}D .(0,)+∞2.已知集合{}1|1242x N x x +=∈<<Z ,,{11}M =-,,则M N =( )A .{11}-,B .{0}C .{1}-D .{10}-,3.设12log 3a =,0.213b =⎛⎫ ⎪⎝⎭,132c =,则( ).A a b c <<B c b a <<C c a b <<D b a c <<4.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-,则()y f x =在R 上的解析式为 ( ) A . ()(2)f x x x =-+ B .()||(2)f x x x =- C .()(||2)f x x x =- D. ()||(||2)f x x x =-5.要使1()3x g x t +=+的图象不经过第二象限,则t 的取值范围为 ( ) A. 1t ≤- B. 1t <- C.3t ≤- D. 3t ≥-6.已知函数log (2)a y ax =-在区间[0,1]上是x 的减函数,则a 的取值范围是( )A .(0,1)B .(1,2)C .(0,2)D .(2,)+∞7.已知(31)4,1()log ,1a a x a x f x x x -+<=>⎧⎨⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 ( )A (0,1)B 1(0,)3C 11[,)73D 1[,1)78.设1a >,函数()log a f x x =在区间[,2]a a 上的最大值与最小值之差为12,则a =( ) A 2 B .2 C .22 D .49. 函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )10.定义在R 上的偶函数()f x 满足(1)()f x f x +=-,且当x ∈[1,0]-时()12xf x ⎛⎫= ⎪⎝⎭,则2(log 8)f 等于 ( ) A . 3 B . 18C . 2-D . 211.根据表格中的数据,可以断定方程20x e x --=的一个根所在的区间是( ).x -10 1 2 3 x e0.37 1 2.72 7.39 20.09 2x +12345A . (-1,0)B . (0,1)C . (1,2)D . (2,3)12.下表显示出函数值y 随自变量x 变化的一组数据,由此判断它最可能的函数模型是( ).x 4 5 6 7 8 9 10 y15171921232527A .一次函数模型B .二次函数模型C .指数函数模型D .对数函数模型13.若0a >,2349a =,则23log a = .14lg 27lg83lg 10lg1.2+-=________15.已知函数()y f x =同时满足:(1)定义域为(,0)(0,)-∞+∞且()()f x f x -=恒成立;(2)对任意正实数12,x x ,若12x x <有12()()f x f x >,且1212()()()f x x f x f x ⋅=+.试写出符合条件的函数()f x 的一个解析式16.给出下面四个条件:①010a x <<<⎧⎨⎩,②010a x <<>⎧⎨⎩,③10a x ><⎧⎨⎩,④10a x >>⎧⎨⎩,能使函数2log a y x -=为单调减函数的是 .17.已知集合2[2,log ]A t =,集合{|(2)(5)0},B x x x =--≤(1)对于区间[,]a b ,定义此区间的“长度”为b a -,若A 的区间“长度”为3,试求实数t 的值。

相关文档
最新文档