北京市2017年中考数学真题试题(含解析)
2017年北京市中考数学试题答案
2017年北京市高级中等学校招生考试数学试卷答案部分11. π(答案不唯一).12. ⎩⎨⎧4x +5y =435x -y =3.13.3. 14.25°.15.将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一). 16.到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一) 17.3. 18.x <2.19.证明:∵AB =AC , ∠A =36°,∴∠ABC =∠C =12(180°-∠A )= 12×(180°-36°)=72°,又∵BD 平分∠ABC ,∴∠ABD =∠DBC =12∠ABC =12×72°=36°, ∠BDC =∠A +∠ABD =36°+36°=72°,∴∠C =∠BDC , ∠A =AB ∴AD =BD =BC .20.【答案】 S △AEF ,S △CFM ;S △ANF ,S △AEF ;S △FGC ,S △CFM .21. (1) 证明:∵△=[-(k +3)]2-4(2k +2)=k 2-2k +1=(k +1)2≥0, ∴方程总有两个实数根.(2)解:∵x 2-(k +3)x +2k +2=(x -2)(x -k -1)=0, ∴x 1=2,x 2=k +1, ∵方程总有一根小于1, ∴k +1<1,∴k <0.即k 的取值范围为:k <0. 22.(1)证明:∵E 为AD 中点,AD =2BC ,∴BC =ED , ∵AD ∥BC ,∴四边形ABCD 是平行四边形,∵AD =2BE , ∠ABD =90°,AE =DE ∴BE =ED , ∴四边形ABCD 是菱形.(2)解:∵AD ∥BC ,AC 平分∠BAD∴∠BAC =∠DAC =∠BCA ,∴BA =BC =1, ∵AD =2BC =2,∴sin ∠ADB =12,∠ADB =30°,∴∠DAC =30°,∠ADC =60°.在RT △ACD 中,AD =2,CD =1,AC =323. (1) 解:∵函数 y =kx(x >0)的图象与直线y =x -2交于点A (3,m )∴m =3-2=1,把A (3,1)代入y =kx得,k =3×1=3.即k 的值为3,m 的值为1.(2)解:①当n =1时,P (1,1),令y =1,代入y =x -2,x -2=1,x =3,M (3,1),PM =2. ②∵P (n ,n ),点P 在直线y =x 上,过点P 作平行于x 轴的直线,交y =x -2于点M ,M (n +2,n ),∴PM =2,由题意知PN ≥PM ,即PM >2, ∴0<n ≤1或n ≥3. 24.(1)证明:∵DC ⊥OA ,∴∠1+∠3=90°,∵BD 为切线, ∴OB ⊥BD ,∴∠2+∠5=90°,∵OA =OB , ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5, ∴DE =DB .(2)解:作DF ⊥AB 于F ,连接OE ,∵DB =DE ,∴EF =12BE =3,在Rt △DEF 中,EF =3,DE =BD =5,EF =3,∴DF =52-32=4∴sin ∠DEF =DF DE =45,∴∠AOE =∠DEF ,∴在Rt △AOE 中,sin ∠AOE =AE AO =45,∵AE =6,∴AO =152.25. a .240b .答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高; ②甲部门生产技能测试中,没有生产技能不合格的员工. 可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高. 考点:众数,中位数. 26. (1)1.6(2)(3)2.2(答案不唯一)27.(1)解:由抛物线y =x 2-4x +3与x 轴交于点A ,B (点A 在点B 的左侧),令y =0,解得x =1或x =3,∴点A ,B 的坐标分别为(1,0),(3,0),∵抛物线y =x 2-4x +3与y 轴交于点C ,令x =0,解得y =3,∴点C 的坐标为(0,3). 设直线BC 的表达式为y =kx +b ,∴⎩⎨⎧3k +b =0b =3,解得⎩⎨⎧k =-1b =3,∴直线BC 的表达式为:y =-x +3(2)解:由y =x 2-4x +3=(x -2)2-1, ∴抛物线的顶点坐标为(2,-1),对称轴为直线x =2, ∵ y 1=y 2,∴x 1+x 2=4.令y =-1,y =-x +3,x =4. ∵ x 1<x 2<x 3,∴3<x 3<4, 即7< x 1+x 2+x 3<8,∴x 1+x 2+x 3的取值范围为:7< x 1+x 2+x 3<8. 28.(1)解:∵∠P AC =α,△ACB 是等腰直角三角形,∴∠P AB =45°-α,∠AHM =90°,∴∠AMQ =180°-∠AHM -∠P AM =45°+ α.(2)证明:连接AQ ,过点M 做ME ⊥QB ,∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠P AC =α, ∴∠QAM =α+45°=∠AMQ ,∴AP =AQ =QM ,在Rt △APC 和Rt △QME 中, ⎩⎪⎨⎪⎧∠MQE =∠P AC∠ACP =∠QEM AP =QM∴RT △APC ≌RT △QME , ∴PC =ME ,∴△MEB 是等腰直角三角形,∴12PQ =22MB ,∴PQ = 2MB .29.(1)①P 1,P 2②解:根据定义分析,可得当直线y =-x 上的点P 到原点的距离在1到3之间时符合题意;∴ 设点P 的坐标为P (x ,-x ) ,当OP =1时,由距离公式可得,OP = (x -0)2+(-x -0)2=1,解得 x =±22, 当OP =3时,由距离公式可得,OP = (x -0)2+(-x -0)2=3,x 2+x 2=9,解得x =±322,∴ 点的横坐标的取值范围为-322≤x ≤-22 或22 ≤x ≤322(2)∵y =-x +1与轴、轴的交点分别为A 、B 两点, ∴令y =0得,-x +1=0,解得x =1,令x =0得,y =0, ∴A (1,0),B (0,1) 分析得:如图1,当圆过点A 时,此时CA =3 ∴点C 坐标为,C (-2,0)如图2,当圆与小圆相切时,切点为D ,∴CD =1 ,又∵直线AB 所在的函数解析式为y =-x +1 ∴直线AB 与x 轴形成的夹角是45° ∴Rt △ACD 中,CA =2 ∴C 点坐标为(1-2,0)∴C 点的横坐标的取值范围为:-2≤x c ≤1-2如图3,当圆过点A 时,AC =1, C 点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt △OCB 中,由勾股定理得OC = 32-1=22,C 点坐标为 (22,0).∴ C 点的横坐标的取值范围为2≤ x c ≤2 2 ;∴综上所述点C的横坐标的取值范围为-322≤x c≤-22或22≤x c≤322.。
2017年北京市中考数学试卷及答案
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前北京市2017年高级中等学校招生考试数学 .......................................................................... 1 北京市2017年高级中等学校招生考试数学答案解析 . (6)北京市2017年高级中等学校招生考试数学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x =B .4x =C .0x ≠D .4x ≠ 3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a ->B .0bd >C .|||d |>aD .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A B C D6.若正多边形的一个内角是150︒,则该正多边形的边数是 ( ) A .6 B .12 C .16 D .187.如果2210a a +-=,那么代数式24()2a a a a --的值是( ) A .3- B .1- C .1 D .3 8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011年—2016年我国与东南亚地区和东欧地区的贸易额统计图毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是( )A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011—2016年,我国与东南亚地区的贸易额逐年增长C.2011—2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在如图所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图所示.下列叙述正确的是( )A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“针尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.写出一个比3大且比4小的无理数:.12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.如图,在ABC△中,M,N分别为AC,BC的中点,若1CMNS=△,则ABNMS=四边形.14.如图,AB为O的直径,C,D为O上的点,AD CD=.若40∠=︒CAB,则CAD∠=︒.15.如图,在平面直角坐标系xOy中,AOB△可以看作是OCD△经过若干次图形的变化数学试卷第3页(共22页)数学试卷第4页(共22页)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)(平移、轴对称、旋转)得到的,写出一种由OCD △得到AOB △的过程: .16.下面是“作已知直角三角形的外接圆”的尺规作图过程.请回答:该尺规作图的依据是 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:4cos30(1|2|︒+︒-.18.(本小题满分5分)解不等式组:2(1)57,102.3x x x x +-⎧⎪+⎨⎪⎩>>19.(本小题满分5分)如图,在ABC △中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20.(本小题满分3分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S =-+△△△矩形,ABC EBMF S S =-△矩形( + ).易知,ADC ABC S S =△△, = , = . 可得NFGD EBMF S S =矩形矩形.21.(本小题满分5分)关于x 的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.22.(本小题满分5分)如图,在四边形ABCD 中,BD 为一条对角线,BC AD ∥,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.(本小题满分5分)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。
北京市2017年中考数学试卷(解析版)
2017年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2017•北京)截止到2017年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()2.(3分)(2017•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()3.(3分)(2017•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()B=4.(3分)(2017•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为().C D.5.(3分)(2017•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()6.(3分)(2017•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()=7.(3分)(2017•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()8.(3分)(2017•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是().景仁宫(4,2)9.(3分)(2017•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()10.(3分)(2017•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()二、填填空题(本题共18分,每小题3分)11.(3分)(2017•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.12.(3分)(2017•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.13.(3分)(2017•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.解:根据题意得:故答案为:14.(3分)(2017•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.=0+4×a15.(3分)(2017•北京)北京市2009﹣2017年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2017年北京市轨道交通日均客运量约980万人次,你的预估理由是根据2009﹣2017年呈直线上升,故2017﹣2017年也呈直线上升.16.(3分)(2017•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2017•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.﹣+4×=5+18.(5分)(2017•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.19.(5分)(2017•北京)解不等式组,并写出它的所有非负整数解.,<20.(5分)(2017•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BA D.21.(5分)(2017•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2017年底,全市已有公租自行车25 000辆,租赁点600个.预计到2017年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2017年底平均每个租赁点的公租自行车数量的1.2倍.预计到2017年底,全市将有租赁点多少个?1.2=,22.(5分)(2017•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DA B.=523.(5分)(2017•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若P A=2AB,求k的值.=,﹣24.(5分)(2017•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.,于是得到=AO r=2+=,r rAE,,+25=28.25.(5分)(2017•北京)阅读下列材料:2017年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2017年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2017 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2017 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2017年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2017年清明小长假,玉渊潭公园游客接待量为40万人次;(2)选择统计表或统计图,将2017﹣2017年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(5分)(2017•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.﹣﹣﹣求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.×+;27.(7分)(2017•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.,求出=28.(7分)(2017•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果).,即,.29.(8分)(2017•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.,,,﹣+2),则,∠,,,x2=。
2017年北京中考数学试卷及答案
2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有一个...l的距离是1.如图所示,点P到直线PB的长度B. A线段A.线段PA的长度PD的长度 D.线段的长度C.线段PCxx若代数式的取值范围是有意义,则实数2.4x?40x?x?xx D. C. A. =0 B. =43.右图是某几何体的展开图,该几何体是圆柱 D.C.四棱柱 B.圆锥三棱柱A.a,b,c,d在数轴上的点的位置如图所示,则正确的结论是4. 实数a??4ab?0a?c?0d?a D. A. B. C.5.下列图形中,是轴对称图形不是中心对称图形的是..6.若正多边形的一个内角是150°,则该正方形的边数是A.6B. 12C. 16D.181 / 142a4??2??a0??2a?1a如果的值是,那么代数式7.??2?aa??A.-3 B. -1C. 1D.38.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.根据统计图提供的信息,下列推断不合理的是...A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2016—2016年,我国与东南亚地区的贸易额逐年增长C. 2016—2016年,我国与东南亚地区的贸易额的平均值超过4 200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多.在整个过程中,4×9.小苏和小林在右图的跑道上进行50米折返跑)的t(单位:s与跑步时间跑步者距起跑线的距离y(单位:m) 对应关系如下图所示。
下列叙述正确的是两个人起跑线同时出发,同时到达终点A.小苏跑全程的平均速度大于小林跑全程的平均速度B.1515s跑过的路程大于小林s跑过的路程小苏前C. 2次的过程中,与小苏相遇100D.小林在跑最后m.10.下图显示了用计算器模拟随机投掷一枚图钉的某次实验的结果2 / 14下面有三个推断:0616;“钉尖向上”的概率是①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以钉可以估计“的频率总在0.618附近摆动,显示出一定的稳定性,②随着试验次数的增加,“钉尖向上”;尖向上”的概率是06180.620. 的频率一定是时,“钉尖向上”③若再次用计算机模拟此实验,则当投掷次数为1 000 其中合理的是 D.①③ C. ①② A. ① B. ②分,每小题3分)二、填空题(本题共18.311.写出一个比大且比4小的无理数求3元,个足球,一共花费435元,其中篮球的单价比足球的单价多12.某活动小组购买了4个篮球和5元,依题意,可列方程组元,足球的单价为y篮球的单价和足球的单价.设篮球的单价为x.为1?S?S分△. M,N别是AC,BC的中点,若,则13.如图,在ABC中,CMNABMN四边形OO∠.°,则CAD= 为如图14.,AB为的直径,C,D 上的点,。
2017年北京市中考数学试卷含答案
a a-2 (A)-3 (B)-1 (C)1 (D)3 8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况( )
75 79 81 70 74 80 86 69 83 77 乙 93 73 88 81 72 81 94 83 77 83
80 81 70 81 73 78 82 80 70 40 整理、描述数据 按如下分数段整理、描述这两组样本数据:
(说明:成绩 80 分及以上为生产技能优秀,70—79 分为生产技能良好,60—69 分为生产技能合格, 60 分以下为生产技能不合格) 分析数据 两组样本数据的平均数、中位数、众数如下表所示:
部门
平均数
中位数
众数
甲
78.3
77.5
75
乙
78
80.5
81
得出结论 a.估计乙部门生产技能优秀的员工人数为
;
b.可以推断出
部门员工的生产技能水平较高,理由
为
。(至少从两个不同的角度说明推断的合理性)
⌒
⌒
26.如图,P 是 AB 所对弦 AB 上的一动点,过点 P 作 PM⊥AB 交AB 于点 M,连接 MB,过点 P 作 PN
5.〖答案〗A 〖解析〗轴对称但不是中心对称的图形选哪个,一般难度。本题选 A。
6.〖答案〗B 〖解析〗正多边形一个内角是 150°,求边数。本题选 B。
7.〖答案〗C 〖解析〗分式化简求值,整体代入。这样的题目原来是解答题,前移至选择题。本题选 C。
2017年北京市中考数学试卷解析版
2017年北京市中考数学试卷解析版一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段P A的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度【解答】解:由题意,得点P到直线l的距离是线段PB的长度,故选:B.2.(3分)若代数式xx−4有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4【解答】解:由代数式有意义可知:x﹣4≠0,∴x≠4,故选:D.3.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|d|D.b+c>0【解答】解:由数轴上点的位置,得a <﹣4<b <0<c <1<d .A 、a <﹣4,故A 不符合题意;B 、bd <0,故B 不符合题意;C 、|a |>4=|d |,故C 符合题意;D 、b +c <0,故D 不符合题意;故选:C .5.(3分)下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形但不是中心对称图形,故本选项正确;B 、是轴对称图形,也是中心对称图形,故本选项错误;C 、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,也是中心对称图形,故本选项错误.故选:A .6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是( )A .6B .12C .16D .18【解答】解:设多边形为n 边形,由题意,得(n ﹣2)•180°=150n ,解得n =12,故选:B .7.(3分)如果a 2+2a ﹣1=0,那么代数式(a −4a )•a 2a−2的值是( ) A .﹣3 B .﹣1 C .1 D .3【解答】解:(a −4a )•a 2a−2=a 2−4a ⋅a 2a−2=(a+2)(a−2)a ⋅a2 a−2=a(a+2)=a2+2a,∵a2+2a﹣1=0,∴a2+2a=1,∴原式=1,故选:C.8.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【解答】解:A、由折线统计图可得:与2015年相比,2016年我国与东欧地区的贸易额有所增长,正确,不合题意;B、由折线统计图可得:2011﹣2014年,我国与东南亚地区的贸易额2014年后有所下降,故逐年增长错误,故此选项错误,符合题意;C、2011﹣2016年,我国与东南亚地区的贸易额的平均值为:(3632.5+4003.0+4436.5+4803.6+4718.7+4554.4)÷6≈4358,故超过4200亿美元,正确,不合题意,D、∵4554.4÷1368.2≈3.33,∴2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多,故选:B.9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【解答】解:由函数图象可知:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A错误;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,根据速度=路程时间,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B错误;根据图象小苏前15s跑过的路程小于小林前15s跑过的路程,故C错误;小林在跑最后100m的过程中,两人相遇时,即实线与虚线相交的地方,由图象可知2次,故D正确;故选:D.10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③【解答】解:当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以此时“钉尖向上”的频率是:308÷500=0.616,但“钉尖向上”的概率不一定是0.616,故①错误,随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618.故②正确,若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率可能是0.620,但不一定是0.620,故③错误,故选:B.二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:π.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为 {x −y =34x +5y =435. 【解答】解:设篮球的单价为x 元,足球的单价为y 元,由题意得:{x −y =34x +5y =435, 故答案为:{x −y =34x +5y =435. 13.(3分)如图,在△ABC 中,M 、N 分别为AC ,BC 的中点.若S △CMN =1,则S 四边形ABNM= 3 .【解答】解:∵M ,N 分别是边AC ,BC 的中点,∴MN 是△ABC 的中位线,∴MN ∥AB ,且MN =12AB ,∴△CMN ∽△CAB ,∴S △CMN S △CAB =(MN AB )2=14, ∴S △CMN S 四边形ABNM =13,∴S 四边形ABNM =3S △CMN =3×1=3.故答案为:3.14.(3分)如图,AB 为⊙O 的直径,C 、D 为⊙O 上的点,AD̂=CD ̂.若∠CAB =40°,则∠CAD = 25° .【解答】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵AD̂=CD̂,∴∠ABD=∠CBD=12∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:△OCD 绕C点顺时针旋转90°,并向左平移2个单位得到△AOB.【解答】解:△OCD绕C点顺时针旋转90°,并向左平移2个单位得到△AOB(答案不唯一).故答案为:△OCD 绕C 点顺时针旋转90°,并向左平移2个单位得到△AOB .16.(3分)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt △ABC ,∠C =90°,求作Rt △ABC 的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.请回答:该尺规作图的依据是 到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一条直线;90°的圆周角所对的弦是直径;圆的定义等. .【解答】解:该尺规作图的依据是到线段两端点的距离相等的点在这条线段的垂直平分线上;90°的圆周角所对的弦是直径.故答案为到线段两端点的距离相等的点在这条线段的垂直平分线上;两点确定一直线;90°的圆周角所对的弦是直径;圆的定义.三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1−√2)0−√12+|﹣2|.【解答】解:原式=4×√32+1﹣2√3+2 =2√3−2√3+3=3.18.(5分)解不等式组:{2(x +1)>5x −7x+103>2x .【解答】解:{2(x +1)>5x −7①x+103>2x②, 由①式得x <3;由②式得x <2,所以不等式组的解为x <2.19.(5分)如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D .求证:AD =BC .【解答】证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 平分∠ABC 交AC 于点D ,∴∠ABD =∠DBC =36°,∴∠A =∠ABD ,∴AD =BD ,∵∠C =72°,∴∠BDC =72°,∴∠C =∠BDC ,∴BC =BD ,∴AD =BC .20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S 矩形NFGD =S △ADC ﹣(S △ANF +S △FGC ),S 矩形EBMF =S △ABC ﹣( S △AEF + S △FCM ).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC.可得S矩形NFGD=S矩形EBMF.【解答】证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(S△AEF+S△FCM).易知,S△ADC=S△ABC,S△ANF=S△AEF,S△FGC=S△FMC,可得S矩形NFGD=S矩形EBMF.故答案分别为S△AEF,S△FCM,S△ANF,S△AEF,S△FGC,S△FMC.21.(5分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.22.(5分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.【解答】(1)证明:∵AD=2BC,E为AD的中点,∴DE=BC,∵AD∥BC,∴四边形BCDE是平行四边形,∵∠ABD=90°,AE=DE,∴BE=DE,∴四边形BCDE是菱形.(2)解:连接AC.∵AD∥BC,AC平分∠BAD,∴∠BAC=∠DAC=∠BCA,∴AB=BC=1,∵AD=2BC=2,∴sin∠ADB=1 2,∴∠ADB=30°,∴∠DAC=30°,∠ADC=60°,在Rt△ACD中,∵AD=2,∴CD=1,AC=√3.23.(5分)如图,在平面直角坐标系xOy中,函数y=kx(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=kx(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【解答】解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=k x,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=3 x,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),n>0点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∵PN=|3n−n|,|3n−n|≥2∴0<n≤1或n≥324.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.【解答】(1)证明:∵AO=OB,∴∠OAB=∠OBA,∵BD是切线,∴OB⊥BD,∴∠OBD=90°,∴∠OBE+∠EBD=90°,∵EC⊥OA,∴∠CAE+∠CEA=90°,∵∠CEA=∠DEB,∴∠EBD=∠BED,∴DB=DE.(2)作DF⊥AB于F,连接OE.∵DB=DE,AE=EB=6,∴EF=12BE=3,OE⊥AB,在Rt△EDF中,DE=BD=5,EF=3,∴DF=2−32=4,∵∠AOE+∠A=90°,∠DEF+∠A=90°,∴∠AOE=∠DEF,∴sin∠DEF=sin∠AOE=AEAO=45,∵AE=6,∴AO=15 2.∴⊙O 的半径为152.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据: 成绩x 人数 部门 40≤x ≤49 50≤x ≤59 60≤x ≤69 70≤x ≤7980≤x ≤8990≤x ≤100甲 0 0 1 11 7 1 乙17102(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:部门 平均数 中位数 众数 甲78.377.575乙 78 80.5 81得出结论:a .估计乙部门生产技能优秀的员工人数为 240 ;b .可以推断出 甲或乙 部门员工的生产技能水平较高,理由为 ①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高; ②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高. .(至少从两个不同的角度说明推断的合理性) 【解答】解:填表如下: 成绩x 人数 部门 40≤x ≤49 50≤x ≤59 60≤x ≤69 70≤x ≤79 80≤x ≤89 90≤x ≤100甲 0 0 1 11 7 1 乙 17102a .1220×400=240(人).故估计乙部门生产技能优秀的员工人数为240; b .答案不唯一,理由合理即可.可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高; ②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.或可以推断出乙部门员工的生产技能水平较高,理由为:①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高; ②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高. 故答案为:1,0,0,7,10,2;240;甲或乙,①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或①乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②乙部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.̂所对弦AB上一动点,过点P作PM⊥AB交AB̂于点M,连接MB,26.(5分)如图,P是AB过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.1 1.60.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△P AN为等腰三角形时,AP的长度约为 2.2cm.【解答】解:(1)通过取点、画图、测量可得x=4时,y=1.6cm,故答案为1.6.(2)利用描点法,图象如图所示.(3)当△P AN 为等腰三角形时, ∵∠APN >90°,∴只有P A =PN 一种情形,即x =y ,作出直线y =x 与图象的交点坐标为(2.2,2.2), ∴△P AN 为等腰三角形时,P A =2.2cm .故答案为2.2.27.(7分)在平面直角坐标系xOy 中,抛物线y =x 2﹣4x +3与x 轴交于点A 、B (点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N (x 3,y 3),若x 1<x 2<x 3,结合函数的图象,求x 1+x 2+x 3的取值范围. 【解答】解:(1)由y =x 2﹣4x +3得到:y =(x ﹣3)(x ﹣1),C (0,3). 所以A (1,0),B (3,0),设直线BC 的表达式为:y =kx +b (k ≠0), 则{b =33k +b =0, 解得{k =−1b =3,所以直线BC 的表达式为y =﹣x +3;(2)由y=x2﹣4x+3得到:y=(x﹣2)2﹣1,所以抛物线y=x2﹣4x+3的对称轴是直线x=2,顶点坐标是(2,﹣1).∵y1=y2,∴x1+x2=4.令y=﹣1,y=﹣x+3,x=4.∵x1<x2<x3,∴3<x3<4,即7<x1+x2+x3<8.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.【解答】解:(1)∠AMQ=45°+α;理由如下:∵∠P AC=α,△ACB是等腰直角三角形,∴∠BAC=∠B=45°,∠P AB=45°﹣α,∵QH ⊥AP , ∴∠AHM =90°,∴∠AMQ =180°﹣∠AHM ﹣∠P AB =45°+α;(2)PQ =√2MB ;理由如下: 连接AQ ,作ME ⊥QB ,如图所示: ∵AC ⊥QP ,CQ =CP , ∴∠QAC =∠P AC =α, ∴∠QAM =45°+α=∠AMQ , ∴AP =AQ =QM , 在△APC 和△QME 中, {∠MQE =∠PAC ∠ACP =∠QEM AP =QM,∴△APC ≌△QME (AAS ), ∴PC =ME ,∵△MEB 是等腰直角三角形, ∴12PQ =√22MB ,∴PQ =√2MB .方法二:也可以延长AC 到D ,使得CD =CQ . 则易证△ADP ≌△QBM .∴BM =PD =√2CD =√2QC =√22PQ , 即PQ =√2MB .29.(8分)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0)中,⊙O 的关联点是 P 2,P 3 . ②点P 在直线y =﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y =﹣x +1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.【解答】解:(1)①∵点P 1(12,0),P 2(12,√32),P 3(52,0), ∴OP 1=12,OP 2=1,OP 3=52,∴P 1与⊙O 的最小距离为32,P 2与⊙O 的最小距离为1,OP 3与⊙O 的最小距离为12, ∴⊙O ,⊙O 的关联点是P 2,P 3;故答案为:P 2,P 3;②根据定义分析,可得当最小y =﹣x 上的点P 到原点的距离在1到3之间时符合题意, ∴设P (x ,﹣x ),当OP =1时,由距离公式得,OP =√(x −0)2+(−x −0)2=1,∴x =±√22,当OP =3时,OP =√(x −0)2+(−x −0)2=3,解得:x =±3√22; ∴点P 的横坐标的取值范围为:−3√22≤x ≤−√22,或√22≤x ≤3√22; (2)∵直线y =﹣x +1与x 轴、y 轴交于点A 、B ,∴A (1,0),B (0,1),如图1,当圆过点A时,此时,CA=3,∴C(﹣2,0),如图2,当直线AB与小圆相切时,切点为D,∴CD=1,∵直线AB的解析式为y=﹣x+1,∴直线AB与x轴的夹角=45°,∴AC=√2,∴C(1−√2,0),∴圆心C的横坐标的取值范围为:﹣2≤x C≤1−√2;如图3,当圆过点O,则AC=1,∴C(2,0),如图4,当圆过点B,连接BC,此时,BC=3,∴OC=√32−1=2√2,∴C(2√2,0).∴圆心C的横坐标的取值范围为:2≤x C≤2√2;综上所述;圆心C的横坐标的取值范围为:﹣2≤x C≤1−√2或2≤x C≤2√2.2017年北京市中考数学试卷一、选择题(本题共30分,每小题3分)1.(3分)如图所示,点P到直线l的距离是()A.线段P A的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度2.(3分)若代数式xx−4有意义,则实数x的取值范围是()A.x=0B.x=4C.x≠0D.x≠4 3.(3分)如图是某个几何体的展开图,该几何体是()A.三棱柱B.圆锥C.四棱柱D.圆柱4.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.|a|>|d|D.b+c>05.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.6.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.187.(3分)如果a2+2a﹣1=0,那么代数式(a−4a)•a2a−2的值是()A.﹣3B.﹣1C.1D.3 8.(3分)下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011﹣2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推断不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011﹣2016年,我国与东南亚地区的贸易额逐年增长C.2011﹣2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.(3分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.(3分)如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟此实验,则当投掷次数为1000时,“钉尖向上”的频率一定是0.620.其中合理的是()A.①B.②C.①②D.①③二、填空题(本题共18分,每题3分)11.(3分)写出一个比3大且比4小的无理数:.12.(3分)某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.(3分)如图,在△ABC中,M、N分别为AC,BC的中点.若S△CMN=1,则S四边形ABNM=.̂=CD̂.若∠CAB=40°,14.(3分)如图,AB为⊙O的直径,C、D为⊙O上的点,AD则∠CAD=.15.(3分)如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:.16.(3分)下面是“作已知直角三角形的外接圆”的尺规作图过程已知:Rt △ABC ,∠C =90°,求作Rt △ABC 的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于P ,Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作⊙O .⊙O 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题(本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.(5分)计算:4cos30°+(1−√2)0−√12+|﹣2|.18.(5分)解不等式组:{2(x +1)>5x −7x+103>2x . 19.(5分)如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D .求证:AD =BC .20.(5分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所得两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据该图完成这个推论的证明过程.证明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).易知,S△ADC=S△ABC,=,=.可得S矩形NFGD=S矩形EBMF.21.(5分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.(5分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.23.(5分)如图,在平面直角坐标系xOy中,函数y=kx(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=kx(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.24.(5分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(5分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 6983 77乙93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 8070 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x 人数部门40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲0011171乙(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)̂所对弦AB上一动点,过点P作PM⊥AB交AB̂于点M,连接MB,26.(5分)如图,P是AB过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm0 2.0 2.3 2.10.90(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当△P AN为等腰三角形时,AP的长度约为cm.27.(7分)在平面直角坐标系xOy中,抛物线y=x2﹣4x+3与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点P(x1,y1),Q(x2,y2),与直线BC交于点N(x3,y3),若x1<x2<x3,结合函数的图象,求x1+x2+x3的取值范围.28.(7分)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.(8分)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当⊙O 的半径为2时, ①在点P 1(12,0),P 2(12,√32),P 3(52,0)中,⊙O 的关联点是 . ②点P 在直线y =﹣x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围. (2)⊙C 的圆心在x 轴上,半径为2,直线y =﹣x +1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.。
北京市2017年中考数学试题及答案
北京市2017年中考数学试题及答案2017年北京市高级中等学校招生考试数学试卷一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4x x -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠D .4x ≠3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b >D .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C. D .6.若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12 C. 16 D .187. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭g 的值是( )A . -3B . -1 C. 1 D .38.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是()A.与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;② 随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③ 若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是( )A .①B .② C. ①② D .①③二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S∆=,则ABNM S =四边形 .14.如图,AB 为O e 的直径,C D 、为O e 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .15.如图,在平面直角坐标系xOy中,AOB∆∆可以看作是OCD 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD∆的过程:.∆得到AOB16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0∆∠=,求作Rt ABC,90Rt ABC C∆的外接圆.作法:如图.(1)分别以点A和点B为圆心,大于1AB的长为半径作弧,2两弧相交于,P Q 两点;(2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O e .O e 即为所求作的圆.请回答:该尺规作图的依据是 .三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(004cos3012122+--.18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD SS S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC SS ∆∆=,_____________=______________,______________=_____________. 可得NFGD EBMF S S =矩形矩形.21.关于x 的一元二次方程()23220x k x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.23. 如图,在平面直角坐标系xOy 中,函数()0k y x x =>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0k y x x =>的图象于点N .①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.24.如图,AB 是O e 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O e 的切线交CE 的延长线于点D .(1)求证:DB DE=;(2)若12,5AB BD==,求O e的半径.25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0 0 1 11 7 1乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.3 77.5 75乙78 80.5 81得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)26.如图,P是AB所对弦AB上一动点,过点P作PM AB⊥交AB于点M,连接MB,过点P作PN MB=,设⊥于点N.已知6AB cm、两点间的距离为xcm,P N、两点间的距离为ycm.(当点A PP与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表: /x cm 0 12 3 4 5 6/y cm0 2.0 2.3 2.1 0.9 0(说明:补全表格时相关数值保留一位小数) (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当PAN ∆为等腰三角形时,AP 的长度约为____________cm . 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x xx <<,结合函数的图象,求123x xx ++的取值范围.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 上存在一点Q ,使得P Q 、两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O e 的半径为2时,①在点1231135,0,,,,02222P P P ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭中,O e 的关联点是_______________.②点P 在直线y x =-上,若P 为O e 的关联点,求点P 的横坐标的取值范围.(2)C e 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y轴交于点A B 、.若线段AB 上的所有点都是C e 的关联点,直接写出圆心C 的横坐标的取值范围.2017年北京市高级中等学校招生考试数学试卷答案一、选择题1-5: BDACA 6-10: BCBDB二、填空题113. (答案不唯一)12.13. 3 14.25°三、解答题。
2017年北京市中考初三毕业考试数学真题试卷下载后附答案
数学试卷 第1页(共20页) 数学试卷 第2页(共20页)绝密★启用前北京市2017年高级中等学校招生考试数 学(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x =B .4x =C .0x ≠D .4x ≠ 3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱4.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a ->B .0bd >C .|||d |>aD .0b c +>5.下列图形中,是轴对称图形但不是中心对称图形的是( )A B C D6.若正多边形的一个内角是150︒,则该正多边形的边数是 ( ) A .6 B .12 C .16 D .187.如果2210a a +-=,那么代数式24()2a a a a --的值是( ) A .3- B .1- C .1 D .3 8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011年—2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推断不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011—2016年,我国与东南亚地区的贸易额逐年增长C .2011—2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多9.小苏和小林在如图所示的跑道上进行450⨯米折返跑.在整个过程中,跑步者距起跑线毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图所示.下列叙述正确的是( )A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次10.如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“针尖向上”的频率一定是0.620.其中合理的是( )A.①B.②C.①②D.①③第Ⅱ卷(非选择题共90分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.写出一个比3大且比4小的无理数:.12.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为.13.如图,在ABC△中,M,N分别为AC,BC的中点,若1CMNS=△,则ABNMS=四边形.14.如图,AB为O的直径,C,D为O上的点,AD CD=.若40∠=︒CAB,则CAD∠=︒.15.如图,在平面直角坐标系xOy中,AOB△可以看作是OCD△经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由OCD△得到AOB△的过程:.16.下面是“作已知直角三角形的外接圆”的尺规作图过程.数学试卷第3页(共20页)数学试卷第4页(共20页)数学试卷 第5页(共20页) 数学试卷 第6页(共20页)请回答:该尺规作图的依据是 .三、解答题(本大题共13小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分5分)计算:4cos30(1|2|︒+︒-.18.(本小题满分5分)解不等式组:2(1)57,102.3x x x x +-⎧⎪+⎨⎪⎩>>19.(本小题满分5分)如图,在ABC △中,AB AC =,36A ∠=︒,BD 平分ABC ∠交AC 于点D .求证:AD BC =.20.(本小题满分3分)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.(以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古世界数学泰斗刘徽》)请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S =-+△△△矩形,ABC EBMF S S =-△矩形( + ).易知,ADC ABC S S =△△, = , = . 可得NFGD EBMF S S =矩形矩形.21.(本小题满分5分)关于x 的一元二次方程2(3)220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k 的取值范围.22.(本小题满分5分)如图,在四边形ABCD 中,BD 为一条对角线,BC AD ∥,2AD BC =,90ABD ∠=︒,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分BAD ∠,1BC =,求AC 的长.23.(本小题满分5分)如图,在平面直角坐标系xOy 中,函数(0)ky x x=>的图线与直线2y x =-交于点(3,)A m .(1)求k ,m 的值;(2)已知点(,)(0) >P n n n ,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数(0)ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________第7页(共20页)数学试卷第8页(共20页)24.(本小题满分5分)如图,AB是O的一条弦,E是AB的中点,过点E作EC OA⊥于点C,过点B作O的切线交CE的延长线于点D.(1)求证:DB DE=;(2)若12AB=,5BD=,求O的半径.25.(本小题满分6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40(说明:成绩80分及以上为生产技能优秀,70~79分为生产技能良好,60~69分为生产技能合格,60分以下为生产技能不合格)分析数据得出结论a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为.(至少从两个不同的角度说明推断的合理性)26.(本小题满分6分)如图,P是AB所对弦AB上的一动点,过点P作PM AB⊥交AB于点M,连接MB,过点P作PN AB⊥于点N.已知6cmAB=,设A,P两点间的距离为cmx,P,N两点间的距离为cmy.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了如下探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当PAN△为等腰三角形时,AP的长度约为cm.27.(本小题满分7分)在平面直角坐标系xOy中,抛物线243y x x=-+与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.(1)求直线BC的表达式;(2)垂直于y轴的直线l与抛物线交于点11(,)P x y,22(,)Q x y,与直线BC交于点33(,)N x y.若123x x x<<,结合函数的图象,求123x x x++的取值范围.28.(本小题满分7分)在等腰直角ABC△中,90∠=︒ACB,P是线段BC上一动点(与点B,C不重合),连接AP,延长BC至点Q,使得CQ CP=,过点Q作QH AP⊥于点H,交AB于点M.数学试卷数学试卷 第9页(共20页) 数学试卷 第10页(共20页)(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示); (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.29.(本小题满分8分)对于直角坐标系xOy 中的点P 和图形M ,给出如下定义:若在图形M 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为图形M 的关联点. (1)当O 的半径为2时,①在点11(0)2P ,,21(2P ,35(0)2P ,中,O 的关联点是 ; ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴分别交于点A ,B .若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.北京市2017年高级中等学校招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】由题意,得点P 到直线l 的距离是线段PB 的长度,故选:B 。
北京市2017年中考数学真题试题(含解析)
北京市2017年中考数学真题试题一、选择题(本题共30分,每小题3分)1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度 D.线段PD 的长度 【答案】B. 【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B.考点:点到直线的距离定义2.若代数式4xx -有意义,则实数x 的取值范围是( )A .0x =B .4x =C .0x ≠D .4x ≠【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱【答案】A.【解析】 试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A.考点:三视图4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +>【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B . C.D .【答案】A.【解析】 试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A.考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( )A . 6B . 12 C. 16 D .18【答案】B.【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B.考点:多边形的内角与外角7. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( ) A . -3 B . -1 C. 1 D .3【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况.2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》)根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B.2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元D.2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多【答案】A..考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.【答案】π (答案不唯一).【解析】试题分析:π∵3<x<4,<<∴9<x<16,故答案不唯一 π考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩. 考点:二元一次方程组的应用.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMN S ∆=,则ABNM S =四边形 .【答案】3.【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC 的中点,∴12CM CN AC AB == , ∴2211()()24CMN ABC S CM S AC ∆∆=== ,∵1,44CMN ABC CMN S S S ∆∆∆=== , 413ABNM ABC CMN S S S ∆∆=-=-=.考点:相似三角形的性质.14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则C A D ∠= .【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .【答案】将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一).【解析】试题分析:观察图形即可,将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB ,注意是顺时针还是逆时针旋转.考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ;(3)以O 为圆心,OA 为半径作O . O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17.计算:(004cos3012+-.【答案】3.【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可. 试题解析:原式=4考点:实数的运算 18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.【答案】见解析.【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠AB D=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=12(180°-∠A)= 12×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=12∠ABC=12×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB ∴AD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程.证明:()ADC ANF FGC NFGD S S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADC ABC S S ∆∆=,_____________=______________,______________=_____________.可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S .考点:矩形的性质,三角形面积计算.21.关于x 的一元二次方程()23220x k x k -+++=. (1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长.【答案】(1)证明见解析.(2【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°,∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m . (1)求k m 、的值;(2)已知点()(),0P n n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P 作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.【答案】(1)见解析.(2)0<n≤1或n≥3. 【解析】试题分析:(1)先求A 点坐标,在代入kyx=,即可求出结果;(2)①令y=1,求出PM的值,令x=1求出PN的值即可;(3)过点P作平行于x轴的直线,利用图象可得出结果.试题解析:(1) ∵函数kyx=(x>0)的图象与直线y=x-2交于点A(3,m) ∴m=3-2=1,把A(3,1)代入kyx=得,k=3×1=3.即k的值为3,m的值为1.考点:直线、双曲线的函数图象24.如图,AB是O的一条弦,E是AB的中点,过点E作EC OA⊥于点C,过点B作O的切线交CE 的延长线于点D.(1)求证:DB DE =;(2)若12,5AB BD ==,求O 的半径. 【答案】(1)见解析;(2)152【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin ∠DEF 和sin ∠AOE 的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC ⊥OA, ∴∠1+∠3=90°, ∵BD 为切线,∴OB ⊥BD, ∴∠2+∠5=90°, ∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB 中, ∠4=∠5,∴DE =DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据:a.估计乙部门生产技能优秀的员工人数为400×40=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高; ②甲部门生产技能测试中,没有生产技能不合格的员工. 可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多; ②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高. 考点:众数,中位数.26.如图,P 是AB 所对弦AB 上一动点,过点P 作PM AB ⊥交AB 于点M ,连接MB ,过点P 作PN MB ⊥于点N .已知6AB cm =,设A P 、两点间的距离为xcm ,P N 、两点间的距离为ycm .(当点P 与点A 或点B 重合时,y 的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.为等腰三角形时,AP的长度约为____________cm. (3)结合画出的函数图象,解决问题:当PAN【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6(2)如图所示:(3)作y=x 与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C .(1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.【答案】(1)y=-x+3;(2)7<123x x x ++<8. 【解析】试题分析:(1)先求A 、B 、C 的坐标,用待定系数法即可求解;(2)由于垂直于y 轴的直线l 与抛物线243y x x =-+要保证123x x x <<,则P 、Q 两点必位于x 轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x 轴和过顶点的直线,继而求解.(2).由2243(2)1y x x x =-+=--,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵12y y = ,∴1x +2x =4.令y=-1,y=-x+3,x=4. ∵ 123x x x <<,∴3<3x <4, 即7<123x x x ++<8, ∴ 123x x x ++的取值范围为:7<123x x x ++<8.考点:二次函数与x 轴的交点问题,待定系数法求函数解析式,二次函数的对称性.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M . (1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)试题解析:(1) ∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM =45°+α .(2)线段MB与PQ之间的数量关系:理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP, ∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ, ∴AP=AQ=QM,在RT△APC和RT△QME中,MQE PACACP QEMAP QM∠=⎧⎪∠=∠⎨⎪=⎩∴RT△APC≌RT△QME, ∴PC=ME, ∴△MEB是等腰直角三角形,∴12PQ=,∴考点:全等三角形判定,等腰三角形性质 .29.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P Q、两点间的距离小于或等于1,则称P为图形M的关联点.(1)当O的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围. (2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-2 ≤x ≤x ,(2)-2≤x ≤1或2≤x ≤试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意;∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,1= ,解得x = ,当OP=3时,由距离公式可得,3= ,229x x +=,解得2x =±,∴≤x≤x如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt△OCB中,由勾股定理得= , C点坐标为.∴ C 点的横坐标的取值范围为2≤c x ≤;∴综上所述点C ≤c x ≤c x 考点:切线,同心圆,一次函数,新定义.。
2017年北京中考数学试卷及答案
百度文库--您的访问出错了2017 年北京市高级中等学校招生考试数学试卷学校:姓名:准考证号:考 生须 知1.本试卷共 8 页,共三道大题,29 道小题,满分 120 分。
考试时间 120 分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡一并交回。
一、选择题(本题共 30 分,每小题 3 分) 第 1-10 题均有四个选项,符合题意的选项只.有.一个.1.如图所示,点 P 到直线 l 的距离是A.线段 PA 的长度B. A 线段 PB 的长度C.线段 PC 的长度D.线段 PD 的长度2.若代数式 x 有意义,则实数 x 的取值范围是 x4A. x =0B. x =4C. x 0D. x 43.右图是某几何体的展开图,该几何体是A.三棱柱B.圆锥C.四棱柱D.圆柱4.实数 a,b,c,d 在数轴上的点的位置如图所示,则正确的结论是A. a 4B. ab 0C. a d5.下列图形中,是轴对称图形不是中.心.对称图形的是D. a c 0.1百度文库--您的访问出错了6.若正多边形的一个内角是 150° ,则该正方形的边数是A.6B. 12C. 16D.187.如果a22a10,那么代数式 a4 a a2 a2的值是A.-3B. -1C. 1D.38.下面统计图反映了我国与“一带一路”沿线部分地区的贸易情况.根据统计图提供的信息,下列推断不.合.理.的是 A.与 2015 年相比,2016 年我国与东欧地区的贸易额有所增长 B.2016—2016 年,我国与东南亚地区的贸易额逐年增长 C. 2016—2016 年,我国与东南亚地区的贸易额的平均值超过 4 200 亿美元 D.2016 年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的 3 倍还多 9.小苏和小林在右图的跑道上进行 4× 50 米折返跑.在整个过程中, 跑步者距起跑线的距离 y(单位:m)与跑步时间 t(单位:s)的 对应关系如下图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市2017年中考数学真题试题一、选择题(本题共30分,每小题3分) 1.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B . 线段PB 的长度C .线段PC 的长度D .线段PD 的长度 【答案】B. 【解析】试题分析:由点到直线的距离定义,即垂线段的长度可得结果故选B. 考点:点到直线的距离定义 2.若代数式4xx -有意义,则实数x 的取值范围是( ) A .0x = B .4x = C .0x ≠ D .4x ≠ 【答案】D.考点:分式有意义的条件3. 右图是某个几何题的展开图,该几何体是( )A . 三棱柱B . 圆锥C .四棱柱D . 圆柱 【答案】A. 【解析】试题分析:根据三棱柱的概念,将该展开图翻折起来正好是一个三棱柱.故选A. 考点:三视图4. 实数,,,a b c d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .4a >-B .0bd > C. a b > D .0b c +>【答案】C.考点:实数与数轴5.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C. D .【答案】A. 【解析】试题分析:A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误.故选A. 考点:轴对称图形和中心对称图形的识别6.若正多边形的一个内角是150°,则该正多边形的边数是( ) A . 6 B . 12 C. 16 D .18 【答案】B. 【解析】试题分析:设多边形的边数为n,则有(n-2)×180°=n ×150°,解得:n=12.故选B. 考点:多边形的内角与外角7. 如果2210a a +-=,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭ 的值是( )A . -3B . -1 C. 1 D .3 【答案】C.考点:代数式求值8.下面的统计图反映了我国与“一带一路”沿线部分地区的贸易情况. 2011-2016年我国与东南亚地区和东欧地区的贸易额统计图(以上数据摘自《“一带一路”贸易合作大数据报告(2017)》) 根据统计图提供的信息,下列推理不合理的是( )A .与2015年相比,2016年我国与东欧地区的贸易额有所增长B .2011-2016年,我国与东南亚地区的贸易额逐年增长C. 2011-2016年,我国与东南亚地区的贸易额的平均值超过4200亿美元 D .2016年我国与东南亚地区的贸易额比我国与东欧地区的贸易额的3倍还多 【答案】A..考点:折线统计图9.小苏和小林在右图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y (单位:m)与跑步时间t(单位:s)的对应关系如下图所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C. 小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次【答案】D.考点:函数图象10. 下图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:①当投掷次数是500时,计算机记录“钉尖向上”的次数是308,所以“钉尖向上”的概率是0.616;②随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是()A.① B.② C. ①② D.①③【答案】B.【解析】试题分析:①当频数增大时,频率逐渐稳定的值即为概率,500次的实验次数偏低,而频率稳定在了0.618,错误;②由图可知频数稳定在了0.618,所以估计频率为0.618,正确;③.这个实验是一个随机试验,当投掷次数为1000时,钉尖向上”的概率不一定是0.620.错误.故选B.考点;频率估计概率二、填空题(本题共18分,每题3分)11. 写出一个比3大且比4小的无理数:______________.【答案】 (答案不唯一).【解析】试题分析:π∵3<x<4,<<∴9<x<16,故答案不唯一 π,考点:无理数的估算.12. 某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________. 【答案】454353x y x y +=⎧⎨-=⎩.考点:二元一次方程组的应用.13.如图,在ABC ∆中,M N 、分别为,AC BC 的中点.若1CMNS ∆=,则ABNM S =四边形 .【答案】3. 【解析】试题分析:由相似三角形的面积比等于相似比的平方可求解.由M,N,分别为AC,BC 的中点,∴12CM CN AC AB == , ∴2211()()24CMN ABC S CM S AC ∆∆=== ,∵1,44CMN ABC CMN S S S ∆∆∆=== , 413ABNM ABC CMN S S S ∆∆=-=-= .考点:相似三角形的性质.14.如图,AB 为O 的直径,C D 、为O 上的点,AD CD =.若040CAB ∠=,则CAD ∠= .【答案】25°.考点:圆周角定理15.如图,在平面直角坐标系xOy 中,AOB ∆可以看作是OCD ∆经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一中由OCD ∆得到AOB ∆的过程: .【答案】将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB (答案不唯一). 【解析】试题分析:观察图形即可,将△COD 绕点C 顺时针旋转90°,再向左平移2个单位长度得到△AOB ,注意是顺时针还是逆时针旋转. 考点:几何变换的类型16.下图是“作已知直角三角形的外接圆”的尺规作图过程已知:0,90Rt ABC C ∆∠=,求作Rt ABC ∆的外接圆.作法:如图.(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于,P Q 两点; (2)作直线PQ ,交AB 于点O ; (3)以O 为圆心,OA 为半径作O .O 即为所求作的圆.请回答:该尺规作图的依据是 .【答案】到线段两端点距离相等的点在线段的垂直平分线上;两点确定一条直线;垂直平分线的定义;90°的圆周角所对弦为直径.不在同一条直线上的三个点确定一个圆.(答案不唯一)考点:作图-基本作图;线段垂直平分线的性质三、解答题 (本题共72分,第17题-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、证明过程或演算步骤.17. 计算:(04cos3012+-.【答案】3.【解析】试题分析:利用特殊三角函数值,零指数幂,算术平方根,绝对值计算即可. 试题解析:原式=4×2考点:实数的运算18. 解不等式组:()21571023x x x x ⎧+>-⎪⎨+>⎪⎩【答案】x<2.考点:解一元一次不等式组 19.如图,在ABC ∆中,0,36AB AC A =∠=,BD 平分ABC ∠交AC 于点D .求证:AD BC =.【答案】见解析. 【解析】试题分析: 由等腰三角形性质及三角形内角和定理,可求出∠AB D=∠C=BDC. 再据等角对等边,及等量代换即可求解.试题解析:∵AB=AC, ∠A=36°∴∠ABC=∠C=12(180°-∠A)= 12×(180°-36°)=72°,又∵BD 平分∠ABC, ∴∠ABD=∠DBC=12∠ABC=12×72°=36°, ∠BDC=∠A+∠ABD=36°+36°=72°, ∴∠C=∠BDC, ∠A=AB ∴AD=BD=BC.考点:等腰三角形性质.20. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.,(以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据上图完成这个推论的证明过程. 证明:()ADC ANF FGC NFGDS S S S ∆∆∆=-+矩形,ABC EBMF S S ∆=-矩形(____________+____________). 易知,ADCABC S S ∆∆=,_____________=______________,______________=_____________.可得NFGD EBMF S S =矩形矩形.【答案】,,,AEF CFM ANF AEF FGC CFM S S S S S ∆∆∆∆∆;;S .考点:矩形的性质,三角形面积计算. 21.关于x 的一元二次方程()23220xk x k -+++=.(1)求证:方程总有两个实数根;(2)若方程有一根小于1,求k 的取值范围. 【答案】.(1)见解析,(2)k<0考点:根判别式;因式分解法解一元二次方程;解一元一次不等式组.22. 如图,在四边形ABCD 中,BD 为一条对角线,0//,2,90AD BC AD BC ABD =∠=,E 为AD 的中点,连接BE .(1)求证:四边形BCDE 为菱形;(2)连接AC ,若AC 平分,1BAD BC ∠=,求AC 的长. 【答案】(1)证明见解析.(23【解析】试题分析:(1)先证四边形是平行四边形,再证其为菱形;(2)利用等腰三角形的性质,锐角三角函数,即可求解.试题解析:(1)证明:∵E 为AD 中点,AD=2BC,∴BC=ED, ∵AD ∥BC, ∴四边形ABCD 是平行四边形,∵AD=2BE, ∠ABD=90°,AE=DE ∴BE=ED, ∴四边形ABCD 是菱形.(2)∵AD ∥BC,AC 平分∠BAD ∴∠BAC=∠DAC=∠BCA,∴BA=BC=1, ∵AD=2BC=2,∴sin ∠ADB=12,∠ADB=30°, ∴∠DAC=30°, ∠ADC=60°.在RT △ACD 中,AD=2,CD=1,考点:平行线性质,菱形判定,直角三角形斜边中线定理. 23. 如图,在平面直角坐标系xOy 中,函数()0ky x x=>的图象与直线2y x =-交于点()3,A m .(1)求k m 、的值; (2)已知点()(),0Pn n n >,过点P 作平行于x 轴的直线,交直线2y x =-于点M ,过点P作平行于y 轴的直线,交函数()0ky x x=>的图象于点N . ①当1n =时,判断线段PM 与PN 的数量关系,并说明理由; ②若PN PM ≥,结合函数的图象,直接写出n 的取值范围.【答案】(1)见解析.(2)0<n ≤1或n ≥3. 【解析】试题分析:(1)先求A 点坐标,在代入ky x=,即可求出结果;(2)①令y=1,求出PM 的值,令x=1求出PN 的值即可;(3)过点P 作平行于x 轴的直线,利用图象可得出结果. 试题解析:(1) ∵函数ky x=(x>0)的图象与直线y=x-2交于点A(3,m) ∴m=3-2=1,把A (3,1)代入ky x=得,k=3×1=3.即k 的值为3,m 的值为1.考点:直线、双曲线的函数图象24.如图,AB 是O 的一条弦,E 是AB 的中点,过点E 作EC OA ⊥于点C ,过点B 作O 的切线交CE 的延长线于点D .(1)求证:DB DE =;(2)若12,5AB BD ==,求O 的半径.【答案】(1)见解析;(2)15 2【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)证明:∵DC⊥OA, ∴∠1+∠3=90°, ∵BD为切线,∴OB⊥BD, ∴∠2+∠5=90°,∵OA=OB, ∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中, ∠4=∠5,∴DE=DB.考点:圆的性质,切线定理,三角形相似,三角函数25.某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:格,60分以下为生产技能不合格) 分析数据两组样本数据的平均数、中位数、众数如下表所示:a .估计乙部门生产技能优秀的员工人数为____________;b .可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性) 【答案】a.240,b.乙;见解析.按如下分数段整理 按如下分数段整理数据:a.估计乙部门生产技能优秀的员工人数为400×40=240(人); b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.考点:众数,中位数.⊥交AB于点M,连接MB,过点26.如图,P是AB所对弦AB上一动点,过点P作PM AB=,设A P、两点间的距离、两点间的距离为xcm,P NAB cm⊥于点N.已知6P作PN MB为ycm.(当点P与点A或点B重合时,y的值为0)小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.为等腰三角形时,AP的长度约为(3)结合画出的函数图象,解决问题:当PAN____________cm.【答案】(1)1.6,(2)见解析,(3)2.2(答案不唯一)【解析】试题分析:(1)通过画图画出大致图象,估算当AP=4时,PN≈1.6;(2)见解析,(3)2.2(答案不唯一)试题解析:(1)1.6(2)如图所示:(3)作y=x与函数图象交点即为所求.2.2(答案不唯一)考点:函数图象,估算,近似数 27.在平面直角坐标系xOy 中,抛物线243y x x =-+与x 轴交于点A B 、(点A 在点B 的左侧),与y 轴交于点C . (1)求直线BC 的表达式;(2)垂直于y 轴的直线l 与抛物线交于点()()1122,,,P x y Q x y ,与直线BC 交于点()33,N x y ,若123x x x <<,结合函数的图象,求123x x x ++的取值范围.【答案】(1)y=-x+3;(2)7<123x x x ++<8.【解析】试题分析:(1)先求A 、B 、C 的坐标,用待定系数法即可求解;(2)由于垂直于y 轴的直线l 与抛物线243y x x =-+要保证123x x x <<,则P 、Q 两点必位于x 轴下方,作出二次函数与一次函数图象,找出两条临界直线,为x 轴和过顶点的直线,继而求解.(2).由2243(2)1y x x x =-+=--,∴抛物线的顶点坐标为(2,-1),对称轴为直线x=2, ∵12y y = ,∴1x +2x =4.令y=-1,y=-x+3,x=4. ∵ 123x x x <<,∴3<3x <4, 即7<123x x x ++<8,∴ 123x x x ++的取值范围为:7<123x x x ++<8.考点:二次函数与x 轴的交点问题,待定系数法求函数解析式,二次函数的对称性.28.在等腰直角ABC ∆中,090ACB ∠=,P 是线段BC 上一动点(与点B C 、不重合),连接AP ,延长BC 至点Q ,使得CQ CP =,过点Q 作QH AP ⊥于点H ,交AB 于点M .(1)若PAC α∠=,求AMQ ∠的大小(用含α的式子表示). (2)用等式表示线段MB 与PQ 之间的数量关系,并证明.【答案】(1)试题解析:(1) ∠AMQ=45°+α.理由如下:∵∠PAC=α,△ACB是等腰直角三角形,∴∠PAB=45°-α,∠AHM=90°,∴∠AMQ=180°-∠AHM-∠PAM=45°+α .(2)线段MB与PQ之间的数量关系:理由如下:连接AQ,过点M做ME⊥QB,∵AC⊥QP,CQ=CP, ∴∠QAC=∠PAC=α,∴∠QAM=α+45°=∠AMQ, ∴AP=AQ=QM,在RT△APC和RT△QME中,MQE PACACP QEMAP QM∠=⎧⎪∠=∠⎨⎪=⎩∴RT△APC≌RT△QME, ∴PC=ME, ∴△MEB是等腰直角三角形,∴12PQ=,∴考点:全等三角形判定,等腰三角形性质 .29.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P Q、两点间的距离小于或等于1,则称P为图形M的关联点.(1)当O的半径为2时,①在点123115,0,,,0222P P P ⎛⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭中,O 的关联点是_______________. ②点P 在直线y x =-上,若P 为O 的关联点,求点P 的横坐标的取值范围.(2)C 的圆心在x 轴上,半径为2,直线1y x =-+与x 轴、y 轴交于点A B 、.若线段AB 上的所有点都是C 的关联点,直接写出圆心C 的横坐标的取值范围.【答案】(1)①23,P P ,②-2≤x ≤-2 或2 ≤x ≤2,(2)-2≤x ≤1或2≤x≤试题解析:(1)12315,01,22OP P OP ===, 点1P 与⊙的最小距离为32 ,点2P 与⊙的最小距离为1,点3P 与⊙的最小距离为12, ∴⊙的关联点为2P 和3P .②根据定义分析,可得当直线y=-x 上的点P 到原点的距离在1到3之间时符合题意; ∴ 设点P 的坐标为P (x ,-x) ,当OP=1时,由距离公式可得,OP=1= ,解得x = ,当OP=3时,由距离公式可得,3= ,229x x +=,解得2x =±∴≤x≤x如图2,当圆与小圆相切时,切点为D,∴CD=1 ,如图3,当圆过点A时,AC=1,C点坐标为(2,0)如图4,当圆过点 B 时,连接 BC ,此时 BC =3,在 Rt△OCB中,由勾股定理得=点坐标为.∴ C 点的横坐标的取值范围为2≤c x ≤;∴综上所述点C 的横坐标的取值范围为-2 ≤c x ≤-≤c x 考点:切线,同心圆,一次函数,新定义.。