运筹学考研试题 PPT课件

合集下载

《运筹学总复习》课件

《运筹学总复习》课件
应用领域:物流、供应链管理、路径规划等。
难点:计算复杂度高,难以找到最优解。
生产与存储问题
问题描述:生产与存储问题是指在给定时间内,如何安排生产计划和存储策略,以最小化生产成本和存 储成本。 经典模型:经济批量模型(EOQ)、生产存储模型(P-S模型)、生产存储模型(P-S模型)等。
求解方法:动态规划、线性规划、整数规划等。
非线性规划的求解方法:非线性规划的求解方法包括梯度下降法、牛顿法、遗传算法等。
整数规划
定义:整数规划是一种特殊的线性规划,其中所有变量都必须是整数
目标函数:整数规划的目标函数通常是线性的,表示为决策变量的 线性组合 约束条件:整数规划的约束条件通常是线性的,表示为决策变量的线 性不等式或不等式 求解方法:整数规划的求解方法包括分支定界法、割平面法、遗传 算法等
MATL AB在运筹学中的应 用包括优化问题、决策问题、
排队论等
Python在运筹学中的应用
Python语言简介:一种广泛应用于科学计算、数据分析和机器学习等领域的编程语言 Python在运筹学中的应用:可以用于求解线性规划、整数规划、非线性规划等运筹学问题 Python库介绍:如scipy、numpy、pandas等,可以用于进行运筹学计算和可视化 Python代码示例:展示如何使用Python编写运筹学问题的求解代码
Gurobi优化器介绍与使用
Gurobi优化器是一款功能强大的优化工具,广泛应用于运筹学、数学规划等领域。
Gurobi优化器支持多种编程语言,如Python、C++、Java等,方便用户进行编程实 现。
Gurobi优化器提供了丰富的优化算法,如线性规划、非线性规划、整数规划等,满足 不同问题的求解需求。

运筹学基础及应用(全套课件296P) ppt课件

运筹学基础及应用(全套课件296P)  ppt课件

我国朴素的运筹学思想:田忌赛马、丁渭修皇宫
1938年英国最早出现了军事运筹学,命名为“Operational
Research”,1942年,美国从事这方面工作的科学家命其名为
“Operations Research”这个ppt课名件字一直延用至今。
2
§0.1 运筹学简述
美国运筹学的早期著名工作之一是研究深水炸弹起爆深度问 题。当飞机发现潜艇后,飞机何时投掷炸弹及炸弹的引爆引 度是多少?运筹学工作者对大量统计数字进行认真分析后, 提出如下决策:1.仅当潜艇浮出水面或刚下沉时,方投掷深 水炸弹。2.炸弹的起爆深度为离水面25英尺(这是当时深水 炸弹所容许的最浅起爆点)。空军采用上述决策后,所击沉 潜艇成倍增加,从而为反法西斯战争的胜利做出了贡献,为 运筹学增添了荣誉。
16 y3
4 X2 1Leabharlann y4X1 0 , X2 0
设第i种资源收购价格为yi,( i=1, 2, 3, 4,) 则有 min w= 12y1 + 8y2 + 16y3 +12 y4
s.t 2y1 + y2 + 4y3 +0 y4 2
2y1 +2y2 + 0y3 +4 y4 3 yi 0, (i=1, 2, 3, 4 )
ppt课件
6
§0.2 运筹学的发展
2. 20世纪50年代初期到50年代末期——成长时期 电子计算机技术的迅速发展促进运筹学的推广; 美国的约半数的大公司经营管理中融入运筹学;
大批的国家成立运筹学会,各种运筹学刊物相继问世 ; 1957年,牛津大学,第一次国际运筹学会议 1959年,国际运筹学会 成立
ppt课件
11
第 2 章 线性规划的对偶 理论

运筹学课件PPT课件

运筹学课件PPT课件

整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。

运筹学OperationsResearchppt课件

运筹学OperationsResearchppt课件
实际问题 提出
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 1 of 21
LP问题
基本概念
LP问题 数学模型 解的概念
可行解、最优解 基本解、基可行解 基本最优解
基本方法
图解法
原始单纯形法
单纯形法
2
x1
x2
x3
x4
100
2x2 x3 3x5 2x6 x7 100
x1
x3
3x4
2 x6
3x7
4x8
100
x
j
0,
j
1,2,8
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 11 of 21
大M法
人工变量法
对偶单纯形法
两阶段法
对偶理论
进一步讨论
灵敏度分析──参数规划*
在经济管理领域内应用
运输问题(转运问题)
特殊的LP问题
整数规划 多目标LP问题*
§1.1 线性规划的数学模型 Mathematical Model of LP
Linear Programming
2024年7月28日星期日 Page 2 of 21
2024年7月28日星期日 Page 6 of 21
线性规划的数学模型由
决策变量 Decision variables 目标函数Objective function 及约束条件Constraints
构成。称为三个要素。
怎样辨别一个模型是线性规划模型? 其特征是: 1.解决问题的目标函数是多个决策变量的

运筹学第二讲ppt课件 31页

运筹学第二讲ppt课件 31页
个算法时,可进行时间性能上的比较,以便从中挑选出较优算法。 1、算法的执行时间和语句的频度
一个算法的执行时间大致上等于其所有语句执行时间的总和, 而语句的执行时间则为该条语句的重复执行次数和执行一次所需时 间的乘积。
语句的频度(Frequency Count):一条语句的重复执行次数。 △ 算法的执行时间=∑原操作(基本操作)的执行次数(频度)× 原操作的执行时间 △ 设每条语句一次执行的时间都是相同的,为单位时间。这 样我们对时间的分析就可以独立于软硬件系统。
lim T(n)/n3 lim (2n33n22n1)/n32
n
n
一个算法的时间复杂度(Time Complexity)是该算法的执行时
间,记作T(n),T(n)是该算法所求解问题规模n的函数。
当问题的规模趋向无穷大时,T(n)的数量级称为算法的渐近时
间复杂度,记作
T(n)=〇(f(n))
(3) x++;
(4) for(i=1;i<=n;i++)
T(n)=〇(n2)
(5) for(j=1jj<=n;j++)
(6)
y++;
例1.7 变量计数之二
ni j
ni
n
1j i(i1)/2
(1) x=1;
i1 j1 k1 i1 j1
i1
(2) for(i=1;i<=n;i++) [n(n1)(2n1)/6n(n1)/2]/2
它表示随问题规模n的增大,算法执行时间的增长率和f(n)的
增长率相同,简称时间复杂度。我们就是要找这个f(n) 。
例1.5 交换x和y的值。
temp=x;

运筹学复习考点PPT课件

运筹学复习考点PPT课件
变小。
• (3)线性规划问题的每一个基解对应可行域的一个顶点。
• 错误。线性规划的基本定理之一为:线性规划问题的基本可行解对应于
可行域的顶点。
2021
3

2021
4
• (7)单纯形法计算中,如不按最小比值原则选取换出变量,则 在下一个解中至少有一个基变量的值为负。
• 正确。 • (8)一旦一个人工变量在迭代中变为非基变量后,则该变量及
5 3 6 -6 0
0
801001
5
14 1 2 0 0 0
-6
4 0 1 -1 1 0
0 -1 0 0 0
2021
21

2021
22
• 三、
2021
23
• 四、某厂生产Ⅰ、Ⅱ、
Ⅰ ⅡⅢ
Ⅲ三种产品,分别经过 A、B、C三种设备加工,
A
1 11
已知生产单位各种产品
B
10 4 5
所需要的设备台时,设
用表上作业法求解;
• 正确。 • (6)用割平面法求解整数规划时,构造的割平面有可能切去一
些不属于最优解的整数。
• 错误。
2021
34
• (7)分枝定界法在需要分枝时必须满足:一是分枝后的各子问 题必须容易求解;二是各个子问题解的集合必须覆盖原问题的解。
• 正确。 • (8)一个整数规划问题如果存在两个以上的最优解,则该问题
• 错误。 • (6)如果运输问题单位运价表的全部元素乘上一个常数k
(k>0),最优调运方案将不会发生变化。
• 正确。
2021
30
• (7)用位势法求运输问题某一调运方案的检验数时,其结果可 能同闭回路法求得的结果有异。

《运筹学》全套课件(完整版)

《运筹学》全套课件(完整版)
负指数分布、几何分布、爱尔朗分布等。
服务时间分布
负指数分布、确定型分布、一般分布等。
顾客到达和服务时间的独立性
假设顾客到达和服务时间是相互独立的。
单服务台排队系统
M/M/1排队系统
顾客到达服从泊松分布,服务时间服从负指 数分布,单服务台。
M/D/1排队系统
顾客到达服从泊松分布,服务时间服从确定 型分布,单服务台。
投资组合优化
确定投资组合中各种资产的最 优配置比例,以最大化收益或
最小化风险。
03
整数规划
整数规划问题的数学模型
01
整数规划问题的定 义
整数规划是数学规划的一个分支 ,研究决策变量取整数值的规划 问题。
02
整数规划问题的数 学模型
包括目标函数、约束条件和决策 变量,其中决策变量要求取整数 值。
03
Edmonds-Karp算法
介绍Edmonds-Karp算法的原理、步骤和实现方法,以及其与FordFulkerson算法的比较。
网络最大流问题的应用
列举网络最大流问题在资源分配、任务调度等领域的应用案例。
最小费用流问题
最小费用流问题的基本概 念
介绍最小费用流问题的定义、 分类和应用背景。
Bellman-Ford算法
优点是可以求解较大规模的整数规划问题,缺点是计算量较大,需 要较高的计算精度。
割平面法
割平面法的基本思想
通过添加新的约束条件(割平面)来缩小可行域的范围,从而逼 近最优解。
割平面法的步骤
包括构造割平面、求解子问题和更新割平面三个步骤,通过不断 迭代找到最优解。
割平面法的优缺点
优点是可以处理较复杂的整数规划问题,缺点是构造割平面的难 度较大,需要较高的数学技巧。

运筹学PPT完整版

运筹学PPT完整版
优化炼油程序及产品供应、配送和营销
每年节约成本600万美元 每年节约成本7000万
优化商业用户的电话销售中心选址
控制成本库存(制定最优再定购点和定购 量确保安全库存) 制定最优铁路时刻表并调整铁路日运营量
优化员工安排,以最低成本服务客户
每年节约成本4.06亿美元,销 售额大幅增加 每年节约成本380万美元
s.t

n j1
aij
xj
bi
(i 1,2,,m)
(2)
xj 0, j 1,2,,n (3)
求解线性规划问题,就是从满足约束条件(2)、(3)的方程组 中找出一个解,使目标函数(1)达到最大值。
线性规划问题的数学模型
Page 28
可行解:满足约束条件②、③的解为可行解。所有可行解 的集合为可行域。
(5) 目标函数是最小值,为了化为求最大值,令z′=-z,得到max z′=-z,即当z达到最小值时z′达到最大值,反之亦然;
线性规划问题的数学模型
标准形式如下:
maxZ 2x1 x2 3(x3 x3)0x4 0x5
5x1 x2 (x3 x3) x4 7
1 2
1 0
0 1
r(A)=2,2阶子矩阵有10个,其中基矩阵只有9个,即
5 1
1 1 5 0 1 1
B 1 106 B 2 6 2 B 3 101 B 4 6 0
5 1 1 0
1 1 1 0
1 0
B 5 100 B 6 2 1 B 7 2 0 B 8 6 1 B 9 0 1
线性规划问题的数学模型
Page 17
2. 线性规划的数学模型由三个要素构成 决策变量 Decision variables 目标函数 Objective function 约束条件 Constraints

运筹学PPT完整版

运筹学PPT完整版

C 变量:决策变量和非决策变量
B 约束条件:线性等式或不等式
A 目标函数:求最大值或最小值
非线性规划
目标函数:非线性函数
约束条件:非线性不等式
求解方法:梯度下降法、 牛顿法、拟牛顿法等
应用领域:生产计划、资 源分配、投资决策等
动态规划
基本概念:将复杂问题分解为若干子 0 1 问题,通过求解子问题来解决原问题
运筹学广泛应用于生产、运输、库存、销售、人力 资源等各个领域。
运筹学通过建立数学模型,求解最优解,以实现资 源的合理配置和高效利用。
运筹学的应用领域
生产与运营管理 项目管理 交通与运输规划
供应链管理 财务管理 资源分配与调度
运筹学的发展历程
起源:二战期间, 军事需求推动运 筹学的发展
20世纪50年代: 运筹学逐渐应用 于工业、经济等 领域
适用范围:解决资源分配、路径规划、 02 生产调度等问题
主要步骤:划分阶段、确定状态、建 0 3 立状态转移方程、求解最优解
特点:具有最优子结构性质,能够高 04 效地求解复杂问题
运筹学的实际应 用
生产计划与调度
生产计划:根据市场需求和生产能力制定生产计划, 包括生产数量、生产时间、生产地点等
生产调度:根据生产计划,合理分配生产资源,包 括人员、设备、原材料等
场趋势
运筹学在生物学中 的应用:分析生物 种群数量变化,预
测生物进化趋势
运筹学在工程学中 的应用:优化工程 设计,提高工程效

THANK YOU
汇报人:稻小壳
运筹学与人工智 能的结合,拓展
2 了运筹学的应用
领域
3 运筹学与人工智
能的结合,推动 了运筹学的理论 研究和实践应用

运筹学例题及答案ppt课件

运筹学例题及答案ppt课件

解:a)
1
b
4
0
0
2/3 1/3 0 0 1 2 b 1/3 2/3 0 043
1 1 1 0 0 5 2/3 1/3 0 1 0 2
将其加到表(1)的最终单纯形表的基变量b这一列数 字上得表(2)
(表2)
cj 3 2 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 2 x2 10/3 0 1 2/3 -1/3 0 0 3 x1 1/3 1 0 -1/3 2/3 0 0 0 x5 -2 0 0 -1 1 1 0 0 x6 -4/3 0 0 -2/3 1/3 0 1
5(x1 x2 x3)10x7 6000 7(x4 x5 x6)9x8 12x9 10000
6(x1 x4)8(x7 x8)4000 4(x2 x5)11x9 7000
7(x3 x6)4000
xj 0
对偶理论
1. 已知线性规划问题:
max z 2 x 1 4 x 2 x 3 x 4
cj- zj 0 0 -1/3 -4/3 0 0 1/3
因x2已变化为x/2,故用单纯形法算法将x/2替换出基变 量中的x2,并在下一个表中不再保留x2,得表(9)
表9
cj 3 2 0 0 0 0 cB xB b x1 X’2 x3 x4 x5 x6 4 X’2 1 0 1 1/2 -1/4 0 0 3 x1 3 1 0 -1/2 3/4 0 0 0 x5 3 0 0 -1 1 1 0 0 x6 0 0 0 -1 1/2 0 1
y1 2 y2 y4 2
3
y
1
y2
y3
y4
4
s.t. y3 y4 1
y1
y3
1
y1, y2 , y3 , y4 0

运筹学课件ppt下载

运筹学课件ppt下载

通过具体案例展示线性规划问题 的建模过程,如生产计划、资源 分配等问题。
单纯形法求解过程
单纯形法原理
介绍单纯形法的基本思想、算法步骤和求解 过程。
迭代过程
详细阐述单纯形法的迭代过程,包括入基、 出基、检验数计算等操作。
初始可行解
讲解如何找到一个初始可行解作为算法的起 点。
终止条件
说明单纯形法的终止条件及如何判断最优解 。
存储模型要素
需求、补充、成本、存储策略等。
常见存储模型
经典EOQ模型、动态规划模型、随机存储模 型等。
存储论求解方法及实例分析
求解方法
数学解析法、数值计算法、仿真模拟 法等。
实例分析
以某企业为例,运用存储论优化其库 存管理策略,降低库存成本。
排队论基本概念及模型构建
排队论定义
研究等待线(队列)的数学理论和方法,又称随机服务系统理论。
最短路径问题
通过实例分析最短路径问题 的动态规划解法,如
Dijkstra算法、Floyd算法等 。
1
背包问题
针对不同类型的背包问题, 探讨其动态规划解法及应用
场景。
资源分配问题
研究资源分配问题的动态规 划模型及求解方法,如多阶 段资源分配问题等。
生产与存储问题
分析生产与存储问题的动态 规划解法,讨论其在企业生 产管理中的应用。
整数约束
决策变量需满足整数约束条件,如人员数量、设备台 数等。
目标函数选择
根据问题类型,选择合适的目标函数,如成本最小化 、利润最大化等。
分支定界法求解过程
初始可行解
通过松弛整数约束,得到一个初始可 行解。
分支过程
根据初始可行解,将问题分解为若干 个子问题,分别求解。

运筹学复习ppt课件

运筹学复习ppt课件


bj
3/0
88/5
4/0
6/1
列差 1 111115155 22222828 333332322
4
伏 用伏格尔法寻找初始基:

B1
B2
B3
B4
ai 行差
尔 A1 3 2 5 9 0 10 1 7 9/6 5 252 2
法 A2 0 1 0 3 0 4 5 2 5/0 1 11

A3 0 8 3 4 4 2 0 5 77/3/3/0 2 222 1
max w 4 y1 3 y2
y1 2 y2 2
y1
y2
3
2 y1 3 y2 5
y1
y2
2
3
y1
y2
3
y1 0, y2 0
min z 2 x1 3 x2 5 x3 2 x4 3 x5
x1
x2
2 x3
x4
3 x5
4
2 x1 x2 3 x3 x4 x5 3

bj
3/0
88/5
4/0
6/1
列差 1 1 115 5 2 228 3 332 2
5
得到产销平衡运输问题的一个初始方案.
B1
B2
A1 3 2 5 9
B3
B4
ai
10 1 7 9
A2
1
3
452 5
A3
8 3 442
57
bj
3
8
4
6
可以得到基可行解对应的位势方程组是:
u1 v1 2
u1
v2
9
增加如下割平面,
1 2
1 2
x3
1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

min f (x) 10x1 4x2 5x3
s.t.x3ix1
5x2 4x3 10 0,且为整数(i

1,2,3)
15
三、应用题(共50分) 1、某公司计划新开4家连锁店B1、B2、B3、B4, 并通知了4家建筑公司A1、A2、A3、A4,以便每 家商店都分别由一个建筑公司来承建;设建筑公 司Ai对商店Bj投标的建造费用为Cij万元(见表)。 试求解:对这4家建筑公司如何分配建造任务, 才能使总建造费用最少?所需的建造费用是多少? (15分)
运筹学
Operational Research
运筹学考研试题汇编
1
北京工商大学2004年攻读硕士学位 研究生入学考试试题
考试科目:物流管理与运筹学
第一部分 运筹学(60分)
一、线性规划(每题20分) 设线性规划问题为:min z x1 2x2 x3
2x1 x2 x3 4 s.t. x1 2x2 6
平 均每台每小时造成停工损失为40元。问应聘用哪一种 工人,可使工厂的经济效益较高。
10
杭州商学院2003年硕士研究生入学考试试卷(A
卷)
招生专业:管理科学与工程
考试科目:运筹学
考试时间:3小时
一、填空题(每小题4分,共28分)
1、线性规划行问题的可行域为
,特殊情况下为


2、用单纯形法解线性规划问题时,目标函数中人工变量
13
2、求解0—1规划问题:(15分)
max z 3x1 2x2 5x3
x1 2x2 x3 2
s.t.
x1
4x2 x1 x2
x3 3
4

4x2 x3 6
x1, x2, x3 0或1
14
3、用动态规划方法求解整数规划问题:(15分)

1200 1000

x1, x2, x3, x4 0
(1)求线性规划问题的最优解(20分)
(2)求对偶问题的最优解(5分)
(3)当△b3=-150时最优基是否发生变化?为什么?(5分)
(4)求c2的灵敏度范围(5分) (5)如果x3的系数由[1,3,5]变为[1,3,2],最优基是否改变? 若改变求最优解。(5分)
5
二、已知某运输问题其供销关系及单位运价表如下表所示:
销地 B1
B2
B3
产量
产地
A1
4
2
5
8
A2
3
5
3
7
A3
1
3
2
4
销量 4
8
5
要求:用表上作业法求出最优调运方案。
6
三、(20分)
某市共有6个区,每个区都可以设消防站,市政 府希望设置消防站最少以便节省费用,但必须保 证在城区任何地方发生火灾时消防车能在15分钟 内赶到现场。据实地测定,各区之间消防车行驶 时间如下表所示。建立该问题的规划模型。
4
北京交通大学2005年硕士研究生入学 考试试卷
考试科目:管理运筹学
一、(40分)已知线性规划问题
max z x1 5x2 3x3 4x4
2x1 3x2 x3 2x4 800
s.t.53xx11

4x2 4x2

3x3 5x3

4x4 3x4
月份k 1
购买单价(ck) 销售单价(pk)
10
12
2
9
8
3
11
4
15
13
17
3 3
三、对策论(每题15分)
用图解法求解矩阵对策G={S1,S2,A},其中
A

3 6
4 3
7 2
四、存储论(15分)
某厂按合同每年需提供D个产品,不允许缺货。 假设每一周期工厂需装配费b元,存储费每年每 单位产品为a元,问全年应分几批订货才能使装 配费、存储费两者之和为最少。
x1, x2, x3 0
(1)利用两阶段法求解上述线性规划问题; (2)写出相应的对偶线性规划问题数学模型。
2
二、动态规划(10分)
某商店在未来4个月里,准备利用它的一个仓库来专门经销某种 商品。仓库最大容量能储存这种商品1000单位。假定该仓库每 月只能出卖仓库现有的货。当商店在某月购货时,下月初才能到 货。预测该商品未来四个月的买卖价格如下表所示,假定商品在 1月开始经销时,仓库储有该商品500单位。试问若不计库存费 用,该商店应如何制定1月至4月的订购与销售计划,使预期获 利最大。试用动态规划建立相应的数学模型。

系数为 ,附加变量的系数数为­

3、单纯形法与对偶单纯形法的主要区别在于:迭代过程
中,前者始终保持
的可行性,后者始终保持
的可行性。
4、分支定界法和割平面法的基本思路都是通过在原线性
规划问题中不断
来缩小
,最终得到原问题
的整数最优解。
11
5、目标规划中,d
i

d
i
分别表示
变量;
对于第i个目标约束 ,如果希望
各区之间的行驶时间
一区 二区 三区 四区 五区 六区
一区 0
二区 10 0
三区 16 24 0
四区 28 32 12 0
五区 27 17 27 15 0
六区 20 10 21 25 14 0
7
四、(30分) 某公司有资金10万元,若投资于各项目(i=1, 2,3)的投资额为xi时,收益分别为
g1(x1) 4x1, g2(x2) 9x2, g3(x3) 2x32
fiX
d
i

d
i

bi
fi X ,bi 则目标函数为

6、序贯式算法的核心是序贯地
,即
根据优先级别,将线性目标规划依次求解。
7、动态规划的两种递推方法是

对于给定的问题,如果有固定的

这两种方法会得到相同的最优结果。
。 ,
12
二、计算题(共60分) 1、已知线性规划的数学模型为:(30分)
问如何分配投资数额才能使总投资最大?
8
五、(20分) 求下图所示的网络的最小费用最大流。(每条弧 旁边的数字(bij, cij))
v1 (4,10) ●来自(1,7)vs ●
(2,5) (6,2)
(1,8)


v2 (3,4) v3
vt ●
(2,6)
9
六、(20分) 某厂拟用1名修理工人,已知平均送修的设备数 0.2 台/h,现有两种级别的工人可聘:A级工,其工作能力 为1 0.28 台/小时,工资每小时20元。因设备送修,
min z 3x1 2x2 x3
s.t.
2x1 x1 x2
x3 x3
5
2
xi 0(i 1,2,3)
(1)用两阶段法求该模型的最优解;
(2)用对偶单纯形法求该模型的最优解;
(3)写出对偶问题的数学模型,并求其最优解;
(4)价值系数C3在什么范围内变化可保持最优 解不变?
相关文档
最新文档