广东省罗定市廷锴纪念中学2017-2018学年高二数学(理)尖子生辅导资料13 Word版缺答案
2007年华师廷锴纪念中学实习队总结
实习队总结罗定廷锴纪念中学梦之队发表于 2007-11-23 19:51:00怀着爱与信任,勇攀教育之峰——2007年华师廷锴纪念中学实习队总结(指导老师:邬家炜老师执笔者:文学院黄飞冰)“校长、老师们,非常感谢你们这一个多月来对我们实习队的信任和帮助,再多的言语也表达不了我们对廷中、对你们的感激。
我们实习队全体队员给你们鞠躬了。
谢谢!谢谢你们给予了我们那么多的机会,谢谢你们对我们的信任,谢谢你们对我们的无私指导。
真的非常感谢!”站在将军铜像前,我们11位队员向廷中、向我们的指导老师深深地鞠了三个躬。
弯下腰的那一刻,实习的日子如潮水般涌出记忆,成长的汗水与欢笑溢满了心田,泪水湿透了整个黄昏。
我们11个人真的长大了很多。
在教育这座巨峰上,我们踩着爱与汗水凝成的阶梯,坚强地、努力地去完成着从学生到人民教师这一角色的转变……勇攀前的准备一、组建有实力的实习队伍——从那时起,陌生的我们凝聚,开始了共同的拼搏2007年5月22日,我们选择了实习学校——廷锴纪念中学(以下简称廷中),陌生的我们因选择而开始凝聚。
激动着的我们很快就找齐了所有的队友:文学院的刘捷、婉霞、飞冰;数科院的锡贤、潇鹏;历史的远坚、格娇;物电的雪梅;生科的伟进;化环的秀娇;地理的云萍。
很快地我们建立了Q群、申请了公共邮箱、开通了我们的实习队博客、制作了实习队通讯录并收集了队员们的实习简历等。
得益于这些途径,实习队员还没见过面就已经很熟悉了。
6月9日,我们队在大学城召开了第一次全体会议,选出了队长。
随后,在邬老师的指导下,我们组织队员一起学习了实习的相关文件,并初步制定出我们实习队的实习计划和队规。
为了使大家能更好地分工合作、积极参与,我们明确了每位队员的任务。
要成为一支有实力的队伍,我们必须整理出一套自己的知识储备系统,并不断地提高师范技能。
于是在暑假期间,我们努力地学习新课标、教材,参阅各种相关书籍,并认真备课和试讲,训练好各项师范技能。
广东省罗定市廷锴纪念中学高中历 每周限时训练2 文 新人教版选修1
广东省罗定市廷锴纪念中学2013-2014学年高中历每周限时训练2文新人教版选修11、汉字形体演变正确的是A.甲骨文→小篆→隶书→楷书B.甲骨文→隶书→楷书→小篆C.甲骨文→楷书→小篆→隶书D.甲骨文→隶书→小篆→楷书2、为了纪念中华盛世,国家邮政总局特别发行一款玉玺,如图“盛世中华·中国印”,以资纪念。
下列表述不正确的A.玉玺是中国古代皇权的象征B.此印中文字为行书C.可展示改革开放以来的成就D.中国印章历史悠久3、20世纪初,历史学家王国维在证明《史记•殷本纪》时总结研究方法说:“吾辈生于今日,幸于纸上之材料外,更得地下之新材料……此二重证据法,唯在今日始得为之”。
王国维所言“纸上之材料”与“地下之新材料”分别指的是:A.文献记录与甲骨文字 B.古代书籍与竹木简牍C.神话传说与出土文物 D.前人笔记与碑刻史料4、下列能够体现“兼有楷书和草书的长处,既工整清晰,又飞洒活泼”书体特色的是A B CD5、欧文忠《盘车图》诗云:“古画画意不画形,梅诗咏物无隐情。
忘形得意知者寡,不若见诗如见画。
”(《梦溪笔谈》)该诗描绘的绘画及其风格是A.文人画,重视写意 B.山水画,重视写实C.花鸟画,浓墨重彩 D.人物画,形神俱备6、吴倩幸运地被选中参加CCTV的《开心辞典》节目,主持人问她“集文学、书法、绘画、及篆刻于一体的国画应属哪种题材?”她被这个问题难住了,如打电话向你求助,你的判断应该是A.人物画 B.文人画C.花鸟画D.山水画7、下列关于中国画的表述正确的是A.魏晋南北朝至隋唐时期逐渐成熟B.按题材可分为山水、花鸟、文人画C.表现技法可分为工笔与写实D.山水画是其精粹,不太讲究布局8、剪纸、杨柳青年画等民间艺术在明清时期达到鼎盛,题材多样,内容丰富尤以反映现实生活、时事风俗、历史故事等题材为特长,为广大群众喜闻乐见。
民间文化的繁荣主要反映出A 明清时期商品经济的发展 B封建政府对民间艺术的扶持C文人对民间文化的推广 D中国人民的生活水平普遍提高9、下列对京剧形成的背景理解不正确的是A.北京文化娱乐需求面广B.统治者的重视C.徽剧与昆曲的融合D.艺术家博采众长、融会贯通10、“三五步走遍天下,七八人百万雄兵”“咫尺地五湖四海,几更时万古千秋”,这些诗句是对下列中国哪种传统艺术特点的描述A.魔术 B.绘画 C.戏剧 D.杂技11、下面有关京剧的说法正确的是A.以元杂剧为基础发展而来B.南方剧种入京融合而成C.以北京的地方戏为主形成D.乾隆年间京剧剧种形成12、徽班进京时在位的皇帝是A、乾隆帝B、道光帝C、光绪帝D、同治帝13、中国古代“书画同源”、“形神兼备”。
广东省罗定市廷锴纪念中学2014-2015学年高二下学期数学(理)测试4
廷锴纪念中学高二第二学期理科数学测试题(4)班别: 姓名: 座号: 成绩:1.函数f (x )=2x 3-6x 2-18x +7 ( ).A .在x =-1处取得极大值17,在x =3处取得极小值-47B .在x =-1处取得极小值17,在x =3处取得极大值-47C .在x =-1处取得极小值-17,在x =3处取得极大值47D .以上都不对 2.函数f (x )=2x 3-3x 2-12x +5在上的最大值和最小值分别是 ( ) A .12,-15 B .-4,-15 C .12,-4 D .5,-153.已知函数y =f (x ),y =g (x )的导函数的图象如图,那么y =f (x ),y =g (x )的图象可能是 ( )4.设1ln )(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .535.点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( )A .0,2π⎡⎤⎢⎥⎣⎦ B .30,,24πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .3,4ππ⎡⎫⎪⎢⎣⎭D . 3,24ππ⎛⎤ ⎥⎝⎦ 6.三次函数当x =1时有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ). A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x7. 设f (x ),g(x )是R 上的可导函数,(),()f x g x ''分别为f (x ),g(x )的导数,且()()()()0f x g x f x g x ''+<,则当a <x <b 时,有( )A.f (x )g(b)>f (b)g(x )B.f (x )g(x )>f (b)g(b)C.f (x )g(a )>f (a )g(x )D.f (x )g(x )>f (b)g(a )8.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定9.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为61,则=a _________10.某箱子的容积与底面边长x 的关系为()()()xV x x x -=<<2600602,则当箱子的容积最大时,箱子底面边长为_____________11.对于等差数列{a n }有如下命题:“若{a n }是等差数列,a 1=0,s 、t 是互不相等的正整数,则有(s -1)a t =(t -1)a s ”.类比此命题,给出等比数列{b n }相应的一个正确命题是:“__________________________________”.12.设a ∈R ,若函数x y e ax =+2()x ∈R 有大于零的极值点,则a 的取值范围__________.13.已知函数f (x )=-x 3+3x 2+9x +a ,若f (x )在区间上的最大值为20,它在该区间上的最小值为_______14.凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1 +f x 2 +…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,若函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.15.)1ln(2,02x x x x +<->求证:若16.某电视生产厂家有A ,B 两种型号的电视机参加家电下乡活动.若厂家投放A ,B 型号电视机的价值分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25ln q 万元.已知厂家把总价值为10万元的A,B两种型号电视机投放市场,且A,B两型号的电视机投放金额都不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值.(精确到0.1,参考数据:ln 4≈1.4)16.(本小题满分12分)某电视生产厂家有A,B两种型号的电视机参加家电下乡活动.若厂家投放A,B型号电视机的价值分别为p,q万元,农民购买电视机获得的补贴分别为110p,25lnq万元.已知厂家把总价值为10万元的A,B两种型号电视机投放市场,且A,B两型号的电视机投放金额都不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值.(精确到0.1,参考数据:ln 4≈1.4)解析:设B型号电视机的价值为x万元(1≤x≤9),农民得到的补贴为y万元,则A型号电视机的价值为(10-x)万元,由题意得,y=110(10-x)+25ln x=25ln x-110x+1,y′=25x-110,由y′=0⇒x=4.当x∈时,y′<0,所以当x=4时,y取最大值,y max=25ln 4-0.4+1≈1.2.即厂家分别投放A,B两型号电视机6万元和4万元时,农民得到的补贴最多,最多补贴约为1.2万元.14.函数21ln 2y ax x x =+-区间[1,3]上单调递增,求实数a 的取值范围.ADDBBBBCD 1± 40 2a <-11.已知函数f (x )=-x 3+3x 2+9x +a .(1)求f (x )的单调递减区间;(2)若f (x )在区间上的最大值为20,求它在该区间上的最小值. 解 (1)∵f ′(x )=-3x 2+6x +9. 令f ′(x )<0,解得x <-1或x >3,∴函数f (x )的单调递减区间为(-∞,-1),(3,+∞). (2)∵f (-2)=8+12-18+a =2+a ,f (2)=-8+12+18+a =22+a ,∴f (2)>f (-2).于是有22+a =20,∴a =-2. ∴f (x )=-x 3+3x 2+9x -2.∵在(-1,3)上f ′(x )>0,∴f (x )在上单调递增. 又由于f (x )在上单调递减,∴f (2)和f (-1)分别是f (x )在区间上的最大值和最小值, ∴f (-1)=1+3-9-2=-7, 即f (x )最小值为-7.已知2()ln ,()3f x x x g x x ax ==-+-(a R ∈). (Ⅰ)求函数()f x 的最小值;(Ⅱ)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求a 的取值范围.(I )()ln 1f x x '=+,由0)(='x f ,得1e x = . …………………………………2分当1(0,),()0,()ex f x f x '∈<单调递减, 当1(,),()0,()ex f x f x '∈+∞>单调递增 ,……………………………… …………4分min 11()()e e f x f ==-;………………………………………………………………………5分(II )22ln 3x x x ax ≥-+-,则32ln a x x x≤++, 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x +-'=,………………………………7分(0,1),()0,()x h x h x '∈<单调递减, (1,),()0,()x h x h x '∈+∞>单调递增,…………………………………………………9分所以min ()(1)4h x h ==,对一切(0,),2()()x f x g x ∈+∞≥恒成立, …………………11分只需min ()4a h x ≤=.…………………………………………………………………………12分对于等差数列{a n }有如下命题:“若{a n }是等差数列,a 1=0,s 、t 是互不相等的正整数,则有(s -1)a t =(t -1)a s ”.类比此命题,给出等比数列{b n }相应的一个正确命题是:“__________________________________”. 解析 由类比推理可得.答案 若{b n }是等比数列,b 1=1,s ,t 是互不相等的正整数,则有b s -1t =b t -1s凸函数的性质定理为:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1 +f x 2 +…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,若函数y =sinx 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 解析 根据凸函数的性质定理,可得 sin A +sin B +sin C ≤3sin ⎝⎛⎭⎪⎫A +B +C 3=332,即sin A +sin B +sin C 的最大值为332.答案332已知2()ln ,()3f x x x g x x ax ==-+-(a R ∈). (Ⅰ)求函数()f x 的最小值;(Ⅱ)对一切(0,),2()()x f x g x ∈+∞≥恒成立,求a 的取值范围.(I )()ln 1f x x '=+,由0)(='x f ,得1e x = . …………………………………2分当1(0,),()0,()ex f x f x '∈<单调递减, 当1(,),()0,()ex f x f x '∈+∞>单调递增 ,……………………………… …………4分min 11()()e e f x f ==-;………………………………………………………………………5分(II )22ln 3x x x ax ≥-+-,则32ln a x x x≤++, 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x +-'=,………………………………7分(0,1),()0,()x h x h x '∈<单调递减, (1,),()0,()x h x h x '∈+∞>单调递增,…………………………………………………9分所以min ()(1)4h x h ==,对一切(0,),2()()x f x g x ∈+∞≥恒成立, …………………11分只需min ()4a h x ≤=.…………………………………………………………………………12分19.(本小题满分12分)某电视生产厂家有A ,B 两种型号的电视机参加家电下乡活动.若厂家投放A ,B 型号电视机的价值分别为p ,q 万元,农民购买电视机获得的补贴分别为110p ,25ln q 万元.已知厂家把总价值为10万元的A ,B 两种型号电视机投放市场,且A ,B 两型号的电视机投放金额都不低于1万元,请你制订一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值.(精确到0.1,参考数据:ln 4≈1.4)解析: 设B 型号电视机的价值为x 万元(1≤x ≤9),农民得到的补贴为y 万元,则A 型号电视机的价值为(10-x )万元,由题意得,y =110(10-x )+25ln x =25ln x -110x +1, y ′=25x -110,由y ′=0⇒x =4.当x ∈时,y ′<0,所以当x =4时,y 取最大值,y max =25ln 4-0.4+1≈1.2.即厂家分别投放A ,B 两型号电视机6万元和4万元时,农民得到的补贴最多,最多补贴约为1.2万元.20.(本小题满分12分)已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.解析: (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0有两个不相等的实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0, ∴c =-2.∴f (x )=13x 3-12x 2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1]时,f ′(x )>0,函数单调递增, 当x ∈(-1,2]时,f ′(x )<0,函数单调递减. ∴x <0时,f (x )在x =-1处取得最大值76+d ,∵x <0时,f (x )<16d 2+2d 恒成立,∴76+d <16d 2+2d ,即(d +7)(d -1)>0, ∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).21.(本小题满分13分)用总长14.8 m 的钢条做一个长方体容器的框架.如果所做容器的底面的一边长比另一边长多0.5 m ,那么高是多少时容器的容积最大?并求出它的最大容积.解析: 设该容器底面的一边长为x m ,则另一边长为(x +0.5)m ,此容器的高为h =14.84-x -(x +0.5)=3.2-2x (0<x <1.6).于是,此容器的容积为V (x )=x (x +0.5)(3.2-2x )=-2x 3+2.2x 2+1.6x ,其中0<x <1.6. 由V ′(x )=-6x 2+4.4x +1.6=0,得x =1或x =-415(舍去).因为V (x )在(0,1.6)内只有一个极值点,且x ∈(0,1)时,V ′(x )>0,函数V (x )单调递增;x ∈(1,1.6)时,V ′(x )<0,函数V (x )单调递减.所以,当x =1时,函数V (x )有最大值V (1)=1×(1+0.5)×(3.2-2×1)=1.8(m 3),h =3.2-2=1.2(m).即当高为1.2 m 时,长方体容器的容积最大,最大容积为1.8 m 3.21.(本小题满分13分)某厂生产产品x 件的总成本c (x )=1 200+275x 3(万元),已知产品单价P (万元)与产品件数x 满足:P 2=k x,生产100件这样的产品单价为50万元.(1)设产量为x 件时,总利润为L (x )(万元),求L (x )的解析式;(2)产量x 定为多少件时总利润L (x )(万元)最大?并求最大值(精确到1万元). 解析: (1)由题意有502=k100,解得k =25×104, ∴P =25×104x=500x,∴总利润L (x )=x ·500x -1 200-2x 375=-2x375+500x -1 200(x >0).(2)由(1)得L ′(x )=-225x 2+250x ,令L ′(x )=0⇒250x =225x 2, 令t =x ,得250t =225t 4⇒t 5=125×25=55,∴t=5,于是x=t2=25,所以当产量定为25时,总利润最大.这时L(25)≈-416.7+2 500-1 200≈883.答:产量x定为25件时总利润L(x)最大,约为883万元.。
到廷锴纪念中学踩点
到廷锴纪念中学踩点终于,我们要到廷中踩点了!2007年9月6日,在邬老师的带领下,带着全队人的疑问和期望,我们开始了踩点的行程……6日下午到了云安中学,在那踩完点后继续进军罗定。
到了罗定后,时间已不早,我们只能先了解踩点学校的位置(第二天早上再去踩点)。
罗定纪念中学,罗定中学,下一个就是罗定廷锴纪念中学了,期待。
看到了,那就是廷中!我们将去实习的学校!那一刹,有点感慨,有点激动。
晚上,收到了队友的信息,问踩点的情况。
是啊,全队的人都还在盼着我带回更多好消息呢,明天得努力啊!在踩点前,我已给实习学校发了封邮件,把我们想了解的情况和想在踩点时拿到哪些资料都告诉了他们,不知明天的踩点会怎样呢?7日早上7点50分,我们到了廷锴纪念中学。
负责实习生工作安排的朱主任还在上课,陈校长热情地接待了我们。
得知陈校长也是华师毕业,倍感亲切。
朱主任下课后就过来见我们了,并耐心地解答了我们那一大串的问题,还带我们到校园各处看看,让我们拍些照片回队友们看。
最为感激的是,廷中给我们每个队员都提供了一份教材、教师用书、作息时间表、华师大实习生安排表、2007—2008学年度第一学期班会主题及板报一览表。
由于刚开学,廷中一些班级的学生名单还有些变动,因此学校答应过几天再统一把学生名单发给我们。
这些都将会大大方便我们的实习准备。
以下是我们踩点时了解到的一些信息:1. 廷锴纪念中学约4500名学生,71个班级(其中高一24个、高二22个、高三25个),高一平均每班六十几人。
2. 学校提供住宿。
由于学校今年高一扩招,宿舍安排比较紧张,之前准备安排给我们的宿舍已住满学生。
因此,学校准备把教学楼中的三个办公室腾出来给我们做宿舍,每个宿舍住3~4个人。
学校尽量为我们在宿舍内建个冲凉房。
宿舍里面没有厕所,不远有公厕,新建的,环境应该还不错,踩点时还没完工。
宿舍电路可能较陈旧,不适宜用大功率的电器(如热水棒、电磁炉等)。
学校答应为我们的宿舍安装风扇。
第27届广东省青少年科技创新大赛
3
广州市
外来入侵植物威胁华南两个红树林保护区
孟飞
高二
广州市铁一中学
何玉洁
1
4
广州市
壁立隐私保护系统的设计与实现
黄厚钧
初三
广州市第二中学
李展颜丽娟
1
5
广州市
实时自动化控制模型飞机风洞
黄帅文
高二
广州市第五中学
梁立仕梁士诚
林子键
1
6
广州市
家居盆栽亚热带植物越冬装置
李骏驰
高二
广州市第四十七中学
张民利
1
7
广州市
盛泊程廖雨田谢文俊
高二
广州市培正中学
林志杰
2
15
广州市
受荷叶效应启发:一种具有自清洁功能表面涂层的研究
胡攸
高二
广州市第八十九中学
杨宏伟、孟昭君
谌建义
2
16
广州市
基于GPS测速与激光测距的智能汽车预警系统
李可彤时清曦
高二
广州市第二中学
余江、王二玉
2
17
广州市
基于蓝牙技术的无线数显游标卡尺
廖雍迅
初三
广州市第六中学
31
广州市
汽车预防窒息系统
沈宇正杨声霖
高一
广州市番禺区实验中学
黎雪菲冯金洪
3
32
广州市
下肢残疾人节能安全自助开门系统
张明璐
高二
广州市培英中学
张耀佳
3
33
广州市
关于灭蚊灯箱对校园生态环境的影响与对策
陈璐陈蔼婷邓碧雯
初二
初三
广州市番禺执信中学
林绮
3
2017-2018学年高二年级数学期末试卷(理数)含答案
2.若 x 2m2 3 是 1 x 4 的必要不充分条件,则实数 m 的取值范围是( )
10.已知函数 f x 1 x3 1 mx2 4x 3 在区间 1,2上是增函数,则实数 m 的取值范围是(
32
A . 3,3
B . ,3 3, C . ,1 1,
,则满足
11.已知函数
f
x
3|x1| , x2 2x
x 1,
0, x
0
若关于
x
的方程 f
x2
a
1f
x
a
0有
7
个不
等实根,则实数 a 的取值范围是(
)
A . 2,1
B .2,4
C . 2,1
D . ,4
12.
已知函数
A . loga c logb c B . logc a logc b C . a c bc
D . ca cb
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是 9.已知函数 f x 2 xm 1 为偶函数,记 a f log0.5 3 , b f log2 5 , c f 2m,则
由题设知
,
则
解得 的横坐标分别是 则 有 又
,又 于是
, ,
,
,即 l 与直线 平行, 一定相交,分别联立方
设
是平面
的法向量,则
,即
。
对任意
,要使
与
的面积之比是常数,只需 t 满足
可取
,故,所以 与平面
20. (1)依题意可得
所成角的正弦值为 ---------12 分 ,
人教B版高中同步学案数学选择性必修第二册精品课件 第3章 第1课时 二项式定理
1
k=1.故展开式中 4 的系数为-C61 =-6.
探究点三
求展开式中的特定项
3
【例 3】 已知在( x −
3 n
3 ) 的展开式中,第
(1)求n;
(2)求含x2项的系数;
(3)求展开式中所有的有理项.
6 项为常数项.
解 通项公式为
-
Tk+1=C 3
k -3
(-3)
(1)∵第 6 项为常数项,∴k=5
1 2 3 4 5
B )
3
6-2r=0,
3.展开
解析
1 5
2- 2 =
1 5
2- 2
4
1
C54 (2x)· 2
1 2 3 4 5
=
5
80
40
10
1
+ − 4 + 7 − 10
2
32x -80x
0
5 1
4 1
C5 (2x) -C5 (2x) ·2
− C55 ·
+
1
2
3
C5 (2x) · 2
=[(x-1)+1]5-1=x5-1.
+ C54 (x-1)+C55 (x-1)0-1规律Biblioteka 法运用二项式定理的解题策略
(1)正用:求形式简单的二项展开式时可直接由二项式定理展开,展开时注
意二项展开式的特点:前一个字母是降幂,后一个字母是升幂.形如(a-b)n的
展开式中会出现正负间隔的情况.对较繁杂的式子,先化简再用二项式定理
10-2
(2)令 3 =2,得
-2
时,有
=0,即
广东省罗定市廷锴纪念中学2017-2018学年高二下学期数学(理)测试8 Word版含答案
-廷锴纪念中学2017-2018学年高二第二学期理科数学测试题(8) 班别: 姓名: 座号: 成绩:1.某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有( )A.()2142610C A 个 B.242610A A 个 C.()2142610C 个 D.242610A 个2.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有 A.120种 B.96种 C.60种 D.48种3.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为 A .14 B .16 C .20 D .484.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为(A) 216 (B)288 (C) 432 (D)1085.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有( )(A )182种 (B )112种 (C )140种 (D )168种6.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A .36种 B .42种 C .48种 D .54种7.从7名男队员和5名女队员中选出4人进行乒乓球男女混合双打,不同的组队种数是( ) A.C27C25 B.4C27C25 C.2C27C25D.A27A258.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( )A.10种B.15种 C.30种 D.20种9.安顺一中学生会组建了三个不同的“三创”活动宣传小组,现邀请5名老师加入进行指导,要求每组至少有一名教师,分配方案共有()()A15 ()B60 ()C 90 ()D15010.安排6位实习老师去3间学校支教,每校至少有一位实习老师,共 ________种分配方式(用数字作答).11.三名医生,六名护士,每位医生带两名护士,去三个学校为学生体检,有________种分配方案.12.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.(用数字作答)13.在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件下,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加;(3)甲、乙、丙三人至少1人参加.14.从-11,-7,0,1,2,3,4,5八个数中,每次选出三个不重复的数作为直线Ax+By+C=0中的字母A,B,C的值,问斜率k小于零的不同直线有多少条?15.赛艇运动员12人,4人会划右舷,3人会划左舷,其余5人两舷都能划,现要从中选6人上艇,平均分配在两舷上划浆,有多少种不同的选法?16:如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答,过程写在下方).廷锴纪念中学高二第二学期理科数学测试题(8)班别: 姓名: 座号: 成绩:1.【解析】选A 。
2017-2018学年广东省东莞中学高二(上)期末数学试卷(文科)
2017-2018学年广东省东莞中学高二(上)期末数学试卷(文科)1.(单选题,5分)设集合A={x|x>0},B={x|x-2>0},C={x|x(x-2)>0},则“x∈A∩B“是“x∈C“的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件2.(单选题,5分)已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数.若f′(1)=3,则a的值为()A.2B.3C.-2D.-33.(单选题,5分)用二分法求函数f(x)=x3-2的零点时,初始区间可选为()A.(0,1)B.(1,2)C.(2,3)D.(3,4)x)的定义域为()4.(单选题,5分)函数y=log2(log 13A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)5.(单选题,5分)函数f(x)= x−12的大致图象是()A.B.C.D.6.(单选题,5分)下列函数中,不满足f(2x)=2f(x)的是()A.f(x)=|x|B.f (x)=x-|x|C.f(x)=x+1D.f(x)=-x7.(单选题,5分)某公司为了适应市场需求对产品结构做了重大调整,调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与时间x的关系,可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数8.(单选题,5分)命题“∀1<x<2,x2-3x+2<0”的否定为()A.∀x≤1或x≥2,x2-3x+2<0B.∃x≤1或x≥2,x2-3x+2<0C.∀1<x<2,x2-3x+2≥0D.∃1<x<2,x2-3x+2≥09.(单选题,5分)已知函数f(x)={2x−1,x≤11+log2x,x>1.则函数 f(x)的零点为()A. 12,0B.-2,0C. 12D.010.(单选题,5分)若x=-2是函数f(x)=(x2+ax)e x的极值点,则f(x)的极小值为()A.-4e-2B.0D.e11.(单选题,5分)若a= ln22,b= ln33,c= ln55,则()A.a<b<cB.c<b<aC.c<a<bD.b<a<c12.(单选题,5分)已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根x= 12,则f(x)=0在区间[0,2019]内根的个数为()A.2018B.1008C.2019D.100913.(填空题,5分)计算:(12)−1−4•(−2)−3+(14)−9−12 =___ .14.(填空题,5分)已知集合A={1,3,a},B={1,a2-a+1}.若A∩B=B,则实数a的取值集合为___ .15.(填空题,5分)定义运算f(a⊗b)= {b,a≥ba,a<b,则函数f(e x⊗e-x)的值域是___ .16.(填空题,5分)若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,则不等式f(x)<0的解集为___ .(用集合表示)17.(问答题,10分)已知正项数列{a n}的前n项和S n满足12S n+1 =S n+1(n∈N*),且a1=2.(1)证明:数列{a n}是等比数列,并求其通项公式;(2)设数列{b n}满足b n=log2a n,设其前n项和为T n,数列{ 1T n}的前n项和为M n,证明:M n<2.18.(问答题,12分)在△ABC中,角A,B,C所对的边分别为a,b,c,已知ctanC=√3(acosB+bcosA).(1)求角C;(2)若点D在边BC上,且AD=CD=4,△ABD的面积为8√3,求边c的长.19.(问答题,12分)已知函数f (x )= e x +a e x 是奇函数,a 是常数,e=2.71828…是自然对数的底数.(1)求a 的值;(2)求证f (x )在R 上是增函数;(3)求使不等式f (2x )+f (1-x )>0成立的实数x 的取值范围.20.(问答题,12分)在平面直角坐标系中,曲线C 1:x 2-y 2=2,曲线C 2的参数方程为 {x =2+2cosθy =2sinθ(θ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 1,C 2的极坐标方程;(Ⅱ)在极坐标系中,射线 θ=π6 与曲线C 1,C 2分别交于A ,B 两点(异于极点O ),定点M (3,0),求△MAB 的面积.21.(问答题,12分)已知椭圆G : x 2a 2+y 2b 2 =1(a >b >0)过点A (1, √63 ),和点B (0,-1) (Ⅰ)求椭圆G 的方程;(Ⅱ)设直线y=x+m 与椭圆G 相交于不同的两点M ,N ,是否存在实数m ,使得点B 到线段MN 的两端距离相等?若存在,求出实数m ;若不存在,请说明理由.22.(问答题,12分)已知函数f (x )=ae x -x-a ,e=2.71828…是自然对数的底数,其中常数a <1.(1)讨论函数f (x )的单调性:(2)若f (x )恰有2个零点,求实数a 的取值范围.。
2023-2024学年广东省广州中学高二(上)期中数学试卷【答案版】
2023-2024学年广东省广州中学高二(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在直角坐标系xOy 中,在y 轴上截距为﹣1且倾斜角为3π4的直线方程为( )A .x +y +1=0B .x +y ﹣1=0C .x ﹣y +1=0D .x ﹣y ﹣1=02.若直线l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为(1,12,2),则m 为( ) A .﹣4B .﹣6C .﹣8D .83.两条直线l 1:ax +(1+a )y =3,l 2:(a +1)x +(3﹣2a )y =2互相垂直,则a 的值是( ) A .0B .﹣1C .﹣1或3D .0或﹣14.如图,在斜三棱柱ABC ﹣A 1B 1C 1中,M 为BC 的中点,N 为A 1C 1靠近A 1的三等分点,设AB →=a →,AC →=b →,AA 1→=c →,则用a →,b →,c →表示NM →为( )A .12a →+16b →−c →B .−12a →+16b →+c →C .12a →−16b →−c →D .−12a →−16b →+c →5.“加上一个参数给椭圆,它的形状会有美妙的变化”欧几里得如是说,而这个参数就是椭圆的离心率.若椭圆x 2m+y 24=1的离心率为√32,则该椭圆的长轴长为( ) A .8 B .2或4 C .1或4 D .4或86.已知点A (2,﹣3),B (﹣5,﹣2),若直线l :mx +y +m ﹣1=0与线段AB (含端点)有公共点,则实数m 的取值范围为( ) A .[−43,34] B .(−∞,−43]∪[34,+∞) C .[−34,43]D .(−∞,−34]∪[43,+∞)7.已知菱形ABCD 中,∠ABC =60°,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B ﹣CD ﹣A 的余弦值为( )A .2B .12C .√33D .√558.已知⊙O 的半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=√2,则PA →•PD →的最大值为( ) A .1+√22B .1+2√22C .1+√2D .2+√2二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .直线 x sin α﹣y +1=0的倾斜角的取值范围为[0,π4]∪[3π4,π)B .“c =5”是“点(2,1)到直线3x +4y +c =0距离为3”的充要条件C .直线l :λx +y ﹣3λ=0(λ∈R )恒过定点(3,0)D .直线y =﹣2x +5与直线2x +y +1=0平行,且与圆x 2+y 2=5相切10.已知空间中三点A (0,1,0),B (2,2,0),C (﹣1,3,1),则下列结论错误的是( ) A .AB →与AC →是共线向量 B .与AB →同向的单位向量是(2√55,√55,0) C .AB →与BC →夹角的余弦值是√5511D .平面ABC 的一个法向量是(1,﹣2,5)11.设圆:x 2+y 2﹣2x ﹣2y ﹣2=0的圆心为C ,P (5,1)为圆外一点,过P 作圆C 的两条切线,切点分别为A ,B ,则( ) A .|PA|=|PB|=2√5 B .P ,A ,C ,B 四点共圆C .∠APB =60°D .直线AB 的方程为:x =312.如图,点P 是棱长为2的正方体ABCD ﹣A 1B 1C 1D 1的表面上一个动点,则( )A .当P 在平面BCC 1B 1上运动时,三棱锥P ﹣AA 1D 的体积为定值43B .当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π3,π2]C .若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是√5D .使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+4√2 三、填空题,本题共4小题,每小题5分,共20分.13.已知a →=(2,2,1),b →=(1,0,0),则a →在b →上的投影向量的坐标为 . 14.两条平行直线3x +4y ﹣5=0与ax +8y ﹣20=0间的距离是 .15.已知圆C :(x ﹣3)2+y 2=4,则圆C 关于直线y =x 对称的圆的方程为 .16.如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为3和1,球心距离|O 1O 2|=8,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于 .四、解答题,本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)根据条件,写出直线的方程,并化为一般式方程. (1)与3x +2y +2=0垂直,且过点A (2,2)的直线; (2)经过点(3,4)且在两坐标轴上的截距相等的直线.18.(12分)如图,在三棱柱ABC ﹣A 1B 1C 1中,侧面AA 1C 1C 是边长为4的正方形,AA 1B 1B 为矩形,AB =3,BC =5.(1)求证:AA 1⊥平面ABC ;(2)求平面ABC 1与平面A 1C 1B 所成角的正弦值; (3)求点C 到平面A 1C 1B 的距离.19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴的一个端点到右焦点的距离为2. (1)求椭圆C 的方程;(2)设直线l :y =12x +m 交椭圆C 于A ,B 两点,且|AB |=√5,求m 的值. 20.(12分)已知圆O :x 2+y 2=1,圆m :(x ﹣2)2+(y ﹣1)2=9. (1)求两圆的公共弦所在直线的方程及弦长; (2)求两圆的公切线方程.21.(12分)在如图所示的试验装置中,两个正方形框架ABCD ,ADEF 的边长都是1,且它们所在平面互相垂直,活动弹子M ,N 分别在正方形对角线AE 和BD 上移动,且EM 和DN 的长度保持相等,记EM =DN =a(0<a <√2),活动弹子Q 在EF 上移动. (1)求证:直线MN ∥平面CDE ; (2)a 为何值时,MN 的长最小?(3)Q 为EF 上的点,求EB 与平面QCD 所成角的正弦值的最大值.22.(12分)已知点P 到A (﹣2,0)的距离是点P 到B (1,0)的距离的2倍. (1)求点P 的轨迹方程;(2)若点P 与点Q 关于点B 对称,点C (5,8),求|QB |2+|QC |2的最大值;(3)若过B 的直线与第二问中Q 的轨迹交于E ,F 两点,试问在x 轴上是否存在点M (m ,0),使ME →⋅MF →恒为定值?若存在,求出点M 的坐标和定值;若不存在,请说明理由.2023-2024学年广东省广州中学高二(上)期中数学试卷参考答案与试题解析一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在直角坐标系xOy 中,在y 轴上截距为﹣1且倾斜角为3π4的直线方程为( )A .x +y +1=0B .x +y ﹣1=0C .x ﹣y +1=0D .x ﹣y ﹣1=0解:由题意可得,直线的斜率k =﹣1根据直线方程的截距式可知所求的直线方程为y =﹣x ﹣1即x +y +1=0 故选:A .2.若直线l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为(1,12,2),则m 为( ) A .﹣4B .﹣6C .﹣8D .8解:∵直线l ∥平面α,∴l 的方向向量(2,m ,1)与平面α的一个法向量(1,12,2)垂直, ∴2×1+m ×12+1×2=0, ∴m =﹣8. 故选:C .3.两条直线l 1:ax +(1+a )y =3,l 2:(a +1)x +(3﹣2a )y =2互相垂直,则a 的值是( ) A .0B .﹣1C .﹣1或3D .0或﹣1解:因为直线ax +(1+a )y =3与(a +1)x +(3﹣2a )y =2互相垂直,所以A 1A 2+B 1B 2=0, 即:a (1+a )+(1+a )(3﹣2a )=0,解得:a =﹣1或 a =3. 故选:C .4.如图,在斜三棱柱ABC ﹣A 1B 1C 1中,M 为BC 的中点,N 为A 1C 1靠近A 1的三等分点,设AB →=a →,AC →=b →,AA 1→=c →,则用a →,b →,c →表示NM →为( )A .12a →+16b →−c →B .−12a →+16b →+c →C .12a →−16b →−c →D .−12a →−16b →+c →解:∵M 为BC 的中点, ∴AM →=12(AB →+AC →),∵N 为A 1C 1靠近A 1的三等分点,∴A 1N →=13A 1C 1→=13AC →,∴MN →=MA →+AA 1→+A 1N →=−12(AB →+AC →)+AA 1→+13AC →=−12(a →+b →)+c →+13b →=−12a →−16b →+c →,∴NM →=12a →+16b →−c →.故选:A .5.“加上一个参数给椭圆,它的形状会有美妙的变化”欧几里得如是说,而这个参数就是椭圆的离心率.若椭圆x 2m+y 24=1的离心率为√32,则该椭圆的长轴长为( ) A .8 B .2或4C .1或4D .4或8解:∵椭圆x 2m+y 24=1的离心率为√32,知m >0, 当m >4时,椭圆焦点在x 轴上,此时a 2=m ,b 2=4, ∴c 2a 2=m−4m=34,解得m =16,则a =4,∴椭圆的长轴长为2a =8;当0<m <4时,椭圆焦点在y 轴上,此时a 2=4,b 2=m , ∴c 2a 2=4−m 4=34,解得m =1,满足题意,此时a =2,∴椭圆的长轴长为2a =4.综上,该椭圆的长轴长为4或8. 故选:D .6.已知点A (2,﹣3),B (﹣5,﹣2),若直线l :mx +y +m ﹣1=0与线段AB (含端点)有公共点,则实数m 的取值范围为( ) A .[−43,34] B .(−∞,−43]∪[34,+∞) C .[−34,43]D .(−∞,−34]∪[43,+∞)解:直线l :mx +y +m ﹣1=0,即m (x +1)+y ﹣1=0, 则直线l 过定点C (﹣1,1),∵A (2,﹣3),B (﹣5,﹣2),C (﹣1,1), ∴k AC =−3−12+1=−43,k BC =−2−1−5+1=34,∵直线l :mx +y +m ﹣1=0与线段AB (含端点)有公共点, ∴−m ≥34或﹣m ≤−43,解得m ≤−34或m ≥43,故实数m 的取值范围为(﹣∞,−34]∪[43,+∞). 故选:D .7.已知菱形ABCD 中,∠ABC =60°,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B ﹣CD ﹣A 的余弦值为( )A .2B .12C .√33D .√55解:取AC 中点E ,过点E 作EF ⊥CD 交CD 于点F ,如图,∵菱形ABCD 中,∠ABC =60°, ∴△ABC ,△ACD 均为等边三角形,不妨设AC =2,则△ABC ,△ACD 的边长都为2,且BE ⊥AC ,∵平面BAC ⊥平面DAC ,BE ⊥AC ,平面BAC ∩平面DAC =AC ,BE ⊂平面BAC , ∴BE ⊥平面DAC , 又CD ⊂平面DAC , ∴BE ⊥CD ,又EF ⊥CD ,BE ∩EF =E ,且都在平面BEF 内, ∴CD ⊥平面BEF , ∴∠BFE 为所求二面角,在△BEF 中,∠BEF =90°,BE =√22−1=√3,EF =1×sin60°=√32, ∴BF =√3+34=√152,∴cos ∠BFE =√32152=√55.故选:D .8.已知⊙O 的半径为1,直线P A 与⊙O 相切于点A ,直线PB 与⊙O 交于B ,C 两点,D 为BC 的中点,若|PO |=√2,则PA →•PD →的最大值为( ) A .1+√22B .1+2√22C .1+√2D .2+√2解:如图,设∠OPC =α,则−π4≤α≤π4, 根据题意可得:∠APO =45°, ∴PA →⋅PD →=|PA →|⋅|PD →|⋅cos(α+π4) =1×√2cosαcos(α+π4) =cos 2α﹣sin αcos α =1+cos2α−sin2α2=12+√22cos(2α+π4),又−π4≤α≤π4, ∴当2α+π4=0,α=−π8,cos (2α+π4)=1时, PA →⋅PD →取得最大值12+√22. 故选:A .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列说法正确的是( )A .直线 x sin α﹣y +1=0的倾斜角的取值范围为[0,π4]∪[3π4,π)B .“c =5”是“点(2,1)到直线3x +4y +c =0距离为3”的充要条件C .直线l :λx +y ﹣3λ=0(λ∈R )恒过定点(3,0)D .直线y =﹣2x +5与直线2x +y +1=0平行,且与圆x 2+y 2=5相切解:直线 x sin α﹣y +1=0的倾斜角θ,可得tan θ=sin α∈[﹣1,1],所以θ的取值范围为[0,π4]∪[3π4,π),所以A 正确;“点(2,1)到直线3x +4y +c =0距离为3”,可得√32+42=3.解得c =5,c =﹣25,所以“c =5”是“点(2,1)到直线3x +4y +c =0距离为3”的充分不必要条件,所以B 不正确; 直线l :λx +y ﹣3λ=0(λ∈R )恒过定点(3,0),所以C 正确; 直线y =﹣2x +5即2x +y ﹣5=0与直线2x +y +1=0平行,√22+12=√5,所以直线y =﹣2x +5与圆x 2+y 2=5相切, 所以D 正确; 故选:ACD .10.已知空间中三点A (0,1,0),B (2,2,0),C (﹣1,3,1),则下列结论错误的是( ) A .AB →与AC →是共线向量 B .与AB →同向的单位向量是(2√55,√55,0) C .AB →与BC →夹角的余弦值是√5511D .平面ABC 的一个法向量是(1,﹣2,5)解:对于A :AB →=(2,1,0),AC →=(−1,2,1),∵−12≠21,∴A →B 与AC →不是共线向量,故A 错误;对于B :AB →=(2,1,0),则与AB 同向的单位向量是AB→|AB →|=√5(2,1,0)=(2√55,√55,0),故B 正确;对于C :AB →=(2,1,0),BC →=(−3,1,1),∴cos〈AB →,BC →〉=AB →⋅BC→|AB →|⋅|BC →|=−5√5⋅√11=−√5511,故C 错误;对于D :AB →=(2,1,0),AC →=(−1,2,1), 设平面ABC 的法向量为n →=(x ,y ,z),则{n →⋅AB →=2x +y =0n →⋅AC →=−x +2y +z =0,取x =1,得n →=(1,−2,5),故D 正确. 故选:AC .11.设圆:x 2+y 2﹣2x ﹣2y ﹣2=0的圆心为C ,P (5,1)为圆外一点,过P 作圆C 的两条切线,切点分别为A ,B ,则( ) A .|PA|=|PB|=2√5 B .P ,A ,C ,B 四点共圆C .∠APB =60°D .直线AB 的方程为:x =3解:将圆化为标准方程可得(x ﹣1)2+(y ﹣1)2=4, 所以,圆心C (1,1),半径r =2.对于A 项,由已知可得P A ⊥AC ,|CP|=√(5−1)2+(1−1)2=4. 所以,|PA|=√|CP|2−|AC|2=2√3. 同理可得,|PB|=2√3.故A 错误;对于B 项,因为P A ⊥AC ,PB ⊥BC ,所以∠P AC =∠PBC =90°, 所以点A ,B 都在以PC 为直径的圆上, 所以P ,A ,C ,B 四点共圆.故B 正确; 对于C 项,因为|CP |=4,|AC |=2,在Rt △ACP 中,有sin ∠APC =|AC||CP|=12,所以∠APC =30°. 同理可得,∠BPC =30°. 所以∠APB =60°.故C 正确;对于D 项,线段PC 的中点为E (3,1),|CE|=12|CP|=2. 所以,圆E 的方程为(x ﹣3)2+(y ﹣1)2=4. 显然,AB 是圆C 与圆E 的公共弦. 两圆方程作差,整理可得x =2.所以,直线AB 的方程为x =2.故D 错误. 故选:BC .12.如图,点P 是棱长为2的正方体ABCD ﹣A 1B 1C 1D 1的表面上一个动点,则( )A .当P 在平面BCC 1B 1上运动时,三棱锥P ﹣AA 1D 的体积为定值43B .当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是[π3,π2]C .若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ∥平面B 1CD 1时,PF 长度的最小值是√5D .使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+4√2 解:对于A :△AA 1D 的面积不变,点P 到平面AA 1D 1D 的距离为正方体棱长, 所以三棱锥P ﹣AA 1D 的体积的体积不变,且V P−AA 1D =13S △AA 1D ⋅AB =13×12×2×2×2=43,所以A 正确;对于B :以D 为原点,DA ,DC ,DD 1所在的直线分别为x 轴、y 轴和z 轴,建立空间直角坐标系, 可得A 1(2,0,2),D 1(0,0,2),C 1(0,2,2),设P (x ,2﹣x ,0),0≤x ≤2,则D 1P →=(x ,2−x ,−2),A 1C 1→=(−2,2,0), 设直线D 1P 与A 1C 1所成角为θ, 则cosθ=cos〈D 1P →,A 1C 1→〉=|D 1P →⋅A 1C 1→||D 1P →||A 1C 1→|=|x−1|√(x−1)+3,因为0≤|x ﹣1|≤1,当|x ﹣1|=0时, 可得cos θ=0,所以θ=π2; 当0<|x ﹣1|≤1时,cosθ=|x−1|√(x−1)2+3=1√1+3|x−1|2≤12,由θ∈[0,π2],所以π3≤θ<π2,所以异面直线D 1P 与A 1C 1所成角的取值范围是[π3,π2],所以B 正确;对于C ,由B 1(2,2,2),D 1(0,0,2),C (0,2,0),F (2,1,2), 设P (m ,n ,0),0≤m ≤2,0≤n ≤2,则CB 1→=(2,0,2),CD 1→=(0,−2,2),FP →=(m −2,n −1,−2), 设平面CB 1D 1的一个法向量为n →=(a ,b ,c),则{n →⋅CD 1→=−2b +2c =0n →⋅CB 1→=2a +2c =0, 取a =1,可得b =﹣1,c =﹣1,所以n →=(1,−1,−1),因为PF ∥平面B 1CD ,所以FP →⋅n →=(m −2)−(n −1)+2=0,可得n =m +1, 所以|FP →|=√(m −2)2+(n −1)2+4=√2m 2−4m +8=√2(m −1)2+6≥√6, 当m =1时,等号成立,所以C 错误.对于D :因为直线AP 与平面ABCD 所成的角为45°, 由AA 1⊥平面ABCD ,得直线AP 与AA 1所成的角为45°, 若点P 在平面DCC 1D 1和平面BCC 1B 1内, 因为∠B 1AB =45°,∠D 1AD =45°,故不成立; 在平面ADD 1A 1内,点P 的轨迹是AD 1=2√2; 在平面ABB 1A 1内,点P 的轨迹是AB 1=2√2; 在平面A 1B 1C 1D 1时,作PM ⊥平面ABCD ,如图所示,因为∠P AM =45°,所以PM =AM ,又因为PM =AB , 所以AM =AB ,所以A 1P =AB ,所以点P 的轨迹是以A 1点为圆心,以2为半径的四分之一圆, 所以点P 的轨迹的长度为14×2π×2=π,综上,点P 的轨迹的总长度为π+4√2,所以D 正确; 故选:ABD .三、填空题,本题共4小题,每小题5分,共20分.13.已知a →=(2,2,1),b →=(1,0,0),则a →在b →上的投影向量的坐标为 (2,0,0) . 解:空间向量a →=(2,2,1)和b →=(1,0,0), 则a →在b →上的投影向量为:|a →|cos〈a →,b →〉b→|b →|=|a →|a →⋅b→|a →||b →|b→|b →|=a →⋅b→|b →|2b →=2×112(1,0,0)=(2,0,0). 故答案为:(2,0,0).14.两条平行直线3x +4y ﹣5=0与ax +8y ﹣20=0间的距离是 1 . 解:3x +4y ﹣5=0与ax +8y ﹣20=0, 则a3=84≠−20−5,解得a =6,故ax +8y ﹣20=0,即3x +4y ﹣10=0, 所求两平行直线距离的距离为√322=1.故答案为:1.15.已知圆C :(x ﹣3)2+y 2=4,则圆C 关于直线y =x 对称的圆的方程为 x 2+(y ﹣3)2=4 . 解:由已知可得,圆C :(x ﹣3)2+y 2=4的圆心C (3,0),半径r =2, 设点C (3,0)关于直线y =x 对称的点为C 1(x 0,y 0),则有{y 02=x 0+32y 0−0x 0−3=−1,解得{x 0=0y 0=3,即点C 1(0,3),所以圆C 关于直线y =x 对称的圆的方程为x 2+(y ﹣3)2=4. 故答案为:x 2+(y ﹣3)2=4.16.如图是数学家Germinal Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为3和1,球心距离|O 1O 2|=8,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于2√55.解:如图,圆锥面与其内切球O 1、O 2分别相切与B ,A ,连接O 1B ,O 2A ,则O 1B ⊥AB ,O 2A ⊥AB ,过O 1作O 1D ⊥O 2A 于D , 连接O 1F ,O 2E ,EF 交O 1O 2于点C .设圆锥母线与轴的夹角为α,截面与轴的夹角为β.在Rt △O 1O 2D 中,DO 2=3﹣1=2,O 1D =√82−22=2√15. ∴cos α=O 1D O 1O 2=2√158=√154. ∵O 1O 2=8, CO 2=8﹣O 1C , ∵△EO 2C ∽△FO 1C , ∴8−O 1C O 2E=O 1C O 1F,解得O 1C =2.∴CF =√O 1C 2−FO 12=√22−12=√3. 即cos β=CFO 1C =√32. 则椭圆的离心率e =cosβcosα=√32154=2√55.O 故答案为:2√55.四、解答题,本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)根据条件,写出直线的方程,并化为一般式方程. (1)与3x +2y +2=0垂直,且过点A (2,2)的直线; (2)经过点(3,4)且在两坐标轴上的截距相等的直线.解:(1)3x +2y +2=0的斜率为k =−32,则与其垂直的直线的斜率为23,则过点A(2,2)的直线方程为y−2=23(x−2),化简得2x﹣3y+2=0;(2)由题意,①当直线过原点时,设其方程为y=kx,∴4=3k,k=4 3,∴y=43x,即4x﹣3y=0;②当直线不过原点,设方程为xa +ya=1(a≠0),则3a +4a=1,解得a=7,x 7+y7=1,即x+y﹣7=0,综上可得:所求直线方程为4x﹣3y=0或x+y﹣7=0.18.(12分)如图,在三棱柱ABC﹣A1B1C1中,侧面AA1C1C是边长为4的正方形,AA1B1B为矩形,AB =3,BC=5.(1)求证:AA1⊥平面ABC;(2)求平面ABC1与平面A1C1B所成角的正弦值;(3)求点C到平面A1C1B的距离.解:(1)证明:因为侧面AA1C1C为正方形,AA1B1B为矩形,所以AA1⊥AC,AA1⊥AB,因为AC∩AB=A,AC,AB⊂平面ABC,所以AA1⊥平面ABC;(2)解:由(1)知,AA1⊥AC,AA1⊥AB,由题意知AB=3,BC=5,AC=4,所以AB2+AC2=BC2即AB⊥AC,如图,以A为原点,以AC,AB,AA1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,则B (0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),C (4,0,0),连接AC 1, 所以AB →=(0,3,0),AC 1→=(4,0,4),A 1B →=(0,3,−4),A 1C 1→=(4,0,0), 设平面ABC 1的法向量为m →=(x 1,y 1,z 1),故m →⊥AB →,m →⊥AC 1→, 则{m →⋅AB →=0m →⋅AC 1→=0,即{3y 1=04x 1+4z 1=0,令z 1=1,则x 1=﹣1,y 1=0,可得m →=(−1,0,1),设平面A 1C 1B 的法向量为n →=(x ,y ,z),故n →⊥A 1B →,n →⊥A 1C 1→, 则{n →⋅A 1B →=0n →⋅A 1C 1→=0,即{3y −4z =04x =0,令z =3,则x =0,y =4,可得n →=(0,4,3), 设平面ABC 1与平面A 1C 1B 所成角为θ,则|cosθ|=|cos〈m →,n →〉|=|m →⋅n →||m →||n →|=32×5=3√210,则sinθ=√1−cos 2θ=√1−18100=√8210; 故所求平面ABC 1与平面A 1C 1B 所成角的正弦值为√8210; (3)由(1)知平面A 1C 1B 的法向量为n →=(0,4,3),CC 1→=(0,0,4), 则点C 到平面A 1C 1B 的距离为d =|CC 1→⋅n →||n →|=3×4√4+3=125, 故点C 到平面A 1C 1B 的距离为125.19.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,短轴的一个端点到右焦点的距离为2. (1)求椭圆C 的方程;(2)设直线l :y =12x +m 交椭圆C 于A ,B 两点,且|AB |=√5,求m 的值.解:(1)由题意可得{a 2=b 2+c 2=22c a=√32,解得:a =2,b =1, ∴椭圆C 的方程为x 24+y 2=1;(2)设A (x 1,y 1),B (x 2,y 2). 联立{y =12x +m x 2+4y 2=4得x 2+2mx +2m 2﹣2=0, ∴x 1+x 2=﹣2m ,x 1x 2=2m 2﹣2,∴|AB |=√1+k 2|x 1﹣x 2|=√52√4m 2−8m 2+8=√5⋅√2−m 2=√5, 解得m =±1.20.(12分)已知圆O :x 2+y 2=1,圆m :(x ﹣2)2+(y ﹣1)2=9. (1)求两圆的公共弦所在直线的方程及弦长; (2)求两圆的公切线方程.解:(1)易知圆O 的圆心(0,0),半径为1,圆M 的圆心(2,1),半径为3,已知圆O :x 2+y 2=1,圆M :(x ﹣2)2+(y ﹣1)2=9,即x 2﹣4x +y 2﹣2y =4, 两圆方程相减可得公共弦直线方程为l :4x +2y +3=0, 所以点O 到l 的距离为d =|3|√16+4=3√510,所以公共弦长为|AB|=2√12−(3510)2=√555,故两圆公共弦直线方程为l:4x+2y+3=0,公共弦长为√55 5;(2)因为圆O的圆心(0,0),半径为1,圆M的圆心(2,1),半径为3,由图象可知,有一条公切线为:x=﹣1,直线OM:y=12x与x=﹣1的交点为(−1,−12),设另一条公切线的方程为y+12=k(x+1),即kx−y+k−12=0,则点M(2,1)到此公切线的距离d=|3k−32|√k+1=3,解得k=−34,所以另一条公切线的方程为y=−34x−54,即3x+4y+5=0综上,两圆的公切线方程为x=﹣1和3x+4y+5=0.21.(12分)在如图所示的试验装置中,两个正方形框架ABCD,ADEF的边长都是1,且它们所在平面互相垂直,活动弹子M,N分别在正方形对角线AE和BD上移动,且EM和DN的长度保持相等,记EM=DN=a(0<a<√2),活动弹子Q在EF上移动.(1)求证:直线MN∥平面CDE;(2)a为何值时,MN的长最小?(3)Q为EF上的点,求EB与平面QCD所成角的正弦值的最大值.(1)证明:如图1,在平面ADEF内,过点M作MG∥DE,交AD于点G,连接NG,MN,∵MG ∥DE ,∴AM ME=AG GD.由已知可得,AE =BD =√2,EM =DN =a , ∴AM =BN ,AM ME=BN ND,∴AG GD=BN ND=AM ME,∴GN ∥AB .又AB ∥CD ,∴GN ∥CD .∵MG ⊄平面CDE ,MG ∥DE ,DE ⊂平面CDE , ∴MG ∥平面CDE , 同理可得,GN ∥平面CDE .∵MG ⊂平面MNG ,GN ⊂平面MNG ,MG ∩GN =G , ∴平面MNG ∥平面CDE .∵MN ⊂平面MNG ,∴直线MN ∥平面CDE .(2)由(1)可知,MG ∥DE ,AM =AE −EM =√2−a , ∴MG ED=AM AE,∴MG =AM⋅ED AE =√2−a2. 同理可得,GN =DN⋅AB DB =a2. 又平面ABCD ⊥平面ADEF ,平面ABCD ∩平面ADEF =AD ,ED ⊥AD ,ED ⊂平面ADEF , ∴ED ⊥平面ABCD .∵CD ⊂平面ABCD ,∴ED ⊥CD . ∵MG ∥DE ,GN ∥CD ,∴MG ⊥GN , ∴△MGN 是直角三角形, ∴MN 2=MG 2+GN 2=(√2−a 2)2+(a 2)2=a 2−√2a +1=(a −√22)2+12.又0<a <√2,∴a =√22,即M ,N 为线段中点时,MN 2有最小值12,∴当a =√22时,MN 的长度最小,最小值为√22.(3)由(2)知,ED ⊥平面ABCD . 又DA ⊥DC ,以点D 为坐标原点,DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图2所示,则D (0,0,0),C (0,1,0),E (0,0,1),B (1,1,0),设Q (b ,0,1),0≤b ≤1, ∴EB →=(1,1,−1),DC →=(0,1,0),DQ →=(b ,0,1). 设n →=(x ,y ,z)是平面QCD 的一个法向量,则{n →⋅DC →=y =0n →⋅DQ →=bx +z =0,取x =1,则n →=(1,0,−b)是平面QCD 的一个法向量. 设EB 与平面QCD 所成的角为θ, 则sin θ=|cos〈EB →,n →〉|=|EB →⋅n →||EB →||n →|=√3×√b +1.当b =0时,sinθ=√33;当0<b ≤1时, 有sin 2θ=(√3×√b +1)2=b 2+2b+13(b 2+1)=2b 3(b 2+1)+13=23(b+1b)+13. ∵b +1b ≥2√b ⋅1b =2,当且仅当b =1b ,即b =1时等号成立, ∴b +1b ≥2,0<1b+1b≤12, ∴sin 2θ=23(b+1b )+13≤23×12+13=23. ∵sin θ>0,∴sinθ≤√23=√63.综上所述,EB 与平面QCD 所成角的正弦值的最大值为√63.22.(12分)已知点P 到A (﹣2,0)的距离是点P 到B (1,0)的距离的2倍.(1)求点P 的轨迹方程;(2)若点P 与点Q 关于点B 对称,点C (5,8),求|QB |2+|QC |2的最大值;(3)若过B 的直线与第二问中Q 的轨迹交于E ,F 两点,试问在x 轴上是否存在点M (m ,0),使ME →⋅MF →恒为定值?若存在,求出点M 的坐标和定值;若不存在,请说明理由.解:(1)设P (x ,y ),由题意可得,|P A |=2|PB |,即√(x +2)2+y 2=2√(x −1)2+y 2,化简得(x ﹣2)2+y 2=4;(2)设Q (x 0,y 0),由题意可得(x ﹣2)2+y 2=4,{x 0+x =2×1y 0+y =0,即{x =2−x 0y =−y 0,代入上式可得x 02+y 02=4, ∴Q 的轨迹方程为x 2+y 2=4,|QB |2+|QC |2=(x ﹣1)2+y 2+(x ﹣5)2+(y ﹣8)2=2x 2+2y 2﹣12x ﹣16y +90=﹣12x ﹣16y +98=﹣4(3x +4y )+98.令z =3x +4y ,∴3x +4y ﹣z =0,d =|z|5≤r =2, ∴﹣10≤z ≤10,因此,|QB |2+|QC |2的最大值为138;(3)当直线l 的斜率存在时,设其斜率为k ,直线方程为y =k (x ﹣1),联立{x 2+y 2=4y =k(x −1),得(1+k 2)x 2﹣2k 2x +k 2﹣4=0. 显然Δ>0,设E (x 1,y 1),F (x 2,y 2),则x 1+x 2=2k 21+k 2,x 1x 2=k 2−41+k 2, ME →=(x 1−m ,y 1),MF →=(x 2−m ,y 2),∴ME →⋅MF →=(x 1﹣m )(x 2﹣m )+y 1y 2=m 2﹣m (x 1+x 2)+x 1x 2+y 1y 2=m 2﹣m (x 1+x 2)+x 1x 2+k 2(x 1﹣1)(x 2﹣1)=m 2−2mk21+k 2+k 2−41+k 2+k 2 (k 2−41+k 2+2k 21+k 2+1)=(m 2−m−2)k 2+m 2−41+k 2要使上式为定值,需m 2﹣2m ﹣2=m 2﹣4,解得m =1,∴ME →⋅MF →为定值﹣3,当直线l 的斜率不存在时E (1,√3),F (1,−√3),由M (1,0)可得ME →=(0,√3),MF →=(0,−√3),∴ME →⋅MF →=−3,综上所述,在x 轴上是否存在点M (1,0),使ME →⋅MF →恒为定值﹣3.。
廷锴纪念中学01——11学年教学开放日课程安排
七年级(4)
第3节(9:25—10:05)
Unit4 Topic2 SectionC
英语高一
覃立立
高一(12)
星期三第4节
高一(13)
第3节(9:25—10:05)
Book2 Unit3 Computers
英语高二
梁翠华
高二(3)
星期五第1节
高二(10)
第4节(10:15—10:55)
Book6 Unit2 Poems
星期五第8节
高二(7)
第7节(15:25—16:05)
原电池
化学高三
石家喜
高三(22)
星期四第4节
高三(1)
第6节(14:35—15:15)
化学反应与能量变化
音乐
刘玉红
高一(13)
星期四第4节
高一(3)
第6节(14:35—15:15)
音乐欣赏——中国民歌《茉莉花》
美术
张传书
高二(17)
星期五第8节
高二(17)
罗马人的法律
历史高二
王祥春
高二(14)
星期四第4节
高二(15)
第7节(15:25—16:05)
俄国农奴制改革
历史高三
黎继清
高三(19)
星期三第3节
高三(20)
第6节(14:35—15:15)
古希腊的民主政治
高一地理
谢楠
高一(17)
星期四第2节
高一(22)
第2节(8:35—9:15)
自然界的水循环
高二地理
14周星期二第2节
高一(10)
第6节(14:35—15:15)
古典概型
数学高二
(完整word版)高中数学导数压轴题专题训练
高中数学导数尖子生指导(填选压轴)一.选择题(共 30 小题)1.( 2013?文昌模拟)如图是322+x 2 2的值是()f ( x ) =x +bx +cx+d 的图象,则 x 1 A . B . C .D .考点 : 利用导数研究函数的极值;函数的图象与图象变化. 专题 : 计算题;压轴题;数形联合.剖析: 先利用图象得: f (x ) =x ( x+1 )( x ﹣ 2)=x 3﹣ x 2﹣2x ,求出其导函数,利用 x 1, x 2 是原函数的极值点,求出 x 1+x 2= ,,即可求得结论.解答: 解:由图得: f ( x ) =x ( x+1 )(x ﹣ 2) =x 3﹣ x 2﹣ 2x ,∴ f'( x ) =3x 2﹣ 2x ﹣ 2∵ x 1, x 2 是原函数的极值点所以有 x 1+x 2= ,,222.故 x 1 +x 2 =(x 1+x 2) ﹣ 2x 1x 2== 应选 D .评论: 本题主要考察利用函数图象找到对应结论以及利用导数研究函数的极值,是对基础知识的考察,属于基础题.2.( 2013?乐山二模)定义方程 f ( x ) =f ′( x )的实数根 x 0 叫做函数 f ( x )的 “新驻点 ”,若函数 g ( x ) =x , h ( x )=ln ( x+1), φ( x )=x 3﹣ 1 的 “新驻点 ”分别为 α, β, γ,则 α, β,γ的大小关系为( ) A .α> β> γB . β> α> γC . γ> α>βD .β> γ>α考点 : 导数的运算. 专题 : 压轴题;新定义.剖析: 分别对 g ( x ),h (x ),φ( x )求导,令g ′( x ) =g ( x ),h ′( x )=h ( x ),φ′( x ) =φ( x ),则它们的根分别32为 α, β, γ,即 α=1, ln ( β+1) =, γ﹣ 1=3γ,而后分别议论 β、 γ的取值范围即可.解答:解: ∵ g ′( x ) =1, h ′( x ) =, φ′(x ) =3x 2,由题意得:α=1, ln ( β+1) = 32, γ﹣ 1=3γ,① ∵ ln ( β+1) =,β+1∴ ( β+1 ) =e ,当 β≥1时, β+1≥2, ∴ β<1,这与 β≥1矛盾,∴ 0< β< 1;32② ∵ γ﹣ 1=3 γ,且 γ=0 时等式不行立,2∴ 3γ>3∴ γ> 1, ∴ γ> 1.∴ γ> α> β. 应选 C .评论: 函数、导数、不等式密不行分,本题就是一个典型的代表,此中对对数方程和三次方程根的范围的议论是一个难点.3.( 2013?山东)抛物线 C 1:的焦点与双曲线C 2: 的右焦点的连线交C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则p=()A .B .C .D .考点 : 利用导数研究曲线上某点切线方程;双曲线的简单性质. 专题 : 压轴题;圆锥曲线的定义、性质与方程.剖析: 由曲线方程求出抛物线与双曲线的焦点坐标,由两点式写出过两个焦点的直线方程,求出函数在 x 取直线与抛物线交点 M 的横坐标时的导数值,由其等于双曲线渐近线的斜率获得交点横坐标与 p 的关系,把 M 点的坐标代入直线方程即可求得 p 的值.解答:解:由,得 x 2=2py ( p > 0),所以抛物线的焦点坐标为 F ().由,得,.所以双曲线的右焦点为(2,0).则抛物线的焦点与双曲线的右焦点的连线所在直线方程为 ,即① .设该直线交抛物线于M ( ),则 C 1 在点 M 处的切线的斜率为 .由题意可知,得 ,代入 M 点得 M ( )把 M 点代入 ① 得:.解得 p=.应选 D .评论: 本题考察了双曲线的简单几何性质,考察了利用导数研究曲线上某点的切线方程,函数在曲线上某点处的切线的斜率等于函数在该点处的导数,是中档题.4.( 2013?安徽) 已知函数3 2 +bx+c 有两个极值点1211 2 ,则对于 x 的方程 3( f (x )) f ( x )=x +axx,x,若 f ( x)=x < x2+2af (x ) +b=0 的不一样实根个数为( )A .3B . 4C . 5D .6考点 : 利用导数研究函数的极值;根的存在性及根的个数判断.专题 : 压轴题;导数的综合应用.剖析: 由函数 f ( x )=x 32′ 2有两个不相等的实数根,必有+ax +bx+c 有两个极值点 x 1, x 2,可得 f ( x )=3x +2ax+b=0 △ =4a 2﹣ 12b > 0.而方程 3(f ( x ))2+2af ( x )+b=0 的 △ 1=△ >0,可知此方程有两解且 f ( x )=x 1 或 x 2.再分别议论利用平移变换即可解出方程f ( x ) =x 1 或 f ( x )=x 2 解得个数.解答: 解: ∵ 函数 f ( x ) =x 3 212+ax +bx+c 有两个极值点 x, x ,′2∴ f ( x )=3x +2ax+b=0 有两个不相等的实数根,∴ △ =4a 2﹣ 12b > 0.解得= .∵ x 1< x 2,∴,.而方程 3(f (x ))21=△ > 0, ∴ 此方程有两解且1 2+2af (x ) +b=0的△f ( x ) =x 或 x .不如取 0<x 1< x 2, f ( x 1)> 0.y=f ( x )﹣ x 的图象, ∵ f ( x )=x ,可知方程 f ( x )=x① 把 y=f ( x )向下平移 x个单位即可获得1有两1 1 1 1 解.② 把 y=f ( x )向下平移 x 2 个单位即可获得y=f ( x )﹣ x 2 的图象, ∵f (x 1) =x 1, ∴f (x 1)﹣ x 2<0,可知方程 f ( x ) =x 2 只有一解.综上 ①② 可知:方程 f ( x )=x 1 或 f ( x )=x 2.只有 3 个实数解. 即对于 x 的方程 3(f (x ))2+2af ( x )+b=0的只有 3 不一样实根.应选 A .评论: 本题综合考察了利用导数研究函数得单一性、极值及方程解得个数、平移变换等基础知识,考察了数形联合的思想方法、推理能力、分类议论的思想方法、计算能力、剖析问题和解决问题的能力.5.( 2013?湖北)已知 A .a 为常数,函数 B .f ( x ) =x ( lnx ﹣ ax )有两个极值点C .x 1,x 2( x 1< x 2)(D .)考点 : 利用导数研究函数的极值;函数在某点获得极值的条件.专题 : 压轴题;导数的综合应用.剖析: 先求出 f ′( x ),令 f ′( x )=0,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x ) =lnx+1 ﹣ 2ax 有且只有两个零点 ? g ′( x )在( 0, +∞)上的独一的极值不等于 0.利用导数与函数极值的关系即可得出.解答:解: ∵=lnx+1 ﹣ 2ax ,( x >0)令 f ′( x )=0 ,由题意可得 lnx=2ax ﹣ 1 有两个解 x 1, x 2? 函数 g ( x )=lnx+1 ﹣ 2ax 有且只有两个零点? g ′( x )在( 0, +∞)上的独一的极值不等于 0..① 当 a ≤0 时, g ′( x )> 0, f ′(x )单一递加,所以 g ( x ) =f ′(x )至多有一个零点,不切合题意,应舍去.② 当 a > 0 时,令 g ′( x ) =0 ,解得 x= ,∵ x, g ′( x )> 0,函数 g ( x )单一递加;时, g ′( x )< 0,函数 g ( x )单一递减.∴ x=是函数 g ( x )的极大值点,则> 0,即> 0,∴ ln ( 2a )< 0,∴ 0< 2a <1,即.∵, f ′( x ) =lnx +1﹣2ax =0, f ′( x ) =lnx +1﹣ 2ax 2=0.11122且 f ( x 1) =x 1( lnx 1﹣ ax 1) =x 1(2ax 1﹣ 1﹣ ax 1) =x 1( ax 1 ﹣1)< x 1(﹣ ax 1) =< 0,f (x 2) =x 2( lnx 2﹣ ax 2) =x 2( ax 2﹣1)>=﹣.().应选 D .评论: 娴熟掌握利用导数研究函数极值的方法是解题的要点.6.( 2013?辽宁)设函数 f ( x )知足 x 2f ′(x ) +2xf ( x ) =,f (2) = ,则 x >0 时, f ( x )()A .有 极大值,无极小值B . 有极小值,无极大值C . 既有极大值又有极小值D .既 无极大值也无极小值考点 : 函数在某点获得极值的条件;导数的运算.专题 : 压轴题;导数的综合应用.剖析: 先利用导数的运算法例,确立 f (x )的分析式,再结构新函数,确立函数的单一性,即可求得结论.解答:,解: ∵ 函数 f ( x )知足∴∴ x > 0 时,dx∴∴令 g ( x )=,则令 g ′(x ) =0,则 x=2 , ∴x ∈( 0, 2)时, 数单一递加∴ g ( x )在 x=2 时获得最小值g ′( x )< 0,函数单一递减,x ∈( 2, +∞)时,g ′( x )> 0,函∵ f ( 2) =, ∴ g (2) = =0∴ g ( x ) ≥g ( 2) =0∴≥0即 x > 0 时, f ( x )单一递加∴ f ( x )既无极大值也无极小值应选 D .评论: 本题考察导数知识的运用,考察函数的单一性与极值,考察学生剖析解决问题的能力,难度较大.7.( 2013?安徽)若函数f ( x )=x 3+ax 2+bx+c 有极值点 x 1,x 2,且 f ( x 1)=x 1,则对于 x 的方程 3( f ( x ))2+2af ( x ) +b=0 的不一样实根个数是( )A .3B . 4C . 5D .6考点 : 函数在某点获得极值的条件;根的存在性及根的个数判断. 专题 : 综合题;压轴题;导数的综合应用.剖析: 求导数 f ′( x ),由题意知 x 1, x 2 是方程 3x 2+2ax+b=0 的两根,从而对于 f ( x )的方程 3( f ( x ))2+2af ( x )+b=0 有两个根,作出草图,由图象可得答案.解答: 解: f ′( x ) =3x 2+2ax+b , x 1, x 2 是方程 3x 2+2ax+b=0 的两根,不如设 x 2>x 1,由 3( f ( x ))2+2af ( x ) +b=0,则有两个 f ( x )使等式成立, x 1=f ( x 1),x 2> x 1=f ( x 1),以下表示图象:如图有三个交点,应选 A .评论: 考察函数零点的观点、以及对嵌套型函数的理解,考察数形联合思想.8.( 2014?海口二模)设f (x )是定义在R 上的奇函数,且f ( 2) =0,当x > 0 时,有恒成立,则不等式 x 2f ( x )> 0 的解集是()A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣2, 0) ∪ ( 0, 2)C . (﹣ ∞,﹣2)∪(2,+∞)D .(﹣ ∞,﹣ 2) ∪ ( 0,2)考点 : 函数的单一性与导数的关系;奇偶函数图象的对称性;其余不等式的解法. 专题 : 综合题;压轴题.剖析:第一依据商函数求导法例,把 化为 [] ′< 0;而后利用导函数的正负性, 可判断函数y=在( 0, +∞)内单一递减;再由f ( 2)=0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得f ( x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因 当 x > 0 ,有 恒成立,即 [ ]′<0 恒成立,所以在( 0, +∞)内 减.因 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0.又因 f ( x )是定 在R 上的奇函数,所以在( ∞, 2)内恒有 f ( x )> 0;在( 2, 0)内恒有f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案 ( ∞, 2)∪ ( 0,2).故 D .点 :本 主要考 函数求 法 及函数 性与 数的关系,同 考 了奇偶函数的 象特色.9.( 2014?重 三模) 于三次函数 f ( x )=ax 3+bx 2+cx+d ( a ≠0), 出定 : f ′(x )是函数 y=f ( x )的 数, f ″ ( x )是 f ′( x )的 数,若方程 f ′′(x )=0 有 数解 x 0, 称点( x 0, f (x 0)) 函数 y=f ( x )的 “拐点 ”.某同学研究 :任何一个三次函数都有 “拐点 ”;任何一个三次函数都有 称中心,且“拐点 ”就是 称中心. 函数g ( x ) =, g ( ) +=()A .2011B . 2012C . 2013D .2014考点 : 数的运算;函数的 ;数列的乞降. : ; 数的观点及 用.剖析: 正确求出 称中心,利用 称中心的性 即可求出.解答: 解:由 意,′2 ″g (x ) =x x+3 , ∴ g ( x ) =2x 1, ″,解得,令 g ( x )=0又, ∴ 函数 g ( x )的 称中心 .∴,, ⋯∴ g ( ) +=2012 .故 B .点 : 正确求出 称中心并掌握 称中心的性 是解 的关 .10.( 2014?上海二模) 已知 f ( x )=alnx+ 2x 1,x 2,都有x ( a > 0),若 随意两个不等的正 数 > 2 恒成立, a 的取 范 是( )A .( 0, 1]B . ( 1, +∞)C . (0, 1)D .[1, +∞)考点 : 数的几何意 ;利用 数研究函数的 性.: 算 ; .剖析:先将条件 “ 随意两个不等的正 数 x 1,x 2,都有> 2 恒成立 ” 成当 x > 0 ,f'( x )≥2 恒成立,而后利用参 量分别的方法求出a 的范 即可.解答:解:对随意两个不等的正实数x 1, x 2,都有> 2 恒成立则当 x > 0 时, f'( x )≥2 恒成立f' ( x ) = +x ≥2 在( 0, +∞)上恒成立则 a ≥( 2x ﹣ x 2) max =1 应选 D .评论: 本题主要考察了导数的几何意义,以及函数恒成立问题,同时考察了转变与划归的数学思想,属于基础题.11.(2012?桂林模拟)已知在(﹣ ∞, +∞)上是增函数,则实数 a 的取值范围是()A .(﹣ ∞, 1]B . [﹣ 1, 4]C . [﹣ 1,1]D .(﹣ ∞, 1)考点 : 利用导数研究函数的单一性.专题 : 计算题;压轴题.剖析: 假如一个分段函数在实数上是一个增函数,需要两段都是增函数且两个函数的交点处要知足递加,当于 0 时,要使的函数是一个减函数,求导此后导函数横小于0,注意两个端点处的大小关系.解答: 解: ∵ 假如一个分段函数在实数上是一个增函数.x 小需要两段都是增函数且两个函数的交点处要知足递加,当 x < 0 时, y ′=3x 2﹣( a ﹣1)> 0 恒成立,∴ a ﹣ 1< 3x 2∴ a ﹣ 1≤0∴ a ≤1,当 x=0 时, a 2﹣ 3a ﹣ 4≤0 ∴ ﹣ 1≤a ≤4,综上可知﹣ 1≤a ≤1 应选 C .评论: 本题考察函数的单一性,分段函数的单一性,解题的要点是在两个函数的分界处,两个函数的大小关系必定要写清楚.12.( 2012?河北模拟)定义在 [1, +∞)上的函数 f ( x )知足: ① f ( 2x ) =cf ( x )( c 为正常数);② 当 2≤x ≤4 时,f ( x ) =1﹣( x ﹣ 3) 2,若函数 f ( x )的图象上全部极大值对应的点均落在同一条直线上,则 c 等于( ) A .1 B . 2 C . 1 或 2 D .4 或 2 考点 : 利用导数研究函数的极值;抽象函数及其应用. 专题 : 计算题;压轴题.剖析: 由已知可得分段函数f ( x )的分析式,从而求出三个函数的极值点坐标,依据三点共线,则任取两点确立的直线斜率相等,能够结构对于c 的方程,解方程可得答案.解答: 解: ∵ 当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3)2当 1≤x < 2 时, 2≤2x < 4,则 f ( x ) = f ( 2x ) = [1﹣( 2x ﹣ 3) 2]此时当 x= 时,函数取极大值当 2≤x ≤4 时, f ( x ) =1﹣( x ﹣ 3) 2此时当 x=3 时,函数取极大值 1当 4< x≤8 时, 2<x≤4则f( x) =cf ( x) =c (1﹣( x﹣ 3)2,此时当 x=6 时,函数取极大值c∵ 函数的全部极大值点均落在同一条直线上,即点(,),(3,1),(6,c)共线,∴解得 c=1 或 2.应选 C评论:本题考察的知识点是三点共线,函数的极值,此中依据已知剖析出分段函数 f ( x)的分析式,从而求出三个函数的极值点坐标,是解答本题的要点.13.( 2012?桂林模拟)设x﹣xf ′( x),且 f′( x)是奇函数.若曲线y=f ( x)的a∈R,函数 f ( x) =e+a?e 的导函数是一条切线的斜率是,则切点的横坐标为()A .ln2B .﹣ ln2C. D .考点:简单复合函数的导数.专题:压轴题.剖析:已知切线的斜率,要求切点的横坐标一定先求出切线的方程,我们可从奇函数下手求出切线的方程.解答:解:对f( x) =e x+a?e﹣x求导得 f ′( x) =e x﹣ ae﹣x又 f′( x)是奇函数,故f′( 0) =1﹣ a=0解得 a=1,故有f′( x) =e x﹣ e﹣x,设切点为( x0, y0),则,得或(舍去),得 x0=ln2 .评论:熟习奇函数的性质是求解本题的要点,奇函数定义域若包括x=0,则必定过原点.14.( 2012?太原模拟)已知定义在 R 上的函数 y=f( x﹣ 1)的图象对于点( 1,0)对称,且 x∈(﹣∞,0)时, f( x)+xf(′x)<0 成立,(此中 f(′x)是(f x)的导函数),a=( 30.3)(f 30.3),b=( log π3).(f logπ3),则 a, b, c 的大小关系是()A .a> b> cB . c> b>a C. c> a>b D .a> c> b 考点:利用导数研究函数的单一性;函数单一性的性质;导数的乘法与除法法例.专题 : 计算题;压轴题.剖析: 由 “当 x ∈(﹣ ∞, 0)时不等式f ( x )+xf ′(x )< 0 成立 ”知只需比较的大小即可.解答: 解: ∵ 当 x ∈(﹣ ∞, 0)时不等式 f ( x ) +xf ′(x )< 0 成立即:( xf ( x )) ′< 0,∴ xf ( x )在 (﹣ ∞, 0)上是减函数.又 ∵ 函数 y=f ( x ﹣ 1)的图象对于点( 1,0)对称,∴ 函数 y=f (x )的图象对于点( 0, 0)对称, xf ( x )是减函数,要获得a ,b ,c 的大小关系,∴ 函数 y=f (x )是定义在 R 上的奇函数∴ xf ( x )是定义在 R 上的偶函数∴ xf ( x )在 ( 0, +∞)上是增函数.又 ∵=﹣ 2,2=.∴> 30.3 0.3)>( log π π?f ( 3 3)?f ( log 3) 即> 30.3 0.3)>( log π π?f ( 33) ?f ( log 3) 即: c > a >b 应选 C .评论: 本题考察的考点与方法有: 1)全部的基本函数的奇偶性; 2)抽象问题详细化的思想方法,结构函数的思想; 3)导数的运算法例: ( uv )′=u ′v+uv ′; 4)指对数函数的图象; 5)奇偶函数在对称区间上的单一性:奇 函数在对称区间上的单一性同样;偶函数在对称区间上的单一性相反.本题联合已知结构出 h (x )是正确解答的要点所在.15.( 2012?广东模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,且e 为自然对数的底,则()A .f ( 1)> e?f (0), f ( 2012)> e2012?f ( 0) B . f (1)< e?f ( 0), f ( 2012)> e 2012?f ( 0)C . f ( 1)> e?f (0), f ( 2012)< e 2012?f ( 0)D .f (1)< e?f ( 0), f ( 2012)< e2012?f ( 0)考点 : 导数的运算. 专题 : 计算题;压轴题. 剖析:结构函数 y=的导数形式,并判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0即> 0,所以函数 y= 单一递加,故当 x > 0 时,=f ( 0),整理得出 f ( x )> e xf (0)当 x=1 时 f ( 1)> e?f ( 0),当x=2012 时 f( 2012)> e 2012?f( 0).应选 A .评论: 本题主要考察函数的单一性与其导函数的关系,函数单一性的关系,考察转变、结构、计算能力.16.( 2012?无为县模拟)已知定义在R 上的函数 f ( x )、g ( x )知足 ,且 f ′( x )g ( x )< f ( x )g ′(x ),,如有穷数列( n ∈N *)的前 n 项和等于,则 n 等于 ()A .4B . 5C . 6D .7考点 : 导数的运算;数列的乞降.专题 : 压轴题.剖析: 利用导数研究函数的单一性获得a 的范围,再利用等比数列前n 项和公式即可得出.解答:解: ∵=′′, f ( x ) g ( x )< f ( x ) g ( x ),∴= <0,即函数单一递减, ∴ 0<a < 1.又,即 ,即 ,解得 a=2(舍去)或 .∴,即数列 是首项为 ,公比 的等比数列,∴= = ,由解得 n=5 ,应选 B .评论: 娴熟掌握导数研究函数的单一性、等比数列前n 项和公式是解题的要点.17.( 2012?福建)函数 (f x )在[a ,b] 上有定义,若对随意 x1,x ∈[a ,b],有2则称 f ( x )在 [a , b] 上拥有性质 P .设 f ( x )在 [1, 3]上拥有性质 P ,现给出以下命题:① f ( x )在 [1, 3]上的图象是连续不停的;② f ( x 2)在 [1, ] 上拥有性质 P ;③ 若 f ( x )在 x=2 处获得最大值 1,则 f ( x )=1, x ∈[1, 3] ;④ 对随意 x 1,x 2, x 3, x 4∈[1, 3] ,有[f ( x 1) +f ( x 2) +f (x 3) +f ( x 4)]此中真命题的序号是( )A .① ②B . ① ③C . ② ④D .③ ④考点 : 利用导数求闭区间上函数的最值;抽象函数及其应用;函数的连续性.专题 : 压轴题;新定义.剖析: 依据题设条件,分别举出反例,说明 ① 和② 都是错误的;同时证明 ③ 和④ 是正确的.解答:解:在 ① 中,反例: f ( x ) =在 [1, 3] 上知足性质 P ,但 f ( x )在 [1, 3] 上不是连续函数,故 ① 不行立;在 ② 中,反例: f ( x ) =﹣ x 在 [1, 3]上知足性质 P ,但 f (x 2) =﹣ x 2在 [1, ] 上不知足性质 P ,故 ②不行立;在 ③ 中:在 [1 , 3] 上, f (2) =f () ≤ ,∴,故 f ( x ) =1,∴ 对随意的 x 1, x 2∈[1,3] , f ( x ) =1, 故 ③ 成立;在 ④ 中,对随意 x 1,x 2, x 3, x 4∈[1 ,3] ,有=≤≤= [f ( x 1) +f (x 2) +f ( x 3) +f ( x 4 )] ,∴[f (x 1) +f ( x 2) +f (x 3) +f ( x 4) ],故 ④ 成立. 应选 D .评论: 本题考察的知识点为函数定义的理解,说明一个结论错误时,只需举出反例即可.说明一个结论正确时,要证明对全部的状况都成立.18.( 2013?文昌模拟)设动直线 x=m 与函数 f ( x ) =x 3,g ( x ) =lnx 的图象分别交于点M 、N ,则 |MN| 的最小值为 ( )A .B .C .D .l n3﹣ 1考点 : 利用导数求闭区间上函数的最值. 专题 : 计算题;压轴题.剖析: 结构函数 F ( x ) =f ( x )﹣ g ( x ),求出导函数,令导函数大于 0 求出函数的单一递加区间,令导函数小于0 求出函数的单一递减区间,求出函数的极小值即最小值.解答: 解:绘图能够看到 |MN| 就是两条曲线间的垂直距离.设 F ( x ) =f (x )﹣ g (x ) =x 3﹣lnx ,求导得: F'( x )=.令 F ′( x )> 0 得 x >;令 F ′( x )< 0 得 0< x < ,所以当 x=时, F (x )有最小值为 F ( ) = + ln3=( 1+ln3 ),应选 A评论: 求函数的最值时,先利用导数求出函数的极值和区间的端点值,比较在它们中求出最值.19.( 2011?枣庄二模)设 f ′( x )是函数 f ( x )的导函数,有以下命题: ① 存在函数 f ( x ),使函数 y=f ( x )﹣ f ′( x )为偶函数;② 存在函数 f ( x ) f ′( x ) ≠0,使 y=f ( x )与 y=f ′( x )的图象同样;③ 存在函数 f ( x ) f ′( x ) ≠0 使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称.此中真命题的个数为( )A .0B . 1C . 2D .3考点 : 导数的运算;函数奇偶性的判断.专题 : 计算题;压轴题.剖析: 对于三个命题分别找寻知足条件的函数,三个函数分别是x, f ( x )=e ﹣ x,从而获得结f ( x ) =0, f ( x )=e 论.解答: 解:存在函数 f ( x ) =0,使函数 y=f ( x )﹣ f ′( x )=0 为偶函数,故 ① 正确存在函数 f (x ) =e x,使 y=f ( x )与 y=f ′( x )的图象同样,故 ② 正确存在函数 f (x ) =e ﹣x使得 y=f ( x )与 y=f ′( x )的图象对于 x 轴对称,故 ③ 正确. 应选 D .评论: 本题主要考察了函数的奇偶性以及函数图象的对称性,解题的要点就是找寻知足条件的函数,属于基础题.20.( 2011?武昌区模拟)已知f ( x )是定义域为R 的奇函数,f (﹣ 4)=﹣ 1, f ( x )的导函数f ′( x )的图象如图所示.若两正数a ,b 知足f ( a+2b )< 1,则的取值范围是()A .B .C . (﹣ 1, 10)D .(﹣ ∞,﹣ 1)考点 : 函数的单一性与导数的关系;斜率的计算公式.专题 : 计算题;压轴题;数形联合.剖析: 先由导函数 f ′( x )是过原点的二次函数下手,再联合f ( x )是定义域为 R 的奇函数求出f ( x );而后依据a 、b 的拘束条件画出可行域,最后利用的几何意义解决问题.解答: 解:由 f ( x )的导函数f ′( x )的图象,设 f ′( x ) =mx 2,则∵ f ( x )是定义域为 R 的奇函数, ∴ f ( 0) =0,即 n=0 .f ( x )=+n .又 f (﹣ 4) = m ×(﹣ 64) =﹣ 1, ∴ f ( x ) =x 3=.且 f ( a+2b ) =又 a > 0, b > 0,则画出点(< 1, ∴< 1,即 a+2b <4.b ,a )的可行域以以下图所示.而可视为可行域内的点(b, a)与点 M (﹣ 2,﹣ 2)连线的斜率.又因为 k AM =3,k BM = ,所以<< 3.应选 B .评论:数形联合是数学的基本思想方法:碰到二元一次不定式组要考虑线性规划,碰到的代数式要考虑点(x,y)与点( a, b)连线的斜率.这都是由数到形的转变策略.21.(2011?雅安三模)以下命题中:①函数, f ( x) =sinx+( x∈( 0,π))的最小值是 2;② 在△ ABC 中,若 sin2A=sin2B ,则△ ABC 是等腰或直角三角形;③假如正实数a, b, c 知足 a + b> c 则+>;④ 如果 y=f ( x)是可导函数,则f′( x0) =0 是函数 y=f (x)在 x=x 0处取到极值的必需不充足条件.此中正确的命题是()A .① ②③④B .① ④C.② ③④ D .② ③考点:函数在某点获得极值的条件;不等关系与不等式;三角函数中的恒等变换应用.专题:惯例题型;压轴题.剖析:依据基本不等式和三角函数的有界性可知真假,利用题设等式,依据和差化积公式整理求得cos(A+B )=0或 sin(A ﹣B ) =0,推测出 A+B=或 A=B ,则三角形形状可判断出.结构函数y=,依据函数的单一性可证得结论;由函数极值点与导数的关系,我们易判断对错.解答:解:① f ( x)=sinx+≥2 ,当 sinx=时取等号,而 sinx 的最大值是 1,故不正确;② ∵ sin2A=sin2B ∴ sin2A ﹣ sin2B=cos( A+B ) sin( A ﹣ B) =0∴ cos( A+B ) =0 或 sin( A ﹣B )=0∴ A+B=或 A=B∴ 三角形为直角三角形或等腰三角形,故正确;③可结构函数 y=,该函数在(0.+∞)上单一递加, a+b> c 则+>,故正确;④ ∵ f( x)是定义在R 上的可导函数,当 f′( x0)=0 时, x0可能 f ( x)极值点,也可能不是 f (x)极值点,当 x0为 f( x)极值点时, f ′( x0)=0 必定成立,故 f′( x0)=0 是 x0为 f ( x)极值点的必需不充足条件,故④ 正确;应选 C.评论:考察学生会利用基本不等式解题,注意等号成立的条件,同时考察了极值的相关问题,属于综合题.22.( 2011?万州区一模)已知 f ( x ) =2x的最小值是( )A .﹣ 37B .﹣ 29考点 : 利用导数求闭区间上函数的最值.专题 : 惯例题型;压轴题.3﹣ 6x 2 +m ( m 为常数)在 [ ﹣ 2, 2] 上有最大值 3,那么此函数在 [ ﹣ 2, 2]上 C .﹣5 D .以 上都不对剖析: 先求导数,依据单一性研究函数的极值点,在开区间(﹣2, 2)上只有一极大值则就是最大值,从而求出m ,经过比较两个端点﹣2 和 2 的函数值的大小从而确立出最小值,获得结论.2∵ f ( x )在(﹣ 2, 0)上为增函数,在( 0, 2)上为减函数, ∴ 当 x=0 时, f ( x ) =m 最大,∴ m=3,从而 f (﹣ 2) =﹣ 37, f ( 2) =﹣5. ∴ 最小值为﹣ 37.应选: A评论:本题考察了利用导数求闭区间上函数的最值, 求函数在闭区间 [a ,b] 上的最大值与最小值是经过比较函数在( a ,b )内全部极值与端点函数 f ( a ), f ( b ) 比较而获得的,属于基础题.23.(2010?河东区一模)已知定义在 R 上的函数 (fx )是奇函数,且(f 2)=0,当 x > 0 时有,则不等式 x 2?f ( x )> 0 的解集是( )A .(﹣ 2, 0) ∪ (2, +∞)B . ( ﹣∞,﹣ 2)∪( 0,2)C . (﹣ 2, 0)∪ ( 0, 2)D .(﹣ 2, 2) ∪ ( 2,+∞)考点 : 函数的单一性与导数的关系;函数单一性的性质. 专题 : 计算题;压轴题.剖析:第一依据商函数求导法例,把化为 [ ]′< 0;而后利用导函数的正负性,可判断函数 y=在( 0,+∞)内单一递减;再由 f ( 2) =0,易得 f ( x )在( 0, +∞)内的正负性;最后联合奇函数的图象特色,可得 f (x )在(﹣ ∞, 0)内的正负性.则x 2f ( x )> 0? f ( x )> 0 的解集即可求得.解答:解:因为当 x > 0 时,有恒成立,即 []′< 0 恒成立,所以在( 0,+∞)内单一递减.因为 f ( 2) =0,所以在( 0, 2)内恒有 f ( x )> 0;在( 2, +∞)内恒有 f (x )< 0. 又因为 f ( x )是定义在 R 上的奇函数,所以在(﹣ ∞,﹣ 2)内恒有 f ( x )> 0;在(﹣ 2, 0)内恒有 f ( x )< 0.又不等式 x 2f (x )> 0 的解集,即不等式 f ( x )> 0 的解集. 所以答案为(﹣ ∞,﹣ 2)∪ ( 0,2). 应选 B .评论: 本题主要考察函数求导法例及函数单一性与导数的关系,同时考察了奇偶函数的图象特色.24.( 2010?惠州模拟)给出定义:若函数 f ( x )在 D 上可导,即 f ′( x )存在,且导函数 f ′(x )在 D 上也可导,则称 f (x )在 D 上存在二阶导函数,记 f ″( x ) =( f ′( x )) ′,若 f ″( x )< 0 在 D 上恒成立,则称f ( x )在 D 上为凸函数.以下四个函数在上不是凸函数的是()A .f ( x ) =sinx+cosxB . f ( x )=lnx ﹣2xC . f ( x )=﹣ x 3+2x ﹣ 1﹣D .f ( x ) =﹣ xex考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析: 对 ABCD 分别求二次导数,逐个清除可得答案.解答:解:对于 f ( x )=sinx+cosx ,f ′(x )=cosx ﹣sinx ,f ″(x )=﹣ sinx ﹣ cosx ,当 x ∈ 时, f ″( x )< 0,故为凸函数,清除A ;对于 f ( x ) =lnx ﹣2x , f ′( x ) = , f ″(x ) =﹣,当 x ∈时, f ″( x )< 0,故为凸函数,清除 B ;对于 f ( x ) =﹣x 3+2x ﹣ 1, f ′(x ) =﹣ 3x 2+2, f ″(x ) =﹣ 6x ,当 x ∈时, f ″( x )< 0,故为凸函数,清除 C ;应选 D .评论: 本题主要考察函数的求导公式.属基础题.25.( 2010?黄冈模拟)已知 f ( x )为定义在(﹣ ∞, +∞)上的可导函数,且 f ( x )< f ′( x )对于 x ∈R 恒成立,则 ( )A .f ( 2)> e 2f ( 0), f ( 2010)> e 2010f ( 0)B . f (2)< e 2f ( 0),f (2010)> e 2010f (0)C . f ( 2)> e 2f ( 0), f ( 2010)< e 2010f ( 0)D .f (2)< e 2f ( 0),f (2010)< e 2010f (0)考点 : 利用导数研究函数的单一性.专题 : 压轴题.剖析:先转变成函数 y=的导数形式,再判断增减性,从而获得答案.解答:解: ∵ f ( x )< f' ( x ) 从而 f' ( x )﹣ f ( x )> 0 从而> 0从而>0 从而函数 y= 单一递加,故 x=2 时函数的值大于 x=0 时函数的值,即所以 f ( 2)> e 2f ( 0).2010同理 f ( 2010)> ef ( 0);评论: 本题主要考察函数的单一性与其导函数的正负状况之间的关系,即导函数大于 0 时原函数单一递加,当导函数小于0 时原函数单一递减.26.( 2010?龙岩二模)已知f ( x )、g ( x )都是定义在R 上的函数,f ′( x )g ( x ) +f (x ) g ′( x )< 0, f ( x ) g ( x )=ax , f ( 1)g ( 1) +f (﹣ 1)g (﹣ 1) =.在区间[ ﹣3, 0]上随机取一个数x , f ( x ) g ( x )的值介于4 到 8 之间的概率是()A .B .C .D .考点 : 利用导数研究函数的单一性;几何概型.专题 : 计算题;压轴题.剖析: 依据函数积的导数公式,可知函数f ( x )g ( x )在R 上是减函数,依据f ( x )g ( x ) =a x , f ( 1)g ( 1)+f(﹣ 1) g (﹣ 1) =.我们能够求出函数分析式,从而可求出f (x )g ( x )的值介于4 到 8 之间时,变量的范围,利用几何概型的概率公式即可求得. 解答: 解:由题意, ∵ f' ( x ) g ( x )+f (x ) g'( x )< 0,∴ [f ( x ) g ( x ) ]'<0,∴ 函数 f ( x )g ( x )在 R 上是减函数∵ f ( x ) g (x ) =a x,∴ 0< a < 1∵ f ( 1) g (1) +f (﹣ 1)g (﹣ 1)= .∴∴∵ f ( x ) g (x )的值介于 4 到 8∴ x ∈[﹣ 3,﹣ 2]∴ 在区间 [﹣3, 0] 上随机取一个数 x ,f (x ) g ( x )的值介于 4 到 8 之间的概率是应选 A .评论: 本题的考点是利用导数确立函数的单一性,主要考察积的导数的运算公式,考察几何概型,解题的要点是确立函数的分析式,利用几何概型求解.27.( 2010?成都一模)已知函数 在区间( 1, 2)内是增函数,则实数m 的取值范围是( )A .B .C . (0, 1]D .考点 : 利用导数研究函数的单一性. 专题 : 压轴题.剖析: 第一求出函数的导数,而后依据导数与函数增减性的关系求出m 的范围.解答: 解:由题得 f ′( x )=x 2﹣ 2mx ﹣3m 2=( x ﹣ 3m )( x+m ),∵ 函数在区间( 1, 2)内是增函数,∴ f ′( x )> 0,当 m ≥0 时, 3m ≤1,∴ 0≤m ≤ ,当 m < 0 时,﹣ m ≤1, ∴ ﹣ 1≤m < 0,∴ m ∈[﹣ 1, ] .应选 D .点 :掌握函数的 数与 性的关系.28.( 2009?安徽) 函数 f ( x )= x 3+x 2+tan θ,此中 θ∈[0,] , 数 f (′1)的取 范 是 ()A .[ 2, 2]B . [, ]C . [ , 2]D .[ , 2]考点 : 数的运算.: .剖析: 利用基本求 公式先求出f ′( x ),而后令 x=1 ,求出 f ′(1)的表达式,从而 化 三角函数求 域 ,求解即可.2cos θ?x ,解答: 解: ∵ f ′( x ) =sin θ?x +∴ f ′( 1)=sin θ+ cos θ=2sin ( θ+ ).∵ θ∈[0, ],∴ θ+ ∈[ , ] . ∴ sin (θ+ ) ∈[ , 1] . ∴ 2sin ( θ+) ∈[, 2].故 D .点 : 本 合考 了 数的运算和三角函数求 域 ,熟 公式是解 的关 .29.( 2009?天津) 函数 f ( x )在 R 上的 函数f ′(x ),且 2f ( x ) +xf ′( x )> x 2,下边的不等式在R 内恒成立的是( )A .f ( x )> 0B . f ( x )< 0C . f ( x )> xD .f ( x )< x考点 : 数的运算. : .剖析: 于 参数取 , 些没有固定套路解决的 ,最好的 法就是清除法.解答: 解: ∵ 2f ( x ) +xf ′( x )> x 2,令 x=0 , f (x )> 0,故可清除 B ,D .假如 f ( x )=x 2+0.1, 已知条件 2f ( x ) +xf ′( x )> x 2成立,但 f ( x )>x 未必成立,所以 C 也是 的,故 A 故 A .点 :本 考 了运用 数来解决函数 性的 .通 剖析分析式的特色,考 了剖析 和解决 的能力.30.( 2009? 西) 曲 y=x n+1(n ∈N * )在点( 1, 1) 的切 与x 的交点的横坐 x n1 2n的, x ?x ?⋯?x( )A .B .C .D .1考点 : 利用 数研究曲 上某点切 方程;直 的斜率. : 算 ; . 剖析:欲判 x 1?x 2?⋯?x n 的 ,只 求出切 与x 的交点的横坐 即可,故先利用 数求出在 x=1 的 函数 ,再 合 数的几何意 即可求出切 的斜率.从而 解决.n+1*n解答: 解: y=x ( n ∈N )求 得 y ′=( n+1 )x ,令 x=1 得在点( 1,1) 的切 的斜率 k=n+1 ,在点( 1, 1) 的切 方程 y 1=k ( x n 1) =( n+1)( x n 1),不如 y=0,x 1?x 2?x 3⋯?x n = × × ,故 B .点 :本小 主要考 直 的斜率、利用 数研究曲 上某点切 方程、数列等基 知 ,考 运算求解能力、化 与 化思想.属于基 .高中数学导数尖子生指导(解答题)一.解答 (共30 小 )21.( 2014?遵 二模) 函数 f ( x ) =x +aln ( 1+x )有两个极 点x 1、x 2,且 x 1< x 2,( Ⅱ ) 明: f ( x 2)>.考点 : 利用 数研究函数的极 ;利用 数研究函数的 性;不等式的 明. : 算 ; 明 ; .剖析: ( 1)先确立函数的定 域而后求 数f ( x ),令g ( x )=2x 2+2x+a ,由 意知 x 1、 x 2 是方程 g ( x ) =0 的 两个均大于 1 的不相等的 根,成立不等关系解之即可,在函数的定 域内解不等式f ( x )> 0 和 f ( x )< 0,求出 区 ;( 2)x 2 是方程 g ( x ) =0 的根,将 a 用 x 2 表示,消去 a 获得对于 x 2 的函数,研究函数的 性求出函数的最大 ,即可 得不等式.解答:解:( I )令 g ( x )=2x2,其 称 .+2x+a由 意知x 1、 x 2 是方程 g ( x )=0 的两个均大于1 的不相等的 根,其充要条件,得( 1)当 x ∈( 1,x 1) , f'( x )> 0,∴ f ( x )在( 1, x 1)内 增函数; ( 2)当 x ∈( x 1, x 2) , f'(x )< 0, ∴f (x )在( x 1 ,x 2)内 减函数;( 3)当 x ∈( x 2, +∞) , f' ( x )> 0, ∴ f ( x )在( x 2, +∞)内 增函数;( II )由( I ) g ( 0) =a > 0, ∴,a= ( 2x222+2x )222∴ f ( x 2) =x 2 +aln ( 1+x 2) =x 2( 2x 2+2x 2) ln (1+x 2),h'( x ) =2x 2(2x+1 )ln ( 1+x ) 2x= 2( 2x+1 ) ln ( 1+x )( 1)当, h'(x )> 0,∴ h ( x )在 增;( 2)当 x ∈( 0, +∞) , h'( x )< 0, h (x )在( 0, +∞) 减. ∴故 .点 : 本 主要考 了利用 数研究函数的 性,以及利用 数研究函数的极 等相关知 ,属于基 .2﹣x2.( 2014?武汉模拟)己知函数 f ( x) =x e(Ⅰ)求 f ( x)的极小值和极大值;(Ⅱ)当曲线 y=f ( x)的切线 l 的斜率为负数时,求l 在 x 轴上截距的取值范围.考点:利用导数研究函数的极值;依据实质问题选择函数种类;利用导数研究曲线上某点切线方程.专题:综合题;压轴题;转变思想;导数的综合应用.剖析:(Ⅰ )利用导数的运算法例即可得出f′( x),利用导数与函数单一性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ )利用导数的几何意义即可获得切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单一性、极值、最值即可.2 ﹣ x﹣x 2 ﹣ x ﹣ x2解答:解:(Ⅰ)∵ f( x) =x e,∴ f′( x) =2xe﹣ x e =e( 2x﹣ x ),令f′( x)=0 ,解得 x=0 或 x=2 ,令f′( x)> 0,可解得 0<x< 2;令 f′( x)< 0,可解得 x< 0 或 x> 2,故函数在区间(﹣∞, 0)与( 2,+∞)上是减函数,在区间( 0, 2)上是增函数.∴ x=0 是极小值点, x=2 极大值点,又f( 0) =0, f ( 2)=.故 f( x)的极小值和极大值分别为0,.( II )设切点为(),则切线方程为y﹣=(x﹣x0),令 y=0 ,解得 x==,因为曲线y=f ( x)的切线 l 的斜率为负数,∴(<0,∴ x0<0或x0>2,令,则=.①当 x0< 0 时,0,即 f′( x0)> 0,∴ f( x0)在(﹣∞, 0)上单一递加,∴ f(x0)< f( 0) =0;② 当x0> 2 时,令f′( x0) =0,解得.当时, f′( x0)> 0,函数 f ( x0)单一递加;当时, f ′( x0)< 0,函数f( x0)单一递减.故当时,函数f( x0)获得极小值,也即最小值,且=.综上可知:切线l 在 x 轴上截距的取值范围是(﹣∞,0)∪.评论:本题考察利用导数求函数的极值与利用导数研究函数的单一性、切线、函数的值域,综合性强,考察了推理能力和计算能力.3.( 2014?四川模拟)已知函数 f ( x) =lnx+x 2.( Ⅰ )若函数 g ( x ) =f ( x )﹣ ax 在其定义域内为增函数,务实数 a 的取值范围;( Ⅱ )在( Ⅰ )的条件下,若 a > 1, h ( x ) =e 3x ﹣ 3ae xx ∈[0, ln2] ,求 h ( x )的极小值;( Ⅲ )设 F ( x )=2f ( x )﹣ 3x 2﹣kx ( k ∈R ),若函数 F ( x )存在两个零点 m ,n ( 0< m <n ),且 2x 0=m+n .问:函数 F ( x )在点( x 0 ,F ( x 0))处的切线可否平行于x 轴?若能,求出该切线方程;若不可以,请说明原因.考点 : 函数的单一性与导数的关系;利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题 : 计算题;压轴题;导数的观点及应用.剖析:( Ⅰ )先依据题意写出: g (x )再求导数, 由题意知, g ′( x )≥0,x ∈( 0,+∞)恒成立, 即由此即可求得实数 a 的取值范围;( Ⅱ )由( Ⅰ )知,利用换元法律t=e x ,则 t ∈[1,2] ,则 h ( t )=t 3﹣ 3at ,接下来利用导数研究 此函数的单一性,从而得出h (x )的极小值;( Ⅲ )对于可否问题,可先假定能,即设F (x )在( x 0,F ( x 0))的切线平行于 x 轴,此中 F ( x ) =2lnx﹣ x 2﹣ kx 联合题意,列出方程组,证得函数在( 0,1)上单一递加,最后出现矛盾,说明假定不行立,即切线不行否平行于x轴.解答:解:( Ⅰ ) g ( x ) =f ( x )﹣ ax=lnx+x 2﹣ax ,由题意知, g ′(x ) ≥0,对随意的x ∈( 0, +∞)恒成立,即又 ∵ x > 0,,当且仅当 时等号成立∴,可得( Ⅱ )由( Ⅰ )知,,令 t=e x,则 t ∈[1,2] ,则h ( t ) =t 3﹣3at ,由 h ′(t )=0,得或(舍去),∵ , ∴若 ,则 h ′( t )< 0,h ( t )单一递减;若 ,则 h ′( t )> 0, h ( t )单一递加∴ 当时, h ( t )获得极小值,极小值为x 轴,此中 F (x ) =2lnx ﹣ x 2﹣kx( Ⅲ )设 F ( x )在( x 0, F ( x 0))的切线平行于联合题意,有① ﹣ ② 得所以,由 ④ 得所以。
广东省罗定市廷锴纪念中学七年级英语上册期末模拟
2014-2015 年廷锴纪念中学期末模拟试题(一)一、听力测试(略)二、笔试部分Ⅰ. 基础选择1. These books are _____. _____ are in _____ bags.A. my. You, YouB. My, Yours, yourC. mine, Your, YoursD. mine, Yours, your2. Would you like _____ your mother cook supper?A. helpingB. to helpC. helpD. helping3. Let Tom _____ right away.A. go homeB. to go homeC. goes homeD. goes to home4.—May I have some milk? —Sorry, we have _____ left(剩下).A. fewB. a fewC. littleD. a little5. Tom with his classmates _____ an English lesson now.A. hasB. haveC. are havingD. is having6.Could you_____ a message _____ him?A. take, toB. give, toC. leave, fromD. give, for7. She is _____ the blackboard, but she can’t _____ the words on i t.A. looking at, seeB. seeing, look atC. seeing, seeD. looking at, look at8. We would like some meat and fruit _____ lunch.A. toB. inC. ofD. for9. Would you please _____ her _____ me back?A. ask, to callB. ask, callC. to ask, callD. to ask, to call10. Look at the boys. They _____ games at school.A. playB. playingC. are playD. are playing11. A: . B: Nice to see you, too.A. Nice to see you.B. How are you?C. How do you do!D. See you later1 / 712. A: Here you are. B:A. That’s right.B. Let me see.C. Thanks.D. Yes, I like it13. A: . B: He’s tall.A. Is the boy tall or short?B. Is the boy tall?C. Is the boy short?D. How old is he?14. A: Would you like an egg and some fish? B: .A. No, please, I’m full.B. That’s a good idea.C. No, thanks.D. You are OK15. A: Thank you, Kangkang. B: .A. Not at all.B. Of course.C. I think so.D. Don’t say that16.—What’s your favorite______? —BasketballA. sportB. colorC. subjectD. movie17.—May I help you? —________.A. No, you can’t.B. Yes, please.C. Yes, you can.D. Sorry.18. —______the man? —He is Kate’s father.A. What’s.B. Who’sC. Whose’sD. How’sⅡ.完形填空:仔细阅读下面对话,在A, B, C, D四个选项中选择一个最佳答案。
广东省佛山市罗定邦中学2024-2025学年高二上学期期中教学质量监测数学试题
广东省佛山市罗定邦中学2024-2025学年高二上学期期中教学质量监测数学试题一、单选题1.在直角坐标系xOy 中,在y 轴上截距为1-且倾斜角为3π4的直线方程为.A .10x y ++=B .10x y +-=C .10x y -+=D .10x y --=2.已知向量()3,2,1a =- ,()2,2,1b =- ,(),4,0c m = ,若a ,b ,c共面,则m =()A .2B .3C .1-D .5-3.如图,在斜三棱柱111ABC A B C -中,M 为BC 的中点,N 为11A C 靠近1A 的三等分点,设AB a =,AC b = ,1AA c = ,则用a ,b ,c表示NM 为()A .1126a b c+-B .1126a b c-++C .1126a b c--D .1126a b c--+4.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,设A =“甲中靶”,B =“乙中靶”,则()A .A 与B ,A 与B ,A 与B ,A 与B 都相互独立B .AB 与BA 是对立事件C .()0.98P AB =D .()0.02P AB AB AB = 5.已知圆C :()()22124x y -++=,过点()2,1A --向圆C 作切线,切点为B ,则AB =()AB C D .6.已知平面α内有一个点(1,1,2)M -,平面α的一个法向量是(2,1,2)n =-,则下列点P 中,在平面α内的是()A .(2,3,3)PB .(2,0,1)P -C .(4,4,0)P -D .(3,3,4)P -7.已知菱形ABCD 中,60ABC ∠=︒,沿对角线AC 折叠之后,使得平面BAC ⊥平面DAC ,则二面角B CD A --的余弦值为()A .2B .12C D 8.已知在正方体1111ABCD A B C D -的棱长为2,点E ,F 分别是直线1A B 与11B D 上的点,则线段EF 长度的最小值为()AB C D .2二、多选题9.已知空间中三点()0,1,0A ,()2,2,0B ,()1,3,1C -,则下列结论错误的是()A .AB与AC 是共线向量B .与AB同向的单位向量是55⎛⎫ ⎪ ⎪⎝⎭C .AB 与BC 夹角的余弦值是11D .平面ABC 的一个法向量是()1,2,5-10.对于直线1:230l ax y a ++=和直线2:3(1)30+-+-=l x a y a .以下说法正确的有()A .直线2l 一定过定点2,13⎛⎫- ⎪⎝⎭B .若12l l ⊥,则25a =C .若12//l l ,则3a =D .点(1,3)P 到直线1l 11.如图,点P 是棱长为2的正方体1111ABCD A B C D -的表面上一个动点,则()A .当P 在平面11BCCB 上运动时,三棱锥1P AA D -的体积为定值43B .当P 在线段AC 上运动时,1D P 与11A C 所成角的取值范围是ππ,32⎡⎤⎢⎥⎣⎦C .若F 是11A B 的中点,当P 在底面ABCD 上运动,且满足//PF 平面11B CD 时,PF 长度D .使直线AP 与平面ABCD 所成的角为45︒的点P 的轨迹长度为π+三、填空题12.已知()()2,2,1,1,0,0a b == ,则a在b 上的投影向量的坐标为.13.两条平行直线3450x y +-=与8200ax y +-=间的距离是.14.已知圆22:2210C x y x y +--+=,直线:40l x y +-=,若在直线l 上任取一点M 作圆C 的切线,MA MB ,切点分别为,A B ,则ACB ∠最小时,原点O 到直线AB 的距离为.四、解答题15.平面直角坐标系中,已知△ABC 三个顶点的坐标分别为(1,2)A -,(3,4)B -,(0,6)C .(1)求BC 边所在的直线方程;(2)求△ABC 的面积.16.已知圆22:10C x y mx ny ++++=,直线1:10l x y --=,2:20l x y -=,且直线1l 和2l 均平分圆C .(1)求圆C 的标准方程(2)0y a ++-=与圆C 相交于M ,N 两点,且120MCN ∠=o ,求实数a 的值.17.如图,在三棱柱111ABC A B C -中,侧面11AAC C 是边长为4的正方形,11AA B B 为矩形,3,5AB BC ==.(1)求证:1AA ⊥平面ABC ;(2)求平面1ABC 与平面11A C B 所成角的正弦值;(3)求点C 到平面11A C B 的距离.18.甲、乙、丙三名同学进行羽毛球比赛,每局比赛两人对战,另一人轮空,没有平局,每局胜者与此局轮空者进行下一局的比赛.约定先赢两局者获胜,比赛随即结束,各局比赛结果互不影响,已知每局比赛甲胜乙的概率为34,乙胜丙的概率为23,甲胜丙的概率为45.(1)若第一局由乙丙对战,求甲获胜的概率;(2)若第一局由甲乙对战,求甲获胜的概率.19.如图1,在平行四边形ABCD 中,24,60AB BC ABC ==∠=︒,E 为CD 的中点.将ADE V 沿AE 折起,连接BD 与CD ,如图2.(1)当BD 为何值时,平面ADE ⊥平面ABCE ?(2)设(01)BF BD λλ=≤≤,当BE DE ⊥时,是否存在实数λ,使得直线AF 与平面ABCE 所λ的值;若不存在,请说明理由.(3)当三棱锥B CDE -的体积最大时,求三棱锥D ABE -的内切球的半径.。
2024-2025学年高中数学选择性必修二课时作业15:基本初等函数的导数
2024-2025学年高中数学选择性必修二课时作业(十五)基本初等函数的导数练基础1.[2022·河北石家庄高二期末]已知函数f(x)=x,f′(16)=()A.18B.14C.12D.22.[2022·湖北枣阳一中高二期中]余弦曲线y=cos x在点(π2,0)处的切线方程为()A.y=-x+π2B.y=x+π2C.y=x-π2D.y=-x-π23.[2022·山东济宁高二期中]函数y=e x在x=0处的切线方程为________________.4.求下列函数的导数:(1)y=x8;(2)y=(12)x;(3)y=x x;(4)y=log13x.提能力5.[2022·广东深圳宝安高二期中]已知O为坐标原点,曲线C:y=log2x在点A(1,0)处的切线交y轴于点B,则S△OAB=()A.12ln2B.ln22C.ln2D.126.(多选)[2022·河北英才国际学校高二期中]已知曲线f(x)=1x,则过点(-1,3),且与曲线y=f(x)相切的直线方程可能为()A.y=-x+2B.y=-9x-6C.y=-8x-5D.y=-7x-47.[2022·广东广州高二期末]写出一个同时满足下列条件的函数f(x)=____________.①当x∈(0,+∞)时,f′(x)>0;②f(x)是偶函数.8.已知曲线y=ln x的一条切线方程为x-y+c=0,求c的值.9.求曲线y=5x的与直线y=2x-4平行的切线方程.10.曲线y=cos x在哪些点处切线的斜率为1?在哪些点处的切线平行于x轴?培优生11.设f1(x)=sin x,f2(x)=f′1(x),f3(x)=f′2(x),…,f n+1(x)=f′n(x),n∈N,则f2022(x)=()A.sin x B.-sin xC.cos x D.-cos x12.已知两条曲线y=sin x,y=cos x,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.答案解析1.解析:由f (x )=x ,得f ′(x )=12x ,所以f ′(16)=18.故选A.答案:A 2.解析:∵y ′=-sin x ,∴y =cos x 在(π2,0)处的切线斜率k =-sin π2=-1,∴所求切线方程为:y =-(x -π2),即y =-x +π2.故选A.答案:A3.解析:∵y =e x ,∴y ′=e x ,则在x =0处的切线的斜率为k =e 0=1,又x =0,y =1,∴切线方程为:y -1=x ,即:x -y +1=0.答案:x -y +1=04.解析:(1)y ′=8x 7.(2)y ′=(12)x ln 12=-(12)x ln 2.(3)∵y =x x =x 32,∴y ′=32x 12.(4)y ′=1x ln 13=-1x ln 3.5.解析:因为y ′=1x ·ln 2,所以点A 处切线方程为y -0=1ln 2·(x -1),令x =0,得y =-1ln 2,所以B 的坐标为(0,-1ln 2),则S △AOP =12×1ln 2×1=12ln 2,故选A.答案:A6.解析:设过点(-1,3)的直线与曲线y =f (x )相切的切点为(x 0,1x 0),由f (x )=1x 求导得f ′(x )=-1x 2,于是得切线方程为y -1x 0=-1x 20(x -x 0),即y =-1x 20x +2x 0,则3=1x 20+2x 0,解得x 0=1或x 0=-13,因此得切线方程为y =-x +2或y =-9x -6,所以所求切线的方程是y =-x +2或y =-9x -6.故选AB.答案:AB7.解析:函数f (x )=x 2(x ∈R ),①当x ∈(0,+∞)时,f ′(x )=2x >0;②x ∈R ,f (-x )=x 2=f (x ),所以f (x )=x 2是偶函数,函数f (x )=x 2(x ∈R )同时满足条件.答案:f (x )=x 2(答案不唯一)8.解析:设切点为(x 0,ln x 0),由y =ln x 得y ′=1x .因为曲线y =ln x 在x =x 0处的切线方程为x -y +c =0,其斜率为1.所以y ′|x =x 0=1x 0=1,即x 0=1,所以切点为(1,0).又切线过切点(1,0),∴1-0+c =0,得c =-1.9.解析:设切点为(m ,n ),因为y =5x ,所以y ′=52x ,因为曲线的切线与直线y =2x -4平行,所以52m =2,解得m =2516,又点(m ,n )在曲线y =5x 上,则n =5m =254,所以切点坐标为(2516,254),所以曲线y =5x 的与直线y =2x -4平行的切线方程为:y -254=2(x -2516),即16x -8y +25=0.10.解析:因为y =cos x ,所以y ′=-sin x ,令y ′=-sin x =1,解得x =-π2+2k π,k ∈Z ,此时cos (-π2+2k π)=0,k ∈Z ,所以曲线y =cos x 在点(-π2+2k π,0),k ∈Z 处的斜率为1;令y ′=-sin x =0,x =2k π,k ∈Z 或x =π+2k π,k ∈Z ,当x =2k π,k ∈Z 时,cos (2k π)=1,k ∈Z ;当x =π+2k π,k ∈Z 时,cos (π+2k π)=-1,k ∈Z ;所以曲线y =cos x 在点(2k π,1),k ∈Z 或(π+2k π,-1),k ∈Z 处的切线平行于x 轴.11.解析:∵f 1(x )=sin x ,∴f ′1(x )=(sin x )′=cos x ,f 2(x )=f ′1(x )=cos x ,f 3(x )=f ′2(x )=(cos x )′=-sin x ,f 4(x )=f ′3(x )=(-sin x )′=-cos x ,f 5(x )=f ′4(x )=(-cos x )′=sin x ,由此可知:f 2022(x )=f 2(x )=cos x .故选C.答案:C12.解析:假设存在这样的公共点,并设这两条曲线的一个公共点为P (x 0,y 0),∴两条曲线在P (x 0,y 0)处的切线斜率分别为k 1=y ′|x =x 0=cos x 0,k 2=y ′|x =x 0=-sin x 0.若使两条切线互相垂直,必须有cos x0·(-sin x0)=-1,即sin x0·cos x0=1,也就是sin2x0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
廷锴纪念中学2017-2018学年高二第二学期数学尖子生辅导资料(13
1.方程2log sin 2x x π+=在区间(0,
]2π上的实根个数为_________________.
2.设数列118()3n -⎧⎫⨯-⎨⎬⎩⎭的前n 项和为n S ,则满足不等式1|6|125n S -<
的最小整数n 是_________________.
3.已知n (n N ∈,2n ≥)是常数,且1x ,2x ,,n x 是区间0,2π⎡⎤⎢⎥⎣⎦
内任意实数,则函数1212231(,,,)sin cos sin cos sin cos n n f x x x x x x x x x =+++的最大值等于______________.
4.圆周上给定10个点,每两点连一条弦,如果没有三条弦交于圆内一点,那么,这些弦在圆内一共有_________________个交点.
5.一只虫子沿三角形铁圈爬行,在每个顶点,它都等机会地爬向另外两个顶点之一,则它在n 次爬行后恰好回到起始点的概率为_________________.
6.设O 是平面上一个定点,A ,B ,C 是平面上不共线的三个点,动点P 满足||||
AC AB OP OA AC AB λ
λ-=+,其中[0,)λ∈+∞,则点P 的轨迹为_________________.
7.设半径为10厘米的球中有一个棱长为整数(厘米)的正方体, 则该正方体的棱长最大等于 .
8.分别以直角三角形的两条直角边a ,b 和斜边c 为轴将直角三角形旋转一周,所得旋转体的体积依次为a V ,b V ,c V ,则22a b V V +与2(2)c V 的大小关系是_________________.
二、解答题:解答应写出文字说明、证明过程或演算步骤.
1. 是否存在实数a ,使直线1y ax =+和双曲线22
31x y -=相交于两点A 、B ,且以AB 为直径的圆恰好过坐标系的原点?
2.设非负实数a ,b ,c 满足1a b c ++=,求证:19(19)4abc ab bc ca abc ≤++≤+。