《新新练案系列》人教实验版2013-2014学年七年级数学(上)第一章+有理数检测题参考答案

合集下载

新人教版七年级数学上册(全册)同步练习汇总(共23套)

新人教版七年级数学上册(全册)同步练习汇总(共23套)

新人教版七年级数学上册(全册)同步练习汇总(共23套)第一章有理数1.1 正数和负数5分钟训练(预习类训练,可用于课前)1.下面说法中正确的是()A.“向东5米”与“向西10米”不是相反意义的量B.如果气球上升25米记作+25米,那么-15米的意义就是下降-15米C.如果气温下降6 ℃记作-6 ℃,那么+8 ℃的意义就是零上8 ℃D.若将高1米设为标准0,高1.20米记作+0.20,那么-0.05所表示的高是0.95米思路解析:弄清具有相反意义的量的含义,如东与西,升与降,高与低等语意答案:D(1)如果零上5 ℃记为+5 ℃,那么-9 ℃表示的意义是___________;(2)高出海平面129米记为+129米,那么-45米表示的是__________;(3)某仓库运出货物40千克记为-40千克,那么运进21千克货物应记为___________;(4)如果下降5米记为-5米,那么上升4米应记为__________;(5)某钢厂增产14吨钢记为+14吨,那么减产3吨应记为____________.思路解析:(1)零上 5 ℃规定为+5 ℃,即“+”号表示“零上”,那么与它相反意义的量“零下”就规定为“-”.本题里的各小题中的“零上、上升、高出、运进、增产”等表示的量均为正数,与它们意义相反的量则都用负数表示.(4)本小题的“-”号表示“下降”,因此,“上升”应记为“+”,也就是说,具有相反意义的两个量,把其中的一个规定为正时,那么另一个即为负.答案:(1)零下9 ℃ (2)低于海平面45米 (3)+21千克 (4)+4米 (5)-3吨10分钟训练(强化类训练,可用于课中)1.如果水库的水位高于正常水位2 m时,记作+2 m,那么低于正常水位3 m时,应记作…()A.+3 mB.-3 mC.+13m D.-13m思路解析:注意规定“正、负”的相对性.对于具有相反意义的量,如节约用水为正,那么浪费用水为负;反过来,节约用水为负,那么浪费用水为正.答案:B2.在下列横线上填上适当的词,使前后构成具有相反意义的量.(1)收入5 000元,_______2 000元;(2)向南走5千米,向_______走3千米;(3)_______2万元,盈利212万元;(4)_______9.5吨,运出12吨.思路解析:本例题考查具有相反意义的量,这些相反意义的量与现实生活紧密相连,必须掌握常见的表示具有相反意义的名词术语.答案:(1)支出(2)北(3)亏损(4)运进3.高于海平面50 m记作_______,低于海平面30 m记作_______,海平面的高度记作________. 思路解析:通常情况下,我们把海平面的高度看作0 m,高于海平面记作“+”,低于海平面记作“-”.答案:+50 m -30 m 0 m4.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出 4 000千米,记作_________;(2)球赛时,如果胜2局记作+2,那么-2表示_________;(3)若-4万元表示亏损4万元,那么盈余3万元记作________;(4)+150米表示高出海平面150米,低于海平面200米应记作_________.思路解析:注意“+”“-”号使用的相对性,如向东记作“+”,则向西记作“-”,反之亦然. 答案:(1)-4 000千米 (2)输2局 (3)+3万元 (4)-200米5.在-1.2,23,-0.10,π,0,-(-1),3中,非负数共有_________个.思路解析:非负数就是大于或等于零的数.快乐时光寄信有一天,父亲让8岁的儿子去寄一封信,儿子已经拿着信跑了,父亲才想起信封上没写地址和收信人的名字.儿子回来后,父亲问他:“你把信丢进邮筒了吗?”“当然.”“你没看见信封上没有写地址和收信人的名字吗?”“我当然看见信封上什么也没写.”“那你为什么不拿回来呢?”“我还以为您不写地址和收信人,是为了不想让我知道您把信寄给谁呢!”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)0是自然数,也是偶数;()(2)0可以看成是正数,也可以看成是负数;()(3)海拔-155米表示比海平面低155米;()(4)如果盈利1 000元,记作+1 000元,那么亏损200元就可记作-200元;()(5)如果向南走记为正,那么-10米表示向北走-10米;()(6)温度0 ℃就是没有温度.()思路解析:根据具有相反意义的含义来判断.答案:(1)√(2)×(3)√(4)√(5)×(6)×2.今年我省元月份某一天的天气预报中,延安市最低气温为-6 ℃,西安市最低气温为2 ℃.这一天延安市的气温比西安市的气温低()A.8 ℃B.-8 ℃C.6 ℃D.2 ℃思路解析:在这里考查对正、负数的理解一个比0 ℃要低6 ℃,而另一个比0 ℃要高出2 ℃,故这一天延安市的气温比西安市的气温低8 ℃.答案:A3.用正数和负数表示下列具有相反意义的量.(1)温度上升5 ℃和温度下降7 ℃;(2)向东6米和向西10米;(3)球赛时,如果胜一场得1分,败一场扣1分;(4)海平面以上200米和海平面以下30米.思路解析:习惯规定上升、向东、得分、高出等记作正.答案:(1)+5 ℃和-7 ℃(2)+6米和-10米(3)+1和-1 (4)+200米和-30米4.填空:(1)如果零上3 ℃记作+3 ℃,那么-7 ℃表示的意义是____________;(2)某钢厂增产150吨钢记作+150吨,那么减产30吨记作____________;(3)如果前进5千米记作+5千米,那么后退16千米记作_____________;(4)支出100元记作-100元,那么+1 000元表示的意义是_____________.思路解析:利用相反意义的量来解决实际问题.答案:(1)零下7 ℃(2)-30吨(3)-16千米(4)收入1 000元5.把下列各数填在相应的集合内:15,-6,+2,-0.9,12,0,0.23,-113,14.正数集合{____________…};负数集合{____________…};正分数集合{____________…};负分数集合{____________…}思路解析:此题主要考查你对数的分类能力.正数包括正整数和正分数;负数包括负整数和负分数;正分数包括正分数本身外,还有正的小数;同样,负的小数也属于负分数;另外,填整数集合时,不要漏掉“0”.填集合时通常最后要加省略号.答案:正数集合{15,+2,12,0.23,14,…};负数集合{-6,-0.9,-113,…};正分数集合{12,0.23,14,…};负分数集合{-0.9,-113,…}6.桌上放着8只茶杯,全部杯口朝上,每次翻转其中4个,只要翻转两次,就可以把它们全都翻成杯口朝下.如果将问题中的8只茶杯改为6只,每次仍然翻转其中的4只,能否经过若干次翻转把它们全部翻成杯口朝下?请你动手试验一下.提示:用+1表示杯口朝上,-1表示杯口朝下,请填出翻转次数及过程:初始状态 +1,+1,+1,+1,+1,+1.第一次翻转-1,-1,-1,-1,______,__________________ ______________________________________________ ______________________________________……答案:答案不唯一6只茶杯:翻转三次可以全部翻成杯口朝下.第一次翻转为-1,-1,-1,-1,+1,+1;第二次翻转为-1,+1,+1,+1,-1,+1;第三次翻转为-1,-1,-1,-1,-1,-1.1.2 有理数1.2.1 有理数5分钟训练(预习类训练,可用于课前)1.如果向东走8千米记作+8千米,向西走5千米记作-5千米,那么下列各数分别表示什么?(1)+4千米;(2)-3.5千米;(3)0千米.思路解析:根据具有相反意义的量的含义简述它的实际意义.答案:(1)+4千米表示向东走4千米;(2)-35千米表示向西走35千米;(3)0千米表示原地未动2.___________既不是正数,也不是分数,但它是整数.思路解析:0是中性数,是正、负数的分界点答案:03.有限小数和无限循环小数都可以化成________数,因此,它们都是__________数.思路解析:能用分数表示的数是有理数答案:分有理10分钟训练(强化类训练,可用于课中)1.正整数、正分数构成________集合;负整数、负分数构成________集合;________,________,_______构成整数集合,__________,__________构成分数集合.思路解析:根据数的分类来判别.答案:正数负数正整数(自然数) 0 负整数正分数负分数2.任意写出6个符合要求的数,分别把它填在相应的大括号里.正数集合{_____________…};负数集合{____________…};整数集合{____________…};正分数集合{_____________…};负分数集合{____________…};分数集合{___________…};有理数集合{_____________…}.思路解析:这是一道开放性题,根据数的分类来作.答案:略3.问答题(1)0是整数吗?是正数吗?是有理数吗?(2)-5是整数吗?是负数吗?是有理数吗?(3)自然数是整数吗?是正数吗?是有理数吗?思路解析:重点区别有理数、整数、正整数概念.答案:(1)是,不是,不是(2)是,是,是(3)是,是,是4.把下列各数填入相应的集合中:+3,-413,-(+1.9),3.14••51,0,-1998,+123.正数集合{__________________________…};负数集合{__________________________…};整数集合{__________________________…};分数集合{__________________________…};有理数集合{___________________________…}.思路解析:(1)把一些数看成一个整体,那么这个整体就叫做这些数的集合.其中每一个数叫做这个集合的一个元素.(2)要分清有理数的不同的分类标准.答案:正数集合{+3,3.1415,+123,…};负数集合{-413,-(+19),-1998,…};整数集合{+3,0,-1998,+123,…};分数集合{-413,-(+1.9),3.1415,…};有理数集合{+3,-413,-(+1.9),3.1415,0,-1998,+123,…}快乐时光作文课,老师要求同学们每人写篇介绍某种家用电器使用方法的小文章,看谁写得又快又好.同学们正在思考怎样写的时候,平平举手说他已写好了.老师惊奇地对平平说:“请你读一下你的文章.”平平大声读:“你想知道电视机的使用方法吗?请你认真、仔细地看一看说明书,那上面写清楚了使用方法.”30分钟训练(巩固类训练,可用于课后)1.判断题:(1)整数又叫自然数;()(2)正数和负数统称为有理数;()(3)向东走-20米,就是向西走20米;()(4)非负数就是正数,非正数就是负数. ()思路解析:由数的分类及相反意义的量来判断.答案:(1)×(2)×(3)√(4)×2.填空:整数和分数统称为__________;整数包括_________、__________和零,分数包括________和__________.思路解析:正、负数的出现,整数和分数的分类有了区别.答案:有理数正整数负整数正分数负分数3.-100不是()A.有理数B.自然数C.整数D.负有理数思路解析:根据数的分类及有关概念的区别来判断.答案:B4.在下列适当的空格里打上“√”号.有理数整数分数正整数负分数自然数2-3.14-5 8思路解析:根据数的分类来判别.答案:有理数整数分数正整数负分数自然数2 √√√√-3.14 √√√0 √√√-58√√√5.把下列各数分别填在相应的大括号里1.8,-42,+0.01,-512,0,-3.1415926,1112,1整数集合{_________________…};分数集合{_________________…};正数集合{_________________…};负数集合{_________________…}; 自然数集合{___________________…}; 非负数集合{___________________…}思路解析:利用集合的意义来判别数的分类. 答案:整数集合{-42,0,1,…};分数集合{1.8,+0.01,-512,-3.1415926,1112,…}; 正数集合{1.8,+0.01,1112,1,…};负数集合{-42,-512,-3.1415926,…};自然数集合{0,1,…};非负数集合{1.8,+0.01,0,1112,1,…} 6.计算:13+16+110+115+121+128+136+145.思路解析:若通分相加,本题难以计算,仔细观察各分母,可发现能写成13+123⨯+125⨯+111113537474959++++⨯⨯⨯⨯⨯,而每两个顺次相加可得11111111111(1)()()()32523734945+++++++,进一步可得1111261220+++,又可分成1111111(1)()()()2233445-+++-+-,最后算出结果.解:(1)1111111136101521283645+++++++=11111111323253537474959+++++++⨯⨯⨯⨯⨯⨯⨯ =131517193256712920⨯⨯⨯⨯⨯+⨯ =1111261220+++ =111112233445+++⨯⨯⨯⨯ =1111111(1)()()()2233445-+-+-+-=14155-=1.2.2 数轴5分钟训练(预习类训练,可用于课前) 1.判断题: (1)直线就是数轴; ( ) (2)数轴是直线; ( ) (3)任何一个有理数都可以用数轴上的点来表示; ( )(4)数轴上到原点距离等于3的点所表示的数是+3. ()思路解析:规定了原点、单位长度、正方向的直线才是数轴,所以,直线不一定是数轴,而数轴必是直线任何有理数都可以用数轴上的点表示.答案:(1)×(2)√( 3)√(4)×2.下列各图中,表示数轴的是()思路解析:数轴的三要素——原点、正方向、单位长度是缺一不可的,所以应当用这三要素检查每个图形,判断是否画的正确.答案:D3.在下面数轴上,A,H,D,E,O各点分别表示什么数?解析:判断数轴上的点表示的数,首先看该点在原点的右边还是左边,判断正负;再看该点与原点的距离,判断数量答案:4,-1,-3,2,010分钟训练(强化类训练,可用于课中)1.数轴的三要素是________,________和_________.答案:原点正方向单位长度2.下面说法中错误的是()A.数轴上原点的位置是任意取的,不一定要居中B.数轴上单位长度的大小要根据实际需要选取.1厘米长的线段可以代表1个单位长度,也可以代表2个、5个、10个、100个…单位长度,但一经取定,就不可改动C.如果a<b,那么在数轴上表示a的点比表示b的点距离原点更近D.所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数思路解析:根据定义可知A、B正确;对D,我们知道数轴上的点还可以表示无限不循环小数(无理数),故D 正确对C,我们可举反例,如-100<2,但表示2的点距原点更近.答案:C3.指出数轴上A、B、C、D、E各点分别表示什么数.思路解析:在数轴上的每一个数都表示一个数,注意刻度数的意义.答案:O表示0,A表示-223,B表示1,C表示314,D表示-4,E表示-0.5.4.画一条数轴,并画出表示下列各数的点.212,-5,0,+3.2,-1.4.思路解析:第一步画数轴,第二步在数轴上找出相对应的点,每个正有理数都可用数轴上原点右边的一个点来表示,每一个负有理数都可用数轴上原点左边的一个点来表示答案:快乐时光借力爱迪生在住所搞了不少实用发明.有个朋友来看他,推门时十分费力,推了好几下才进去.客人向爱迪生抱怨:“你这门也太紧了,竟使我出了一身汗.”“谢谢,你有力的推门已经给我屋顶上的水箱压进了几十升水.”爱迪生高兴地说. 30分钟训练(巩固类训练,可用于课后)1.以下四个数,分别是数轴上A、B、C、D四个点可表示的数,其中数写错的是()A.-3.5B.-123C.0D.113思路解析:显然,从数轴上看,B点表示-113.答案:B2.下列各语句中,错误的是()A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度1的长度的确定,可根据需要任意选取D.数轴上,与原点的距离等于36.8的点有两个思路解析:根据数轴的意义来判断.答案:B3.一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动7个单位长度,这时点所对应的数是()A.3B.1C.-2D.-4思路解析:根据题意,实际是从原点开始向左移动了4个单位长度,即该点为-4.答案:D4.下列所画数轴对不对?如果不对,指出错在哪里?思路解析:根据数轴定义判断答案:①缺原点,②缺正方向,③数轴不是射线而是直线,④缺单位长度,⑥提醒学生注意在同一数轴上必须用同一单位长度进行度量.⑤⑦是数轴,同时⑦为学习平面直角坐标系打基础.5.(1)在数轴上距原点3个单位长度的点表示的数是_________.(2)在数轴上表示-6的点在原点的_________侧,距离原点________个单位长度,表示+6的点在原点的________侧,距离原点_________个单位长度.思路解析:根据数轴的意义判断,注意原点左、右的数到原点的距离.答案:(1)±3 (2)左 6 右 66.(1)在数轴上表示出距离原点3个单位长度和4.5个单位长度的点,并用“<”号将这些点所表示的数排列起来;(2)写出比-4大但不大于2的所有整数.思路解析:(1)在数轴上,距离原点3个单位长度和4.5个单位长度的点各有两个,它们分别在原点两旁且关于原点对称.画出这些点,这些点所表示的数的大小就排列出来了 (2)在数轴上画出大于-4但不大于2的数的范围,这个范围内整数点所表示的整数就是所求.“不大于2”的意思是小于或等于2. 答案:(1)由图看出:-4.5<-3<3<4.5.(2)在数轴上画出大于-4但不大于2的数的范围.由图知,大于-4但不大于2的整数是:-3,-2,-1,0,1,2. 7.比较下列各组数的大小: (1)-536与0; (2)31000与0; (3)0.2%与-21; (4)-18.4与-18.5.思路解析:依据“正数都大于0,负数都小于0;正数大于一切负数”和“在数轴上表示的两个数,右边的数总比左边的数大”,比较两个数的大小. 答案:(1)-536<0; (2)31000 >0;(3)0.2%>-21; (4)-18.4>-18.5.1.2.3 相反数5分钟训练(预习类训练,可用于课前) 1.判断: (1)-5是5的相反数; ( ) (2)5是-5的相反数; ( ) (3)12与-12互为相反数; ( ) (4)-5是相反数. ( ) 思路解析:只有符号不同的两个数,我们说,其中一个是另一个的相反数.0的相反数是0,注意相反数总是相对于另一个数来说的. 答案:(1)√ (2)√ (3)√ (4)× 2.下列几对数中互为相反数的是( )A.-(-8)和-(+8)B.-(+8)与+(-8)C.-(-8)与+(-8) 思路解析:本题关键是判断两个数的符号. 答案:AC 3.填空:(1)-(+4)是_________的相反数,-(+4)=__________; (2)-(+15)是的相反数,-(+15)=________. 思路解析:根据相反数的定义判断.答案:(1)+4,-4 (2)+1/5,-1/54.5的相反数是________;a的相反数是________;a-b的相反数是_________.思路解析:根据相反数的定义判断.答案:-5 -a b-a10分钟训练 (强化类训练,可用于课中)1. 填空:(1)0是_______的相反数,-1.8与_________互为相反数;(2)-1.6是_________的相反数,________的相反数是0.3.思路解析:根据相反数的定义填空答案:(1)0 1.8 (2)1.6 -0.32.判断题:(1)-a是负数;()(2)一个负数的相反数一定比它本身大. ()思路解析:(1)若a是负数,则-a为正数.(2)负数的相反数一定是正数.答案:(1)×(2)√3.-2的相反数是()A.-2B.2C.-12D.12答案:B4.如果2(x+3)的值与3(1-x)的值互为相反数,那么x等于()A.-8B.8C.-9D.9思路解析:由于还没有学过解方程,我们可以从选项入手,代值验证,当x=9时,2(x+3)=24,3(1-x)=-24.它们互为相反数答案:D5.下列各式中,化简正确的是()A. -[+(-7)]=-7B. +[-(+7)]=7C. -[-(+7)]=7D. -[-(-7)]=7思路解析:事实上,去括号时同号为正,异号为负.答案:C6.根据相反数的意义,化简下列各数:(1)-(-48); (2) -[-(-91)].解:(1)-(-48)=48;(2) -[-(-91)]=-(+91)=-91快乐时光足球的贡献记者问俄可拉荷马大学足球教练布得认为足球对体育锻炼有哪些贡献.“绝对没有”布得立即回答.“绝对没有?”吃惊的记者问,“为什么?”“足球是22个需要休息的人在场上拼命地跑,而四万个需要运动的人却坐在那里看.”30分钟训练(巩固类训练,可用于课后)1.下面说法中正确的是()A.23和32互为相反数 B.18和-0.125互为相反数C.-a的相反数是正数D.两个表示相反意义的数是相反数思路解析:根据相反数的定义判断2/3与3/2不考虑符号,其数值也不相同,不是相反数;-0.125可化为-1/8,与1/8互为相反数;-a的符号要由a的正负确定,故错;表示相反意义不一定是相反数,如向东走10 m和向西走5 m分别表示为+10和-5.答案:B2.如果a与-2互为相反数,那么a等于()A.-2B.2C.-12D.12思路解析:由于-2的相反数为2,所以a等于2.答案:B3.(1)-1.6是_______的相反数,_______的相反数是-0.2.(2)13与_______互为相反数,13与_______互为倒数.思路解析:根据相反数的定义判断,区别相反数与倒数.答案:(1)1.6 0.2(2)-1/3 34.若a=-13,则-a=_______;若-a=-6,则a=________.思路解析:若a=-13,则-a=-(-13)=13;若-a=-6,则a为-6的相反数,即为6.答案:13 65.若a是负数,则-a是________数;若-a是负数,则a是_________数.思路解析:根据相反数的定义判断.答案:正正6.在数轴上标出2,-4.5,0各数与它们的相反数.思路解析:先求出它们的相反数,再画数轴表示.答案:7.化简下列各数:(1)-[-(-5)]; (2)-[-(+5)];(3)-(-m); (4)+(-a);(5)-(a-b); (6)-(a+b).思路解析:(1) -[-(-5)]=-(+5)=-5;(2)-[-(+5)]=-(-5)=+5;(3)-(-m)=m;(4)+(-a)=-a;(5)-(a-b)=-a+b=b-a;(6)-(a+b)=-a-b.答案:-5 5 m -a b-a -a-b8.有理数a、b在数轴上的位置如图:将a,-a,b,-b,1,-1用“<”号排列出来.思路解析:由图看出,a>1,-1<b<0,|b|<1<|a|.-a,-b分别是a和b的相反数,数轴上表示a和-a,b和-b的点都关于原点对称,它们到原点的距离分别相等,用这个性质在数轴上画出表示-a ,-b 的点,它们的大小也就排列出来了. 答案:在数轴上画出表示-a 、-b 的点:由图看出:-a <-1<b <-b <1<a.9.(拓展题)12a 小于a 吗?2a 大于a 吗?a 2一定大于(-a 2)吗?-a 3一定小于a 3吗?(a-b)与(b-a)谁大谁小? 思路解析:为了要正确回答这类问题,必须搞清0与a 的大小关系,这并不难,实际上,(-a)的意义是a 的相反数.只要把a 划分为正数,零,负数三个范围,分别比较大小,就能得出正确结论,即(),(),().a a a a a a <⎧⎪-=⎨⎪>⎩是整数等于零是负数 答案:(1)(),1(),2().a a a a a a <⎧⎪==⎨⎪>⎩是正数0是负数(2)(),2(),().a a a a a a >⎧⎪=⎨⎪<⎩是正数=0是负数(3)222(,),(0).a a a a a a ⎧>-⎪⎨=-=⎪⎩是正数或是负数 (4) 3333(),(),().a a a a a a ⎧<⎪-=⎨⎪>⎩是正数=0是负数(5)(),(),().b a a b b a a b b a a >-⎧⎪-=-=⎨⎪<-⎩a>b <b1.2.4 绝对值5分钟训练(预习类训练,可用于课前) 1.判断题: (1)数a 的绝对值就是数轴上表示数a 的点与原点的距离; ( ) (2)负数没有绝对值; ( ) (3)绝对值最小的数是0; ( ) (4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大; ( ) (5)如果数a 的绝对值等于a ,那么a 一定是正数. ( ) 思路解析:(2)负数的绝对值为它的相反数.(4)可举反例如:-100的绝对值比5的绝对值大,但-100小于5.(5)还可能是0.答案:(1)√ 2)×(3)√(4)×(5)×2.填表:答案3.-3的绝对值是在_______上表示-3的点到________的距离,-3的绝对值是_________. 思路解析:根据绝对值的几何意义解题.答案:数轴原点 34.绝对值是3的数有_______个,各是________;绝对值是2.7的数有_______个,各是________;绝对值是0的数有________个,是________;绝对值是-2的数有没有?________.思路解析:根据绝对值的意义来解.答案:两±3 两±2.7 1 0 没有10分钟训练(强化类训练,可用于课中)1. (1)若|a|=0,则a=_______;(2)若|a|=2,则a=________.思路解析:根据绝对值的定义来解.答案:(1)0 (2)±22.如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m思路解析:可通过特例解答,如5>0,-6<0,5<|-6|,则-m=-5,-n=6,它们的大小关系是6>5>-5>-6,即-n>m>-m>n.答案:A3.判断题:(1)两个有理数比较大小,绝对值大的反而小; ()(2)-3.14>4; ()(3)有理数中没有最小的数; ()(4)若|x|>|y|,则x>y; ()(5)若|x|=3,-x>0则x=-3. ()思路解析:(1)若都为负数时,才有绝对值大的反而小;(2)先利用符号判断,若同号,再判断绝对值大小.显然,-3.14<4;(3)如在负数中,没有最小的数,而正数大于零,大于负数;(4)举反例,|-5|>|-4|,而-5<-4;(5)由|x|=3可知,x=±3,又-x>0,则x必为负数,故x=-3.答案:(1)×(2)×(3)√(4)×(5)√4.填空题:(1)|-112|________;(2)-(-7)________;(3)-|-7|________;(4)+|-2|_______;(5)若|x|=3,则x_________;(6)|3-π|=_______. 思路解析:由绝对值定义来解,注意绝对值外面的负号.答案:(1)112(2)7 (3)-7 (4)2 (5)3或-3 (6)π-35.把四个数-2.371,-2.37%,-2.3·7·和-2.37用“<”号连接起来.思路解析:这里都是负数,利用绝对值大的反而小来判别,另外要注意循环小数和百分数的意义.答案:-2.37<-2.371<-2.37<-2.37%快乐时光女老师竭力向孩子们证明,学习好功课的重要性.她说:“牛顿坐在树下,眼睛盯着树在思考,这时,有一个苹果落在他的头上,于是他发明了万有引力定律,你们想想看,做一位伟大的科学家多么好,多么神气啊,要想做到这一点,就必须好好学习.”班上一个调皮鬼对此并不满意.他说:“兴许是这样,可是,假如他坐在学校里,埋头书本,那他就什么也发现不了啦.”30分钟训练(巩固类训练,可用于课后)1.比较大小:(1)-2_______5,|-72|_______|+38|,-0.01________-1;(2)-45和-56(要有过程).思路解析:(1)正数大于负数,则-2<5;|-27|=27=1656,|+38|=38=2156,∴|-72|<|+38|;两个负数,绝对值大的反而小,|-1|=1,|-0.01|=0.01,而0.01<1,∴-0.01>-1(2)-45=-0.8,-56=-0.83,-0.8离原点近,∴-0.8>-0.83即-45>-56.答案:(1)<<>(2)>2.写出绝对值不大于4的所有整数,并把它们表示在数轴上.思路解析:不大于就是小于或等于.答案:±1,±2,±3,±4,0.3.填空:(1)若|a|=6,则a=_______;(2)若|-b|=0.87,则b=_______;(3)若|-1c|=49,则c=_______;(4)若x+|x|=0,则x是数________.思路解析:(1) a=±6;(2)|-b|=|b|=0. 87,∴b=±0.87;(3)|-1c|=49,∴1c=±49,c=±214;(4) x是非正数.答案:(1)±6 (2)±0.87 (3)±214(4)非正4.求下列各数的绝对值:(1)-38; (2)0.15;(3)a(a<0); (4)3b(b>0);(5)a-2(a<2); (6)a-b.思路解析:欲求一个数的绝对值,关键是确定绝对值符号内的这个数是正数还是负数,然后根据绝对值的代数定义去掉绝对值符号(6)题没有给出a与b的大小关系,所以要进行分类讨论.解:(1)|-38|=38(2)|+0.15|=0.15(3)∵a<0,∴|a|=-a(4)∵b>0,∴3b>0,|3b|=3b(5)∵a<2,∴a-2<0,|a-2|=-(a-2)=2-a(6)(), ||0(),().a b a ba b a bb a a b->⎧⎪-==⎨⎪-<⎩5.判断下列各式是否正确:(1)|-a|=|a|;()(2)||||a aa a=(a≠0); ()(3)若|a|=|b|,则a=b;()(4)若a=b,则|a|=|b|;()(5)若a>b,则|a|>|b|;()(6)若a>b,则|b-a|=a-b. ()思路解析:判断上述各小题正确与否的依据是绝对值的定义,所以思维应集中到用绝对值的定义来判断每一个结论的正确性.判断(或证明)一个结论是错误的,只要能举出反例即可.如第(1)小题中取a=1,则|a|=|1|=1,|-a|=|-1|=1,所以-|a|=|-a|.答案:(1)√ (2)√ (3)× (4)√ (5)×(6)√6.有理数m,n在数轴上的位置如图,比较大小:-m______-n,1m_______1n.思路解析:取特殊值验得:由图知,m、n都是小于0而大于-1的数,取m=-23,n=-13∴-m=23>-n=13,而1m=-32,1n=-3,∵-32>-3,∴1m>1n.答案:>>7.若|x-1| =0,则x=_______,若|1-x |=1,则x=_________.思路解析:零的绝对值只有一个零,即x-1=0;一个正数的绝对值有两个数,∴1-x=±1. 答案:-1 0或21.3 有理数的加减法1.3.1 有理数的加法5分钟训练(预习类训练,可用于课前)1.有理数的加法法则.(1)同号两数相加,取相同的______,并把绝对值______;(2)绝对值不相等的异号两数相加,取绝对值的加数的符号,并用较大的绝对值减去______的绝对值;(3)互为相反数的两个数相加得_______;(4)一个数同零相加仍得________.思路解析:法则有同号、异号、零三种情况分别运算.答案:(1)符号相加(2)较大较小(3)0(4)这个数本身2.小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.思路解析:利用运算法,把数的加法、进行分类运算、简化计算.答案:(1)相加(2)整数(3)相反数(4)同分母分数3.计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.思路解析:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.答案:(1)-9 (2)52 (3)-416(4)-2007200610分钟训练(强化类训练,可用于课中)1.判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()思路解析:(1)异号两数相加,当正数的绝对值较大时,和也是正数.(2)异号两数相加时,和的绝对值等于这两数绝对值之差.(4)当两个加数中有一个负数或0时,它们的和必小于或等于另一个加数.答案:(1)×(2)×(3)√(4)×(5)√2. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).思路解析:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算答案:(1)-5/9 (2)-0.01 (3)0 (4)-43. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).思路解析:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.解:(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=44.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87. 思路解析:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.答案:原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7995.8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元? 思路解析:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).答案: 8袋大米总共重404千克,这8袋大米值767.6元.快乐时光鲍比十分淘气,整天缠着妈妈不是要这,就是要那,嘴里也不停地叫着:“妈妈,妈妈!”有一次,妈妈被吵得不耐烦了,就对鲍比说:“你再叫一声‘妈妈’,我就把你扔出去!”鲍比不再做声了.过了一会儿,妈妈把他抱到床上睡觉,鲍比又开口道:“太太,我能喝点饮料吗?”30分钟训练(巩固类训练,可用于课后)1.计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).思路解析:应根据数字的特征,利用加法的交换律来解之.解:(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.2.计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).思路解析:先进行合理分组.即同分母的数分为一组. 答案:(1)-10 (2)-23.要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.思路解析:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. 答案:(1)x=7 (2)x=8 (3)x=04.某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?。

2014年 七年级数学上册同步教案--有理数+同步练习60页

2014年 七年级数学上册同步教案--有理数+同步练习60页

①零是整数;②零是有理数;③零是自然数;④零是正数;⑤零是负数;⑥零是非负数。 A.①②③⑥ B.①②⑥ C.①②③ D.②③⑥
6.下列说法中,错误的有( ) 4 ① - 2 是负分数;②1.5 不是整数;③非负有理数不包括 0;④整数和分数统称为有理数;⑤0 是最 7 小的有理数;⑥-1 是最小的负整数。 A.1 个 B.2 个 C.3 个 D.4 个 7.若字母 a 表示任意一个数,则-a 表示的数是( ) A.正数 B.负数 C.0 D.以上情况都有可能 8.下列有正数和负数表示相反意义的量,其中正确的是( ) A.一天凌晨的气温是—50C,中午比凌晨上升 100C,所以中午的气温是+100C B.如果生产成本增加 12%,记作+12%,那么—12%表示生产成本降低 12% C.如果+5.2 米表示比海平面高 5.2 米,那么—6 米表示比海平面低—6 米 D.如果收入增加 10 元记作+10 元,那么—8 表示支出减少 8 元 9.欢欢发烧了,妈妈带她去看医生,结果测量出体温是 39.2℃ ,用了退烧药后,以每 15 分钟下降 0. 2℃的 速度退烧,则两小时后,欢欢的体温是( ) ℃。 A.38.2 B.37.2 C.38.6 D.37.6 10.下列各数-5,
例 9.在数轴上有三个点 A、B、C 如图所示,请回答: (1)把点 A 向右移动 7 个单位后,A、B、C 三个点表示的数那个最小,是多少? (2)把 B 点向左移动 5 个单位后,这是 A 点所表示的数比 B 所表示的数大多少? (3)如果让 A 表示的数最大,则 A 点应该怎样移动,至少移动几个单位?
第一章 有理数 第 01 课 正数 负数与数轴
知识点: 相反意义的量:一般地,对于具有 ,把其中 规定为正的,用过去学过的数 来表示;把与它 规定为负的,用过去学过的数(零除外)前面放一个“-” (读作“负” ) 号来表示。 正数与负数定义:为了表示具有相反意义的量,上面我们引进了-5,-2,-237,-0.7 等数。像这样的一 些新数,叫做负数。过去学过的那些数(零除外) ,如 10,3,500,1.2 等,叫做正数。正数前面有时也 可放一个“+” (读作“正” ) ,如 5 可以写成+5。注意:零既不是正数,也不是负数。 有理数定义: 无理数定义: 有理数分类:

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)

人教版初中七年级数学上册第一章《有理数》经典练习(含答案解析)(4)一、选择题1.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112C .12D .-112A 解析:A 【分析】逐一求出三个数的绝对值,代入原式即可求解. 【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A . 【点睛】本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.2.(0分)某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( ) A .B 处比A 处高 B .A 处比B 处高 C .A ,B 两处一样高 D .无法确定B解析:B 【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高. 【详解】 根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+ =A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0 ∴A B h h >【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.3.(0分)有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C 【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可. 【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确; 而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误; 故选C . 【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.(0分)已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .2C解析:C 【解析】 【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案. 【详解】 ∵n 为正整数, ∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0 故选C. 【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 5.(0分)若21(3)0a b -++=,则b a -=( ) A .-412B .-212C .-4D .1C解析:C 【解析】 【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是()A.(-3.4)3<(-3.4)4<(-3.4)5B.(-3.4)5<(-3.4)4<(-3.4)3C.(-3.4)5<(-3.4)3<(-3.4)4D.(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(0分)若|a|=1,|b|=4,且ab<0,则a+b的值为()A.3±B.3-C.3 D.5± A解析:A【分析】通过ab<0可得a、b异号,再由|a|=1,|b|=4,可得a=1,b=﹣4或者a=﹣1,b=4;就可以得到a+b的值【详解】解:∵|a|=1,|b|=4,∴a=±1,b=±4,∵ab<0,∴a+b=1-4=-3或a+b=-1+4=3,故选A.【点睛】本题主要考查了绝对值的运算,先根据题意确定绝对值符号中数的正负再计算结果,比较简单.9.(0分)一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10D解析:D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.10.(0分)当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.二、填空题11.(0分)大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.12.(0分)小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.13.(0分)把35.89543精确到百分位所得到的近似数为________.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.14.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.++-+++-++++-=_____.【分析】15.(0分)计算:(1)(2)(3)(4)(2019)(2020)第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.16.(0分)分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0 【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解. 【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=; 当输入2-时,输出的结果为24(3)524350-+---=-++-=. 故答案为:①1;②0 【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 17.(0分)阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__; (2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.a7am+n36【分析】(1)根据题意乘方的意义7个a 相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n =xm•xn 即解析:a 7 a m+n 36 【分析】(1)根据题意,乘方的意义,7个a 相乘可以写成a 7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决; (3)运用以上的结论,可以知道:x m+n =x m •x n ,即可解决问题. 【详解】解:(1)根据材料规律可得a 3•a 4=(a•a•a )•(a•a•a•a )=a 7;(2)归纳、概括:a m •a n=mna a a a ⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n ; (3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =x m •x n =4×9=36.故答案为:a 7,a m+n ,36. 【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,20.(0分)在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.三、解答题21.(0分)在数轴上,一只蚂蚁从原点O出发,它先向左爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,最后向左爬了9个单位长度到达点C.(1)写出A,B,C三点表示的数;(2)根据点C在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A,B,C三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A点表示的数是0-2=-2,B点表示的数是-2+3=1,C点表示的数是1-9=-8;(2)∵O点表示的数是0;C点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.22.(0分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置; (2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10| =5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米. 【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.23.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯-解析:(1)-29;(2)13. 【分析】(1)利用乘法分配律进行简便运算,即可得出结果; (2)先计算有理数的乘方与乘法,再进行加减运算即可. 【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭37(1242424)812=-⨯-⨯+⨯(24914)=--+29=-;(2)431(2)2(3)----⨯- 1(8)(6)=----- 186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键. 24.(0分)计算: (1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-.解析:(1)36-;(2)26. 【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.25.(0分)计算:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭(2)()()1178245122-÷-⨯--⨯+÷ 解析:(1)9;(2)34【分析】 (1)根据绝对值的性质、乘法分配律计算各项,即可求解;(2)先算乘除,再算加减,即可求解.【详解】解:(1)()21112424248⎛⎫-+--+⨯- ⎪⎝⎭ ()()()11144242424248=-+-⨯-+⨯--⨯- 01263=+-+9=;(2)()()1178245122-÷-⨯--⨯+÷ ()()1174204+=----34=. 【点睛】本题考查有理数的混合运算,掌握有理数的运算法则是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭ 1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦(2)121123436⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ 解析:(1)10;(2)3【分析】(1)先算乘方和小括号,再算中括号,后算加减即可;(2)把除法转化为乘法,再用乘法的分配率计算即可.【详解】解:(1)32(1)(2)(34)5⎡⎤--+---⨯⎣⎦ 1[4(1)5]=+--⨯1(45)10=++=;(2)1211121(36)23436234⎛⎫⎛⎫⎛⎫-+-÷-=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121(36)(36)(36)234=-⨯-+⨯--⨯- 182493=-+=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序.28.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.。

初一数学练习册答案人教版上册

初一数学练习册答案人教版上册

初一数学练习册答案人教版上册【第一章:有理数】1. 判断题:- 有理数包括整数和分数。

(√)- 0是最小的有理数。

(×)2. 选择题:- 下列哪个数是有理数?A. πB. √2C. 1/2D. -3答案:C, D3. 填空题:- 绝对值是其本身的数是______。

答案:非负数4. 计算题:- 计算下列各数的和:-3, 5, -1, 2答案:3【第二章:代数式】1. 判断题:- 代数式中的字母可以代表任何数。

(√)- 代数式2x + 3y是二次代数式。

(×)2. 选择题:- 代数式3a - 2b的值是:A. 3aB. 2bC. 3a - 2bD. 无法确定答案:D3. 填空题:- 如果3x + 2 = 11,那么x的值为______。

答案:34. 计算题:- 计算下列代数式的值:2(3x - 1),当x = 2时。

答案:10【第三章:方程】1. 判断题:- 方程是含有未知数的等式。

(√)- 所有等式都是方程。

(×)2. 选择题:- 下列哪个是一元一次方程?A. x + y = 5B. 2x + 3 = 7C. x^2 = 4D. 3x - 5y = 0答案:B3. 填空题:- 解方程2x - 3 = 7,得到x = ______。

答案:54. 应用题:- 一个数的三倍加上5等于23,求这个数。

答案:x = (23 - 5) / 3 = 6【结束语】本练习册答案仅供参考,希望同学们在做完练习后,能够认真核对答案,理解解题过程,提高自己的数学能力。

数学学习是一个不断探索和思考的过程,希望每位同学都能在数学的世界里找到乐趣。

结束。

新人教版七年级数学上册全册教案(114页)

新人教版七年级数学上册全册教案(114页)

新人教版七年级数学上册全册教案第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。

2、方法:讨论法、探究法、讲授法、观察法。

三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。

教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。

例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。

二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。

在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。

2012-2013学年人教版初一上册数学教案整套

2012-2013学年人教版初一上册数学教案整套

按住Ctrl键单击鼠标打开教学视频动画全册播放2012-2013学年人教版初一上册数学教案第一章有理数1.1正数和负数教学目标:1、了解正数与负数是从实际需要中产生的。

2、能正确判断一个数是正数还是负数,明确0既不是正数也不是负数。

3、会用正、负数表示实际问题中具有相反意义的量。

重点:正、负数的概念重点:负数的概念、正确区分两种不同意义的量。

教学过程:一、创设情境,引入新课问题1:为了表示物体的个数和事物的顺序,产生了1,2,3,4……这些数,我们把它们叫做什么数?学生:自然数问题2:为了表示“没有”,我们又引入了一个什么数?学生:0(0也是自然数)问题3:当测量和计算的结果不是整数时,又引进了什么数?学生:分数(小数)问题4:某市某一天的最高温度是零上5℃,最低温度是零下5℃,要表示这两个温度,都记作5℃,我们就不能把它们区别清楚,那么应该要怎么表示呢?要清楚的表示这两个量,我们以前的数就不够用了。

为了表示这些量,我们需要引入一种新数,这就是本节课要学习的内容——正数和负数。

二、合作交流,探索新知1、相反意义的量问题:在日常生活中,常会遇到这样一些量:①气温有零上7℃和零下7℃;②汽车向东行驶2.5千米和向西行驶1.5千米;③收入200元和支出100元;④高于海平面8844m和低于海平面150m。

学生讨论:上面例子出现的各对量,虽然内容不同,但有一个共同点,这个共同点是什么?教师归纳:都是具有相反意义的量。

零上和零下、向东和向西、收入和支出、高于和低于都是具有相反意义的量。

而“相反意义的量”应该包括两方面:一是意义相反;二是在具有相反意义的基础上要有量值。

2、正数和负数教师:如何来表示具有相反意义的量呢?我们现在来解决问题4提出的问题。

结论:零下5℃用-5℃来表示,零上5℃用5℃来表示。

为了用数表示具有相反意义的量,我们把其中一种意义的量。

如零上、向东、收入和高于等规定为正的,而把与它相反的量规定为负的。

新思维辅导)

新思维辅导)

第一章有理数课题:1.1 正数和负数(1)【学习目标】:1、掌握正数和负数概念;2、会区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣。

【重点难点】:正数和负数概念【导学指导】:一、知识链接:1、小学里学过哪些数请写出来:、、。

2、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答下面提出的问题:3、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?二、自主学习1、正数与负数的产生(1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量。

请你也举一个具有相反意义量的例子:。

(2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法(1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

(2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.(3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

【课堂练习】:1. P3第一题到第四题(直接做在课本上)。

2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示______________。

3.已知下列各数:-35,432,3.14,+3065,0,-239;则正数有_____________________;负数有____________________。

4.下列结论中正确的是………()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213,+3.1,,2004,+2010;其中是负数的有………()A.2个B.3个C.4个D.5个【要点归纳】:正数、负数的概念:(1)大于0的数叫做,小于0的数叫做。

人教版七年级数学上第1章有理数 1.2.3相反数学案设计(含答案)

人教版七年级数学上第1章有理数 1.2.3相反数学案设计(含答案)

1.2.3相反数知识要点:1.相反数的概念:只有符号不同的两个数叫做互为相反数。

2.几何意义:互为相反数的两个数在数轴上对应的两个点位于原点的两侧且到原点的距离相等;反之,位于原点的两侧且到原点的距离相等的点所表示的两个数互为相反数.3.代数意义:互为相反数中,“相反”的意思是说“只有符合相反”,即两个数除符号不同外其余都是相同.4.相反数的性质:任何一个数都有相反数,而且只有一个.正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0.一、单选题1.如果a与12互为相反数,那么a等于()A.-2B.2C.12-D.12【答案】C2.已知关于x的代数式2x−5与5x−2互为相反数,则x的值为()A.9 B.−9 C.1 D.−1【答案】C3.有理数32-的相反数是()A.23-B.23C.32-D.32【答案】D4.下面的两个数中互为相反数的是()A.1-和0.2B.1和0.333-C.5和(5)--D. 2.25-和9【答案】D5.已知0m n +=,0n p +=,0m q -=.则( )A .p 与g 相等B .m 与g 互为相反数C .m 与n 相等D .p 与n 相等【答案】D6.如图,数轴上表示互为相反数的两个点是( )A .点P 和点NB .点Q 和点MC .点P 和点MD .点Q 和点N【答案】C 7.a (a≠0)的相反数是( )A .a 2B .1aC .﹣aD .|a|【答案】C8.若m ﹣2的相反数是5,那么﹣m 的值是( )A .+7B .﹣7C .+3D .﹣3【答案】C9.一个点在数轴上移动时,它所对应的数,也会有相应的变化.若点A 先从原点开始,先向右移动3个单位长度,再向左移动5个单位长度,这时该点所对应的数的相反数是( )A .2B .-2C .8D .-8【答案】A10.如果m 的相反数是最大的负整数,n 的相反数是它本身,则m +n 的值为( ) A .1 B .0 C .2 D .-1二、填空题11.在数轴上,若点A和点B分别表示互为相反数的两个数,并且这两点间的距离是2018,则这两点所表示的数分别是________,________.【答案】-1009 1009π-的相反数是_______________.12.( 3.14)-【答案】3.14π13.数轴上点A表示3-,B,C两点所表示的数互为相反数,且点B与点A间的距离为3,则点C所表示的数是___.【答案】0或614.若m,n互为相反数,则m-4+n=________.【答案】-415.若代数式3x+2与代数式5x﹣10的值互为相反数,则x=_____【答案】116.已知a,b互为相反数,则a+2a+3a+…+100a+100b+…+3b+2b+b的值是_____.【答案】0三、解答题17.数轴上A点表示的数为+4,B、C两点所表示的数互为相反数,且C到A的距离为2,点B和点C各表示什么数.【答案】C点表示的数是2或6;B点所表示的数是-2,或-6.18.a的相反数是2b+1,b的相反数是3,求a2+b2的值.19.(1)化简下列各式:①(2019)--;①(2019)-+;①[(2019)]--+;①{[(2019)]}---+. (2)根据(1)中的化简结果,猜想:①当2019前面有2019个正号时,化简的结果为______;①当2019前面有2020个负号时,化简的结果为______;①当2019前面有2019个负号时,化简的结果为______.【答案】(1)①2019,①-2019,①2019,①-2019;(2)①2019,①2019,①-2019 20.如图,数轴上A 点表示的数是﹣2,B 点表示的数是5,C 点表示的数是10.(1)若要使A 、C 两点所表示的数是一对相反数,则“原点”表示的数是: . (2)若此时恰有一只老鼠在B 点,一只小猫在C 点,老鼠发现小猫后立即以每秒一个单位的速度向点A 方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t (秒)的代数式表示老鼠和小猫在移动过程中分别与点A 之间的距离;①小猫逮住老鼠时的“位置”恰好在 ,求时间t .【答案】(1)4;(2)①12﹣2t ;①原点。

人教版 七年级数学 第1章 有理数 综合培优训练(含答案)

人教版 七年级数学 第1章 有理数 综合培优训练(含答案)

人教版 七年级数学 第1章 有理数 综合培优训练一、选择题(本大题共12道小题)1. 有理数-13的相反数为( ) A .-3 B .-13 C.13D .32. 下列说法错误的是( )A .-2是负有理数B .0不是整数 C.125是正有理数 D .-0.35是负分数3. 下列四个数中,最大的数是( )A. -2B. 13C. 0D. 64. 下列两数互为倒数的是( )A. 4和-4B. -3和13C. -2和-12D. 0和05. 计算-2×3×(-4)的结果是( )A .24B .12C .-12D .-24 6. 计算-3-(-2)的结果是() A .-1B .1C .5D .-57. 如图,数轴上有A ,B ,C ,D 四个点,其中绝对值最小的数对应的点是( )A .点AB .点BC .点CD .点D8. 在跳远测验中,合格的标准是4.00 m ,王非跳了4.12 m ,记作+0.12 m ,何叶跳了3.95 m ,记作( )A .+0.05 mB .-0.05 mC .+3.95 mD .-3.95 m9. 质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.-3 B.-1 C.2 D.410. 下列说法错误的是()A.一个数同0相乘,得0B.一个数同1相乘,仍得这个数C.一个数同-1相乘,得这个数的相反数D.一个数同它的相反数相乘,积为负11. 若a,b互为倒数,则-4ab的值为()A.-4 B.-1 C.1 D.012. 若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系正确的是()A.a>b>cB.b>c>aC.b>a>cD.c>a>b二、填空题(本大题共12道小题)13. 如果节约用水30吨,记为+30吨,那么浪费水20吨,记为________吨.14. (1)-5.4的相反数是________;(2)-(-8)的相反数是________;(3)若a=-a,则a=________.15. 绝对值小于3的所有整数的和为______,绝对值不大于2020的所有整数的和为______.16. 化简下列各数:(1)-(+3)=________;(2)-(-3)=________;(3)+(+3)=________;(4)+(-3)=________;(5)-[-(+3)]=________;(6)-[-(-3)]=________.17. 用“>”“<”或“=”填空:(1)-31×(-58)×(-4)×(-7)________0;(2)(-32.75)×(-1)×101×⎝ ⎛⎭⎪⎫-9918×0________0; (3)-|-3|×(-5)×(-11)×51________0.18. 一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为4个单位长度,则这个数为________.19. 一只蜗牛从地面开始爬高为6米的墙,先向上爬3米,然后向下滑1米,接着又向上爬3米,然后又向下滑1米,则此时蜗牛离地面的距离为________米.20. 如图所示,数轴上点A 表示的数为a ,点B 表示的数为b ,则a -b =________.21. 将下列各数填在相应的横线上:-15,-0.02,67,-171,4,-213,1.3,0,3.14,π.正数:_______________________________________________________________________;负数:______________________________________________________________________.22. 如果实验室标准温度为10 ℃,高于标准温度的记为正,那么+5 ℃表示实验室内的温度为__________℃;-5 ℃表示实验室内的温度为________℃.23. 你吃过“手拉面”吗?如果把一个面团拉开,然后对折,再拉开,再对折……如此反复下去,对折8次,能拉出________根面条.24. 定义学习观察一列数:1,2,4,8,…,我们发现,从这一列数的第二项起,每一项与它前面一项的比都是2.一般地,如果一列数从第二项起,每一项与它前面一项的比都等于一个常数,那么我们就把这样的一列数叫做等比数列,这个常数叫做等比数列的公比.(1)等比数列5,-15,45,…的第四项为______;(2)一个等比数列的第二项是10,第三项是-20,则它的第一项是________,第四项是________.三、解答题(本大题共6道小题)25. 某次数学期末考试,成绩80分以上为优秀,老师以80分为基准,将某一小组五名同学的成绩(单位:分)简记为+12,-5,0,+7,-2.这里的正数、负数分别表示什么意义?这五名同学的实际成绩分别为多少?26. 观察与分类如图,已知有A,B,C三个数集,每个数集中所含的数都在各自的大括号内,请把这些数填入图中相应的部分.A.{-5,2.7,-9,7,2.1};B.{-8.1,2.1,-5,9.2,-1 7};C.{2.1,-8.1,10,7}.27. 计算:(1)1.2×(-145)×(-2.5)×(-37); (2)-157×⎝ ⎛⎭⎪⎫-34×56×⎪⎪⎪⎪⎪⎪-512; (3)(-112)×(-113)×(-114)×(-115)×(-116)×(-117).28. 分类讨论在数轴上,点A 到原点的距离为3,点B 到原点的距离为5,如果点A 表示的有理数为a ,点B 表示的有理数为b ,求a 与b 的乘积.29. 在学习了有理数的乘法后,老师给同学们出了这样一道题目:“计算492425×(-5),看谁算得又快又对.”有两名同学的解法如下:小明:原式=-124925×5=-12495=-24945;小军:原式=(49+2425)×(-5)=49×(-5)+2425×(-5)=-24945.(1)对于以上两种解法,你认为谁的解法较好?(2)思考上面的解法,你认为还有更好的解法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:191516×(-8);(4)简便地计算出57×5556+27×2728的值.30. 规律探究已知: 1-12×2=(1-12)×(1+12)=12×32,1-13×3=(1-13)×(1+13)=23×43,1-14×4=(1-14)×(1+14)=34×54,…(1)猜想:1-12020×2020=________________=______________;(2)计算:(1-12×2)×(1-13×3)×(1-14×4)×…×(1-12020×2020).人教版七年级数学第1章有理数综合培优训练-答案一、选择题(本大题共12道小题)1. 【答案】C2. 【答案】B3. 【答案】D【解析】四个数中选择最大的数可直接在正数中选,比较13<6,故最大的数为6.4. 【答案】C【解析】因为-2×(-12)=1,故选C.5. 【答案】A6. 【答案】A7. 【答案】B8. 【答案】B9. 【答案】B10. 【答案】D11. 【答案】A12. 【答案】C[解析] 因为a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,所以b>a>c.二、填空题(本大题共12道小题)13. 【答案】-2014. 【答案】(1)5.4(2)-8(3)015. 【答案】0 0 [解析] 绝对值小于3的整数有±2,±1,0,其和为2+(-2)+1+(-1)+0=0.绝对值不大于2020的整数有±2020,±2019,±2018,…,±1,0,其和为0.16. 【答案】(1)-3 (2)3 (3)3 (4)-3 (5)3 (6)-3[解析] “-”号不仅是运算符号、性质符号,还可理解为“相反”的意义,如-(+3)表示+3的相反数.17. 【答案】(1)> (2)= (3)<18. 【答案】2或-2 [解析] 由题意知这个数到原点的距离为2,所以这个数为2或-2.19. 【答案】420. 【答案】-3 [解析] 由图可知a =-4,b =-1,所以a -b =-4-(-1)=-4+1=-3.21. 【答案】67,4,1.3,3.14,π -15,-0.02,-171,-21322. 【答案】15523. 【答案】25624. 【答案】35[答案] (1)-135 (2)-5 40 [解析] (1)公比为-3,故第四项为45×(-3);(2)公比为-20÷10=-2,由第二项除以-2求得第一项为10÷(-2)=-5,由第三项乘-2求得第四项为-20×(-2)=40.三、解答题(本大题共6道小题)25. 【答案】解:这里的正数表示实际成绩比基准高,负数表示实际成绩比基准低,所以“+12”表示比80分高12分,“-5”表示比80分低5分,“0”表示80分,“+7”表示比80分高7分,“-2”表示比80分低2分.所以这五名同学的实际成绩分别为92分,75分,80分,87分,78分.26. 【答案】43解:通过观察,发现A ,B ,C 三个数集都含有2.1,A ,B 数集都含有-5,A ,C 数集都含有7,B ,C 数集都含有-8.1.如图所示:27. 【答案】[解析] 几个不为0的有理数相乘,积的符号由负因数的个数决定.解:(1)原式=-65×95×52×37=-8135.(2)原式=-127×(-34)×56×512=127×34×56×512=2556.(3)原式=32×43×54×65×76×87=4.28. 【答案】解:由题意易知a =3或a =-3,b =5或b =-5.若点A 与点B 位于原点同侧,则a ,b 的符号相同,所以ab =3×5=15或ab =(-3)×(-5)=15;若点A 与点B 位于原点异侧,则a ,b 的符号相反,所以ab =3×(-5)=-15或ab =(-3)×5=-15.综上所述,a 与b 的乘积为15或-15.29. 【答案】解:(1)小军的解法较好.(2)还有更好的解法.492425×(-5)=(50-125)×(-5)=50×(-5)-125×(-5)=-250+15=-24945.(3)191516×(-8)=(20-116)×(-8)=20×(-8)-116×(-8)=-160+12=-15912.(4)57×5556+27×2728=(56+1)×5556+(28-1)×2728=56×5556+5556+28×2728-1×2728=55+27+5556-2728=82+156=82156.30. 【答案】解:(1)(1-12020)×(1+12020) 20192020×20212020(2)原式=(12×32)×(23×43)×(34×54)×…×(20192020×20212020)=12×20212020=20214040.。

《新新练案系列》人教实验版2013-2014学年七年级数学(上)第一章+有理数检测题

《新新练案系列》人教实验版2013-2014学年七年级数学(上)第一章+有理数检测题

第一章 有理数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.如果表示增加,那么表示( )A.增加B.增加C.减少D.减少2.有理数在数轴上表示的点如图所示,则的大小关系是( )A.B. C. D.3.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B. 2C. 3D. 44.在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个5.有理数、在数轴上对应的位置如图所示,则( ) A.<0 B.>0 C.-0 D.->06.在-5,-101,-3.5,-0.01,-2,-212各数中, 最大的数是( ) A.-212 B.-101 C .-0.01 D.-5 7.(2012•武汉中考)某市年在校初中生的人数约为万.数用科学记数法表示为( ) A. B. C. D.8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A.0.1(精确到0.1) B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.0001)9.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( )A.90分B.75分C.91分D.81分10.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则!98!100的值为( ) A.4950 B. C.D. 二、填空题(每小题3分,共24分) 11.31-的倒数是____;321的相反数是____. 12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 .13.若0<<1,则a ,2a ,1a的大小关系是 . 第5题图14.+5.7的相反数与-7.1的绝对值的和是 .15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配 辆汽车.16.-9、6、-3这三个数的和比它们绝对值的和小 .17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑 台.18. 规定﹡,则(-4)﹡6的值为 .三、解答题(共46分)19.(6分)计算下列各题:(1)(2)20.(8分)比较下列各对数的大小: (1)54-与43-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯. 21.(6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?22.(6分)若,求32---+-x y y x 的值.23.(6分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:c m ):.问:(1)小虫是否回到原点O ?(2)小虫离开出发点O 最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm 奖励一粒芝麻,则小虫共可得到多少粒芝麻?24.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与 -2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.25.(8分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?。

《新新练案系列》苏科版七年级数学(上册)《第2章 有理数》单元检测题(含答案解析)

《新新练案系列》苏科版七年级数学(上册)《第2章 有理数》单元检测题(含答案解析)

《新新练案系列》苏科版七年级数学(上册)《第2章 有理数》单元检测题(含答案解析)【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.下面每组中的两个数互为相反数的是( ) A.-15和5B.-2. 5和212C.8和-(-8)D.13和0.3332.有理数在数轴上表示的点如图所示,则的大小关系是( )A. B. C.D.3.下列运算正确的是 ( ) A. B.C.D. =84.计算的值是( )A.0B.532C.54D.54-5.如果和互为相反数,且,那么的倒数是( )A.b 21-B.b 21C.b2- D.6.下列说法中正确的有( ) ①同号两数相乘,符号不变; ②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积. A.1个 B.2个 C.3个 D.4个 7.气象部门测定发现:高度每增加1 km ,气温约下降5 ℃.现在地面气温是15 ℃,那么 4 km 高空的气温是( )A.5 ℃B.0 ℃C.-5 ℃D.-15 ℃8.在有理数中,一个数的立方等于这个数本身,这种数的个数为( ) A.1 B.2 C.3 D.无数个9.计算等于( )A.-1B.1C.-4D.4 10.若规定“!”是一种数学运算符号,且!98!100的值为( ) A.4950B.99!C.9 900D.2! 二、填空题(每小题3分,共24分)11.若规定,则的值为.12.绝对值小于4的所有整数的和是.13.如图所示,在数轴上将表示-1的点向右移动3个单位后,对应点表示的数是_________.14.测得某乒乓球厂生产的五个乒乓球的质量误差(g)如下表.检验时,通常把比标准质量大的克数记为正,比标准质量小的克数记为负.请你选出最接近标准的球,是号.号码 1 2 3 4 5误差(g)0.1 0.2 15.某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是.16.讲究卫生要勤洗手,人的一只手上大约有28 000万个看不见的细菌,用科学记数法表示两只手上约有个细菌.17.某年级举办足球循环赛,规则是:胜一场得3分,平一场得1分,输一场得-1分,某班比赛结果是胜3场平2场输4场,则该班得分.18.如图是一个数值转换机的示意图,若输入x的值为3,的值为-2,则输出的结果为.三、解答题(共46分)19.(12分)计算:(1);(2); (3)211; (4). 20.(5分)已知:,,且,求的值.21.(5分)若m >0,n <0,n >m ,用“<”号连接m ,n ,n ,-m ,请结合数轴解答.22.(6分)某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数): 星期 一 二 三 四 五 六 日 增减-5+7-3+4+10-9-25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少? (3)产量最多的一天比产量最少的一天多生产了多少辆? 23.(6分)为节约用水,某市对居民用水规定如下:大户(家庭人口4人及4人以上者)每月用水15 m 3以内的,小户(家庭人口3人及3人以下者)每月用水10 m 3以内的,按每立方米收取0.8元的水费;超过上述用量的,超过部分每立方米水费加倍收取.某用户5口人,本月实际用水25 m 3,则这户本月应交水费多少元?24.(6分)李强靠勤工俭学的收入维持上大学费用,表中是李强某一周的收支情况表,记收入为正,支出为负(单位:元):星期一二三四五六日收入+15 +18 0 +16 0 +25 +24支出10 14 13 8 10 14 15 (1)到这个周末,李强有多少节余?(2)照这个情况估计,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?25.(6分)观察下列各式:……猜想:(1);(2)如果为正整数,那么.第2章 有理数检测题参考答案一、选择题 1.B2.D 解析:由数轴可知,所以其在数轴上的对应点如图所示, 则,选D.3.B 解析:,A 错;,C 错;,D 错.只有B是正确的. 4.B5.A 解析:因为和互为相反数,所以,故的倒数是ba211-=. 6.B 解析: ①错误,如,符号改变; ③错误,如0×0,积为0;②④正确. 7.C 解析:.8.C 解析:一个数的立方等于本身的数有1,,0,共3个.9.C 解析:.10.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴1×…×97×981×…×98×99×100!98!100==100×99=9 900,故选C . 二、填空题 11.解析:.12.0 解析:绝对值小于4的所有整数是,其和为.13.2 解析:.14.1 解析:绝对值越小的越接近标准质量. 15.78分 解析:(分).16.17.7 解析:(分). 18.5 解析:将代入得.三、解答题 19.解:(1).(2).(3)211(4).20.解:因为,所以.因为,所以.又因为,所以. 所以或.21.解:因为错误!未定义书签。

七年级数学上册课本答案

七年级数学上册课本答案

七年级数学上册教材课后习题答案(RJ)第一章有理数1.1 正数和负数【练习】1.2010年为:+108.7mm;2009年为:-81.5mm;2008年为:+53.5mm2.表示向左移动1m,这时物体离它两次移动前的位置是0m.【练习】1.正数:2.5,+,120;负数:-1,-3.14,-1.732,-.2.向西走60m3.-3 04.+126或126 -150【习题1.1】1.正数:5,0.56,,+2;负数:-,-3,-25.8,-0.0001,-600.2.(1)0.08m表示高于标准水位0.08m,-0.2m表示低于标准水位0.2m;(2)水面低于标准水位0.1m记作-0.1m,高于标准水位0.23m记作+0.23m(或0.23m).3.不对.因为0既不是正数,又不是负数.4.表示向前移动5m,这时物体离它两次移动前的位置是0m.5.平均值:(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m);对应的数分别为:-0.6m,+0.6m,+0.8m,-0.9m,0m,-0.4m,+0.5m.6.+1,-1.7.由题意知7-4-4=-1(℃).8.中国、意大利服务出口额增长了;美国、德国、英国、日本服务出口额减少了;意大利增长率最高,日本增长率最低.1.2 有理数1.2.1 有理数【练习】1.正数集合负数集合2.正数:+6,1,,3,0.63;负数:-15,-2,-0.9,-4.95;整数:-15,+6,-2,1,0;分数:-0.9,,3,0.63,-4.95.1.2.2 数轴【练习】1.A表示原点.B表示-2.C表示1.D表示2.5.E表示-3.2.3.负正1.2.3 相反数【练习】1.(1)×(2)×(3)√(4)√2.相反数依次是:-6,8,3.9,-,,-100,0.3.如果a=-a,那么表示a的点在数轴上的原点处.4.-(-68)=68,-(+0.75)=-0.75,-(-)=,-(+3.8)=-3.8.1.2.4 绝对值【练习】1.|6|=6,|-8|=8,|-3.9|=3.9,||=,|-|=,|100|=100,|0|=0.2.(1)×(2)×(3)√(4)√3.(1)√(2)×(3)×【练习】(1)3>-5;(2)-3>-5;(3)-2.5<-|-2.25|;(4)->-.【习题1.2】1.正数:{15,0.15,,+20…}负数:{-,-30,-12.8,-60…}2.如图3.点B表示的数是:-7或1.4.各数的相反数分别为:4,-2,1.5,0,-,;数轴略.5.|-125|=125;|+23|=23;|-3.5|=3.5;|0|=0;||=;|-|=;|-0.05|=0.05. -125的绝对值最大,0的绝对值最小.6.-<-<-<-0.25<-0.15<0<0.05<+2.3.7.因为-19.4<-4.6<2.4<3.8<13.1,所以从高到低的顺序为:广州、武汉、南京、北京、哈尔滨.8.|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6.所以第5个排球的重量最接近标准.9.增幅最小的是-9.6%,增幅为负说明人均水资源在下降.10.111.(1)有,如:-0.1,-0.12,-0.57,…;有,如:-0.15,-0.42,-0.48,…;(2)有,如:-2,有-1,0,1;(3)没有;(4)-101,-102,-102.5.12.如果|x|=2,x不一定是2,还有-2;如果|x|=0,那么x=0;如果x=-x,那么x=0.1.3 有理数的加减法1.3.1 有理数的加法【练习】1.(1)-4+7;(2)7-5.2.(1)-10;(2)-2;(3)2;(4)0;(5)10;(6)-10;(7)0;(8)-6.3..(1)15+(-22)=-(22-15)=-7;(2)(-13)+(-8)=-(13+8)=-21;(3)(-0.9)+1.5=1.5-0.9=0.6;(4)+(-)=+(-)=-.4.向前走表示正数,向后走表示负数.两个式子分别表示为:向前走5m后再向后走3m,则共向前走了2m;向后走5m之后继续往后走3m,则共向后走了8m.【练习】1.(1)23+(-17)+6+(-22)=(23+6)+[(-17)+(-22)]=29+(-39)=-10;(2)(-2)+3+1+(-3)+2+(-4)=[(-2)+2]+[(-3)+3]+(-4)+1=-3.2.(1)1+(-)++(-)=++(-)=++(-)=;(2)3+(-2)+5+(-8)=(3+5)+[(-2)+(-8)]=9+(-11)=-2.1.3.2 有理数的减法【练习】1.(1)6-9=-3;(2)(+4)-(-7)=(+4)+(+7)=11;(3)(-5)-(-8)=(-5)+(+8)=3;(4)0-(-5)=0+(+5)=5;(5)(-2.5)-5.9=(-2.5)+(-5.9)=-8.4;(6)1.9-(-0.6)=1.9+(+0.6)=2.5.2.(1)2-8=-6(℃);(2)-3-6=-9(℃).【练习】(1)1-4+3-0.5=-0.5;(2)-2.4+3.5-4.6+3.5=0;(3)(-7)-(+5)+(-4)-(-10)=(-7)+(-5)+(-4)+(+10)=-6;(4)-+(-)-(-)-1=--+-1=-3.【习题1.3】1.(1)(-10)+(+6)=-(10-6)=-4;(2)(+12)+(-4)=+(12-4)=8;(3)(-5)+(-7)=-(5+7)=-12;(4)(+6)+(-9)=-(9-6)=-3;(5)(-0.9)+(-2.7)=-(0.9+2.7)=-3.6;(6)+(-)=-(-)=-;(7)(-5)+(-7)=-(5+7)=-12;(8)(-3)+(-1)=(-3)+(-1)=-4.2.(1)(-8)+10+2+(-1)=[(-8)+(-1)]+(10+2)=3;(2)5+(-6)+3+9+(-4)+(-7)=(5+3+9)+[(-6)+(-4)+(-7)]=17+(-17)=0;(3)(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5=[(-0.8)+0.8]+(1.2+3.5)+[(-0.7)+(-2.1)]=1.9;(4)+(-)++(-)+(-)=[+(-)]+[(-)+(-)]+=-.3.(1)(-8)-8=-16;(2)(-8)-(-8)=0;(3)8-(-8)=16;(4)8-8=0;(5)0-6=-6;(6)0-(-6)=0+6=6;(7)16-47=-31;(8)28-(-74)=102;(9)(-3.8)-(+7)=-10.8;(10)(-5.9)-(-6.1)=0.2.4.(1)(+)-(-)=(+)+(+)=1;(2)(-)-(-)=(-)+(+)=;(3)-=-=;(4)(-)-=(-)+(-)=-;(5)--(-)=-+(+)=-;(6)0-(-)=0+(+)=;(7)(-2)-(+)=(-2)+(-)=-2;(8)(-16)-(-10)-(+1)=(-16)+(+10)+(-1)=-8.5.(1)-4.2+5.7-8.4+10=(-4.2-8.4)+(5.7+10)=-12.6+15.7=3.1;(2)-++-=--++=-+=;(3)12-(-18)+(-7)-15=12+(+18)+(-7)+(-15)=30-22=8;(4)4.7-(-8.9)-7.5+(-6)=4.7+8.9+(-7.5)+(-6)=13.6+(-13.5)=0.1;(5)(-4)-(-5)+(-4)-(+3)=(-4)+5+(-4)+(-3)=(-4)+(-3)+5+(-4)=(-8)+1=-6;(6)(-)+|0-5|+|-4|+(-9)=(-)+5+4+(-9)=(-)+(-9)+5+4=-10+10=0.6.两处高度相差:8844.43-(-415)=9259.43(m).7.半夜的气温为-7+11-9=-5(℃).8.一周总的盈亏情况为132-12.5-10.5+127-87+136.5+98=383.5(元).9.25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg).10.一、10-2=8(℃),二、12-1=11(℃),三、11-0=11(℃),四、9-(-1)=10(℃),五、7-(-4)=11(℃),六、5-(-5)=10(℃),日、7-(-5)=12(℃).所以周日的温差最大,周一的温差最小.11.(1)16 (2)-3 (3)18 (4)-12 (5)-7 (6)712.-4,-6,-8,-10.-4,-6,-8,-10.法则:两数相乘异号得负,并把绝对值相乘.13.0.3-(-0.2)=0.5(元),0.2-(-0.1)=0.3(元),0-(-0.13)=0.13(元),平均值:(0.5+0.3+0.13)÷3=0.31(元).1.4 有理数的乘除法1.4.1 有理数的乘法【练习】1.(1)6×(-9)=-54;(2)(-4)×6=-24;(3)(-6)×(-1)=6;(4)(-6)×0=0;(5)×(-)=-;(6)(-)×=-.2.-5×60=-300(元),所以销售额降低300元.3.1,-1,3,-3,,-,,-.【练习】1.(1)24;(2)-120;(3)16;(4)81.2.(1)(-5)×8×(-7)×(-0.25)=[(-5)×(-7)]×[8×(-0.25)]=35×(-2)=-70;(2)(-)×××(-)=+(×××)=;(3)(-1)×(-)×××(-)×0×(-1)=0.【练习】(1)(-85)×(-25)×(-4)=(-85)×[(-25)×(-4)]=(-85)×100=-8500;(2)(-)×30=×30-×30=27-2=25;(3)(-)×15×(-1)=[(-)×(-)]×15=15;(4)(-)×(-)+(-)×(+)=+(-)=-6.1.4.2 有理数的除法【练习】(1)(-18)÷6=-3;(2)(-63)÷(-7)=9;(3)1÷(-9)=-;(4)0÷(-8)=0;(5)(-6.5)÷0.13=-50;(6)(-)÷(-)=×=3.【练习】1.(1)=-72÷9=-8;(2)=(-30)÷(-45)=;(3)=0÷(-75)=0.2.(1)(-36)÷9=[(-36)÷9]+[(-)÷9]=-4;(2)(-12)÷(-4)÷(-1)=-12××=-;(3)(-)×(-)÷(-0.25)=-××4=-.【练习】(1)6-(-12)÷(-3)=6-4=2;(2)3×(-4)+(-28)÷7=-12-4=-16;(3)(-48)÷8-(-25)×(-6)=-6-150=-156;(4)42×(-)+(-)÷(-0.25)=-24+3=-21.【练习】(1)17;(2)-6.68;(3)-471;(4)-1816.3549【习题1.4】1.(1)(-8)×(-7)=56;(2)12×(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5×0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.2.(1)×(-)=-;(2)(-)×(-)=;(3)-×25=-;(4)(-0.3)×(-)=.3.(1)-;(2)-;(3)-4;(4);(5);(6)-.4.(1)-91÷13=-7;(2)-56÷(-14)=4;(3)16÷(-3)=-;(4)(-48)÷(-16)=3;(5)÷(-1)=-;(6)-0.25÷=-.5.-5 - -4 6 5 -6 46.(1)=(-21)÷7=-3;(2)=3÷(-36)=-;(3)=(-54)÷(-8)=;(4)=(-6)÷(-0.3)=20.7.(1)-2×3×(-4)=2×3×4=24;(2)-6×(-5)×(-7)=-6×5×7=-210;(3)(-)×1.25×(-8)=×8×=;(4)0.1÷(-0.001)÷(-1)=×1000×1=100;(5)(-)×(-1)÷(-2)=-××=-;(6)-6×(-0.25)×=6××=;(7)(-7)×(-56)×0÷(-13)=0;(8)-9×(-11)÷3÷(-3)=-9×11××=-11.8.(1)23×(-5)-(-3)÷=-115+3×=-115+128=13;(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7;(3)(1--)÷(-)+(-)÷(1--)=÷(-)+(-)÷=-+(-3)=-3;(4)-|-|-|-×|-|-|-|-3|=----3=-4.9.(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.80;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.10.(1)7500 (2)-140 (3)200 (4)-12011.450+20×60-12×120=210(米)所以这时直升机所在高度是210米.12.(1)< < (2)< < (3)> > (4)= =13.2×1=2,2×=1,2×(-1)=-2,2×(-)=-1.一个非0有理数不一定小于它的2倍.因为一个负数比它的2倍大.14.(-2+3)a.15.(-4)÷2=-2,4÷(-2)=-2,(-4)÷(-2)=2.(1)、(2)均成立,从它们可以总结出两数相除,同号得正,异号得负.1.5 有理数的乘方1.5.1 乘方【练习】1.(1)底数:-7,指数:8.(2)-10叫底数,8叫指数,(-10)8是正数.2.(1)(-1)10=1;(2)(-1)7=-1;(3)83=512;(4)(-5)3=-125;(5)0.13=0.001;(6)(-)4=;(7)(-10)4=10000;(8)(-10)5=-100000.3.(1)(-11)6=1771561;(2)167=268435456;(3)8.43=592.704;(4)(-5.6)3=-175.616.【练习】(1)(-1)10×2+(-2)3÷4=1×2+(-8)÷4=2-2=0;(2)(-5)3-3×(-)4=-125-3×=-;(3)×(-)×÷=×(-)××=-;(4)(-10)4+[(-4)2-(3+32)×2]=10000+(16-24)=9992.1.5.2 科学记数法1.5.3 近似数【练习】1.10000=1×104;800000=8×105;56000000=5.6×107;-7400000=-7.4×106.2.1×107=10000000;4×103=4000;8.5×106=8500000;7.04×105=704000;-3.96×104=-39600.3.9600000=9.6×106,370000=3.7×105.【练习】(1)0.0036;(2)61;(3)1.894;(4)0.1.【习题1.5】1.(1)(-3)3=-27.(2)(-2)4=16.(3)(-1.7)2=2.89.(4)(-)3=-.(5)-(-2)3=8.(6)(-2)2×(-3)2=4×9=36.2.(1)(-12)8=429981696.(2)1034=112550881.(3)7.123=360.944128.(4)(-45.7)3=-95443.993.3.(1)(-1)100×5+(-2)4÷4=5+16÷4=9.(2)(-3)3-3×(-)4=-27-3×=-27-=-27.(3)×(-)×÷=×(-)××=-.(4)(-10)3+[(-4)2-(1-32)×2]=-1000+[16-(1-9)×2]=-1000+(16+16)=-1000+32=-968.(5)-23÷×(-)2=-8××=-8.(6)4+(-8)×5+0.28×=-35.93.4.(1)235000000=2.35×108.(2)188520000=1.8852×108.(3)701000000000=7.01×1011.(4)-38000000=-3.8×107.5.3×107=30000000,1.3×103=1300,8.05×106=8050000,2.004×105=200400,-1.96×104=-19600.6.(1)0.00356≈0.0036.(2)566.1235≈5.66×102.(3)3.8963≈3.90.(4)0.0571≈0.057.7.平方等于9的数是±3;立方等于27的数是3.8.长方体的体积为a2b,表面积为2a2+4ab.当a=2cm,b=5cm时,长方体的体积为a2b=4×5=20(cm3),表面积为2×4+4×2×5=48(cm2).9.1.1×105km/h=1.1×105×≈3.1×104m/s,大于340m/s,所以地球绕太阳公转的速度大.10.8.64×104×365=3.1536×107(s).答:一年有3.1536×107s.11.(1)0.12=0.01,12=1,102=100,1002=10000.观察这些结果,底数的小数点向左(右)移动一位时,平方数小数点相应向左(右)移动二位.(2)0.13=0.001,13=1,103=1000,1003=1000000.观察这些结果,底数的小数点向左(右)移动一位时,立方数小数点相应向左(右)移动三位. (3)0.14=0.0001,14=1,104=10000,1004=100000000.观察这些结果,底数的小数点向左(右)移动一位时,四次方数小数点相应向左(右)移动四位.12.解:(-2)2=4,22=4,(-2)3=-8,23=8.当a<0时,(1)a2>0成立.(2)a2=(-a)2成立.(3)a2=-a2不成立.(4)a3=-a3不成立.【复习题1】1.如图所示,由图可知-3.5<-2<-1.6<-<0<0.5<2<3.5.2.如图所示,整数x可能取的所有值为-2,-1,0,1,2,3共六个数.3.a的绝对值为|a|=|-2|=2,a的相反数为-a=-(-2)=2,a的倒数为==-.b的绝对值为|b|=|-|=,b的相反数为-b=-(-)=,b的倒数为==-.c的绝对值为|c|=|5.5|=5.5,c的相反数为-c=-5.5,c的倒数为==.4.互为相反数的两数的和为0,互为倒数的两数的积为1.5.(1)-150+250=+(250-150)=100.(2)-15+(-23)=-(15+23)=-38.(3)-5-65=-(5+65)=-70.(4)-26-(-15)=-26+15=-11.(5)-6×(-16)=6×16=96.(6)-×27=-9.(7)8÷(-16)=-(8÷16)=-.(8)-25÷(-)=25×=.(9)(-0.02)×(-20)×(-5)×4.5=-0.02×20×5×4.5=-9.(10)(-6.5)×(-2)÷(-)÷(-5)=6.5×2×3×=7.8.(11)6+(-)-2-(-1.5)=6--2+1.5=(6+1.5)+(-0.2-2)=7.5-2.2=5.3.(12)-66×4-(-2.5)÷(-0.1)=-264-25=-289.(13)(-2)2×5-(-2)3÷4=4×5-(-8)÷4=20+2=22.(14)-(3-5)+32×(1-3)=-(-2)+9×(-2)=2-18=-16.6.(1)245.635≈245.6.(2)175.65≈176.(3)12.004≈12.00.(4)6.5378≈6.547.(1)100000000=1×108;(2)-4500000=-4.5×106;(3)692400000000=6.924×1011.8.(1)-2-|-3|=-5;(2)|-2-(-3)|=1.9.估计他们的平均成绩为78分,不妨规定以78分为标准,超出为正,不足为负,则10名同学的成绩为+4,+5,+0,-12,+17,-3,-22,+15,+4,+3.平均成绩为78+(+4+5+0-12+17-3-22+15+4+3)÷10=78+1.1=79.1.答:这10名同学的平均成绩为79.1分.10.C11.星期六:458-(-27.8)-(-70.3)-200-138.1-(-8)-188=38,星期六是盈;盈了38元.12.60-15=45(℃),5-60=-55(℃),45×0.002=0.09(mm),0.002×(-55)=-0.11(mm),-0.11+0.09=-0.02(mm).答:金属丝的长度先伸长0.09mm,再缩短0.11mm.最后的长度比原长度伸长-0.02mm.13.1.4960亿km=149600000km=1.496×108km.答:用科学记数法表示1个天文单位是1.496×108km.14.(1)当a=时,a2=()2=,a3=()3=.因此有:当a为小于1的正数时,a>a2>a3.(2)当b=-时,b2=(-)2=,b3=(-)3=-.因此有:当b为大于-1的负数时,b<b3<b2.15.(1)错,因为0的相反数就是0,所以任何数都不等于它的相反数是错误的.(2)正确,因为互为相反数的两个数只有符号相反,而绝对值相等,而偶数次方正好解决了符号问题,使互为相反数的两个数的符号都为正,因此互为相反数的两个数的同一偶次方相等.(3)错,因为2>-2,>-,所以如果a>b,那么a的倒数小于b的倒数是错误的.16.1;121;12321;1234321.(1)n个1乘以n个1,结果是从1按顺序写到n,然后按倒序写到1.(2)12345678987654321.第二章整式的加减2.1 整式【练习】1.4.8m(元).2.πr2h.3.ma+nb(kg).4.a2-b2(mm2).【练习】2.(1)48%x52%x(2)km/h(3)m(1+10%)【练习】1.(1)2a+2b ab 106(2)(a+b)h 152.(1)5x,单项式,次数为1;(2)x2+3x+6,多项式,次数为2,项数为3;(3)x+2,多项式,次数为1,项数为2.【习题2.1】1.(1)6a2;(2)0.8a;(3)vt;(4)bx.2.(1)(t+5)℃;(2)3(x-y)km;(3)50-5x(元);(4)aπ(R2-r2)cm3.4.前四年树苗的高度逐年增长,且都比上一年高5cm;100+5n.5.a+1;a+2;a+(n-1)=a+n-1;38.6.V=(a2-πr2)·h.当a=6cm,r=0.5cm,h=0.2cm,π=3时,V=3.45cm3.7.(1)2n;(2)2n+1(或2n-1).8.3个球队进行单循环赛的比赛场数是3场,4个球队进行单循环赛的比赛场数是6场,5个球队进行单循环赛的比赛场数是10场,n个球队进行单循环赛的比赛场数是场.9.如:Lolnh pdwk fodvv→I like math class.2.2 整式的加减【练习】1.(1)-8x;(2)3x;(3)-7.4a;(4)y;(5)3ab;(6)9.5y2.2.(1)5;(2)-10.3.(1)4x+5x=9x;(2)3x-x=x.4.πR2-πR2=(π-π)R2=πR2.【练习】1.(1)12x-6;(2)x-5;(3)-5a+5;(4)5y+1.2.飞机顺风飞行4小时的行程是4(a+20)=(4a+80)千米;飞机逆风飞行3小时的行程是3(a-20)=(3a-60)千米;两个行程相差(4a+80)-(3a-60)=4a+80-3a+60=(a+140)千米.【练习】1.(1)3xy-4xy-(-2xy)=3xy-4xy+2xy=(3-4+2)xy=xy;(2)-ab-a2+a2-(-ab)=-ab-a2+a2+ab=(-)ab+(-)a2=ab+a2.2.(1)(-x+2x2+5)+(4x2-3-6x)=-x+2x2+5+4x2-3-6x=6x2-7x+2;(2)(3a2-ab+7)-(-4a2+2ab+7)=3a2-ab+7+4a2-2ab-7=7a2-3ab;3.5(3a2b-ab2)-(ab2+3a2b)=15a2b-5ab2-ab2-3a2b=12a2b-6ab2.当a=,b=时,原式=12×()2×-6××()2=1-=.【习题2.2】1.(1)-8.3x;(2)-3x;(3)-3b;(4)2m-2n2.2.(1)8x-1;(2)-3+x;(3)-2x-7;(4)a2+5a.3.(1)(5a+4c+7b)+(5c-3b-6a)=5a+4c+7b+5c-3b-6a=-a+4b+9c;(2)(8xy-x2+y2)-(x2-y2+8xy)=8xy-x2+y2-x2+y2-8xy=-2x2+2y2;(3)(2x2-+3x)-4(x-x2+)=2x2-+3x-4x+4x2-2=6x2-x-;(4)3x2-[7x-(4x-3)-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.4.(-x2+5+4x)+(5x-4+2x2)=-x2+5+4x+5x-4+2x2=x2+9x+1.当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.5.(1)比a的5倍大4的数:5a+4;比a的2倍小3的数:2a-3.两数之和:(5a+4)+(2a-3)=5a+4+2a-3=7a+1.(2)比x的7倍大3的数:7x+3;比x的6倍小5的数:6x-5.两数之差:(7x+3)-(6x-5)=7x+3-6x+5=x+8.6.水稻种植面积:3a公顷;玉米种植面积:(a-5)公顷.水稻种植面积比玉米种植面积大:3a-(a-5)=3a-a+5=(2a+5)公顷.7.(1)窗户的面积:4a2+πa2=(4a2+πa2)cm2;(2)窗户的外框的总长:2a×4+×2πa=(8a+πa)cm.8.3(a+y)+1.5(a-y)=3a+3y+1.5a-1.5y=(4.5a+1.5y)千米.9.10.因为每条“边”上有n个点,所以整个图形中应有3n个点,而三角形的三个顶点都“重复”了一次,所以整个图形中有S=(3n-3)个点.当n=5时,S=12;当n=7时,S=18;当n=11时,S=30.11.(1)10b+a;(2)10·(10b+a)=100b+10a;(3)(10b+a)+(100b+10a)=110b+11a=11(10b+a).这个和是11的倍数.12.6·a2+6·a2+6·a2+6·a2+6·a2+6·a2=36a2.【复习题2】1.(1)(t+15)℃;(2)cn元,(100-cn)元;(3)0.8b元,(0.8b-10)元;(4)小李每天跑米,小张每天跑1500米,小李每天比小张多跑(-1500)米.2.见下表3.(1)-2x2y;(2)10.5y2;(3)0;(4)-mn+7;(5)8ab2+4;(6)3x3-2x2.4.(1)(4a3b-10b3)+(-3a2b2+10b3)=4a3b-10b3-3a2b2+10b3=4a3b-3a2b2;(2)(4x2y-5xy2)-(3x2y-4xy2)=4x2y-5xy2-3x2y+4xy2=x2y-xy2;(3)5a2-[a2+(5a2-2a)-2(a2-3a)]=5a2-a2-5a2+2a+2a2-6a=a2-4a;(4)15+3(1-a)-(1-a-a2)+(1-a+a2-a3)=15+3-3a-1+a+a2+1-a+a2-a3=18-3a+2a2-a3;(5)(4a2b-3ab)+(-5a2b+2ab)=4a2b-3ab-5a2b+2ab=-a2b-ab;(6)(6m2-4m-3)+(2m2-4m+1)=6m2-4m-3+2m2-4m+1=8m2-8m-2;(7)(5a2+2a-1)-4(3-8a+2a2)=5a2+2a-1-12+32a-8a2=-3a2+34a-13;(8)3x2-[5x-(x-3)+2x2]=3x2-5x+x-3-2x2=x2-x-3.5.5x2+4-3x2-5x-2x2-5+6x=(5-3-2)x2+(-5+6)x-1=x-1,当x=-3时,原式=-3-1=-4.6.(1)学生总数为a÷(1-60%)=a(人);(2)教练人数为(x+y)=(x+y)人.7.乙地的海拔高度:(h+20)米;丙地的海拔高度:(h-30)米.乙地比丙地高:(h+20)-(h-30)=h+20-h+30=50(米).8.长方形的面积为2x×4=8x(cm2);梯形的面积为×(x+3x)×5=10x(cm2).10x-8x=2x(cm2),所以,梯形的面积大,大2x cm2.9.第(1)种方案中圆形水池周长的和:2×2πr=4πr;第(2)种方案中圆形水池周长的和:2πr+2π·+2π·+2π·=4πr.所以,两种方案所需要的材料同样多.10.每件售价1.22a元;现售价1.22a×0.85=1.037a元;每件还能盈利0.037a元.11.十位上的数是a,个位上的数是b的两位数为10a+b;十位上的数与个位上的数交换位置后的两位数为10b+a;这两个两位数的和为(10a+b)+(10b+a)=11a+11b=11(a+b).所以,这两个两位数的和能被11整除.12.(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b);(2)3(x+y)2-7(x+y)+8(x+y)2+6(x+y)=(3+8)(x+y)2+(6-7)(x+y)=11(x+y)2-(x+y).第三章一元一次方程3.1从算式到方程3.1.1一元一次方程【练习】1.设沿跑道跑x周,列方程有400x=3000.新- 课-标-第-一-网2.设甲种铅笔买x支,列方程有0.3x+0.6(20-x)=9.3.设上底是x cm,列方程有(x+2+x)×5=40.4.设小水杯单位为x元,大水杯单位为(x+5)元,列方程有15x=10(x+5).3.1.2等式的性质【练习】(1)两边同加5,得x=11.检验:将x=11代入原方程左边,得11-5=6,方程左右两边相等,所以x=11是方程的解.(2)两边同除以0.3,得x=150.检验:将x=150代入原方程左边,得0.3×150=45,方程左右两边相等,所以x=150是方程的解.(3)两边同减4,得5x=-4,两边同除以5,得x=-.检验:将x=-代入原方程左边,得5×(-)+4=0.方程左右两边相等,所以x=-是方程的解.(4)两边同减2,得-x=1,两边同除以-,得x=-4.检验:将x=-4代入原方程左边,得2-×(-4)=3,方程左右两边相等,所以x=-4是方程的解.【习题3.1】1.(1)a+5=8;(2)b=9;(3)2x+10=18;(4)x-y=6;(5)3a+5=4a;(6)b-7=a+b.2.(1)a+b=b+a;(2)ab=ba;(3)a(b+c)=ab+ac;(4)(a+b)+c=a+(b+c).3.x=3是方程(3)的解;x=0是方程(1)的解;x=-2是方程(2)的解.4.(1)x=33;(2)x=8;(3)x=1;(4)x=1.5.设这个班有男生x人,由题意得x+(x+3)=48.6.设获一等奖的学生有x人,由题意得200x+50(22-x)=1400.7.设去年同期这项收入为x元,由题意得x·(1+8.3%)=5109.8.设x个月后这辆汽车将行使20800km,由题意得12000+800x=20800.9.设内沿小圆的半径为x cm,由题意得102π-πx2=200.10.设每班有学生x人,由题意得428=10x+(10x-22).11.x应是该方程的解:10x+1-10-x=18,9x=18+9,x=3.3.2解一元一次方程(一)——合并同类项与移项【练习】1.(1)x=3;(2)x=;(3)x=-4;(4)x=1.2.设前年的产值是x万元,由题意得x+1.5x+3x=550,解得x=100.答:前年的产值为100万元.【练习】1.(1)x=1;(2)x=-24.2.设她们采摘用了x小时,由题意得8x-0.25=7x,解得x=0.25.答:她们采摘用了0.25小时.【习题3.2】1.(1)x=2;(2)x=3;(3)y=-1;(4)b=.2.例如解方程3x-2=2x+1,把2x改变符号后移到等号左边,把-2改变符号后移到等号右边,得3x-2x=1+2.移项的根据是等式的性质1.3.(1)x=-4;(2)y=;(3)x=4;(4)y=.4.(1)5x+2=3x-4,x=-3;(2)-5y=5+y,y=-.5.设现在小新的年龄为x岁,由题意得x+28=3x,解得x=14.答:小新现在的年龄是14岁.6.设Ⅰ型洗衣机生产x台,则Ⅱ型洗衣机生产2x台,Ⅲ型洗衣机生产14x台.由题意得x+2x+14x=25500.合并,得17x=25500.系数化成1,得x=1500.所以2x=3000,14x=21000.答:这三种型号的洗衣机各生产1500台,3000台,21000台.7.设宽为x m,则长为1.5x m.由题意得2x+2×1.5x=60.解得x=12,1.5x=18.答:长为18m,宽为12m.8.(1)喷灌用水25%x吨,滴灌用水15%x吨.(2)由题意得x+25%x+15%x=420,解得x=300.所以25%x=75,15%x=45.答:第一块地用水300吨,第二块地用水75吨,第三块地用水45吨.9.设前年10月生产再生纸x吨,则去年10月生产再生纸(2x+150)吨,由题意得2x+150=2050,解得x=950.答:前年10月生产再生纸950吨.10.设其中一段长为x cm,则另一段长为(2x-5)cm,由题意得x+2x-5=100,解得x=35.答:在距木棍一端35cm处锯开.11.设有x人种树,由题意得10x+6=12x-6,解得x=6.答:有6人参与种树.12.假设相邻三行里同一列的三个日期数之和能为30,设这三个数分别为x-7,x,x+7由题意得(x-7)+x+(x+7)=30,解得x=10.答:相邻三行里同一列的三个日期数之和能为30,这三个数分别为3,10,17.13.设个位上的数是x,则十位上的数是9-x,由题意得3x+1=9-x,解得x=2.答:这个两位数是72.3.3解一元一次方程(二)——去括号与去分母【练习】(1)去括号,得2x+6=5x,移项,得2x-5x=-6,合并,得-3x=-6,系数化成1,得x=2.(2)去括号,得4x+6x-9=12-x-4,移项,得4x+6x+x=12-4+9,合并,得11x=17,系数化成1,得x=.(3)去括号,得3x-24+2x=7-x+1,移项,得3x+2x+x=7+1+24,合并,得x=32,系数化成1,得x=6.(4)去括号,得2-3x-3=1-2-x,移项,得-3x+x=1-2+3-2,合并,得-2x=0,系数化成1,得x=0.【练习】(1)去分母,得19x=21(x-2),去括号,得19x=21x-42,移项,得19x-21x=-42,合并,得-2x=-42,系数化成1,得x=21.(2)去分母,得2(x+1)-8=x,去括号,得2x+2-8=x,移项,得2x-x=6,合并,得x=6.(3)去分母,得3(5x-1)=6(3x+1)-4(2-x),去括号,得15x-3=18x+6-8+4x,移项,得15x-18x-4x=6-8+3,合并,得-7x=1,系数化成1,得x=-.(4)去分母,得10(3x+2)-20=5(2x-1)-4(2x+1),去括号,得30x+20-20=10x-5-8x-4,移项,得30x-10x+8x=-5-4-20+20,合并,得28x=-9,系数化成1,得x=-.【习题3.3】1.(1)a=-2;(2)b=1;(3)x=2;(4)y=-12.2.(1)去括号,得2x+16=3x-3,移项及合并,得-x=-19,系数化成1,得x=19;(2)x=-;(3)x=;(4)y=-44.3.(1)去分母,得3(3x+5)=2(2x-1),去括号,得9x+15=4x-2,移项及合并,得5x=-17,系数化成1,得x=-; (2)x=;(3)y=-1;(4)y=.4.(1)(x+4)×1.2=(x-14)×3.6,x=23;(2)(3y+1.5)×=(y-1)×,y=-.5.设张华登山用了x min,则李明登山所用时间(x-30)min,这座山的高度为10x米,由题意得10x=15(x-30),解得x=90.所以10x=900.答:能求出山高,这座山的高度为900米.6.设乙车的速度为x km/h,则甲车的速度为(x+20)km/h,由题意得x+(x+20)=84,解得x=74.所以x+20=94.答:甲车的速度为94km/h,乙车的速度为74km/h.7.(1)设无风时飞机的航速为x千米/时,则顺风时飞机的航速为(x+24)千米/时,逆风时飞机的航速为(x-24)千米/时,则两城之间的航程为[(x-24)×3]千米,由题意得(x+24)×2.8=(x-24)×3.解得x=696. (2)(x-24)×3=(696-24)×3=2016(千米).答:无风时飞机在这一航线的平均航速为696千米/时,两机场之间的航程为2016千米.8.设黑布料买了x米.5x+(138-x)×3=5405x+138×3-3x=540.2x+414=540,x=63,138-63=75.答:黑布买了63米,蓝布买了75米.9.设每个房间需要粉刷的墙面面积为x m2,根据题意,得-=10.去分母,得5(8x-50)-3(10x+40)=150.去括号,得40x-250-30x-120=150.移项,得40x-30x=150+120+250.合并,得10x=520.系数化为1,得x=52.答:每个房间需要粉刷的墙面面积为52m2.10.设A、B两地间路程为x千米,根据题意,得x-36=36×2.移项,得x=72+36.合并,得x=108.答:A、B两地间的路程为108千米.11.(1)从车头经过灯下到车尾经过灯下火车所走的路程为x m,这段时间内火车的平均速度为m/s.(2)从车头进入隧道,到车尾离开隧道,火车所走的路程为(300+x)m,这段时间内火车的平均速度为m/s.(3)火车的平均速度没有发生变化.(4)由(1)(2)可列方程=,解得x=300.答:火车的长度为300m.3.4实际问题与一元一次方程【练习】1.设应用x m3做A部件,(6-x)m3做B部件,根据题意可知,要想仪器恰好配套,A部件的数量就必须是B部件数量的,列方程:=·,解得x=4,则(6-x)=2.答:应用4m3做A部件,2m3做B部件,恰好配成这种仪器160套.2.设需要x天可以铺好这条管线,由题意知,甲、乙的工作效率分别为,,列方程:x+x=1,解得x=8.答:需要8天可以铺好这条管线.【练习】1.设小书包的进价为x元,大书包的进价为(x+10)元,由题意列方程:30%x=20%(x+10),解得x=20,则x+10=30.答:小书包的进价为20元,大书包的进价为30元.2.设复印张数为x页时,两处收费相同.由题意知x必须超过20时,两处收费才可能相同,列方程:0.12×20+(x-20)×0.09=0.1x,解得x=60.答:复印张数为60页时,两处收费相同.3.22【习题3.4】1.略.2.设应用x m3制作桌面,(12-x)m3制作桌腿,而桌面的数量是桌腿数量的,列方程:=·,解得x=10,则12-x=2.答:应用10m3制作桌面,2m3制作桌腿.3.设甲零件制作x天,乙零件制作(30-x)天,根据题意得500x=250(30-x),解得x=10,则30-x=20.答:甲零件制作10天,乙零件制作20天.4.设需要x小时完成,由题意得1×(+)+x=1,解得x=.答:需要小时完成.5.设先由x人做2小时,由题意可知一人工作效率为,列方程:2×x+(x+5)×8×=,解得x=2,则x+5=7.答:先安排2人做2小时,再由7人做8小时,就完成这项工作的.6.设这件衣服值x枚银币,依题意,得=.解得x=9.2.答:这件衣服值9.2枚银币.7.设每箱装x个产品,依题意,得=+1.解得x=12.答:每箱装12个产品.8.(1)由题意知,21min的温度是10+3×21=73(℃).答:21min的温度是73℃.(2)设x min的温度是34℃.由题意知,10+3x=34,解得x=8.答:8min的温度是34℃.9.设制作大月饼用x kg面粉,小月饼用(4500-x)kg面粉,根据题意可知大月饼总数只有小月饼总数的,列方程:=.解得x=2500,则4500-x=2000.答:制作大月饼用面粉2500kg,制作小月饼用面粉2000kg.10.设小强的行进速度为x km/h,小刚行进速度为(x+12)km/h,由题意得2x+2(x+12)=2(x+12)+0.5(x+12),解得x=4,则x+12=16,所以A、B两地距离为2x+2(x+12)=40(km),相遇后小强还需-2=8(h).答:小强的行进速度为4km/h,小刚行进速度为16km/h,相遇后小强经过8h到达A地.11.设销售量增加x%,把原销售金额看作“1”,由题意得(1-20%)(1+x%)=1,解得x=25.答:销售量要比按原价销售时增加25%.12.设此月人均定额是x件,那么甲组工人实际人均工作量是件,乙组工人实际人均工作量是件.根据题意,得(1)=.解得x=45.答:此月人均定额是45件.(2)=+2,解得x=35.答:此月人均定额是35件.(3)=-2,解得x=55.答:此月人均定额是55件.13.(1)设丢番图的寿命是x岁,根据题意,得x+x+x+5+x+4=x.解得x=84.答:丢番图的寿命是84岁.(2)丢番图开始当爸爸的年龄是x+x+x+5=38.答:丢番图开始当爸爸时的年龄是38岁.(3)儿子死时丢番图的年龄是84-4=80岁.答:儿子死时丢番图的年龄是80岁.【复习题3】1.(1)t-t=10;(2)(1-45%)n=110;(3)1.1a-10=210;(4)-=2.2.(1)移项,得-8x+x=3-,合并,得-x=,系数化成1,得x=-.(2)移项,得0.5x+1.3x=6.5+0.7,合并,得1.8x=7.2,系数化成1,得x=4.(3)去括号,得x-1=x-3,移项,得x-x=-3+1,合并,得x=-2,系数化成1,得x=-20.(4)去分母,得7(1-2x)=3(3x+1)-63,去括号,得7-14x=9x+3-63,移项,得-14x-9x=3-63-7,合并,得-23x=-67,系数化成1,得x=.3.(1)由题意得x-=7-,去分母,得15x-5(x-1)=105-3(x+3),去括号,得15x-5x+5=105-3x-9,移项,得15x-5x+3x=105-9-5,合并,得13x=91,系数化成1,得x=7.所以当x=7时,x-的值与7-的值相等.(2)由题意得x+=-x,去分母,得4x+5(x-1)=15(x-1)-16x,去括号,得4x+5x-5=15x-15-16x,移项,得4x+5x-15x+16x=-15+5,合并,得10x=-10,系数化成1,得x=-1.所以当x=-1时,x+的值与-x的值相等.4.(1)9;(2)6;(3)6.5.设快马x天可以追上慢马,由题意得240x=150(12+x),解得x=20.答:快马20天可以追上慢马.6.设经过x分钟首次相遇,由题意得350x+250x=400.解得x=.答:经过分首次相遇.又经过分再次相遇.7.设原来有x只鸽子,则有鸽笼个,由题意得=,解得x=27,所以=4.答:原来有27只鸽子,有鸽笼4个.8.设女儿现在的年龄为x岁,父亲现在的年龄为(91-x)岁,根据两人年龄差保持不变,为(91-x)-x=91-2x,由题意得91-2x=2x-(91-x),解得x=28.答:女儿现在的年龄为28岁.9.根据表格可知,答对一题得5分,答错一题减1分.(1)设F答对x道题,答错(20-x)道题,列方程:5x-(20-x)=76,解得x=16.答:参赛者F答对16道题.(2)假设G说法正确,设G答对x题,答错(20-x)题,列方程:5x-(20-x)=80,解得x=16.因为答对题目不可为分数,所以参赛者G的说法是错误的.10.设去游泳馆次数为x次,凭会员证去需付y1元,不凭证去需付y2元,则y1=80+x,y2=3x.(1)购会员证与不购会员证付一样的钱,即y1=y2,即80+x=3x.解得x=40.答:恰好去40次的时候,购会员证与不购会员证付一样的钱.(2)购会员证比不购会员证更合算,即y1<y2即80+x<3x.解得x>40.答:当去的次数超过40次的时候,购会员证比不购会员证更合算.(3)不购会员证比购会员证合算,即y1>y2,即80+x>3x.解得x<40.答:当去的次数少于40次的时候,不购会员证比购会员证合算.11.设去年种植油菜x公顷,则今年种植油菜(x-3)公顷,由题意得(x-3)(2400+300)(40%+10%)-x·2400×40%=3750,解得x=20,则x-3=17.答:去年种植油菜面积为20公顷,今年种植油菜面积为17公顷.第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形【练习】1.略2.第一个是圆柱,表面包含长方形和圆,长方形围成了侧面,两个圆作为上下底面;第二个是圆锥,表面包含扇形和圆,扇形围成了侧面,圆组成了底面;第三个是五棱柱,表面包含长方形和五边形,长方形围成了侧面,两个五边形组成上、下底面;第四个是六棱锥,表面包含三角形和六边形,三角形围成了侧面,六边形组成了底面;第五个是上面为四棱锥,下面为长方体的组合体,表面包含三角形和四边形,三角形和其中四个四边形组成上面和中间面,还有一个四边形组成底面.【练习】1.(1)上面(2)正面(3)左面2.略.3.C4.1.2点、线、面、体【练习】1.(1)(2)的所有面及(3)(5)的底面是平的,其他面是曲的.2.如图所示.【习题4.1】1.如图所示.2.从图中能看到长方体、圆柱、球.3.从图中能看到圆、三角形、长方形、五边形、六边形等.4.第1个图是一个圆柱,从正面和左面看都是一个长方形,从上面看一个圆,如图(1)所示;第2个图是一个圆锥,从正面和左面看都是等腰三角形,从上面看是一个圆(包括圆心),如图(2)所示;第3个图是一个球,从正面、左面、上面看都是一个圆,画图略.5.A6.如图所示.7.除第1排第3个图外,其余均能折叠成正方体,类似的正方体展开图还有如下几种,如图所示.8.第1个图主要含有长方体等,第2个图主要含有长方体、圆柱等,第3个图主要含有长方体、棱锥等,第4个图主要含有圆柱等.9.“横看成岭侧成峰”说明从不同方向看立体图形得到的图形是不同的.10.D11.(1)可折叠成圆柱.(2)可折叠成五棱柱.(3)可折叠成圆锥.(4)可折叠成三棱柱.12.能.提示:折叠正方形的对角线BD,分别让BC、AB与BD重合留下折痕,让BC与AB与BD间的折痕重合.13.(1)是B的展开图.(2)是B,C的展开图.(3)是A的展开图.14.略.4.2直线、射线、线段【练习】1.(1)√;(2)√;(3)×;(4)√.2.(1)如图所示;(2)如图所示;(3)如图所示;(4)如图所示.3.(1)点P在直线AB或直线l外;(2)直线a、b、c相交于点A、B、C.【练习】1.(1)AB>AC;(2)AC>AB;(3)AB=AC.2.略.3.CD=1cm.【习题4.2】1.答案不唯一.点拨:几何中所讲的直线与我们生活中所说的直线不完全相同.前者是抽象的数学概念,后者是有一定长度的,这些所谓的直线本质上讲大多是指线段.2.如图所示.3.如图所示.4.(1)如图所示:(2)如图所示;(3)如图所示;(4)如图所示.5.画一个边长为已知正方形边长的两倍的正方形即可.6.AB<AC.7.(1)如图所示;(2)如图所示;(3)如图所示.8.(1)A、B两地间的河道长度变短了;(2)增加了游人在桥上行走的路程,使游人观赏湖面风光的时间更长.数学原理:两点之间,线段最短.9.略.10.4cm或2cm.11.应先把立体图形展开成为一个平面图形,在平面图形上连接AB,AC,则线段AB即为蚂蚁从点A爬到点B的最短路径,线段AC即为蚂蚁从点A爬到点C的最短路径.理由:两点之间线段最短.12.两直线相交有1个交点;三条直线相交最多有3个交点;四条直线相交最多有6个交点;规律:n条直线相交最多有个交点.4.3角4.3.1角【练习】1.6时整,钟表的时针与分针构成180度的角;8时整,钟表的时针与分针构成120度的角;8时30分,钟表的时针与分针构成75度的角.2.(1)35°=35×60'=2100',35°×3600″=126000″.(2)不相等.因为38.15°=38°+0.15×60'=38°9',38°9'<38°15',所以38°15'>38.15°.3.略.4.3.2角的比较与运算【练习】1.用目测法估计两组图形中的∠1与∠2都相等.经测量第一组图形中的∠1=53°,∠2=63°,所以∠1<∠2,估计错误.经测量第二组图形中的∠1=118°,∠2=117°,所以∠1>∠2,估计错误.2.蛋糕是圆形的,是周角,周角为360°.解:因为360°÷8=45°,所以每份中的角是45°;因为360°÷15°=24(份).若每份中的角是15°,应分成24份.3.∵∠AOB=180°,∴∠AOC=∠AOB=×180°=90°.又∵∠AOD+∠COD=90°,∠COD=31°28',∴∠AOD=90°-∠COD=90°-31°28'=58°32'.4.3.3余角和补角【练习】1.互为余角的是:10°与80°,30°与60°.互为补角的是:10°与170°,30°与150°,60°与120°,80°与100°.2.它的余角是19°21';它的补角是109°21'.3.45°.4.锐角.【习题4.3】1.我们知道时针每小时旋转1个数字,即30°.180°÷30°=6小时,360°÷30°=12小时,所以时针旋转出一个平角至少需6小时,旋转出一个周角至少需12小时.2.略.3.(1)48°39'+67°31'=116°10'.(2)21°17'×5=106°25'.提示:解此类题时,注意度与分之间的进率为60,加时,满60'进一度;减时,分不够减时,退1度,分加60再减;乘时,分满60进1度,满120进2度,满180进3度,……;除时,余1度,分加60',余2度,分加120',余3度,分加180',余4度,分加240',…….4.= >5.∵BD、CE分别为∠ABC、∠ACB的平分线.∴∠ABC=2∠DBC=31°×2=62°,∠ACB=2∠BCE=31°×2=62°,∴∠ABC=∠ACB=62°答:∠ABC=∠ACB=62°,它们相等.6.(1)∠AOC (2)∠AOD (3)∠BOC (4)∠BOD7.要测量∠AOB的大小,可利用补角的性质.如图,可延伸AO至C,再测出∠BOC的大小,即可通过∠AOB=180°-∠BOC测得,如图所示.新- 课-标-第-一-网8.9.(1)∵OB、OD分别为∠AOC、∠COE的角平分线.∴∠AOB=∠BOC=40°,∠COD=∠DOE=30°.∴∠BOD=∠BOC+∠COD=40°+30°=70°.(2)∵∠AOB=∠BOC,∠COD=∠DOE=30°.∴∠COE=∠COD+∠DOE=60°.∴∠AOC=∠AOE-∠COE=140°-60°=80°.又∠AOB=∠BOC,∴∠AOB=∠AOC=×80°=40°.10.一个齿轮共15个齿,即将一圆周分成15份,∴每个夹角的度数为=24°.共有22个齿,则每个夹角的度数为≈16°22'.11.按(1)摆放∠α与∠β互余;按(4)摆放∠α与∠β互补;按(2)、(3)摆放∠α与∠β相等.12.如图所示.13.(1)设其中一角为x°,则:x+x=90,∴x=45.即两角分别为45°,45°.(2)设此角为x°,则:(180-x)-(90-x)=90,即一个锐角的补角比此角的余角大90°.14.规律:另一个角的度数都为135°.15.(1)∠1+∠2+∠3=360°.规律:三角形的三个外角之和为360°.(2)∠1+∠2+∠3+∠4=360°.规律:四边形的4个外角之和为360°.猜想:多边形的外角和都为360°.【复习题4】1.依次为:长方体,六棱柱,三棱柱,圆柱,圆锥,四棱锥,五棱锥,球.2.a-F,b-D,c-A,d-E,e-C,f-B.3.4.(1)D(2)C5.乙尺不是直的,因为两点间线段距离最短.6.AB=AD-BD=76-70=6(mm),BC=BD-CD=70-19=51(mm).7.(1)√(2)×(3)√(4)×8.∠α=∠β+30°,∵∠α+∠β=180°,∴∠β+(∠β+30°)=180°.∠β+∠β+30°=180°,∴∠β=100°.∴∠α=×100°+30°=80°.∴∠α=80°,∠β=100°.9.A10.给图依次编号为a、b、c、d,其中a和c可折叠成为棱柱.11.略.提示:画出图形,测AB的长,再乘以10即得AB的实际距离.12.90°.13.海洋世界在大门的东方,狮虎园在大门的南方,猴山在大门的北方,大象馆在大门的东北方.14.略.15.O点应为AC、BD的交点,因为两点间线段的距离最小.。

人教版数学七年级上册第1章1.2.1有理数同步练习(解析版)

人教版数学七年级上册第1章1.2.1有理数同步练习(解析版)

人教版数学七年级上册第1章 1.2.1有理数同步练习一、单选题(共12题;共24分)1、下列四个有理数中,既是分数又是正数的是()A、3B、﹣3C、0D、2.42、在﹣(﹣4),|﹣1|,﹣|0|,(﹣2)3这四个数中非负数共有()个.A、1B、4C、2D、33、如果a是有理数,下列各式一定为正数的()A、aB、a+1C、|a|D、a2+14、下列说法正确的是()A、整数包括正整数和负整数B、分数包括正分数和负分数C、正有理数和负有理数组成有理数集合D、0既是正整数也是负整数5、下列说法中正确的是()A、没有最小的有理数B、0既是正数也是负数C、整数只包括正整数和负整数D、﹣1是最大的负有理数6、下列说法中,正确的是()A、有理数就是正数和负数的统称B、零不是自然数,但是正数C、一个有理数不是整数就是分数D、正分数、零、负分数统称分数7、在﹣(﹣5),|﹣2|,0,(﹣3)3这四个数中,非负数共有()个.A、1B、4C、2D、38、下列各数0,3.14159,π,﹣中,有理数有()A、1个B、2个C、3个D、4个9、在﹣2,π,15,0,﹣,0.555…六个数中,整数的个数为()A、1B、2C、3D、410、下列说法中,错误的有()①﹣2 是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A、1个B、2个C、3个D、4个11、下列说法正确的有()A、a一定是正数B、是有理数C、0.5不是有理数D、平方等于自身的数只有1个12、从如图中的车票上得到的下列信息正确的是()A、车从济南开往兴化B、座位号是8C、乘车时间是2016年9月28日D、票价是192元二、填空题(共6题;共8分)13、在有理数中,既不是正数也不是负数的数是________.14、在有理数﹣4.2,6,0,﹣11,-中,分数有________.15、有理数中,最大的负整数是________16、在“1,﹣0.3,+ ,0,﹣3.3”这五个数中,非负有理数是________.(写出所有符合题意的数)17、在﹣42,+0.01,π,0,120,这5个数中正有理数是________.18、把下列各数按要求分类.﹣4,200%,|﹣1|,,﹣|﹣10.2|,2,﹣1.5,0,0.123,﹣25%整数集合:{________…},分数集合:{________…},正整数集合:{________…}.三、解答题(共3题;共15分)19、将下列一组数有选择的填入相应集合的圈内:5,7,﹣2.5,﹣100,0,99.9,﹣0.01,﹣420、在下面两个集合中各有一些有理数,请你分别从中选出两个整数和两个分数,再用“+﹣×÷”中的两种运算符号将选出的四个数进行两种运算,使得运算结果是一个正整数.整数{0,﹣3,5,﹣100,2008,﹣1,…},分数{ ,﹣,0.2,﹣1 ,﹣,…}.21、把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{1,2},{1,4,7},…,我们称之为集合,其中的每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2016﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2016}就是一个黄金集合,(1)若一个黄金集合中最大的一个元素为4016,则该集合是否存在最小的元素?如果存在,请直接写出答案,否则说明理由;(2)若一个黄金集合所有元素之和为整数M,且24190<M<24200,则该集合共有几个元素?说明你的理由.答案解析部分一、单选题1、【答案】D【考点】有理数的意义【解析】【解答】解:A、是整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【分析】根据大于零的分数是正分数,可得答案.2、【答案】D【考点】有理数的意义【解析】【解答】解:﹣(﹣4)=4,|﹣1|=1,﹣|0|=0,(﹣2)3=﹣8,所以只有(﹣2)3是负数,所以非负数的个数为3,故答案为D.【分析】利用绝对值、相反数及有理数的乘方,先对所给数进行化简,即可得出结论.3、【答案】D【考点】有理数的意义【解析】【解答】解:A、a可以是任何有理数,不一定是正数,故本选项错误;B、a+1可以是任何有理数,不一定是正数,故本选项错误;C、当a=0时,|a|=0,既不是正数也不是负数,故本选项错误;D、∵a2≥0,∴a2+1≥1,是正数,故本选项正确.故选D.【分析】根据非负数的性质对各选项分析判断后利用排除法求解.4、【答案】B【考点】有理数的意义【解析】【解答】解:整数包括正整数、负整数和0,所以A错误;分数包括正分数和负分数,所以B正确;有理数包括正有理数、负有理数和0,所以C错误;0不是正数也不是负数,所以D错误.故选B.【分析】根据有理数的分类,结合相关概念进行判断即可,整数包括正整数、负整数和0;分数包括正分数和负分数;有理数包括正有理数、负有理数和0;0不是正数也不是负数.5、【答案】A【考点】有理数的意义【解析】【解答】解:A、没有最大的有理数,也没有最小的有理数;故本选项正确;B、0既不是正数,也不是负数,而是整数;故本选项错误;C、整数包括正整数、负整数和零;故本选项错误;D、比﹣1大的负有理数可以是﹣;故本选项错误;故选A.【分析】按照有理数的分类作出选择:有理数.6、【答案】C【考点】有理数的意义【解析】【解答】解:A、有理数包括正数、负数和0,故A错误;B、零是自然数,但不是正数,故B错误;C、整数和分数统称有理数,因此一个有理数不是整数就是分数,故C正确;D、零是整数,不是分数,故D错误.故选C.【分析】根据有理数的定义和特点进行判断.7、【答案】D【考点】有理数的意义【解析】【解答】解:非负数有:﹣(﹣5)、|﹣2|和0共有3个.故选D.【分析】非负数是正数和0的统称,根据定义即可作出判断.8、【答案】C【考点】有理数的意义【解析】【解答】解:0是整数,3.14159、﹣是分数,由于整数、分数统称有理数,所以它们都是有理数.π是个无限不循环小数,是无理数.故选C.【分析】根据整数和分数统称有理数,进行辨析.9、【答案】C【考点】有理数的意义【解析】【解答】解:因为﹣2、15、0是整数,π是无理数,﹣、0.555…是分数.所以整数共3个.故选C.【分析】先判断每个数是什么数,最后得到整数的个数.10、【答案】B【考点】有理数的意义【解析】【解答】解:①﹣2 是负分数,故①正确;②1.5是分数,故②正确;③非负有理数是大于或等于零的有理数,故③错误;④有理数是有限小数或无限循环小数,故④错误;⑤没有最小的有理数,故⑤错误;⑥3.14是有理数,故⑥错误;故选:B.【分析】根据小于0的分数是负分数,可判断①;根据分母不为1的数是分数,可判断②;根据大于或等于零的有理数是非负有理数,可判断③;根据有理数是有限小数或无限循环小数,可判断④;根据有理数是有限小数或无限循环小,可判断⑤⑥.11、【答案】B【考点】有理数的意义【解析】【解答】解:∵0既不是正数,也不是负数,∴a不一定是正数,∴选项A不正确;∵是有理数,∴选项B正确;∵0.5是有理数,∴选项C不正确;∵平方等于自身的数有两个:0,1,∴选项D不正确.故选:B.【分析】根据有理数的特征和分类,以及平方的求法和特征,逐项判断即可.12、【答案】D【考点】有理数的意义【解析】【解答】解:由车票可看出班车由兴化到济南,开车时间为2016年9月30日,座位号为33,票价为192.0元.故选D.【分析】利用票面上的数字可对各选项进行判断.二、填空题13、【答案】0【考点】有理数的意义【解析】【解答】解:在有理数中,既不是正数也不是负数的数是0.【分析】有理数分为:正数,0,负数.14、【答案】﹣4.2,-【考点】有理数的意义【解析】【解答】解:在有理数﹣4.2,6,0,﹣11,-中,分数有﹣4.2,-,故答案为:﹣4.2,-.【分析】根据分数的定义可以判断题目中哪些数据是分数,从而可以解答本题.15、【答案】-1【考点】有理数的意义【解析】【解答】解:有理数中,最大的负整数是﹣1,故答案为:﹣1.【分析】根据小于零的整数是负整数,再根据最大的负整数,可得答案.16、【答案】1,+ ,0【考点】有理数的意义【解析】【解答】解:非负有理数是1,+ ,0.故答案为:1,+ ,0.【分析】根据大于或等于零的有理数是非负有理数,可得答案.17、【答案】+0.01,120【考点】有理数的意义【解析】【解答】解:正有理数有:+0.01,120.故答案为:+0.01,120.【分析】根据正有理数的定义解答即可.18、【答案】﹣4,200%,,2,0;,,﹣1.5,0.123,﹣25%;200%,,2.【考点】有理数的意义【解析】【解答】解:整数集合:{﹣4,200%,|﹣1|,2,0},分数集合:{ ,﹣|﹣10.2|,﹣1.5,0.123,﹣25%},正整数集合:{ 200%,|﹣1|,2},故答案为:﹣4,200%,|﹣1|,2,0;,﹣|﹣10.2|﹣1.5,0.123,﹣25%;200%,|﹣1|,2.【分析】按照有理数的分类填写:有理数.三、解答题19、【答案】解:【考点】有理数的意义【解析】【分析】按照有理数的分类即可求出答案,注意重合的部分是负分数.20、【答案】解:选择0,﹣1,,﹣1 ,0﹣(﹣1)﹣(﹣1 )+=1+1 +=3(答案不唯一).【考点】有理数的意义【解析】【分析】先选出两个整数,两个分数,再按要求计算即可.21、【答案】解:(1)一个黄金集合中最大的一个元素为4016,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2016﹣a中a的值越大,则2016﹣a的值越小,∴一个黄金集合中最大的一个元素为4016,则最小的元素为:2016﹣4016=﹣2000.(2)该集合共有24个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2016﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2016﹣a=2016,2016×12=24192,2016×13=26208,又∵一个黄金集合所有元素之和为整数M,且24190<M<24200,∴这个黄金集合中的元素个数为:12×2=24(个).【考点】有理数的意义【解析】【分析】(1)根据2016﹣a,如果a的值越大,则2016﹣a的值越小,从而可以解答本题;(2)根据题意可知黄金集合都是成对出现的,并且这对对应元素的和为2016,然后通过估算即可解答本题.。

《新新练案系列》人教实验版2013-2014学年七年级数学(上)第一章+有理数检测题参考答案

《新新练案系列》人教实验版2013-2014学年七年级数学(上)第一章+有理数检测题参考答案

第一章 有理数检测题参考答案1.C 解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么+20%20%表示减少.-6%6%2.D 解析:由数轴可知,a <0,b >0,|a |<|b |所以其在数轴上的对应点如图所示,‒a >0,‒b <0,3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.4.A 解析:负数有,,所以有2个.故选A.211-2-5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故a b a b a +b <0选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:.故选B .230 000=2.3×1058.C 解析:C 应该是0.050.9.C 解析:小明第四次测验的成绩是故选C.85+8‒12+10=91(分).10.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1,∴ =100×99=9 900,故选C .1××97×981××98×99×100!98!100 =11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是-3‒123‒13‒3;123.‒12312. 解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数‒1和5A A 有两个,分别位于点的两侧,分别是A ‒1和5.13解析:当0<<1时,.a 2<a <1a a 0<a 2<a <1,1a >1,所以a 2<a <1a . 14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与+5.7‒5.7‒7.1-7.1的绝对值的和是(‒5.7)+7.1=1.4.15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车.16.24 解析:,,所以-9+6+(-3)=-6|‒9|+|6|+|‒3|=18.18-(-6)=2417.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.100+38‒42+27‒33‒ 40=50.18.-9 解析:根据﹡,得(-4)﹡6a b =5a +2b ‒1.=5×(-4)+2×6-1=-919.解:(1)(+ 4.3)-(-4)+(- 2.3)-(+4)=4.3+4‒2.3‒4=2.(2)(-48)÷(‒2)3‒(‒25)×(‒4)+(‒2)2=6‒100+4=‒90.20.解:(1)所以(‒45)‒(‒34)=‒120<0,‒45<‒34.(2)=1,=9,所以<.|‒4+5||‒4|+|5||‒4+5||‒4|+|5|(3)52=25,25=32,所以52<25.(4) 2×32=18,(2×3)2=36,所以2×32<(2×3)2.21.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵‒6+(‒3)+(‒1)+(‒2)+7+3+4+(‒3)+(‒2)+1=‒2,∴ 与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg ).每袋小麦的平均质量是1 498÷10=149.8(kg ).22.解:当x >0,y <0时,|x ‒y +2|‒|y ‒x ‒3|=x ‒y +2+y ‒x ‒3=‒1.所以原式=-1.23.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵ ,∴ 小虫最后回到原点O .5-3+10-8-6+12-10=0(2)12㎝.(3)++++++=54,∴ 小虫可得到54粒芝麻.53-10+8-6-12+10-24.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,x x +5=0x ‒2=0最后确定的值.x 解:(1)7.(2)令或,则或.x +5=0x ‒2=0x =‒5x =2当时,,x ≤ ‒5‒(x +5)‒(x ‒2)=7∴ ,∴ .‒x ‒5‒x +2=7x =-5当时,,‒5<x <2(x +5)‒(x ‒2)=7∴ ,,x +5‒x +2=77=7∴ .x =‒4,‒3,‒2,‒1,0,1当2时,,x ≥(x +5)+(x ‒2)=7∴ ,,∴ .x +5+x ‒2=72x =4x =2∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.x 25.分析:(1)七天的收入总和减去支出总和即可;(2)首先计算出平均一天的节余,然后乘30即可;(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得.解:(1)由题意可得(元).15+18+16+25+24-10-14-13-8-10-14-15=14(2)由题意得:14÷7×30=60(元).(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).答:(1)到这个周末,李强有14元节余.(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常 开支.。

人教版数学七年级上册第1章有理数拓展训练(含答案)

人教版数学七年级上册第1章有理数拓展训练(含答案)

七年级上册第1章拓展训练一.选择题1.下列各数(﹣2)3,﹣(﹣2),(﹣2)2,﹣|﹣2|,﹣22中,负数有()A.1个B.2个C.3个D.4个2.若a是最小的正整数,b是最大的负整数,则﹣a+b的值为()A.0B.1C.2D.﹣23.下面说法正确的是()A.符号不同的两个数互为相反数B.正分数、0、负分数统称分数C.绝对值最小的数是0D.任何有理数都有倒数4.在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是()A.﹣15B.30C.24D.05.2020减去它的,再减去余下的,再减去余下的,…依此类推,一直减到余下的,则最后剩下的数是()A.0B.1C .D .6.下列说法正确的个数是()①0仅表示没有;②一个有理数不是整数就是分数;③正整数和负整数统称为整数;第1页(共1页)④如果一个数的绝对值是它本身,那么这个数是正数;⑤互为相反数的两个数在数轴上对应的两个点到原点的距离相等.A.1B.2C.3D.47.有理数a,b,c在数轴上对应的点的位置如图所示,则下列式子正确的是()A.a>b B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.b+c>08.一个大于1的正整数a ,与其倒数,相反数﹣a比较,大小关系正确的是()A.﹣a <≤a B.﹣a <<a C .>a>﹣a D.﹣a≤a ≤9.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.1110.定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为;(其中k 是使为奇数的正整数),并且运算可以重复进行,例如,取n=26.则:若n=49,则第449次“F运算”的结果是()A.98B.88C.78D.68二.填空题11.计算:20212﹣4×1010×1011=.第1页(共1页)12.若a=1,b是2的相反数,则|a﹣b|的值为.13.数轴上有A 、B两点,点A表示5的相反数,点B表示绝对值最小的数,一动点P 从点B出发,沿数轴以1单位长度/秒的速度运动,3秒后,点P到点A的距离为单位长度.14.规定⊗是一种新运算规则:a⊗b=a2﹣b2,例如:2⊗3=22﹣32=4﹣9=﹣5,则5⊗[1⊗(﹣2)]=.15.若对于某一范围内的x的任意值,|1﹣2x|+|1﹣3x|+…+|1﹣10x|的值为定值,则这个定值为.三.解答题16.用适当的方法计算(能用简便运算的就用简便运算)(1)﹣16﹣(﹣12)﹣24+18;(2)﹣(﹣1)+(﹣1)﹣;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣).第1页(共1页)17.的士司机李师傅从上午9:00~10:15在东西方向的九洲大道上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+2,﹣3,+3,﹣4,+5,+4,﹣7,﹣2.(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的东面还是西面?距离出发地多少千米?(2)若的士的收费标准为:起步价10元(不超过2.5千米),超过2.5千米,超过部分每千米2.6元.则李师傅在上午9:00~10:15一共收入多少元?(精确到1元)18.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.第1页(共1页)19.已知x,y为有理数,现规定一种新运算*,其意义是x⊗y=xy+1.(1)求(﹣2)⊗4的值;(2)求(﹣1⊗3)⊗(﹣2)的值;(3)任意选择两个有理数,分别填入下列□和○内,并比较两个运算结果,你有什么发现?把你的发现用等式表示出来.□⊗○和○⊗□20.观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)第1页(共1页)参考答案一.选择题1.解:(﹣2)3=﹣8,是负数,﹣(﹣2)=2,是正数,(﹣2)2=4,是正数,﹣|﹣2|=﹣2,是负数,﹣22=﹣4,是负数,综上所述,负数共有3个.故选:C.2.解:∵a是最小的正整数,b是最大的负整数,∴a=1,b=﹣1,∴﹣a+b=﹣1+(﹣1)=﹣2.故选:D.3.解:A.只有符号不同的两个数互为相反数,不是符号不同的两个数互为相反数,如2与﹣1的符号不相同,但2与﹣1不是相反数,此选项错误;B.其中0是整数不是分数,正分数和负分数统称为分数,此选项错误;C.因为正数的绝对值为正数,大于0,负数的绝对值为正数,大于0,0的绝对值为0,所以绝对值最小的数是0,此选项正确;D.由于0没有倒数,此选项错误;故选:C.4.解:在﹣1,﹣3,4,﹣5,0,6这六个数中,任取两个数相乘,所得的积最大的是:第1页(共1页)4×6=24.故选:C.5.解:2020×(1﹣)×(1﹣)×(1﹣)×…×(1﹣)=2020××××…×=1.故选:B.6.解:0不仅表示没有,还是正数、负数的分界线,因此①不正确;整数和分数统称有理数,因此②正确;正整数,0,负整数都是整数,因此③不正确;0的绝对值是0,而0不是正数也不是负数,因此④不正确;根据绝对值和相反数的意义,可得互为相反数的两个数在数轴上对应的两个点到原点的距离相等,因此⑤正确;综上所述,正确的有②⑤,故选:B.7.解:由题意,可知a<b<0<c,|a|=|c|>|b|.A、∵a<b<0<c,∴a>b错误,本选项不符合题意;B、∵a<b,∴a﹣b<0,∴|a﹣b|=﹣﹣a+b,∴|a﹣b|=a﹣b错误,本选项不符合题意;C、∵a<b<0<c,|a|=|c|>|b|,∴﹣a<﹣b<c错误,本选项不符合题意;D、∵b<0<c,|c|>|b|,∴c+b<0,正确,本选项符合题意.故选:D.第1页(共1页)8.解:∵a是大于1的正整数,∴a>1,<1,∴<a,∵﹣a<0,∴﹣a <<a.故选:B.9.解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.10.解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n =49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,第1页(共1页)即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,449÷6=74…5,则第449次“F运算”的结果是98.故选:A.二.填空题11.解:原式=20212﹣2020×2022=20212﹣(2021﹣1)×(2021+1)=20212﹣(20212﹣1)=20212﹣20212+1=1.故答案为:1.第1页(共1页)12.解:根据题意得:a=1,b=﹣2,则原式=|1﹣(﹣2)|=|1+2|=3.故答案为:3.13.解:∵点A表示5的相反数,点B表示绝对值最小的数,∴点A表示的数是﹣5,点B表示的数是0,点P移动的距离为1×3=3(单位长度),①若点P从点B向右移动,则点P所表示的数为3,此时P A=|﹣5﹣3|=8,②若点P从点B向左移动,则点P所表示的数为﹣3,此时P A=|﹣5+3|=2,故答案为:2或8.14.解:根据题中的新定义得:原式=5⊗(1﹣4)=5⊗(﹣3)=25﹣9=16.故答案为:16.15.解:∵P为定值,∴P的表达式化简后x的系数和为0;由于2+3+4+5+6+7=8+9+10;∴x的取值范围是:1﹣7x≥0且1﹣8x≤0即所以P=(1﹣2x)+(1﹣3x)+…+(1﹣7x)﹣(1﹣8x)﹣(1﹣9x)﹣(1﹣10x)=6﹣3=3.故答案为:3三.解答题第1页(共1页)16.解:(1)﹣16﹣(﹣12)﹣24+18=(﹣16)+12+(﹣24)+18=[(﹣16)+(﹣24)]+(12+18)=(﹣40)+30=﹣10;(2)﹣(﹣1)+(﹣1)﹣=[+(﹣1)]+(1﹣)=(﹣1)+1=;(3)|﹣1|﹣(﹣1)﹣|﹣1|﹣(﹣)=1+1﹣+=(1+)+(1﹣)=2+=2.17.解:(1)(+2)+(﹣3)+(+3)+(﹣4)+(+5)+(+4)+(﹣7)+(﹣2)=﹣2答:李师傅距第一批乘客出发地的西面,距离出发地2千米.(2)(3﹣2.5)+(3﹣2.5)+(4﹣2.5)+(5﹣2.5)+(4﹣2.5)+(7﹣2.5)=11(千米)10+10+(10×6+11×2.6)=108.6≈109(元)第1页(共1页)答:李师傅上午9:00~10:15一共收入约109元.18.解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、得数错误.19.解:(1)(﹣2)⊗4=﹣2×4+1=﹣7;(2)(﹣1⊗3)⊗(﹣2)=(﹣1×3+1)⊗(﹣2)=(﹣2)⊗(﹣2)=﹣2×(﹣2)+1=5;(3)(﹣1)⊗5=﹣1×5+1=﹣4,5⊗(﹣1)=5×(﹣1)+1=﹣4;所以□⊗○=○⊗□.20.(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,第1页(共1页)∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+ (32020)==.第1页(共1页)。

人教版七年级数学上册 第1章 有理数 1.4.有理数的乘除法 课后练习(含答案)

人教版七年级数学上册 第1章 有理数    1.4.有理数的乘除法  课后练习(含答案)

第1章 有理数 1.4.有理数的乘除法一、选择题1.下列各对数中,互为倒数的是( )A .4和-4B .-2和-12C .-3和13D .0和02.若等式0□1=-1成立,则□内的运算符号为( )A .+B .-C .×D .÷3.在分数的符号化简中,下列分数与-a b 不相等的是( )A .--a -b B.-a -b C .-a b D.a-b4.计算(-1)÷(-5)×(-15)的结果是( )A .-1B .1C .-125D .-255.若-2减去一个有理数的结果是5,则-2与这个有理数的乘积是( )A .10B .-14C .14D .-66.下列说法中正确的有( )①两个都不等于1的数相除,商一定小于被除数;②1乘任何有理数,都等于这个有理数本身;③0乘任何数都得0;④-1乘任何数都等于这个数的相反数.A .1个B .2个C .3个D .4个7.有理数a ,b 在数轴上对应的点的位置如图K -16-2所示,则下列式子错误的是()A .ab <0B .a +b <0C .|a |<|b |D .a -b <|a |+|b |二、填空题8.化简:-36-16=________.9.计算:(-4)+(-2)=________;(-4)×(-2)=________;-56÷13=________. 10.一个数的25是-165,则这个数是________. 11.某地某天早晨的气温是-2 ℃,到中午升高了6 ℃,晚上又降低了7 ℃,那么晚上的温度是________℃.12.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔________支.13.绝对值大于3.5且小于7.2的所有负整数的积为________.14.一只跳蚤在一直线上从点O 开始,第1次向右跳1个单位长度,紧接着第2次向左跳2个单位长度,第3次向右跳3个单位长度,第4次向左跳4个单位长度……依此规律跳下去,当它跳第100次落下时,落点处离点O 的距离是________个单位长度.三、解答题15.计算:(1)(-12.3)+(+12.82);(2)-4-28-(-19)+(-24);(3)(-29)+(-29)-(-2).16.计算:(1)(-81)÷214×(-49)÷(-8);(2)-72×(14-59+712)÷(-2);(3)-27÷94×(-49)+4-4×(-13).17.(1)已知3与一个数的差为-5,求这个数;(2)一个数与23的积为-43,求这个数.18.出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,向西为负,这天下午他的行驶情况如下(单位:千米):+11,-2,+15,-12,+10,-11,+5,-15,+18,-16.(1)当将最后一名乘客送到目的地时,小张距下午出车地点的距离为多少千米?(2)若每千米的营运额为2.4元,则这天下午小张的营运总额为多少元?(3)若成本为1.5元/千米,则这天下午小张盈利多少元?19.数学老师布置了一道思考题“计算:(-112)÷(13-56)”,小明仔细思考了一番,用了一种不同的方法解决了这个问题.小明的解法:原式的倒数为(13-56)÷(-112)=(13-56)×(-12)=-4+10=6,所以(-112)÷(13-56)=16.(1)请你判断小明的解答是否正确,并说明理由;(2)请你运用小明的解法计算:(-124)÷(13-16+38).参考答案1.B2.B3.B4.C5.C6.C [解析] ①不对,如2÷0.1=20;②③④正确.故选C.7.D [解析] 由数轴可知b <0<a ,且|b|>|a|,所以ab <0,故A 正确;a +b <0,故B 正确;|a|<|b|,故C 正确;而a -b =|a|+|b|,故D 错误.故选D.8.949.-6 8 -5210.-8 [解析] 这个数是-165÷25=-8. 11.-312.352 [解析] 由于该文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,所以三月份销售各种水笔320×(1+10%)=352(支).13.840 [解析] 满足条件的负整数有-7,-6,-5,-4,它们的积为(-7)×(-6)×(-5)×(-4)=840.14.50 [解析] 不妨设向左跳1个单位长度为-1,向右跳1个单位长度为+1,则1+(-2)+3+(-4)+5+…+(-100)=-50,所以第100次落下时,落点处在点O 的左侧50个单位长度处.15.解:(1)原式=0.52.(2)原式=-4-28+19-24=(-4-28-24)+19=-56+19=-37.(3)原式=-49+2=159. 16.解:(1)原式=-81×49×(-49)×(-18)=-2. (2)原式=(72×14-72×59+72×712)×12= (18-40+42)×12=10.(3)原式=27×49×49+4+43=163+43+4=1023. 17.解:(1)根据题意,得这个数为3-(-5)=3+5=8.(2)根据题意,得这个数为-43÷23=-43×32=-2. 18.解:(1)(+11)+(-2)+(+15)+(-12)+(+10)+(-11)+(+5)+(-15)+(+18)+(-16)=[(+11)+(-11)]+[(+15)+(-15)]+[(+10)+(+5)+(+18)]+[(-2)+(-12)+(-16)]=0+0+33+(-30)=3(千米).答:小张距下午出车地点的距离为3千米.(2)|11|+|-2|+|15|+|-12|+|10|+|-11|+|5|+|-15|+|18|+|-16|=115(千米),2.4×115=276(元).答:这天下午小张的营运总额为276元.(3)276-1.5×115=103.5(元).答:这天下午小张盈利103.5元.19.解:(1)正确.理由:一个数的倒数的倒数等于原数.(2)原式的倒数为(13-16+38)÷(-124) =(13-16+38)×(-24) =-8+4-9=-13,所以(-124)÷(13-16+38)=-113.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数检测题参考答案
1.C 解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.
2.D 解析:由数轴可知, 所以其在数轴上的对应点如图所示,
3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、
负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.
4.A 解析:负数有211-,2-,所以有2个.故选A.
5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.
6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.
7.B 解析:.故选B .
8.C 解析:C 应该是0.050.
9.C 解析:小明第四次测验的成绩是故选C.
10.C 解析:根据题意可得:100!=100×99×98×97×…×1,98!=98×97×…×1, ∴ 1××97×981××98×99×100!98!100ΛΛ==100×99=9 900,故选C . 11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是. 12. 解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是
13 解析:当0<<1时,
14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是
15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车.
16.24 解析:,,所以. 17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有
所以这个仓库现有电脑50台.
18.-9 解析:根据﹡,得(-4)﹡6.
19.解:(1)
(2)
20.解:(1)所以
(2)=1,=9,所以<.
(3)
(4)
21.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.
解:∵
∴ 与标准质量相比较,这10袋小麦总计少了2 kg.
10袋小麦的总质量是1 500-2=1 498(kg ).
每袋小麦的平均质量是
22.解:当 所以原式=-1.
23.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数. 解:(1)∵ ,∴ 小虫最后回到原点O .
(2)12㎝. (3)5+3-+10++8-+6-+12++10-=54,∴ 小虫可得到54粒芝麻. 24.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了. (2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值.
解:(1)7.
(2)令或,则或.
当时,,
∴ ,∴ .
当时,,
∴ ,,
∴ .
当2时,,
∴ ,,∴ .
∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.
25.分析:(1)七天的收入总和减去支出总和即可;
(2)首先计算出平均一天的节余,然后乘30即可;
(3)计算出这7天支出的平均数,即可作为一个月中每天的支出,乘30即可求得. 解:(1)由题意可得(元).
(2)由题意得:14÷7×30=60(元).
(3)根据题意得:10+14+13+8+10+14+15=84,84÷7×30=360(元).
答:(1)到这个周末,李强有14元节余.
(2)照这个情况估计,李强一个月(按30天计算)能有60元节余.
(3)按以上的支出水平,李强一个月(按30天计算)至少有360元收入才能维持正常 开支.。

相关文档
最新文档