11-5古 典 概 型
11-5古典概型(一轮复习)
题 型 重 点 研 讨
题 型 重 点 研 讨
课 时 跟 踪 检 测
必考部分 第十一章 §11.5
第 6页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
考点 2
古典概型
真 题 演 练 集 训
1. 具有以下两个特点的概率模型称为古典概率模型, 简称古典 概型. (1)试验中所有可能出现的基本事件 只有有限个. (2)每个基本事件出现的可能性 相等.
真 题 演 练 集 训
课 时 跟 踪 检 测
第12页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
古典概型:基本事件的个数;古典概型概率公式. (1)[2018· 云南昆明模拟]抛掷两颗相同的正方体骰子 (骰子质地 均匀,且各个面上依次标有点数 1,2,3,4,5,6)一次,则两颗骰子向上
解析:由题意知,“从 1,3,5,7 中任取 2 个不同的数”所包 含的基本事件为(1,3),(1,5),(1,7),(3,5),(3,7),(5,7),共 6 个, 满足条件的事件包含的基本事件为(1,5),(1,7),(3,7),共 3 个, 3 1 所以所求的概率 P= = . 6 2
必考部分 第十一章 §11.5
必考部分 第十一章 §11.5
课 时 跟 踪 检 测
第13页
名师伴你行 ·高考一轮总复习 ·数学(理)
基 础 分 层 导 学
(2)小明的自行车用的是密码锁,密码锁的四位数码由 4 个数字 2,4,6,8 按一定顺序构成, 小明不小心忘记了密码中 4 个数字的顺序,真 随机地输入由 2,4,6,8 组成的一个四位数,不能打开锁的概率是
题 型 重 点 研 讨
高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 第五节 古典概型与几何概型)
第五节 古典概型与几何概型一、基础知识1.古典概型(1)古典概型的特征:①有限性:在一次试验中,可能出现的结果是有限的,即只有有限个不同的基本事件;,②等可能性:每个基本事件出现的可能性是相等的.一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.(2)古典概型的概率计算的基本步骤:①判断本次试验的结果是否是等可能的,设出所求的事件为A ;②分别计算基本事件的总数n 和所求的事件A 所包含的基本事件个数m ; ③利用古典概型的概率公式P (A )=mn ,求出事件A 的概率.(3)频率的计算公式与古典概型的概率计算公式的异同 名称 不同点相同点频率计 算公式 频率计算中的m ,n 均随随机试验的变化而变化,但随着试验次数的增多,它们的比值逐渐趋近于概率值 都计算了一个比值mn古典概型的 概率计算公式mn 是一个定值,对同一个随机事件而言,m ,n 都不会变化2.几何概型(1)概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)几何概型的基本特点:①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (3)计算公式:P (A )=构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.几何概型应用中的关注点1关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 2确定基本事件时一定要选准度量,注意基本事件的等可能性.考点一 古典概型[典例精析](1)(2018·全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A.112 B.114 C.115D.118(2)(2019·武汉调研)将一枚质地均匀的骰子投掷两次,得到的点数依次记为a 和b ,则方程ax 2+bx +1=0有实数解的概率是( )A.736B.12C.1936D.518[解析] (1)不超过30的所有素数为2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有C 210=45种情况,而和为30的有7+23,11+19,13+17这3种情况,所以所求概率P =345=115.(2)投掷骰子两次,所得的点数a 和b 满足的关系为⎩⎪⎨⎪⎧1≤a ≤6,a ∈N *,1≤b ≤6,b ∈N *,所以a 和b 的组合有36种.若方程ax 2+bx +1=0有实数解, 则Δ=b 2-4a ≥0,所以b 2≥4a .当b =1时,没有a 符合条件;当b =2时,a 可取1;当b =3时,a 可取1,2;当b =4时,a 可取1,2,3,4;当b =5时,a 可取1,2,3,4,5,6;当b =6时,a 可取1,2,3,4,5,6.满足条件的组合有19种,则方程ax 2+bx +1=0有实数解的概率P =1936.[答案] (1)C (2)C[题组训练]1.(2019·益阳、湘潭调研)已知a ∈{-2,0,1,2,3},b ∈{3,5},则函数f (x )=(a 2-2)e x +b 为减函数的概率是( )A.310B.35C.25D.15解析:选C 若函数f (x )=(a 2-2)e x +b 为减函数,则a 2-2<0,又a ∈{-2,0,1,2,3},故只有a =0,a =1满足题意,又b ∈{3,5},所以函数f (x )=(a 2-2)e x +b 为减函数的概率是2×25×2=25. 2.从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79解析:选C 由题意得,所求概率P =5×4×29×8=59.3.将A ,B ,C ,D 这4名同学从左至右随机地排成一排,则“A 与B 相邻且A 与C 之间恰好有1名同学”的概率是( )A.12 B.14 C.16D.18解析:选B A ,B ,C ,D 4名同学排成一排有A 44=24种排法.当A ,C 之间是B 时,有2×2=4种排法,当A ,C 之间是D 时,有2种排法,所以所求概率P =4+224=14.考点二 几何概型类型(一) 与长度有关的几何概型[例1] (2019·濮阳模拟)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( )A.215 B.715 C.35D.1115[解析] ∵f (x )=-x 2+mx +m 的图象与x 轴有公共点,∴Δ=m 2+4m ≥0,∴m ≤-4或m ≥0,∴在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率P =[-4--6]+9-09--6=1115,故选D. [答案] D类型(二) 与面积有关的几何概型[例2] (1)(2018·潍坊模拟)如图,六边形ABCDEF 是一个正六边形,若在正六边形内任取一点,则该点恰好在图中阴影部分的概率是( )A.14 B.13 C.23D.34(2)(2019·洛阳联考)如图,圆O :x 2+y 2=π2内的正弦曲线y =sin x 与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A.4π2B.4π3C.2π2 D.2π3 [解析] (1)设正六边形的中心为点O ,BD 与AC 交于点G ,BC =1,则BG =CG ,∠BGC =120°,在△BCG 中,由余弦定理得1=BG 2+BG 2-2BG 2cos 120°,得BG =33,所以S △BCG =12 ×BG ×BG ×sin 120°=12 ×33 ×33 ×32=312,因为S六边形ABCDEF =S △BOC ×6=12×1×1×sin 60°×6=332,所以该点恰好在图中阴影部分的概率P =1-6S △BCG S 六边形ABCDEF =23.(2)由题意知圆O 的面积为π3,正弦曲线y =sin x ,x ∈[-π,π]与x 轴围成的区域记为M ,根据图形的对称性得区域M 的面积S =2∫π0 sin x d x =-2cos x |π0 =4,由几何概型的概率计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率P =4π3.[答案] (1)C (2)B类型(三) 与体积有关的几何概型[例3] 已知在四棱锥P ABCD 中,P A ⊥底面ABCD ,底面ABCD 是正方形,P A =AB =2,现在该四棱锥内部或表面任取一点O ,则四棱锥O ABCD 的体积不小于23的概率为________.[解析] 当四棱锥O ABCD 的体积为23时,设O 到平面ABCD 的距离为h ,则13×22×h =23,解得h =12.如图所示,在四棱锥P ABCD 内作平面EFGH 平行于底面ABCD ,且平面EFGH 与底面ABCD 的距离为12.因为P A ⊥底面ABCD ,且P A =2,所以PH P A =34,又四棱锥P ABCD 与四棱锥P EFGH 相似,所以四棱锥O ABCD 的体积不小于23的概率P =V 四棱锥P EFGH V 四棱锥P ABCD =⎝⎛⎭⎫PH P A 3=⎝⎛⎭⎫343=2764.[答案]2764类型(四) 与角度有关的几何概型[例4] 如图,四边形ABCD 为矩形,AB =3,BC =1,以A 为圆心,1为半径作四分之一个圆弧,在∠DAB 内任作射线AP ,则射线AP 与线段BC 有公共点的概率为________.[解析] 连接AC ,如图, 因为tan ∠CAB =BC AB =33,所以∠CAB =π6,满足条件的事件是直线AP 在∠CAB 内,且AP 与AC 相交时,即直线AP 与线段BC 有公共点,所以射线AP 与线段BC 有公共点的概率P =∠CAB ∠DAB =π6π2=13.[答案] 13[题组训练]1.(2019·豫东名校联考)一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF BCE 内自由飞翔,则它飞入几何体F AMCD 内的概率为( )A.34 B.23 C.13D.12解析:选D 由题图可知V F AMCD =13×S 四边形AMCD ×DF =14a 3,V ADF BCE =12a 3,所以它飞入几何体F AMCD 内的概率P =14a 312a 3=12.2.在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为________.解析:由题意可得⎩⎪⎨⎪⎧sin x +cos x ≥22,0≤x ≤π,即⎩⎪⎨⎪⎧sin ⎝⎛⎭⎫x +π4≥12,0≤x ≤π,解得0≤x ≤7π12,故所求的概率为7π12π=712.答案:7123.(2018·唐山模拟)向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率为________.解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB 的长为2.又圆的半径为2,所以弓形ADB 的面积为12×23π×2-12×2×3=23π-3,所以向圆(x -2)2+(y -3)2=4内随机投掷一点,则该点落在x 轴下方的概率P =16-34π.答案:16-34π[课时跟踪检测]A 级1.(2019·衡水联考)2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.363π10 mm 2B.363π5 mm 2C.726π5mm 2D.363π20mm 2 解析:选A 向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S =30100×π×112=363π10(mm 2).2.(2019·漳州一模)甲、乙、丙、丁、戊5名同学参加“《论语》知识大赛”,决出第1名到第5名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”,从上述回答分析,丙是第一名的概率是( )A.15B.13C.14D.16解析:选B 由于甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊.又因为所有的限制条件对丙、丁或戊都没有影响,所以这三个人获得第一名是等可能事件,所以丙是第一名的概率是13.3.(2019·郑州模拟)现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完结束的概率为( )A.110B.15C.310D.25解析:选C 将5张奖票不放回地依次取出共有A 55=120(种)不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票,共有C 23C 12A 33=36(种)取法,所以P =36120=310. 4.(2019·长沙模拟)如图是一个边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A.π8 B.π16 C.1-π8D.1-π16解析:选C 正方形的面积为82,正方形的内切圆半径为4,中间黑色大圆的半径为2,黑色小圆的半径为1,所以白色区域的面积为π×42-π×22-4×π×12=8π,所以黑色区域的面积为82-8π.在正方形图案上随机取一点,则该点取自黑色区域的概率为P =82-8π82=1-π8.5.(2019·郑州模拟)已知圆C :x 2+y 2=1,直线l :y =k (x +2),在[-1,1]上随机选取一个数k ,则事件“直线l 与圆C 相离”发生的概率为( )A.12 B.2-22C.3-33D.2-32解析:选C 圆C :x 2+y 2=1的圆心C (0,0),半径r =1,圆心到直线l :y =k (x +2)的距离d =|0×k -0+2k |k 2+-12=2|k |k 2+1,直线l 与圆C 相离时d >r ,即2|k |k 2+1>1,解得k <-33或k >33,故所求的概率P =2×⎝⎛⎭⎫1-331--1=3-33.6.从1~9这9个自然数中任取7个不同的数,则这7个数的平均数是5的概率为________.解析:从1~9这9个自然数中任取7个不同的数的取法共有C 79=36种,从(1,9),(2,8),(3,7),(4,6)中任选3组,有C 34=4种选法,故这7个数的平均数是5的概率P =436=19. 答案:197.一个三位数的百位,十位,个位上的数字依次为a ,b ,c ,当且仅当有两个数字的和等于第三个数字时称这个三位数为“好数”(如213,134),若a ,b ,c ∈{1,2,3,4},且a ,b ,c 互不相同,则这个三位数为“好数”的概率是________.解析:从1,2,3,4中任选3个互不相同的数并进行全排列,共组成A 34=24个三位数,而“好数”的三个位置上的数字为1,2,3或1,3,4,所以共组成2A 33=12个“好数”,故所求概率P =1224=12. 答案:128.太极图是以黑白两个鱼形纹组成的圆形图案,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在如图所示的平面直角坐标系中,圆O 被函数y =3sin π6x 的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为________.解析:根据题意,大圆的直径为函数y =3sin π6x 的最小正周期T ,又T =2ππ6=12,所以大圆的面积S =π·⎝⎛⎭⎫1222=36π,一个小圆的面积S ′=π·12=π,故在大圆内随机取一点,此点取自阴影部分的概率P =2S ′S =2π36π=118.答案:1189.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.①试用所给字母列举出所有可能的抽取结果;②设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.解:(1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以事件M 发生的概率P (M =521.10.在某大型活动中,甲、乙等五名志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加A 岗位服务的概率.解:(1)记“甲、乙两人同时参加A 岗位服务”为事件E A ,那么P (E A )=A 33C 25A 44=140,即甲、乙两人同时参加A 岗位服务的概率是140.(2)记“甲、乙两人同时参加同一岗位服务”为事件E ,那么P (E )=A 44C 25A 44=110,所以甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)因为有两人同时参加A 岗位服务的概率P 2=C 25A 33C 25A 44=14,所以仅有一人参加A 岗位服务的概率P 1=1-P 2=34.B 级1.(2019·太原联考)甲、乙二人约定7:10在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是( )A.18B.14C.38D.58解析:选C 建立平面直角坐标系如图,x ,y 分别表示甲、乙二人到达的时刻,则坐标系中每个点(x ,y )可对应甲、乙二人到达时刻的可能性,则甲至少等待乙5分钟应满足的条件是⎩⎪⎨⎪⎧y -x ≥5,0≤x ≤20,5≤y ≤20,其构成的区域为如图阴影部分,则所求的概率P =12×15×1520×15=38.2.(2019·开封模拟)如图,某建筑工地搭建的脚手架局部类似于一个2×2×3的长方体框架,一个建筑工人欲从A 处沿脚手架攀登至B 处,则其最近的行走路线中不连续向上攀登的概率为( )A.17 B.27 C.37D.47解析:选B 根据题意,最近路线就是不能走回头路,不能走重复的路,∴一共要走3次向上,2次向右,2次向前,共7次,∴最近的行走路线共有A 77=5 040(种).∵不能连续向上,∴先把不向上的次数排列起来,也就是2次向右和2次向前全排列为A 44.接下来,就是把3次向上插到4次不向上之间的空当中,5个位置排3个元素,也就是A 35,则最近的行走路线中不连续向上攀登的路线共有A 44A 35=1 440(种),∴其最近的行走路线中不连续向上攀登的概率P =1 4405 040=27.故选B.3.已知等腰直角△ABC 中,∠C =90°,在∠CAB 内作射线AM ,则使∠CAM <30°的概率为________.解析:如图,在∠CAB 内作射线AM 0,使∠CAM 0=30°,于是有P (∠CAM <30°)=∠CAM 0∠CAB =3045=23.答案:234.已知P 是△ABC 所在平面内一点,且PB ―→+PC ―→+2P A ―→=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14B.13C.12D.23 解析:选C 以PB ,PC 为邻边作平行四边形PBDC ,连接PD 交BC 于点O ,则PB ―→+PC ―→=PD ―→.∵PB ―→+PC ―→+2P A ―→=0,∴PB ―→+PC ―→=-2P A ―→,即PD ―→=-2P A ―→,由此可得,P 是BC 边上的中线AO 的中点,点P 到BC 的距离等于点A 到BC 的距离的12,∴S △PBC =12S △ABC ,∴将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率P =S △PBC S △ABC =12. 5.点集Ω={(x ,y )|0≤x ≤e ,0≤y ≤e},A ={(x ,y )|y ≥e x ,(x ,y )∈Ω},在点集Ω中任取一个元素a ,则a ∈A 的概率为( )A.1eB.1e 2C.e -1eD.e 2-1e2 解析:选B 如图,根据题意可知Ω表示的平面区域为正方形BCDO ,面积为e 2,A 表示的区域为图中阴影部分,面积为∫10 (e -e x )d x =(e x -e x )|10=(e -e)-(-1)=1,根据几何概型可知a ∈A 的概率P =1e2.故选B.6.如图,来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为Ⅱ,黑色部分记为Ⅱ,其余部分记为Ⅱ.在整个图形中随机取一点,此点取自Ⅱ,Ⅱ,Ⅱ的概率分别记为p 1,p 2,p 3,则( )A.p 1=p 2B.p 1=p 3C.p 2=p 3D.p 1=p 2+p 3解析:选A 不妨设△ABC 为等腰直角三角形,AB =AC =2,则BC =22,所以区域Ⅱ的面积即△ABC 的面积,为S 1=12×2×2=2, 区域Ⅱ的面积S 2=π×12-⎣⎡⎦⎤π×222-2=2,区域Ⅱ的面积S 3=π×222-2=π-2.根据几何概型的概率计算公式,得p 1=p 2=2π+2,p 3=π-2π+2, 所以p 1≠p 3,p 2≠p 3,p 1≠p 2+p 3,故选A.7.双曲线C :x 2a 2-y 2b2=1(a >0,b >0),其中a ∈{1,2,3,4},b ∈{1,2,3,4},且a ,b 取到其中每个数都是等可能的,则直线l :y =x 与双曲线C 的左、右支各有一个交点的概率为( )A.14B.38C.12D.58解析:选B 直线l :y =x 与双曲线C 的左、右支各有一个交点,则b a>1,总基本事件数为4×4=16,满足条件的(a ,b )的情况有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个,故概率为38. 8.在区间[0,1]上随机取两个数a ,b ,则函数f (x )=x 2+ax +14b 有零点的概率是________. 解析:函数f (x )=x 2+ax +14b 有零点,则Δ=a 2-b ≥0,∴b ≤a 2,∴函数f (x )=x 2+ax +14b 有零点的概率P =∫10a 2d a 1×1=13. 答案:13。
古典概型基础题
第十一编 概率统计
总第 58 期
§11.5 古典概型
基础自测
1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为
.
答案 2 3
2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为
.
答案 1 2
3.袋中有 2 个白球,2 个黑球,从中任意摸出 2 个,则至少摸出 1 个黑球的概率是
,P(N)=
.
答案 1 3 24
例题精讲
例 1 有两颗正四面体的玩具,其四个面上分别标有数字 1,2,3,4,下面做投掷这两颗正四面体玩
具的试验:用(x,y)表示结果,其中 x 表示第 1 颗正四面体玩具出现的点数,y 表示第 2 颗正四面体
玩具出现的点数.试写出: (1)试验的基本事件; (2)事件“出现点数之和大于 3”; (3)事件“出现点数相等”. 解 (1)这个试验的基本事件为:
C
3 a
.两种方法结果一致.
C
3 a+b
(2)从 a+b 个产品中有放回的抽取 3 次,每次都有 a+b 种方法,所以共有(a+b)3 种不同的方法,而 3
个全是正品的 抽法共有 a3 种,所以 3 个全是正品的概率 P=
a3
=
⎛ ⎜
a
3
⎞ ⎟
.
(a + b)3 ⎝ a + b ⎠
11.袋中装有黑球和白球共 7 个,从中任取两个球都是白球的概率为 1 .现有甲、乙两人从袋中轮流摸球, 7
E(2,2)中任取三个,这三点能构成三角形的概率是 373
(结果用分数表示).
答案 4 5
二、解答题 9.5 张奖券中有 2 张是中奖的,首先由甲然后由乙各抽一张,求:
概率论-古典概率模型
所以
P(e ) 1 ,i 1,2,,n
i
n
若事件 A 包含 k 个基本事件 ,即
A ei1 ei2 eik
则有
P(A) P ei1 P ei2 P eik
k n
A包含的基本事件数 S中的基本事件总数
例1 将一枚硬币抛掷三次.
i 设事件 A1 为 "恰有一次出现正面 " ,求 PA1 . ii 设事件 A2 为 "至少有一次出现正面 " ,求 PA2 .
因为抽取时这些球是完
10个球中的任一个被取 出的机会都是1/10
全平等的,我们没有理由认
为10个球中的某一个会比另
一个更容易取得 . 也就是说,
10个球中的任一个被取出的
机会是相等的,均为1/10.
85 1946 7 2 3 10
二、古典概型中事件概率的计算
记 A={摸到2号球}
2
P(A)=?
P(A)=1/10
2
1 7
98345106
定义 1 若随机试验满足下述两个条件 (1) 它的样本空间只有有限多个样本点
(2) 每个样本点出现的可能性相同 称这种试验为等可能随机试验或古典概型.
记 B={摸到红球} , P(B)=6/10
静态
这里实际上是从“比例” 转化为“概率” 动态
当我们要求“摸到红球”的概 率时,只要找出它在静态时相应的 比例.
Ca1 Ca1b
a
a b
(2)作不放回抽样
k个人各人取一只球,每种取法是一个基本事件.
由乘法原理知,k个人各人取一只球有
(a
b)(a
b
1)
(a
b
k
1)
古典概型知识点总结
古典概型知识点总结关键信息项:1、古典概型的定义2、古典概型的特点3、古典概型的概率计算公式4、基本事件的概念5、基本事件的特点6、古典概型的常见例题7、古典概型与其他概率类型的区别11 古典概型的定义古典概型是一种概率模型,它具有以下两个特点:试验中所有可能出现的基本结果是有限的。
每个基本结果出现的可能性相等。
111 有限性意味着试验的结果是可以一一列举出来的,不是无穷无尽的。
112 等可能性表明每个基本结果发生的概率相同,不存在某些结果更容易发生的情况。
12 古典概型的特点确定性:试验的条件和结果都是明确的。
互斥性:不同的基本事件之间是相互排斥的,不会同时发生。
121 可重复性相同的条件下,重复进行试验,结果具有稳定性。
122 规范性符合概率的基本定义和性质,能够通过计算得出准确的概率值。
13 古典概型的概率计算公式假设试验的基本事件总数为 n,事件 A 包含的基本事件数为 m,则事件 A 发生的概率 P(A) = m / n 。
131 计算步骤确定基本事件的总数 n 。
确定事件 A 包含的基本事件数 m 。
代入公式计算 P(A) 。
132 注意事项计算要准确,避免遗漏或重复计算基本事件。
确保对基本事件的界定清晰无误。
14 基本事件的概念基本事件是试验中不能再分的最简单的随机事件,其他事件可以由基本事件组合而成。
141 基本事件的性质独立性:每个基本事件的发生与否互不影响。
完整性:所有基本事件的集合构成了试验的全部可能结果。
15 基本事件的特点最小性:不能再分解为更小的随机事件。
明确性:能够清晰地定义和区分。
151 基本事件的表示通常用简单的符号或数字来表示。
152 基本事件的数量确定根据试验的具体情况,通过分析得出。
16 古典概型的常见例题掷骰子问题:计算掷出特定点数的概率。
抽奖问题:在有限数量的抽奖券中计算中奖的概率。
摸球问题:从装有不同颜色球的容器中摸出特定颜色球的概率。
161 例题分析详细阐述如何确定基本事件和所求事件包含的基本事件数。
古典概型(2课时)
例4.甲乙两个人做出拳游戏(锤子、剪刀、布),求 (1)平局的概率; (2)甲赢的概率; (3)乙赢的概率
设平局为事件A,甲赢为事件B,乙赢为事件C,由图容易得 到 (1)平局含3个基本事件(图中△) (2)甲赢含3个基本事件(图中⊙) (3)乙赢含3个基本事件(图中※)
答:掷得奇数点的概率为0.5
2019年6月26日星期三10时47分55秒
规范格式
【例2】单选题是标准化考试中常用的题型,一般是 从A、B、C、D四个选项中选择一个准确答案.如果 考生掌握了考查的内容,他可以选择惟一正确的答 案.假设考生不会做,他随机地选择一个答案,问 他答对的概率是多少?
〖解〗是一个古典概型,基本事件共有4个:选择A、选择B、 选择C、选择D.“答对”的基本事件个数是1个.
高的基因记为D,决定矮的基因记为d,则杂交所得第
概 一子代的一对基因为Dd,若第二子代的D,d基因的遗 传是等可能的,求第二子代为高茎的概率。(只要
有基因D则为高茎,只有两个基因全为d时为矮茎)
率
解:如左图Dd与Dd的
Dd
Dd
搭配方式有4种:
初
DD,Dd,dD,dd
D
d
D
d
其中第四种表现为矮
茎,所以第二代为高
点”)P= (“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6
P(“6
1 6
点1”)1 1 1
666 2
=
P(“出现偶数点”)=
3 6
=“出现偶数点”所包含的基本事件的个数 基本事件的总数
古典概型的概率计算公式为:
P(A)=
A所包含的基本事件的个数 基本事件的总数
古 典 概 型及概率计算公式
★状元笔记 古典概型需满足的条件
(1)对于每次随机试验来说,只可能出现有限个不同的试验 结果;
(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小 组,每位同学参加各个小组的可能性相同,则这两位同学参加 同一个兴趣小组的概率为13.
(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概 率是0.2.
(6)在古典概型中,如果事件A中基本事件构成集合A,且集 合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元 素个数为m,则事件A的概率为mn .
第 课时 古 典 概 型
…2017考钢下载…
1.理解古典概型及其概率计算公式. 2.会计算一些随机事件所含的基本事件数及事件发生的概 率.
请注意 若是从考查的内容来分析,集中考查一些常见的概率模 型,如摸球模型、分配模型、取数模型,从题的难度来看,一 般是中低档题,由于随机事件的概率与实际生活密切相关,在 高考中自然受到重视.
授人以渔
题型一 古典概型的判断
袋中有大小相同的5个白球,3个黑球和3个红球,每球 有一个区别于其他球的编号,从中摸出一个球.
(1)有多少种不同的摸法?如果把每个球的编号看作一个基 本事件建立概率模型,该模型是不是古典概型?
(2)若按球的颜色为划分基本事件的依据,有多少个基本事 件?以这些基本事件建立概率模型,该模型是不是古典概型?
(2)对于所有不同的试验结果而言,它们出现的可能性是相 等的.
思考题1 做抛掷两颗骰子的试验,用(x,y)表示结果, 其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点 数,写出:
古典概型与几何概型
古典概型与几何概型知识归纳1.古典概型(1)定义:如果某类概率模型具有以下两个特点:①试验中所有可能出现的基本事件只有______;②每个基本事件出现的______均等。
我们将具有这两个特点的概率模型称为古典概率模型,简称为古典概型。
(2)古典概型的特点:①有限性:试验中所有可能出现的基本事件只有______;②等可能性:每个基本事件出现的______均等。
(3)古典概型的概率计算公式:mPn=,其中m表示_________________,n表示_________________2.几何概型(1)如果某个事件发生的概率只与构成该事件的区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关,则称这样的概率模型为几何概率模型。
(2)几何概型的特点:①无限性:在一次试验中,可能出现的结果是无限的;②等可能性:每个结果的发生的机会均等。
(3)几何概型的概率计算公式:_______________.p=3.几何概型与古典概型的区别:4.解答概率题的步骤:(1)弄清试验是什么,找出基本事件的构成。
(2)判断概率类型。
(3)找出所求事件,同时弄清所求事迹的构成,并用符号表示。
(4)求概率。
巩固基础1.下列试验是古典概型的是()。
A 任意抛掷两枚骰子,所得点数之和作为基本事件;B为求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件;C从甲地到乙地共条路线,求某人正好选中最短路线的概率;D抛掷一枚均匀的硬币到首次出现正面为止。
2.一部三册的小说,任意排放在书架的同一层上,则各册的排放次序共有的种数()。
A 3B 4C 6D 123.将一枚均匀硬币先后抛两次,恰好出现一次正面的概率是()。
A 12B14C34D134.在区间(1,3)内的所有实数中,随机取一个实数x,则这个实数是不等式250x-<的解的概率为()。
A 34B12C13D235.在半径为2的球O内任取上点P,则||1OP≤的概率为()。
古典概型课件2023-2024学年高一下学期数学人教A版(2019)必修第二册
可
表
2 .
示
,
为
3
,
(1)设一个数平方的个位数字为事件 A,则
A 1,9 , n A
2 1
2 故 P A ;
10 5
设一个数四次方的个位数字为 1 为事件 B ,则
B 1, 3, 7, 9 ,n B
4 2
4故 P B ;
10 5
4
,
10.1随机事件与概率
10.1.3古典概型
问题引入
研究随机现象,最重要的是知道随机事件发生的可能性大小.对随机事件发生可
能性大小的度量(数值)称为事件的概率,事件的概率用()表示.
我们知道,通过试验和观察的方法可以得到一些事件的概率估计.但这种方法耗
时多,而且得到的仅是概率的近似值.能否通过建立适当的数学模型,直接计算随机
判断下列概率模型是否是古典概型:
(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率; 不符合有限性
(2)从区间[1,10]内任意取出一个整数,求取到2的概率;是
(3)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;不符合等可能性
(4)掷一枚质地均匀的骰子的试验中,求事件“出现的点数是2的倍数”的概率。是
18
9
P( A)
40 20
事件A=“抽到男生”包含18个样本点
样本空间中有40个样本点
22 11
P ( B)
40 20
思考3:如何度量事件A,事件B,事件C,发生可能的大小
试验1:掷一枚质地均匀的硬币一次,观察它落地时,另一
面朝上,写出试验的样本空间
Ω={正面朝上,反面朝上},
古典概型、条件概率与全概率公式-高考数学复习课件
内
容
索
引
01
第一环节
必备知识落实
02
第二环节
关键能力形成
03
第三环节
学科素养提升
第一环节
必备知识落实
【知识筛查】
1.古典概型
具有以下两个特征的试验称为古典概型试验,其数学模型称为古典概率
模型,简称古典概型.
(1)有限性:样本空间的样本点只有有限个;
(2)等可能性:每个样本点发生的可能性相等.
B=“取到的产品是优质品”,则由已知得
P(A1)=0.6,P(A2)=0.2,P(A3)=0.2,
P(B|A1)=0.9,P(B|A2)=0.85,P(B|A3)=0.8.
故P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)·
P(B|A3)
=0.6×0.9+0.2×0.85+0.2×0.8=0.87.
概率的乘法公式:由条件概率的定义,对任意两个事件A与B,若P(A)>0,则
P(AB)=P(A)P(B|A).
问题思考
条件概率中,P(B|A)与P(A|B)的意义一样吗?
不一样,P(B|A)是在事件A发生的条件下,事件B发生的概率;P(A|B)是在事
件B发生的条件下,事件A发生的概率.
4.全概率公式
解题心得全概率公式为复杂事件的概率计算提供了一条有效途径,是概率
论中一个有效的分析工具,其重要意义在于:对于一个复杂的事件,若无法
直接求出它的概率,则可以“化整为零”,通过选择样本空间的划分将该复杂
事件分解为若干个简单事件来进行处理,从而使分析问题的思路变得清晰
条理,化繁为简,化难为易.
古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册
(3)有人认为,抛掷两枚均匀的骰子,掷出的点数之和可能
为2,3,4,…,12,共有11种可能的情形,因此,“掷出的点数之
1
11
和是5”的可能性是 .这种说法对吗?
➢ 样本空间有36个样本点
➢ “点数和是5”包含4个样本点
试验的所有可能结果是
无限的
每种结果的可能性不相等
课堂练习
梳理小结
布置作业
试着再举出一些古典概型的例子吧.
单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答
案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随
机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能.
因此样本点总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含
1
4
一个样本点,所以P(A)= .
某班级男生30人,女生20人,随机地抽取一位学生代表,会出现50个不同的结果.
因此样本空间共有50个样本点,设选中的代表是女生为随机事件B,则事件B包含20个样
本点,所以 =
20
50
2
5
= .
说明:在现实中不存在绝对均匀的硬币,也没有绝对均匀的骰
子,古典概率模型是从现实中抽象出来的一个数学模型,它有
8
2
共含有8个样本点,所以P(B)= = .
20
5
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
在试验E6“袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色
外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况”中,摸
中学数学第十一章 第5节 古典概型
第5节古典概型最新考纲 1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率.知识梳理1.基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和.2.古典概型具有以下两个特征的概率模型称为古典的概率模型,简称古典概型.(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.(2)每一个试验结果出现的可能性相同.3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=m n.4.古典概型的概率公式P(A)=事件A包含的可能结果数试验的所有可能结果数.[微点提醒]概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.()(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.()解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),所有可能结果不是有限个,不是古典概型,应利用几何概型求概率,所以(4)不正确.答案(1)×(2)×(3)√(4)×2.(必修3P133A1改编)袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为()A.25 B.415 C.35 D.非以上答案解析从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p=615=25.答案 A3.(必修3P134B1改编)某人有4把钥匙,其中2把能打开门.现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是________.如果试过的钥匙不扔掉,这个概率又是________.解析第二次打开门,说明第一次没有打开门,故第二次打开的概率为2×24×3=13;如果试过的钥匙不扔掉,这个概率为2×24×4=14.答案13144.(2018·全国Ⅱ卷)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.3解析2名男同学和3名女同学,共5名同学,从中取出2人,有C25=10种情况,2人都是女同学的情况有C23=3种,故选中的2人都是女同学的概率为310=0.3.答案 D5.(2017·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是()A.518 B.49 C.59 D.79解析由题意可知依次抽取两次的基本事件总数n=9×8=72,抽到的2张卡片上的数奇偶性不同的基本事件个数m=C15C14A22=40,所以所求概率p=mn=4072=59.答案 C6.(2019·长沙模拟改编)在装有相等数量的白球和黑球的口袋中放进一个白球,此时由这个口袋中取出一个白球的概率比原来由此口袋中取出一个白球的概率大122,则口袋中原有小球的个数为________.解析设原来口袋中白球、黑球的个数分别为n个,依题意n+12n+1-n2n=122,解得n=5.所以原来口袋中小球共有2n=10个.答案10考点一基本事件及古典概型的判断【例1】袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?解(1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法.又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A:“摸到白球”,B:“摸到黑球”,C:“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个,故一次摸球摸到白球的可能性为5 11,同理可知摸到黑球、红球的可能性均为3 11,显然这三个基本事件出现的可能性不相等,故以颜色为划分基本事件的依据的概率模型不是古典概型.规律方法古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x,y)可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. (3)排列组合法:在求一些较复杂的基本事件个数时,可利用排列或组合的知识. 【训练1】甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽1张.(1)写出甲、乙抽到牌的所有情况.(2)甲、乙约定,若甲抽到的牌的数字比乙大,则甲胜,否则乙胜,你认为此游戏是否公平?为什么?解(1)设(i,j)表示(甲抽到的牌的数字,乙抽到的牌的数字),则甲、乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种.(2)由(1)可知甲抽到的牌的牌面数字比乙大有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,∴甲胜的概率p=512,∵512≠12,∴此游戏不公平.考点二简单的古典概型的概率【例2】(1)(2019·深圳一模)两名同学分3本不同的书,其中一人没有分到书,另一人分得3本书的概率为( )A.12B.14C.13D.16(2)(2019·湖南六校联考)设袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,则取出此2球所得分数之和为3分的概率为________.解析 (1)两名同学分3本不同的书,基本事件有(0,3),(1a ,2),(1b ,2),(1c ,2),(2,1a ),(2,1b ),(2,1c ),(3,0),共8个,其中一人没有分到书,另一人分到3本书的基本事件有2个,∴一人没有分到书,另一人分得3本书的概率p =28=14.(2)袋子中装有3个红球,2个黄球,1个蓝球,规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分,现从该袋子中任取(有放回,且每球取得的机会均等)2个球,基本事件总数n =6×6=36,取出此2球所得分数之和为3分,包含第一次抽到红球,第二次抽到黄球或者第一次抽到黄球,第二次抽到红球,基本事件个数m =2×3+3×2=12,所以取出此2球所得分数之和为3分的概率p =m n =1236=13.答案 (1)B (2)13规律方法 计算古典概型事件的概率可分三步:(1)计算基本事件总个数n ;(2)计算事件A 所包含的基本事件的个数m ;(3)代入公式求出概率p .【训练2】 (1)(2018·衡阳八中、长郡中学联考)同学聚会上,某同学从《爱你一万年》《十年》《父亲》《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未被选取的概率为( )A.13B.12C.23D.56(2)(2018·石家庄二模)用1,2,3,4,5组成无重复数字的五位数, 若用a 1,a 2,a 3,a 4,a 5分别表示五位数的万位、千位、百位、十位、个位数字,则出现a 1<a 2<a 3>a 4>a 5的五位数的概率为________.解析 (1)从四首歌中任选两首共有C 24=6种选法,不选取《爱你一万年》的方法有C23=3种,故所求的概率为p=36=12.(2)用1,2,3,4,5组成无重复数字的五位数,基本事件总数n=A55,用a1,a2,a3,a4,a5分别表示五位数的万位、千位、百位、十位、个位数字,出现a1<a2<a3>a4>a5的五位数有:12543,13542,23541,34521,24531,14532,共6个,∴出现a1<a2<a3>a4>a5的五位数的概率p=6A55=120.答案(1)B(2)1 20考点三古典概型的交汇问题多维探究角度1古典概型与平面向量的交汇【例3-1】设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为()A.18 B.14 C.13 D.12解析有序数对(m,n)的所有可能情况为4×4=16个,由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2.由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)=216=18.答案 A角度2古典概型与解析几何的交汇【例3-2】将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为________.解析依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有6×6=36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足2aa2+b2≤2,即a≤b的数组(a,b)有(1,1),(1,2),(1,3),(1,4),…,(6,6),共6+5+4+3+2+1=21种,因此所求的概率为2136=712.答案7 12角度3古典概型与函数的交汇【例3-3】已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79 B.13 C.59 D.23解析f′(x)=x2+2ax+b2,由题意知f′(x)=0有两个不等实根,即Δ=4(a2-b2)>0,∴a>b,有序数对(a,b)所有结果为3×3=9种,其中满足a>b有(1,0),(2,0),(3,0),(2,1),(3,1),(3,2)共6种,故所求概率p=69=23.答案 D角度4古典概型与统计的交汇【例3-4】(2019·济宁模拟)某中学组织了一次数学学业水平模拟测试,学校从测试合格的男、女生中各随机抽取100人的成绩进行统计分析,分别制成了如图所示的男生和女生数学成绩的频率分布直方图.(注:分组区间为[60,70),[70,80),[80,90),[90,100])(1)若得分大于或等于80认定为优秀,则男、女生的优秀人数各为多少?(2)在(1)中所述的优秀学生中用分层抽样的方法抽取5人,从这5人中任意选取2人,求至少有一名男生的概率.解(1)由题可得,男生优秀人数为100×(0.01+0.02)×10=30,女生优秀人数为100×(0.015+0.03)×10=45.(2)因为样本容量与总体中的个体数的比是530+45=115,所以样本中包含的男生人数为30×115=2,女生人数为45×115=3.则从5人中任意选取2人共有C 25=10种,抽取的2人中没有一名男生有C 23=3种,则至少有一名男生有C 25-C 23=7种.故至少有一名男生的概率为p =710,即选取的2人中至少有一名男生的概率为710.规律方法 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定基本事件个数;(4)代入古典概型的概率公式求解.【训练3】 (2019·黄冈质检)已知某中学高三理科班学生的数学与物理的水平测试成绩抽样统计如下表:若抽取学生n 人,成绩分为A (优秀),B (良好),C (及格)三个等级,设x ,y 分别表示数学成绩与物理成绩,例如:表中物理成绩为A 等级的共有14+40+10=64人,数学成绩为B 等级且物理成绩为C 等级的共有8人.已知x 与y 均为A 等级的概率是0.07.(1)设在该样本中,数学成绩的优秀率是30%,求a ,b 的值;(2)已知a ≥7,b ≥6,求数学成绩为A 等级的人数比C 等级的人数多的概率.解 (1)由题意知14n =0.07,解得n =200,∴14+a +28200×100%=30%,解得a =18, 易知a +b =30,所以b =12.(2)由14+a +28>10+b +34得a >b +2,又a +b =30且a ≥7,b ≥6,则(a ,b )的所有可能结果为(7,23),(8,22),(9,21),…,(24,6),共18种,而a >b +2的可能结果为(17,13),(18,12),…,(24,6),共8种,则所求概率p=818=49.[思维升华]1.古典概型计算三步曲第一,本试验是否是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.2.确定基本事件个数的方法列举法、列表法、树状图法或利用排列、组合.[易错防范]1.古典概型的重要思想是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是不是等可能的.2.对较复杂的古典概型,其基本事件的个数常涉及排列数、组合数的计算,计算时要首先判断事件是否与顺序有关,以确定是按排列处理,还是按组合处理.基础巩固题组(建议用时:40分钟)一、选择题1.集合A={2,3},B={1,2,3},从A,B中各任意取一个数,则这两数之和等于4的概率是()A.23 B.12 C.13 D.16解析从A,B中任意取一个数,共有C12·C13=6种情形,两数和等于4的情形只有(2,2),(3,1)两种,∴p=26=13.答案 C2.设m,n∈{0,1,2,3,4},向量a=(-1,-2),b=(m,n),则a∥b的概率为()A.225 B.325 C.320 D.15解析 a ∥b ⇒-2m =-n ⇒2m =n ,所以⎩⎨⎧m =0,n =0或⎩⎨⎧m =1,n =2或⎩⎨⎧m =2,n =4,因此概率为35×5=325. 答案 B3.某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点在直线2x -y =1上的概率为( )A.112B.19C.536D.16解析 先后投掷一枚骰子两次,共有6×6=36种结果,满足题意的结果有3种,即(1,1),(2,3),(3,5),所以所求概率为336=112.答案 A4.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹进行一场比赛,则田忌的马获胜的概率为( ) A.13 B.14 C.15 D.16解析 分别用A ,B ,C 表示齐王的上、中、下等马,用a ,b ,c 表示田忌的上、中、下等马,现从双方的马匹中随机选一匹进行一场比赛有Aa ,Ab ,Ac ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc 共9场比赛,其中田忌马获胜的有Ba ,Ca ,Cb 共3场比赛,所以田忌马获胜的概率为13.答案 A5.(2019·周口调研)将一个骰子连续掷3次,它落地时向上的点数依次成等差数列的概率为( )A.112B.19C.115D.118解析 一个骰子连续掷3次,落地时向上的点数可能出现的组合数为63=216种.落地时向上的点数依次成等差数列,当向上点数若不同,则为(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,4,5),(4,5,6),共有2×6=12种情况;当向上点数相同,共有6种情况.故落地时向上的点数依次成等差数列的概率为12+6216=112. 答案 A 二、填空题6.(2019·武汉模拟)小明忘记了微信登录密码的后两位,只记得最后一位是字母A ,a ,B ,b 中的一个,另一位是数字4,5,6中的一个,则小明输入一次密码能够成功登陆的概率是________.解析 小明输入密码后两位的所有情况有C 14·C 13=12种,而能成功登陆的密码只有一种,故小明输入一次密码能够成功登陆的概率是112.答案 1127.(2019·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________.解析 m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p =36=12.答案 128.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为________.解析 甲同学从四种水果中选两种,选法种数有C 24,乙同学的选法种数为C 24,则两同学的选法种数为C 24·C 24,两同学各自所选水果相同的选法种数为C 24,由古典概型概率计算公式可得,甲、乙两同学各自所选的两种水果相同的概率为p =C 24C 24C 24=16. 答案 16 三、解答题9.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x -=8+8+9+104=354,s 2=14×⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫8-3542×2+⎝ ⎛⎭⎪⎫9-3542+⎝ ⎛⎭⎪⎫10-3542=1116.(2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14. 10.某市A ,B 两所中学的学生组队参加辩论赛,A 中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A 中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,求参赛女生人数不少于2人的概率.解 (1)由题意,参加集训的男、女生各有6名.参赛学生全从B 中学抽取(等价于A 中学没有学生入选代表队)的概率为C 33C 34C 36C 36=1100,因此,A 中学至少有1名学生入选代表队的概率为1-1100=99100.(2)设“参赛的4人中女生不少于2人”为事件A ,记“参赛女生有2人”为事件B ,“参赛女生有3人”为事件C .则P(B)=C23C23C46=35,P(C)=C33C13C46=15.由互斥事件的概率加法公式,得P(A)=P(B)+P(C)=35+15=45,故所求事件的概率为45.能力提升题组(建议用时:20分钟)11.已知函数f(x)=12ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(-∞,-1]上是减函数的概率为()A.12 B.34 C.16 D.0解析f(x)共有四种等可能基本事件即(a,b)取(2,1),(2,3),(4,1),(4,3),记事件A为f(x)在(-∞,-1]上是减函数,由条件知f(x)是开口向上的函数,对称轴是x=-ba≥-1,事件A共有三种(2,1),(4,1),(4,3)等可能基本事件,所以P(A)=3 4.答案 B12.甲在微信群中发布6元“拼手气”红包一个,被乙、丙、丁三人抢完.若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领取的钱数不少于其他任何人)的概率是()A.34 B.13 C.310 D.25解析6元分成整数元有3份,可能性有(1,1,4),(1,2,3),(2,2,2),第一个分法有3种,第二个分法有6种,第三个分法有1种,其中符合“最佳手气”的有4种,故概率为410=25.答案 D13.(2019·江西重点中学盟校联考)从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是__________.解析从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换,基本事件总数为n=C23·C23=9,从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,第一次调换后,对调后的位置关系有三种:甲丙乙、乙甲丙、丙乙甲,第二次调换后甲在乙的左边对应的关系有:丙甲乙、甲乙丙;丙甲乙、甲乙丙;甲丙乙、丙甲乙,∴经过两次这样的调换后,甲在乙的左边包含的基本事件个数m=6,∴经过这样的调换后,甲在乙左边的概率:p=mn=69=23.答案2 314.(2019·太原一模)某快递公司收取快递费用的标准如下:质量不超过1 kg的包裹收费10元;质量超过1 kg的包裹,除1 kg收费10元之外,超过1 kg的部分,每1 kg(不足1 kg,按1 kg计算)需再收5元.该公司对近60天,每天揽件数量统计如下表:(1)某人打算将A(0.3 kg),B(1.8 kg),C(1.5 kg)三件礼物随机分成两个包裹寄出,求该人支付的快递费不超过30元的概率;(2)该公司从收取的每件快递的费用中抽取5元作为前台工作人员的工资和公司利润,剩余的作为其他费用.前台工作人员每人每天揽件不超过150件,工资100元,目前前台有工作人员3人,那么公司将前台工作人员裁员1人对提高公司利润是否更有利?解(1)由题意,寄出方式有以下三种可能:所有3种可能中,有1种可能快递费未超过30元,根据古典概型概率计算公式,所求概率为13.(2)由题目中的天数得出频率,如下:若不裁员,则每天可揽件的上限为450件,公司每日揽件数情况如下:故公司每日利润为260×5-3×100=1 000(元);若裁员1人,则每天可揽件的上限为300件,公司每日揽件数情况如下:故公司每日利润为235×5-2×100=975(元).综上,公司将前台工作人员裁员1人对提高公司利润不利.古今中外有学问的人,有成就的人,总是十分注意积累的。
古典概型(共24张PPT)
解:(1)掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,它总共出现的 情况如下表所示:
2号骰子 1号骰子
1
2
3
4
5
6
1
(1,1)(1,2) (1,3)((1,1,44)) (1,5) (1,6)
2
(2,1) (2,2)((22,,33)) (2,4)(2,5) (2,6)
3
(3,1)((33,,22)) (3,3) (3,4) (3,5) (3,6)
(1,2),(1,3),(1,4),(1,5),
(2,3),(2,4),(2,5),(3,4),
(3,5),(4,5). 因此,共有10个基本事件.
(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到
2只白球(记为事件A),
小结
满足以下两个特点的随机试验的概率模型称为古典概型
1
2
试 验 2
1点
P(“1点”)
2点
3点
P(“2点”)
P(“5点”)
4点 5点 P(“3点”) P(“6点”)
6点
P(“4点”)
1 6
问题3:观察对比,找出试验1和试验2的共同特点:
基本事件
基本事件出现的可能性
试
“正面朝上”
验
“反面朝上”
1
试 “1点”、“2点” 验2 “3点”、“4点”
“5点”、“6点”
没有区别。
为什么要把两个骰子标上记号?如果不标记号会出 现什么情况?你能解释其中的原因吗?
如果不标上记号,类似于(3,6)和(6,3)的结果将
没有区别。
这时,所有可能的结果将是:
2号骰子
因此,1号在骰子投掷两
古典概型及计算公式
对照表格回答(2),(3)
阅读教材P137
2.5 2.5 5 10 20 5 7.5 12.5 22.5
5 7.5 10 15 25
10 12.5 15 20 30
20 22.5 25 30 40
小结
1.古典概型的概念 (1)试验的所有可能结果(每一个可能结果 现其中的一个结果; 称为基本事件)只有有限个,每次试验只出
古典概型 的概率公 式
A包含的基本事件的个数 m P ( A) 基本事件的总数 n
注意:计算事件A概率的关键
(1)计算试验的所有可能结果数n;
(2)计算事件A包含的可能结果数m.
问题 掷一粒均匀的骰子落地时向上的点数为偶数或奇 数的概率是多少呢? 设用A表示事件“向上的点数为偶数 1 “;用B表示事件“向上的点数是奇 3 数” 5 结果共n=6个,出现奇、偶数的都有 m=3个,并且每个结果的出现机会是 2 相等的,
(2)每一个结果出现的可能性相同。 2.古典概型的概率公式
m( A包 含 的 基 本 事 件 数 ) P( A) n( 基 本 事 件 总 数 )
3.列表法和树状图
作业:
P138 练
5
10
20
2.5 5 10 20
(2.5,2.5) (2.5,5) (5,2.5) (10,2.5) (20,2.5) (5,5) (10,5) (20,5)
(2.5,10) (2.5,20) (5,10) (5,20)
(10,10) (10,20) (20,10) (20,20)
6 7 8 9 10 11 12
列表法
A表示事件“点数之和为7”, m 6 1 P( A ) 则由表得n=36,m=6. n 36 6
概率论中几种概率模型方法总结
概率论中⼏种概率模型⽅法总结概率论中⼏种概率模型⽅法总结绪论:概率论中⼏种常⽤的概率模型是古典概型、⼏何概型、贝努⾥概型.本⽂对概率论中⼏种概率模型⽅法进⾏了总结。
1 古典概型古典概型及其概率是概率论的基础知识,它既是进⼀步学习概率的基础,下⾯就⼀些典型事件的分析来说明古典概型的概率计算⽅法。
古典概型的概率计算可以分为三个步骤:确定所研究的对象为古典概型;计算样本点数;利⽤公式计算概率。
即如果随机试验只有有限个可能结果,⽽且每⼀个可能结果出现的可能性相同,那么这样的随机试验就是古典概型问题。
若设Ω是⼀个古典概型样本空间, 则对任意事件A 有: A m P ( A ) ==Q n中的样本点数中的样本点数。
在计算m 和n 时,经常使⽤排列与组合计算公式。
在确定⼀个试验的每个基本事件发⽣的可能性相同时,经常根据问题本⾝所具有的某种“对称性”,即利⽤⼈们长期积累的关于“对称性”的实际经验,认为某些基本事件发⽣的可能性没有理由偏⼤或偏⼩。
关于古典概型的数学模型如下:1.1 袋中取球问题1.1.1 随机地同时从袋中取若⼲球问题随机地同时从袋中取若⼲球问题是古典概型中的⼀类最基本问题,其特点是所考虑的事件中只涉及球的结构⽽不涉及取球的先后顺序,计算样本点数时只需考虑组合数即可。
概率中的很多问题常常可以归结为此类问题来解决。
事件1 ⼀袋中有m + n 个球,其中m 个⿊球, n 个⽩球,现随机地从袋中取出k 个球( k ≤m + n) ,求其中恰好有l 个⽩球( l ≤n)的概率。
分析:随机地从袋中取出k 个球有km+n C 种可能的结果,其中“恰好有l 个⽩球”这⼀事件包含了l k-l n mC C 种结果,因此所求概率为lk - ln m k m + n C C P =C 这个结论可以作为⼀个公式来应⽤。
⽤它可以解决⼀些类似的问题。
1.1.2 随机地从袋中不放回地取球若⼲次随机地从袋中不放回地取球若⼲次就是指随机地从袋中每次只取⼀个球,取后不再放回袋中,连续进⾏若⼲次。
概率论
n n
从n个不同元素取 k个(允许重复)
(1k n)的不同排列总数为:
n n n n
k
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 1 2 3 第2张 1 2 3 第3张 1 2 3
1
2
3
4
n=4,k =3 共有4.4.4 = 43种可能取法
(a) 放回抽样的情况 4 4 4 (1) P( A)
1 8 (3) P(C ) 1 P( B) 1 . 9 9 (b) 不放回抽样的情况
(1)
C P ( A) C
2 4 2 6
4 3 2 6 5 5
2 2 2 6
2 C 7 (2) P( A B) P( A) P( B) 5 C 15 1 14 (3) P(C ) 1 P( B) 1 . 15 15 例3 设有N件产品,其中有M件次品,现从这N件中 任取n件,求其中恰有k件次品的概率.
300个
乙厂生产
300个
乙厂生产
189个是
标准件
设B={零件是乙厂生产}
A={是标准件} 所求为P(AB).
甲、乙共生产
1000 个
设B={零件是乙厂生产} 300个
A={是标准件} 所求为P(AB) .
乙厂生产
189个是
标准件
甲、乙共生产
若改为“发现它是乙厂生产的, 问它是标准件的概率是多少?”
A ei1 ei2 eik
这里, i1 ik 是1, ,n中某k个不同的数, k k P ( A) P (ei j ) 则 j 1 n
定义2 设试验E是古典概型, 其样本空间S由n 个样本点组成 , 事件A由k个样本点组成 . 则定 义事件A的概率为: A包含的样本点数 P(A)= k/n = S中的样本点总数
11-5古 典 概 型
一、选择题1.某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是( )A .一定不会淋雨B .淋雨的可能性为34C .淋雨的可能性为12D .淋雨的可能性为14[答案] D[解析] 此次野营共4种结果:下雨,收到帐篷;不下雨,收到帐篷;下雨,未收到帐篷;不下雨,未收到帐篷.只有“下雨,未收到帐篷”会淋雨,所以P =14. 2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( )A.15B.14C.45D.110 [答案] C[解析] 从盒中的10个铁钉中任取一个铁钉包含的基本事件总数为10,其中抽到合格铁钉(记事件A )包含8个基本事件,所以所求概率为 P (A )=810=45.3.(文)(2012·济南统考)甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( )A.14B.13C.12D.23 [答案] C[解析] 记两个房间的号码为1,2,则共有以下4个等可能事件:1甲2乙,1乙2甲,1甲1乙,2甲2乙.故所求概率为P =24=12.(理)如图所示,a ,b ,c ,d 是四处处于断开状态的开关,任意将其两个闭合,则电路被接通的概率为( )A .1 B.12C.14 D .0 [答案] B[解析] 四个开关任意闭合2个,有ab 、ac 、ad 、bc 、bd 、cd 共6种方案,电路被接通的条件是:①开关d 必须闭合;②开关a ,b ,c 中有一个闭合.即电路被接通有ad 、bd 和cd 共3种方案,所以所求的概率是36=12.故选B.4.(2012·深圳模拟)甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6).设甲、乙所抛掷骰子朝上的面的点数分别为x ,y ,则满足复数x +y i 的实部大于虚部的概率是( )A.16B.512C.712D.13 [答案] B[解析] 总共有36种情况.当x =6时,y 有5种情况;当x =5时,y 有4种情况;当x =4时,y 有3种情况;当x =3时,y 有2种情况;当x =2时,y 有1种情况.所以P =5+4+3+2+136=512.5.将一枚质地均匀的硬币先后抛三次,恰好出现一次正面朝上的概率为( ) A.12 B.14 C.38 D.58 [答案] C[解析] 总事件数为8个,分别为:(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反).“恰好出现1次正面朝上”的事件为事件A ,包括(正,反,反),(反,正,反)和(反,反,正)3个.所求事件的概率为38.6.(文)在集合⎩⎨⎧⎭⎬⎫x |x =n π6,n =1,2,3,…,10中任取一个元素,所取元素恰好满足方程cos x =12的概率是( )A.15B.110C.13D.12 [答案] A[解析] 数字1,2,3,…,10每个数字被取到的可能性一样.其中满足cos x =12的有n =2,10两个,故P =210=15.(理)从三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为( )A.120B.115C.15D.16 [答案] C[解析] 从六条棱中任选两条有C 26=15种,在两条棱中是一对异面直线的有3对,故其概率为315=15.故选C.二、填空题7.(2011·江苏,5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个数的两倍的概率是________.[答案] 13[解析] 用枚举法可以得到基本事件有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,其中一个为另一个两倍的有两种,所求概率大小为13.8.(文)一次掷两粒骰子,得到的点数为m 和n ,则关于x 的方程x 2+(m +n )x +4=0有实数根的概率是________.[答案]1112[解析] 基本事件共36个,∵方程有实根, ∴Δ=(m +n )2-16≥0,∴m +n ≥4,其对立事件是m +n <4,其中有(1,1),(1,2),(2,1)共3个基本事件,∴所求概率为P =1-336=1112.(理)(2011·重庆文,14)从甲、乙等10位同学中任选3位去参加某项活动,则所选3位中有甲但没有乙的概率为________.[答案]730[解析] 此题考查古典概型的概率问题,特殊元素优先考虑.从10位同学任选3名有C 310中选法,即n =C 310=120.令A =“3位中有甲但无乙”,事件A 含基本事件数m =C 28=28. ∴P (A )=m n =28120=730.三、解答题9.(2011·山东文,18)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解析] 记甲校的两名男教师为A 1,A 2,1名女教师为B 1,记乙校的1名男教师为A 3,两名女教师为B 2,B 3.(1)从甲校、乙校各选1名教师的所有可能结果为(A 1,A 3),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,B 2),(A 2,B 3),(B 1,A 3),(B 1,B 2),(B 1,B 3),共9种,其中性别相同的选法为:(A 1,A 3),(A 2,A 3),(B 1,B 2),(B 1,B 3),共4种,所求概率为P =49. (2)从报名的6名教师中任选2名,所有结果为:(A 1,A 2),(A 1,B 1),(A 1,A 3),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,A 3),(A 2,B 2),(A 2,B 3),(B 1,A 3),(B 1,B 2),(B 1,B 3),(A 3,B 2),(A 3,B 3),(B 2,B 3),共15种,来自同一学校的情况有(A 1,A 2),(A 1,B 1),(A 2,B 1),(A 3,B 2),(A 3,B 3),(B 2,B 3),共6种,则所求概率为P =615=25.一、选择题1.甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,则甲、乙将贺年卡送给同一人的概率是( )A.12B.13C.14D.15 [答案] A[解析] 甲、乙两人各写一张贺年卡随意送给丙、丁两人中的一人,所有基本事件的个数为4,甲、乙将贺年卡送给同一人包含的基本事件的个数为2,故所求概率为24=12,选A.2.(文)设a 、b 分别是是甲、乙各抛掷一枚骰子得到的点数,已知乙所得的点数为2,则方程x 2+ax +b =0有两个不相等的实数根的概率为( )A.23B.13C.12D.512 [答案] A[解析] 由已知得b =2,则Δ=a 2-4b =a 2-8>0,解得a >22,故a =3,4,5,6,故所求概率为46=23,选A.(理)已知k ∈Z ,AB →=(k,1),AC →=(2,4),若|AB →|≤10,则△ABC 是直角三角形的概率是( )A.17B.27C.37D.47 [答案] C[解析] 由|AB→|=k 2+1≤10,解得-3≤k ≤3, 又k ∈Z ,故k =-3,-2,-1,0,1,2,3.BC→=AC →-AB →=(2,4)-(k,1)=(2-k,3) 若A 是直角,则AB →·AC →=(k,1)·(2,4)=2k +4=0,得k =-2;若B 是直角,则AB →·BC →=(k,1)·(2-k,3)=(2-k )k +3=0,得k =-1或3;若C 是直角,则BC →·AC →=(2-k,3)·(2,4)=2(2-k )+12=0,得k =8(不符合题意). 故△ABC 是直角三角形的概率为37,选C.二、填空题3.盒子中有大小相同的3只白球,1只黑球.若从中随机地摸出两只球,两只球颜色不同的概率是________.[答案] 12[解析] 本题主要考查古典概型的知识,题目情境简单,难度不大,是最基础的概率应用问题.设3只白球为A ,B ,C,1只黑球为d ,则从中随机摸出两只球的情形有:AB ,AC ,Ad ,BC ,Bd ,Cd 共6种,其中两只球颜色不同的有3种,故所求概率为12.4.(文)甲、乙两人玩数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙想的数字记为b ,且a 、b ∈{1,2,3,4,5,6},若|a -b |≤1,则称“甲乙心有灵犀”,现任意找两个人玩这个游戏,得出他们“心有灵犀”的概率为________.[答案] 49[解析] 数字a ,b 的所有取法有62=36种,满足|a -b |≤1的取法有16种,所以其概率为P =1636=49.(理)(2011·福建理,13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.[答案] 35[解析] 从5个球中任取2个球有C 25=10(种)取法,2个球颜色不同的取法有C 13C 12=6(种),故所求概率为610=35. 三、解答题5.袋中有大小、形状相同的红、黑球各一个,现依次有放回地随机摸取3次,每次摸取一个球.(1)试问:一共有多少种不同的结果?请列出所有可能的结果;(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率.[解析] (1)一共有8种不同的结果,列举如下:(红,红,红)、(红,红,黑)、(红,黑,红)、(红,黑,黑)、(黑,红,红)、(黑,红,黑),(黑,黑,红)、(黑,黑,黑).(2)记“3次摸球所得总分为5”为事件A .事件A 包含的基本事件为:(红,红,黑)、(红,黑,红)、(黑,红,红),事件A 包含的基本事件数为3.由(1)可知,基本事件总数为8,所以事件A 的概率为 P (A )=38.6.(文)(2011·江西文,16)某饮料公司对一名员工进行测试以便确定考评级别,公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A 饮料,另外2杯为B 饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A 饮料.若该员工3杯都选对,测评为优秀;若3杯选对2杯测评为良好;否测评为合格.假设此人对A 和B 饮料没有鉴别能力.(1)求此人被评为优秀的概率; (2)求此人被评为良好及以上的概率.[解析] 将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A 饮料,编号4,5表示B 饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234)(235),(245),(345)可见共有10种.令D 表示此人被评为优秀的事件,E 表示此人被评为良好的事件,F 表示此人被评为良好及以上的事件,则(1)P (D )=110,(2)P (E )=35,P (F )=P (D )+P (E )=710.(理)为了对某课题进行研究,用分层抽样方法从三所高校A ,B ,C 的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).(1)求x ,y (2)若从高校B ,C 抽取的人中选2人作专题发言,求这2人都来自高校C 的概率.[解析] 本题考查分层抽样的概念及应用、等可能事件的概率等基础知识.(1)由题意可得,x 18=236=y54,所以x =1,y =3.(2)记从高校B 抽取的2人为b 1,b 2,从高校C 抽取的3人为c 1,c 2,c 3,则从高校B ,C 抽取的5人中选2人作专题发言的基本事件有(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1,c 2),(c 1,c 3),(c 2,c 3)共10种.设选中的2人都来自高校C 的事件为X ,则X 包含的基本事件有(c 1,c 2),(c 1,c 3),(c 2,c 3)共3种.因此P (X )=310.故选中的2人都来自高校C 的概率为310.7.(文)把一颗骰子投掷2次,观察出现的点数,并记第一次出现的点为a ,第二次出现的点数为b ,试就方程组⎩⎪⎨⎪⎧ax +by =3,x +2y =2,解答下列各题:(1)求方程组只有一个解的概率; (2)求方程组只有正数解的概率.[解析] 事件(a ,b )的基本事件共有36个.由方程组⎩⎪⎨⎪⎧ ax +by =3,x +2y =2,可得⎩⎪⎨⎪⎧(2a -b )x =6-2b ,(2a -b )y =2a -3.(1)方程组只有一个解,需满足2a -b ≠0,即b ≠2a ,而b =2a 的事件有(1,2),(2,4),(3,6)共3个,所以方程组只有一个解的概率为P 1=3336=1112.(2)方程组只有正数解,需b -2a ≠0且⎩⎪⎨⎪⎧ x =6-2b 2a -b>0,y =2a -32a -b >0,即⎩⎨⎧ 2a >b ,a >32,b <3或⎩⎨⎧2a <b ,a <32,b >3.其包含的事件有13个:(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(3,2),(4,2),(5,2),(6,2),(1,4),(1,5),(1,6),因此所求的概率为1336. (理)已知实数a 、b ∈{-2,-1,1,2}.(1)求直线y =ax +b 不经过第四象限的概率;(2)求直线y =ax +b 与圆x 2+y 2=1有公共点的概率.[分析] 本题主要考查直线、圆及古典概型等基础知识,考查化归和转化、分类与整合的数学思想方法,以及简单的推理论证能力.[解析] 由于实数对(a ,b )的所有取值为:(-2,-2),(-2,-1),(-2,1),(-2,2),(-1,-2),(-1,-1),(-1,1),(-1,2),(1,-2),(1,-1),(1,1),(1,2),(2,-2),(2,-1),(2,1),(2,2),共16种.设“直线y =ax +b 不经过第四象限”为事件A ,“直线y =ax +b 与圆x 2+y 2=1有公共点”为事件B .(1)若直线y =ax +b 不经过第四象限,则必须满足⎩⎪⎨⎪⎧a ≥0,b ≥0. 即满足条件的实数对(a ,b )的取值为:(1,1),(1,2),(2,1),(2,2),共4种.∴P (A )=416=14. 故直线y =ax +b 不经过第四象限的概率为14. (2)若直线y =ax +b 与圆x 2+y 2=1有公共点,则必须满足|b |a 2+1≤1,即b 2≤a 2+1.若a =-2,则b 的值可以为-2,-1,1,2此时实数对(a ,b )有4种不同取值; 若a =-1,则b 的值可以为-1,1,此时实数对(a ,b )有2种不同取值;若a =2时,则b 的值可以为-2,-1,1,2,此时实数对(a ,b )有4种不同取值; 若a =1,则b 的值可以以-1,1,此时实数对(a ,b )有2种不同取值.∴满足条件的实数对(a ,b )共有12种不同取值,∴P (B )=1216=34. 故直线y =ax +b 与圆x 2+y 2=1有公共点的概率为34. [点评] 古典概型是高考重点的内容之一,古典概型求解的关键是找到试验的基本事件的总数和要求事件所包含的基本事件数.。
11-5古典概型
{ 真题演练集训 }1.[2017·山东卷]从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79答案:C解析:解法一:∵ 9张卡片中有5张奇数卡片,4张偶数卡片,且为不放回地随机抽取,∴ P (第一次抽到奇数,第二次抽到偶数)=59×48=518,P (第一次抽到偶数,第二次抽到奇数)=49×58=518.∴ P (抽到的2张卡片上的数奇偶性不同)=518+518=59.故选C.解法二:依题意,得P (抽到的2张卡片上的数奇偶性不同)=5×4C 29=59.故选C.2.[2016·江苏卷]将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.答案:56解析:解法一:将一颗质地均匀的骰子先后抛掷2次,向上的点数有36种结果,其中点数之和小于10的有30种,故所求概率为3036=56.解法二:将一颗质地均匀的骰子先后抛掷2次,向上的点数有36种结果,其中点数之和不小于10的有(6,6),(6,5),(6,4),(5,6),(5,5),(4,6),共6种,故所求概率为1-636=56.3.[2015·全国卷Ⅱ]某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图①B 地区用户满意度评分的频数分布表通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图②(2)根据用户满意度评分,将用户的满意度分为三个等级:解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图,得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.4.[2013·湖南卷]某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:1米.(1)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;(2)从所种作物中随机选取一株,求它的年收获量的分布列与数学期望.解:(1)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有C 13C 112=36(种).选取的两株作物恰好“相近”的不同结果有3+3+2=8(种).故从三角形地块的内部和边界上分别随机选取一株作物,它们恰好“相近”的概率为836=29.(2)先求从所种作物中随机选取的一株作物的年收获量Y 的分布列.因为P (Y =51)=P (X =1),P (Y =48)=P (X =2),P (Y =45)=P (X =3),P (Y =42)=P (X =4).所以只需求出P (X =k )(k =1,2,3,4)即可.记n k 为其“相近”作物恰有k (k =1,2,3,4)株的作物株数,则n 1=2,n 2=4,n 3=6,n 4=3.由P (X =k )=n k N ,得P (X =1)=215,P (X =2)=415,P (X =3)=615=25,P (X =4)=315=15.故所求的分布列为E (Y )=51×215+48×415+45×25+42×15=34+64+90+425=46.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.(文)(2012·韶关模拟)一次抛掷两个骰子,则两个骰
子点数之和不大于4的概率为________.
1 [答案] 6
[解析] 由题意易得,点数之和不大于 4 的事件有(1,1), 6 (1,2),(1,3),(2,1),(2,2),(3,1),共 6 个,故所求概率为 = 36 1 . 6
第11章 第五节
那么每个同学当选的可能性相同; (4)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中 奖签的可能性肯定不同.
北 师 大 版
第11章
第五节
高考数学总复习
[解析] 以上命题均不正确.正确答案为: 1 1 (1)摸到红球的概率为 ,摸到黑球的概率为 ,摸到白球的概 2 3 1 率为 ; 6 4 3 (2)取到小于 0 的数字的概率为 , 不小于 0 的数字的概率为 ; 7 7 1 1 (3)男同学当选的概率为 ,女同学当选的概率为 ; 3 4
北 师 大 版
(2,3) (2,4) (2 ,a) (2 ,b) (3,4) (3 ,a) (3 ,b) (4,a) (4 ,b) (a,b) 共 15 个.
第11章 第五节
高考数学总复习
(1)事件 A:两听都是合格品包含 6 个基本事件, 6 2 ∴P(A)= = . 15 5 (2)事件 B:一听合格,一听不合格,包含 8 个基本事件, 8 ∴P(B)= . 15 (3)事件 C:检测出不合格产品包含 9 个基本事件, 9 3 ∴P(C)= = . 15 5
北 师 大 版
(b,1) (b,2)
共30个.
(b,3)
(b,4)
(a)
第11章
第五节
高考数学总复习
(1)事件 A:两听都是合格品包含 12 个基本事件, 12 2 ∴P(A)= = . 30 5 (2)事件 B:一听合格,一听不合格包含 16 个基本事件, 16 8 ∴P(B)= = . 30 15 (3)事件 C:检测出不合格产品包含 18 个基本事件, 18 3 ∴P(C)= = . 30 5
第11章
第五节
高考数学总复习
[解析] 由于口袋中的4个球的大小相同,且摸出可能
性相同,所以是古典概型.在该摸球试验,即从装有4个 不同球的口袋中摸出2球的试验中,含有以下所有等可能 的结果(基本事件):白黑1,白黑2,白黑3,黑1黑2,黑1 黑3,黑2黑3,共有6种.
北 师 大 版
第11章
第五节
高考数学总复习
北 师 大 版
第11章
第五节
高考数学总复习
2.古典概型 (1)试验的所有可能结果 只有有限个 ,每次试验只出现 其中的一个结果; (2)每个试验出现的结果的可能性 相同 ; 称这样的试验为古典概型. 判断一个试验是否是古典概型, 在于该试验是否具有古典概 型的两个特征: 有限性和等可能性 .
北 师 大 版
[答案] C
1 B. 3 D.1
北 师 大 版
第11章
第五节
高考数学总复习
[解析] 因为三个人被选中的可能性相等,且基本事件是 有限的,故是古典概型,基本事件总数为甲乙,甲丙,乙丙, 2 故甲被选中有甲乙,甲丙,故 P= . 3
北 师 大 版
第11章
第五节
高考数学总复习
4.(文)盒中有 10 个铁钉,其中 8 个合格,2 个不合格, 从中任取一个恰为合格铁钉的概率是( 1 A. 5 4 C. 5 1 B. 4 1 D. 10 )
北 师 大 版
第11章
第五节
高考数学总复习
(3)袋中装有大小均匀的四个红球,三个白球,两个黑球, 那么每种颜色的球被摸到的可能性相同. [分析] 弄清基本事件的个数, 古典概型的两个特点及概 率计算公式.
北 师 大 版
第11章
第五节
高考数学总复习
[解析] 所有命题均不正确. (1)应为 4 种结果,还有一种是 “一反一正”. (2)不是古典概型.因为命中 10 环、命中 9 环,„„,命 中 0 环不是等可能的. 4 1 2 (3)摸到红球的概率为 ,白球的概率为 ,黑球的概率为 . 9 3 9
北 师 大 版
[答案] A
第11章
第五节
高考数学总复习
[解析] 从数字 1,2,3 中任取两个不同数字组成的两位数 有 12,21,13,31,23,32 ,共 6 种,每种结果出现的可能性是相等 的,所以该试验属于古典概型.记事件 A 为“取出两个数字 组成两位数大于 23”,则 A 中包含 31,32 两个基本事件,故 2 1 P(A)= = . 6 3
北 师 大 版
第11章
第五节
高考数学总复习
[点评]
弄清每一次试验的意义及每个基本事件的含义
是解决问题的前提,正确把握各个事件的相互关系是解决 问题的重要方面,判断一次试验中的基本事件,一定要从 其可能性入手,加以区分,而一个试验是否是古典概型要 看其是否满足有限性和等可能性.
北 师 大 版
第11章
北 师 大 版
[答案] C
第11章
第五节
高考数学总复习
[解析] 每个铁钉被选中的可能性是相等的,而且试验 中所出现的基本事件共有 10 个,是有限的,是古典概型, 8 4 任取一个恰为合格铁钉的事件有 8 个,故概率为 P= = . 10 5
北 师 大 版
第11章
第五节
高考数学总复习
(理)从数字 1,2,3 中任取两个不同数字组成两位数, 该数大 于 23 的概率为( 1 A. 3 1 C. 8 ) 1 B. 6 1 D. 4
第11章
第五节
高考数学总复习
7.一袋子中装有红、白、黄、黑四个小球,其重量、
大小均相同. (1)从中任取一球,求取出白球的概率; (2)从中任取两球,求取出的是红球和白球的概率.
北 师 大 版
第11章
第五节
高考数学总复习
[解析] (1)设事件 A 为“取出白球”,在这个摸球试验中, 等可能出现的结果共有 4 种,摸出白球的结果只有一种,所以 1 取出白球的概率 P(A)= . 4 (2)设事件 B 为“取出的是红球和白球 ”,因为从 4 个球中 任取 2 个,出现的结果有 6 种.即:红白,红黄,红黑,白黄, 1 白黑,黄黑.而事件 B 包含的结果只有 1 种.故 P(B)= . 6
第五节
高考数学总复习
判断下列命题正确与否: (1)某袋中装有大小均匀的三个红球、两个黑球、一个白球, 那么每种颜色的球被摸到的可能性相同. (2)从-4,-3,-2,-1,0,1,2 中任取一数,取到的数小于 0 和不小于 0 的可能性相同;
北 师 大 版
第11章
第五节
高考数学总复习
(3)分别从3名男同学,4名女同学中各选一名做代表,
北 师 大 版
第11章
第五节
高考数学总复习
方法二:如果看作是依次放回抽取两听,有顺序,那
么所有基本事件为: (1,2) (1,3) (2,1) (2,3) (3,1) (3,2) (4,1) (4,2) (a,1) (a,2) (1,4) (2,4) (3,4) (4,3) (a,3) (1,a) (2,a) (3,a) (4,a) (a,4) (1,b) (2,b) (3,b) (4,b) (a,b)
第11章
第五节
高考数学总复习
1.(教材改编题)下列概率模型中,是古典概型的有( ①从区间[1,10] 内任意取出一个数,求取到 1 的概率; ②从 1~10 中任意取出一个整数,求取到 1 的概率;
)
③向一个正方形 ABCD 内投掷一点 P, P 恰好与 A 点重 求 合的概率; ④向上抛掷一枚不均匀的旧硬币,求正面朝上的概率.
高考数学总复习
北 师 大 版
第11章 计数原理与概率
高考数学总复习
第 五 节
古典概型
北 师 大 版
第11章
第五节
高考数学总复习
文科第二节
北 师 大 版
第11章
第五节
高考数学总复习
考纲解读 1.理解古典概型及其概率计算公式. 2. 会用列举法计算一些随机事件所含的基本事件及事件发 生的概率.
北 师 大 版
北 师 大 版
抽取两个小组”的基本事件有AB、AC、AD、BC、BD、
CD,共6个.
第11章
第五节
高考数学总复习
3.(文)在 40 根纤维中,有 12 根的长度超过 30mm,从中 任取一根,取到长度超过 30mm 的纤维的概率是( 3 A. 4 2 C. 5 3 B. 10 D.以上都不对 )
北 师 大 版
北 师 大 版
第11章
第五节
高考数学总复习
(4)抽签有先有后,但每人抽到某号的概率是相同的.理 1 由:假设 5 号签为中奖签,甲先抽到中奖签的概率为 ;乙 5 4 1 1 接着抽,其抽中 5 号签的概率为 × = . 5 4 5 [点评] 古典概型要求所有结果出现的可能性相等,强 调所有结果中每一结果出现的概率相同.
北 师 大 版
第11章
第五节
高考数学总复习
5.一个口袋中装有大小相同的1个白球和已经编有
1,2,3号码的3个黑球,从中任意摸出2个球,则该试验的基 本事件有__________________________,基本事件总数为 ________.
北 师 大 版
[答案] 白黑 1,白黑 2,白黑 3,黑 1 黑 2,黑 1 黑 3, 黑2黑3 6
[答案] B
第11章
第五节
高考数学总复习
[解析] 由题设可知,基本事件的总数是 40,且它们都是 12 3 等可能发生的, 所求事件包含 12 个基本事件, 所以 P= = . 40 10
北 师 大 版
第11章
第五节
高考数学总复习