第四章 图形认识初步教案(人教版)初一数学数学初中
人教版数学七年级上册《模式1:图形认识初步》教学设计
人教版数学七年级上册《模式1:图形认识初步》教学设计一. 教材分析人教版数学七年级上册《模式1:图形认识初步》这一章节主要介绍了平面几何图形的性质和识别。
通过本章的学习,学生能够了解和掌握一些基本的平面几何图形,如点、线、面、角、三角形、四边形等,并能够运用这些知识解决实际问题。
本章内容是整个初中数学的基础,对于学生后续的学习具有重要意义。
二. 学情分析七年级的学生刚刚接触初中数学,对于平面几何图形可能还比较陌生。
因此,在教学过程中,需要注重基础知识的讲解,让学生能够理解和掌握基本的平面几何图形。
同时,学生可能对于一些抽象的概念和理论的理解还有一定的困难,因此在教学过程中需要注重直观的演示和实际的操作,让学生能够更好地理解和掌握知识。
三. 教学目标1.知识与技能:学生能够识别和理解基本的平面几何图形,如点、线、面、角、三角形、四边形等,并能够运用这些知识解决实际问题。
2.过程与方法:学生能够通过观察、操作、思考等方式,培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够培养对数学的兴趣和热情,克服困难,勇于探索,提高自信心。
四. 教学重难点1.重点:学生能够识别和理解基本的平面几何图形,如点、线、面、角、三角形、四边形等。
2.难点:学生能够理解和掌握平面几何图形的性质和识别方法。
五. 教学方法1.情境教学法:通过具体的实例和实际问题,让学生在情境中学习和理解平面几何图形。
2.直观演示法:通过直观的演示和实际的操作,让学生能够更好地理解和掌握平面几何图形。
3.问题驱动法:通过提出问题和引导学生思考,让学生能够主动探索和发现平面几何图形的性质和规律。
六. 教学准备1.教学课件:制作精美的教学课件,包括图形、实例、问题等,帮助学生更好地理解和掌握知识。
2.教学素材:准备一些实际的图形和模型,如三角板、四边形板等,让学生能够直观地观察和操作。
3.练习题:准备一些练习题,帮助学生巩固所学的知识。
新人教版七上第四章图形认识初步全章教案
4.1.1 几何图形(1)【教学目标】1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识。
【教学难点】从具体事物中抽象出几何图形【知识重点】识别简单几何体【教学过程】(师生活动)一、引入新课(播放北京申奥成功的欢庆之夜)2001年7月13日北京申奥成功,这是每一个中国人终生难忘的日子.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?二、找一找思考第118页思考题并出示实物(如茶叶、地球仪、字典及魔方等)及多媒体演示(如谷堆、帐篷、金字塔等),它们与我们学过的哪些图形相类似?三、议一议(出示棱柱、圆柱、棱锥、圆锥模型)看一看再动手摸一摸,说说它们的异同。
(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充。
)四、想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答。
五、赛一赛小组长组织组员完成课本118页思考题(下),并进行学习汇报。
六、课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?七、布置作业1、必做题:课本第123页习题4.1第1、2题2、选做题:课本第125页习题4.1第7、8题。
3、备选题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词。
七年级数学上册 第四章 几何图形初步复习教案 (新版)新人教版
几何图形初步一、教学目标1.使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;2.对线段、射线、直线、角的概念及它们之间的关系有进一步的认识3.掌握本章的全部定理和公理;4.理解本章的数学思想方法;5.了解本章的题目类型.二、教学重点与难点重点:理解本章的知识结构,掌握本章的全部定理和公理;难点:理解本章的数学思想方法;三、教学方法启发式教学,结合多媒体和学案实施教学.四、学法指导引导——活动——讨论五、教学准备教师:多媒体课件、学案等;六、教学过程1、温故知新【多媒体展示】回顾课本,思考以下问题:1.本章学习了哪些内容?2.它们之间的联系是什么?请列出知识结构图.学生独立完成,最后交流知识结构图,点明知识要点和其中联系。
2、问题探究【多媒体展示】问题1:在本章中,从哪些方面反映了立体图形与平面图形的关系?学生小组讨论、交流,得到结论,教师补充:展开图、三视图、运动问题等。
3、典例分析【多媒体展示】例1:在下列图形中(每个小四边形皆为相同的正方形),可以是一个正方体表面展开图的是()例2:如图,从正面看A、B、C、D四个立体图形,可以得到a、b、c、d四个平面图形,把上下两行相对应的立体图形与平面图形用线连接起来.学生自主作答,教师个别提问,检查知识掌握情况。
4、问题探究【多媒体展示】问题2:与以前相比,你对直线、射线、线段和角有什么新的认识?在解决有关线段和角的问题中,常用到哪些数学思想方法?学生小组讨论、交流,得到结论,教师补充:分类讨论,转化等思想.5、典例分析【多媒体展示】例3:点A,B,C 在同一条直线上,AB=3 cm,BC=1 cm.求AC的长.例4:已知∠α和∠β互为补角,并且∠β的一半比∠α小30°,求∠α、∠β.学生自主作答,教师个别提问,检查知识掌握情况。
6、能力拓展【多媒体展示】例:如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF.将∠BEF对折,点B落在直线EF上的点B'处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A'处,得折痕EN,求∠NEM的度数.学生小组内交流解答过程,教师做好指导工作.7、收获小结:1.本节课学到哪些知识?2.本节课有哪些疑惑?8、布置作业:课本练习题;七、板书设计:几何图形初步1.几何图形:(1)分类:立体图形和平面图形;(2)展开图和三视图;2.直线、射线和线段:(1)表示方法:(2)性质:3.角:(1)定义:(2)表示方法:(3)度量:4.余角和补角:(1)定义;(2)性质;。
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形
教学案例——人教版七年级数学上册第四章几何图形初步第一节几何图形《多姿多彩——几何图形》教案设计【教材分析】多姿多彩的图形中的几何图形,是人教版教材《数学》七年级上册第四章第一节的第一课时。
所含内容在小学阶段学生已有了感性认识,本课时以现实背景为素材,让学生亲自经历将实际问题抽象成数学模型的过程,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对空间图形的认识和感受。
本节课的知识是进一步学习平面几何以及立体几何的基础,具有承上启下的作用。
本节课是学习空间与图形的第一课时需要在情感上激发学生兴趣,培养学生学习数学的热情。
【教学目标】知识与技能:通过观察生活中的大量图片或实物,能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能认识一些简单几何体,能用语言描述它们的基本特性,并能对它们进行简单的分类;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系.过程与方法:经历探索平面图形与立体图形之间的关系,发展空间观念,能由实物形状想像出几何图形,由几何图形想像出实物形状,进一步丰富学生对几何图形的感性认识;培养动手操作能力,培养观察、抽象、归纳、概括、判断等思维能力以及分类的数学思想。
情感态度与价值观:经历从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩;激发对学习空间与图形的兴趣;通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识。
【教学重点】简单几何体的识别与分类。
【教学难点】从具体实物中抽象出几何图形及常见几何体的分类。
【教学关键】从现实情境出发,通过动手操作进行实验,结合小组交流学习是关键。
【教学方法】情境教学、实践探究、多媒体演示相结合。
【教学资源】多媒体辅助教学;圆柱、圆锥、正方体、长方体、棱柱、棱锥等简单几何体的实物和模型;三角形、正方形、长方形、正六边形纸片;牙签、胶泥等。
【教学过程】(一)创设情景,设疑导入师:同学们,我们的世界是五彩缤纷、绚丽多彩的。
新人教版初中数学七年级上册《第四章几何图形初步:4.3角》公开课教案_2
四、教学方法及教学思路
本人在农村中学任教,面对的都是乡土气息浓厚的农村孩子。由于诸多方面的原因,造成这样的现状:绝大多数学生基础薄弱,没有学习习惯,学习品质、竞争意识差,更没有学习中知难而上的信心和毅力。所以面对这样的教育主体,我们在激发学生的学习兴趣、引导探究发现的同时,一定要注意学生的听课状态,降低难度,干启不发时,直接入主题。同时不能过分强调和主张学生课后的自主学习,因为绝大多数学生没有自主学习的习惯和能力。所以很多技能需在课上培养、训练和提高。我这里的教学,接近“一对一”的教,“手把手”的学。很多问题课前就有预见,准备好解决策略和途径。
中学数学(角)
一、教案背景
课时:1课时
二、教学课题
1.教养方面:
通过系统学习,进一步认识角。
通过实物和具体模型,了解从物体外形抽象出来的平面图形。
初步认识图形,培养学生对学习图形与几何的兴趣,建立数学来源于生产、生活,服务于生产、生活的理念。
2.教育方面:
通过模型理解角的两种描述方法。
经历角的画法,进一步理解、认识角,提高画图技能,增强对图形的理解,为今后几何的学习做好准备。
能准确找出和表示简单至复杂图形中的角。
通过强化、重复训练,夯实角的认识,提高学习几何的信心。
三、教材分析
人教版七年级数学(上)《第四章 图形认识初步》第三部分的第一节 《角》的第一课时。
本章是图形与几何的起始章,是图形学习的第三学段。在本章,要进一步丰富学生对几何图形的感性认识,还要引导学生逐步认识一些基本图形的特征和性质。但这并不意味着要用严格的逻辑推理方式来展开学习,还是要强调在实际背景中直观理解图形的概念和特征,经历探索图形性质的过程。
人教版七年级数学上册第四章几何图形初步(教案)
针对以上难点,教师应采取以下措施:
-利用直观教具和实际操作,帮助学生形象理解线段、射线、直线的区别。
-通过具体例题和练习,加强学生对角度换算的理解和记忆。
-通过问题驱动的教学方法,引导学生发现几何图形的性质,并在解决实际问题时应用。
4.培养学生的数据分析观念,使学生能够运用所学的平面图形知识,进行简单的面积计算,并能够解释计算过程和结果。
三、教学难点与重点
1.教学重点
-线段、射线、直线的定义及其性质:这是本章的基础知识,理解这些概念是掌握几何图形的前提。例如,线段的两个端点、射线的起点和延伸方向、直线的无限延伸性质等。
-角的分类及度量:角的分类(周角、平角、直角等)和度量(度、分、秒)是本章的核心内容,对于学生理解图形的角度关系至关重要。
-基本图形的性质:三角形、四边形的性质是后续几何学习的基石,例如,三角形的内角和定理、四边形的对边平行性质等。
-平面图形的识别与面积计算:学会识别常见的平面图形,并能进行简单的面积计算,是本章的实践应用重点。
2.教学难点
-线段、射线、直线的区分:学生容易混淆这三种线的概念,特别是在射线和直线的无限延伸特性上。
-设计不同类型的面积计算题目,让学生通过练习巩固计算方法,并及时纠正错误。
-创设情境,如制作几何模型、绘制图形等,增强学生的空间感知和想象能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《几何图形初步》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过线段、角和各种平面图形?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索几何图形的奥秘。
人教版数学七年级上册《 第四章 几何图形初步 》教学设计
人教版数学七年级上册《第四章几何图形初步》教学设计一. 教材分析《第四章几何图形初步》是人教版数学七年级上册的重要内容,主要包括平面几何图形的性质和判定,以及几何图形的画法。
本章内容为学生提供了丰富的图形信息,培养学生的空间想象能力、逻辑思维能力和创新能力。
本章内容在日常生活中和后续学习中都有广泛的应用,对于学生形成完整的数学知识体系具有重要意义。
二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对数学有了一定的认识。
但七年级的学生刚刚接触几何图形,对几何图形的性质和判定可能感到抽象难懂。
因此,在教学过程中,教师需要关注学生的认知水平,采取适当的教学方法,激发学生的学习兴趣,帮助学生理解和掌握几何图形的初步知识。
三. 教学目标1.知识与技能:使学生了解平面几何图形的基本概念,掌握一些基本的几何性质和判定方法,学会用几何语言描述几何图形。
2.过程与方法:培养学生观察、分析、归纳和推理的能力,提高空间想象能力。
3.情感态度与价值观:激发学生学习几何图形的兴趣,培养学生的创新意识和团队协作精神。
四. 教学重难点1.重点:平面几何图形的基本性质和判定方法。
2.难点:几何图形的性质和判定在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和实际问题,激发学生的学习兴趣,引导学生理解和掌握几何图形的性质和判定。
2.互动教学法:教师与学生、学生与学生之间的讨论和交流,提高学生的参与度和积极性。
3.实践教学法:让学生动手操作,培养学生的实践能力和创新能力。
4.归纳教学法:引导学生通过观察、分析、归纳和推理,发现几何图形的性质和判定方法。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习状况,设计教学活动和教学评价。
2.学生准备:预习教材,了解基本的几何图形概念。
3.教学资源:多媒体课件、几何模型、练习题等。
七. 教学过程1.导入(5分钟)教师通过生活实例或实际问题,引入几何图形的概念,激发学生的学习兴趣。
七年级数学上册_第四章图形认识初步教案_人教新课标版
第四章图形的认识4.1.1 几何图形第1课时教学目标:(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒教学过程一、引入新课在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4-2后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4-3的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4-4中所示工件模型,•让学生从不同方向看.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.6.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.四、作业布置1.课本第115页习题4.1第1~3题.4.2 线段、直线、射线(1)第2课时教学目标(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述画出图形(3)经历画图的数学活动过程,提高学生的动手操作与实践能力.体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言之间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1.探究直线性质.学生活动:学生动手按要求画图,•并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段的性质.2.寻找生活中直线性质应用的例子.想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价).3.直线、射线、线段的表示方法.学生活动:阅读课本第117页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称.DC BA注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价. 2.根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上.注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.3.完成课本第119页练习.注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,•知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第122页习题4.2第1、2、3题.2.选用课时作业设计.4.2 线段、射线、直线(2)第3课时教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,•了解“两点之间,线段最短”的线段性质.2. 培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法.3.积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,•在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点.2.难点:画一条线段等于已知线段的尺规作图方法,•正确比较两条线段长短是难点.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?学生活动:小组讨论,探索方法,总结出问题的解决方法.2.提出数学问题:上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法. 教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1.用刻度尺量出已知线段长,•在画出的射线(或直线)上量出相同长度的一条线段.2.用尺规截取.(按课本第119页所讲方法)板书:画一条线段等于已知线段.3.探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短.(1)用刻度尺分别测量出它们的长度进行比较.(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较.4.线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果. 板书:(1)AB<CD (2)AB>CD (3)AB=CD (D)(C)B A B A (C)A5.线段的等分点.(1)线段的中点:教师活动:用多媒体演示,取线段AB 上一点M ,移动线段AM 到线段MB 上,当AM•与MB 完全重合时,线段AM=MB ,此时点M 就叫做线段AB 的中点.板书: AM=MB=12AB (2)线段的等分点:通过类比线段的中点,可得出线段的三等分点、四等分点.板书:AM=MN=NB=13AB AM=MN=NP=PB=14AB7.探索线段的性质.(1)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短.教师活动:板书:线段的性质,并用几何语言完整归纳出线段性质.(2)举例说明线段的性质在生活中的应用.(3)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第122页习题4.2第4、5、6、7题.2.选用课时作业设计.4.3.2 角的度量与计算(1)第5课时教学目标1.(1)理解角的概念,•学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2. 提高学生的识图能力,学会用运动变化的观点看问题.3. 经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.教具准备量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟2.提出问题:时钟的时针与分针,给我们什么样的平面图形的形象?请把它画出来.教师活动:演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.板书:角.二、新授1.角的概念.(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2)角的定义:有公共端点的两条射线组成的图形叫做角,•这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)2.角的表示.学生活动:阅读课本有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.请用适当的方法表示下图中的每个角.学生活动:请一个学生板书练习,其余学生独立练习.3.角的度量.教师活动:指导学生阅读课本P126页内容,讲解角的度量方法及度、分、秒的换算.板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?三、巩固练习1.课本第127页练习.2.计算:(1)48°39′+67°41′;(2)90°-78°19′40″;(3)22°30′×8;(4)176°52′÷3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评. 3.想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,得出答案..四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角? 2.本节课还复习了平面、周角?怎样得到这两种角? 3.角的度量单位是什么?它们是如何换算的?五、作业布置1.课本习题4.3第4、5题.4.3.2 角的度量与计算(2)第6课时教学目标1.能借助三角板画出30°,45°,60°,90•°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.2. 经历画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力. 3.尝试从不同角度寻求解决问题的方法,体会不同方法间的差异重、难点与关键1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.2.难点:用尺规画一个角等于已知角.教具准备一副三角板、量角器教学过程一、引入新课1.投影一个五角星的图案,请学生观察图形.(如右图)2.提出问题:你知道五角星的五个角是多少度吗?你是怎样知道的?二、新授学生活动:在小组中交流测量角的大小方法教师活动:请学生说明不同方法得出的结论有何不同,对学生的活动给予积极评价.结论:每个角均为36°.1.画一个角等于已知角.(1)提出问题:你能用量角器画一个角等于36°吗?能画一个角等于108°吗?学生活动:两个学生板书演示画图过程,其余同学独立完成.教师活动:巡视并指导学生画图.(2)提出问题:你能用三角板画出30°,45°,60°,90°等特殊角吗?学生活动:动手画图.教师活动:指导个别学生画图,评价学生的画图结果.2.用尺规画一个角等于已知角.探究:已知∠AOB,画一个角等于这个角.学生活动:先进行独立思考,根据教师的演示,进行自我评价.教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法)师生互动:教师在黑板上画钝角∠AOB,•请一个学生板书画图教师巡视指导其余学生画图.请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°角.教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45•°~30°,用两块三角板画出15°的角.四、课堂小结本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角.提出问题:请同学们说出你所知道的测量角的大小的仪器.(同学互相补充)教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器.五、作业布置1.基础训练2.选用课时作业设计.C BA 4.3.1 角与角的大小比较第4课时教学目标(1)学会比较两个角的大小,会分析图中角的和差关系.学会借助三角板拼出不同度数的角,•认识角的平分线及角的等分线,会画角的平分线.(2)进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.(3)能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.重、难点1.重点:比较角的大小,认识角的大小关系,分析角的和差关系,•认识角平分线及画角平分线是本节课的重点.2.难点:认识复杂图形中角的和差关系,比较两个角的大小是难点. 教具准备量角器、三角板、圆规、剪刀、透明纸教学过程一、引入新课教师活动:在黑板上画出一个三角形.(如右图所示)1.提出问题:比较图中线段AB 、BC 、CD 的长短.学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法. 教师活动:归纳学生的讨论结果,并演示用圆规比较AB 、BC 、CD 三条线段长短的过程,并写出结论:AB>AC>BC .2.提出问题:怎样比较图中∠A 、∠B 、∠C 的大小?学生活动:小组交流比较方法,得出结论:可用量角器先量出角的度数,然后比较它们的大小.教师活动:(1)肯定评价学生提出的方法,并动手测量度数,•比较它们的大小,板书结论:∠C>∠B>∠A.(2)启发引导学生,类比线段长短的比较方法,•也可以把它们叠合在一起比较大小.二、新授1.提出问题:如何用叠合的方法比较角的大小?学生活动:进行小组交流讨论,动手操作:每个学生都在透明纸上画一个角,然后剪下这个角,并与小组中其它同学所画的角进行比较后归纳出比较方法和比较结果注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.2.认识角的和差.教师活动:讲解观察中的问题,给出图中各角之间的和差关系.(如下图)∠AOC=∠AOB+∠BOC,∠AOB=∠AOC-∠BOC.提出问题:∠AOC-∠AOB=________.3.动手操作:用三角板拼出特殊角学生活动:每个学生都用三角板进行尝试拼出15°、75°的角,并讲出其中的理由.提出问题:利用一副三角板还能拼出多少度的角?4.认识角的平分线.教师活动:在透明纸上画一个角,沿着顶点对折,使角的两边重合.学生活动:观察老师演示过程,并思考下面问题.(如下图)提出问题:∠AOC被折痕OB分成的两个角有什么关系?在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC•和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?学生活动:阅读课本有关内容,回答上面问题.教师活动:讲解角平分线定义,板书:角的平分线.在纸上画一个角,设法画出这个角的平分线.学生活动:思考并进行小组交流,总结出角平分线的画法并画图.教师活动:对学生总结出的画法进行评价,并演示画图过程.(1)借助量角器画图:以已知角顶点为顶点,已知角的一边为边,在已知线的内部画一个度数等于已知角度数一半的角,则这个角的另一边就是已知角的平分线.(2)用折叠方法:把角沿顶点对折,使角的两边重合,沿折痕在角的内部画一条射线即为已知角的平分线.三、课堂小结师生互动,共同总结本节课的学习内容:1.角的大小比较方法和角的大小关系有哪些?认识了角的哪些运算.2.本节课学习了用三角板拼出哪些角?3.角平分线的定义是什么?四、作业布置1.课本第130页习题4.31、2、34.3.2 余角和补角第7课时教学目标1.在具体的现实情境中,认识一个角的余角与补角,掌握余角和补角的性质. 2.进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会简单的逻辑推理,并能对问题的结论进行合理的猜想.3.体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用重、难点1.重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点.2.难点:通过简单的推理,归纳出余角、补角的性质,•规范的语言描述性质是难点.教具准备三角板、量角器教学过程一、引入新课1.提出问题:(1)在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少?(2)已知∠1=36°,∠2=54°,那么∠1+∠2=?学生活动:独立思考,小组交流,得出结论:都是90°.二、新授1.余角与补角.教师活动:指导学生阅读课本第128页有关内容,并讲解余角与补角的定义.注:讲解余角和补角时,必须向学生说明互余、互补是指两个角的数量关系,即∠1+∠2=90°或∠1+∠2=180°,同时强调∠1是∠2的余角(或补角),那么∠2也是∠1的余角(或补角).2.巩固反思.(1)填空:①47°18′的余角是______,补角是_______.②∠α(0°<∠α<90°)的余角是______,∠β(0°<β<180°)的补角是_______.(2)已知一个角是它补角的3倍,求这个角.注:这两个例题讲解时,应通过师生互动的方法进行教学,在学生思考后再讲解.(3)课本第129页练习.3.余角与补角的性质.(1)提出问题:观察方格图,下图中∠1与∠3有什么关系?∠1与∠2,∠3与∠4有什么关系?学生活动:观察图形,小组交流观察:∠1=∠3,∠1+∠2=180°,∠3+•∠4=180°.学生活动:观察思考后得出∠2=∠4.(2)说明理由:注:教学中,向学生说明,以上从观察图形得出的结论,还应从理论上说明其理由如上图,∠1与∠2互补,∠3与∠4互补,如果∠1=∠3,那么∠2与∠4相等吗?为什么?教师活动:指导学生分析题意,并写出说理过程,归纳性质.板书:等角的补角相等.等角的余角相等.三、巩固练习1.如右图,∠EDC=∠CDF=90°,∠1=∠2.(1)图中哪些角互为余角?哪些角互为补角?(2)∠ADC与∠BDC有什么关系?为什么?(3)∠ADF与∠BDE有什么关系?为什么?2.认识方位角.如下图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,•在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上分别发现了客轮B、货轮C和海岛D.仿照表示灯塔方位的方法,画出客轮B、货轮C和海岛D方向的射线.教师活动:(1),讲解方位角和表示方位的射线,•在学生完成题中的问题后操作多媒体演示画图过程.注:讲解时应讲清楚方位角是以正北或正南方向的射线为一个角的始边,而表示物体运动的方向的射线是角的另一边.学生活动:在教师指导下画出问题中的每一条射线.3.知识拓展提出问题:小宁从A地向东北方向走62米到B地,再从B地向西走56米到C地,这时她离A•地多少米?在A地的北偏西多少度?画出图形(用1cm表示10m),然后用刻度尺和量角器进行测量.(精确到1m、1°)学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价.教师活动:指导学生画图和测量,并对学生完成的情况进行评价.四、课堂小结1.本节课学习了余角和补角,并通过简单的推理,得出余角和补角的性质.2.了解方位角,学会确定物体运动的方向五、作业布置1.基础训练2.选用课时作业设计.4.4 课题学习设计制作长方体形状的包装纸盒第8课时教学任务分析教学流程安排教学过程设计一、提出问题,指明活动的主要内容活动名称:设计制作长方体形状的纸盒.方法:观察、讨论、动手制作.材料:厚(硬)纸板、直尺、裁纸刀、剪刀、胶水、彩笔等.准备:收集一些长方体形状的包装盒,如墨水瓶盒、粉笔盒、饼干盒、牛奶包装盒、牙膏盒等.二、提出活动步骤、分组活动活动步骤:1.观察、讨论以5~6人为一组,各组确定所要设计制作的包装盒的类别,明确分工.(1)观察作为参考物的包装盒,分析其各面、各棱的大小与位置关系.(2)拆开盒子,把它铺平,得到表面展开图;观察它的形状,找出对应长方体各面的相应部分;度量各部分的尺寸,找出其中的相等关系.(3)把表面展开图复原为包装盒,观察它是如何折叠并粘到一起的.(4)多拆、装几个包装盒,注意它们的共同特征.(5)经过讨论,确定本组的设计方案.2.设计制作(1)先在一张软纸上画出包装盒表面展开图的草图,简单设计一下,裁纸、折叠,观察效果.如果发生问题,调整原来的设计,知道达到满意的初步设计.(2)在硬纸板上,按照初步设计,画好包装盒的表面展开图,注意要预留出粘合处,并要减去适当的棱角.在表面展开图上进行图案与文字的美术设计.(3)裁下表面展开图、折叠并粘好粘合处,得到长方体包装盒3.交流、比较各组展示本组的作品,并介绍设计思想和制作过程.讨论本组的作品,重点探究以下问题:(1)制成的包装盒是否是长方体?若不是,是哪个地方出项了问题?如何改正?(2)从使用性上看,包装盒形状、尺寸是否合理?用料是否节省?是否需要改进?(3)包装盒的外观设计是否美观?(4)对平面图形与立体图形的联系有哪些新认识?4.评价、小结评价各组的活动情况,小结活动的主要收获.三、小结与作业小结:制作立体图形――先转化为平面图形(平面展开图),再转化为立体图形作业:(1)自己设计制作一个正六棱柱形状的包装盒;(2)自己设计制作一个圆柱形的包装纸盒.。
2022年人教版七年级上册数学第四章几何图形初步单元教案
第四章几何图形初步4.1几何图形4.1.1立体图形与平面图形第1课时认识几何图形◇教学目标◇【知识与技能】1.通过实物和具体模型,认识从实物中抽象出来的几何图形;2.了解立体图形和平面图形的概念,并能归纳常见的立体图形和平面图形.【过程与方法】经历探索立体图形与平面图形之间的关系,发展空间观念.【情感、态度与价值观】体会把实物抽象出几何图形的过程.◇教学重难点◇【教学重点】识别一些基本几何图形.【教学难点】认识从物体外形抽象出来的几何图形.◇教学过程◇一、情境导入观察下图中的“鸟巢”,你能抽象出熟悉的几何图形吗?二、合作探究探究点立体图形与平面图形典例1下列图形中不是立体图形的是()A.四棱锥B.长方形C.长方体D.正方体[解析]几何图形的各部分不都在同一平面内的图形叫立体图形,几何图形的各部分都在同一平面内的图形叫平面图形.由定义可知A,C,D均为立体图形.[答案] B下列各组图形中都是平面图形的一组是()A.三角形、圆、球、圆锥B.点、线段、数学书的封面、长方体C.点、三角形、四边形、圆D.点、直线、线段、正方体[答案] C典例2将下列的几何体进行分类,并说出每个几何体的名称.[解析]分别根据柱体、锥体、球体的定义进行分类.[答案]柱体有(1)(2)(4)(7);锥体有(5)(6);球体有(3).(1)长方体(四棱柱);(2)三棱柱;(3)球;(4)圆柱;(5)圆锥;(6)四棱锥;(7)六棱柱.将下列几何体分类,柱体有;锥体有.(只填序号)[答案]①②③⑤⑥三、板书设计认识几何图形立体图形{柱体{棱柱圆柱锥体{棱锥圆锥台体{棱台圆台球体:球◇教学反思◇本节课的内容较简单,课堂上通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识;通过自主探究活动,让学生感受图形的形状特点,提升学生的空间想象能力.第2课时折叠、展开与从不同方向观察立体图形◇教学目标◇【知识与技能】1.会识别从正面、左面、上面看物体所得的平面图形;2.会画一些常见几何体及简单组合体从正面、左面、上面看物体所得的平面图形;3.直观认识简单立体图形的平面展开图.【过程与方法】在平面图形和立体图形的相互转化中,初步发展空间观念,发展几何直觉.【情感、态度价值观】通过探讨现实生活中的实物制作,激发学生学习的热情.【情感、态度与价值观】培养敢于面对困难的精神,感受几何图形的美感.◇教学重难点◇【教学重点】识别、画出简单几何体从正面、左面、上面看物体所得的平面图形,了解直棱柱、棱锥、圆柱、圆锥的平面展开图.【教学难点】由从正面、左面、上面看物体所得的平面图形,还原为实物图,根据平面展开图想象相应的几何体.◇教学过程◇一、情境导入对于一些立体图形的问题,常把它们转化为平面图形来研究处理,从不同的方向看立体图形,往往会得到不同形状的平面图形.例如放在桌面上的茶杯,从不同侧面得到不同的图形,你能用学过的诗句描述这种现象吗?二、合作探究探究点1会从正面、左面、上面看物体所得的平面图形典例1如图的几何体是由一个正方体切去一个小正方体形成的,从正面看得到的图形是()[答案] D下列水平放置的四个几何体中,从正面看得到的图形与其他三个不相同的是()[答案] D典例2一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小方块的个数,则从正面看到几何体的形状图是()[答案] D探究点2会画从正面、左面、上面看物体所得的平面图形典例3如图是由4个大小相等的正方体搭成的几何体,你能画出从正面、左面、上面看得到的平面图形吗?[解析]从正面、左面、上面看得到的平面图形分别如图所示:探究点3探究立体图形的展开图典例4如图所示,下列四个选项中,不是正方体表面展开图的是()[答案] C三、板书设计折叠、展开与从不同方向观察立体图形1.从不同的方向观察立体图形2.立体图形的展开图◇教学反思◇本节课的内容有点难度,主要是培养学生的空间观念和空间想象力.应鼓励学生多动手画图,让学生自主探索立体图形与平面图形之间的对应关系.4.1.2点、线、面、体◇教学目标◇【知识与技能】1.认识点、线、面、体的几何特征,感受它们之间的关系;2.探索点、线、面运动后形成的几何图形.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感、态度与价值观】培养学生积极主动的学习态度和自主学习的方式.◇教学重难点◇【教学重点】了解点、线、面、体是组成几何图形的基本元素,认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】探索点、线、面运动后形成的几何图形.◇教学过程◇一、情境导入如图是一个长方体,它有几个面?面和面相交的地方形成了几条棱?棱和棱相交成几个顶点?二、合作探究探究点1从静态角度认识点、线、面、体典例1如图所示的几何体是由几个面围成的?面与面相交成几条线?它们是直的还是曲的?[解析] 从图中可以看出该几何体由4个面组成,4个面相交成6条线,有2条是曲的.圆柱由 面围成,它有 个底面,是平的,有 个侧面,是曲的,底面与侧面相交形成的线有 条,是 (填“直的”或“曲的”). [答案] 3 2 1 两 曲的探究点2 从动态角度认识点、线、面、体典例2 将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为 ()[解析] 圆柱是由一长方形绕其一边长旋转而成的;圆锥是由一直角三角形绕其直角边旋转而成的;C 中该几何体是由直角梯形绕其下底旋转而成的;D 中该几何体是由直角三角形绕其斜边旋转而成的. [答案] D如图所示的图形绕虚线旋转一周,所形成的几何体是 ( )[答案] B 三、板书设计点、线、面、体点、线、面、体{定义关系{静态关系动态关系◇教学反思◇本节课在学生已有的数学知识基础上,由学生自己观察、发现、探究从对点的认识到对线、面、体的进一步认识,使学生经历运用图形描述现实世界的过程,进一步发展学生的抽象思维能力.4.2直线、射线、线段第1课时直线、射线、线段的概念◇教学目标◇【知识与技能】理解直线、射线、线段的概念及它们的联系与区别,掌握它们的表示方法.【过程与方法】能在现实情境中,进行抽象的数学思考,提高抽象概括能力.【情感、态度与价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】理解直线、射线、线段的概念、表示方法及它们的联系与区别.【教学难点】直线、射线、线段的表示方法;实现文字、图形、符号三种语言的相互转化.◇教学过程◇一、情境导入我们在小学已经学过线段、射线和直线,你能说说它们的区别和联系吗?二、合作探究探究点1探究直线的性质典例1下列语句中正确的个数是 ()①延长直线AB;②延长射线OA;③在线段AB的延长线上取一点C;④延长线段BA至C,使AC=AB.A.1个B.2个C.3个D.4个[答案] B探究点2线段在生活中的应用典例2我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州——宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印制的不同种类的火车票为()A.6种B.15种C.20种D.30种[解析]车票需要考虑往返情况,故有2(1+2+3+4+5)=30.[答案] D乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要制定种不同的票价.[答案]10三、板书设计直线、射线、线段的概念直线、射线、线段{直线:无端点,无长度射线:一端点,无长度线段:两端点,有长度◇教学反思◇本节课是学生学习几何图形知识的基础,这堂课需要掌握的知识点多,而且比较抽象,教师在教学时要体现新课程的三维目标,并在有效地利用学生已有的旧知来引导学生学习新知.第2课时线段的比较◇教学目标◇【知识与技能】1.了解尺规作图的概念,会用尺规作图作一条线段等于已知线段;了解度量线段的两种方法,对线段进行大小比较.2.理解线段中点的概念,利用和、差、倍、分关系计算线段的长度.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.◇教学重难点◇【教学重点】线段的大小比较,利用和、差、倍、分关系计算线段的长度.【教学难点】线段的等分点表示方法及运用.◇教学过程◇一、情境导入小明和小华在比身高,以下是他们的对话:小明:“我身高1.5 m.”小华:“我身高1.53 m,比你高3 cm.”怎样比较两条线段的长短呢?你能从比身高上受到一些启发吗?二、合作探究探究点1尺规作图典例1如图,已知线段a,b,c(a>b),用圆规和直尺画线段,使它等于a-b+2c.[解析]如图所示:线段AE=a-b+2c.探究点2探索比较线段长短的方法典例2A,B,C三点在同一直线上,线段AB=5 cm,BC=4 cm,那么线段AC的长度是()A.1 cmB.9 cmC.1 cm或9 cmD.以上答案都不对[解析]第一种情况:C点在AB之间上,故AC=AB-BC=1 cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9 cm.[答案] C三、板书设计线段的比较线段的长短比较{度量法叠合法◇教学反思◇教师要尝试让学生自主学习,优化课堂数学的反馈与评价,通过评价激发学生的求知欲,坚定学生学习的自信心.第3课时线段的性质◇教学目标◇【知识与技能】1.掌握“两点之间,线段最短”的性质,并能熟练应用;2.理解两点的距离,并能计算线段中两点的距离.【过程与方法】经历画图的数学活动过程,提高学生的动手操作与实践能力.【情感、态度价值观】体验通过实验获得数学猜想,得到直线性质的过程.◇教学重难点◇【教学重点】掌握“两点之间,线段最短”的性质及应用.【教学难点】两点的距离定义及计算.◇教学过程◇一、情境导入如图,从A地到B地有四条道路,除它们外能否再修一条从A地到B地的最短道路?如果能,请你联系以前所学的知识,在图上画出最短路线.二、合作探究探究点1探究线段性质典例1如图所示,设A,B,C,D为4个村庄,现在需要在四个村庄中间建一个自来水中心,请你确定一个点,使这4个村庄的居民到该中心的距离之和最小.[解析]如图,连接AC,BD交于O点,此时距离之和AC+BD为最小.如图所示,A,B是两个村庄,若要在河边l上修建一个水泵站往两村输水,问水泵站应修在河边的什么位置,才能使铺设的管道最短,并说明理由.[解析]如图所示,根据两点之间,线段最短,连接AB,交l于O点,则O点为水泵站位置.“两点之间,线段最短”这一定理在生活中有许多应用,例如修高速路时,隧道将路变直;铺水管时,走最短的路线等.探究点2两点间的距离典例2已知线段AB=10 cm,点C在直线AB上,试探讨下列问题:(1)是否存在一点C,使它到A,B两点的距离之和等于8 cm?并说明理由;(2)是否存在一点C,使它到A,B两点的距离之和等于10 cm?若存在,它的位置是唯一的吗?(3)当点C到A,B两点距离之和等于20 cm,试说明点C的位置,并举例说明.[解析](1)根据两点之间,线段最短,AC+BC最短距离为10 cm,故不存在合条件的点.(2)存在,这样的点不唯一,线段AB上任意一点均满足条件.(3)存在,在A、B两点外5 cm处的点均满足条件.三、板书设计线段的性质1.线段性质:两点之间线段最短2.两点的距离:连接两点间的线段的长度,叫做这两点间的距离◇教学反思◇本节课通过引导学生主动参与学习过程,探究出线段的性质,从中培养学生动手和合作交流的能力,解决生活中的数学问题是为了进一步巩固两点之间的距离的意义,渗透数形结合思想解决线段长问题,渗透分类讨论思想,训练学生思维严谨性.4.3角4.3.1角◇教学目标◇【知识与技能】1.从实例中建立角的概念,从静态和动态两方面理解角的形成,掌握角的两种定义形式;2.掌握角的四种表示方法,角的度量单位及其换算.【过程与方法】提高学生的识图的能力,学会用运动变化的观点看问题.【情感、态度与价值观】保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值.◇教学重难点◇【教学重点】角的概念与角的表示方法.【教学难点】角的度量单位及其换算.◇教学过程◇一、情境导入时钟的时针、分针组成的形状是?二、合作探究探究点1探究角的定义及表示方法典例1看图解答下列问题:(1)以A为顶点共有几个角?如何表示?(2)以D为顶点共有几个角?如何表示?(3)图中能用一个大写字母表示的角有几个?分别是哪些角?∠BAC能用∠A表示吗?为什么?(4)图中共有几个角?[解析](1)以A为顶点共有3个角,分别是∠3,∠4,∠BAC.(2)以D为顶点共有8个角,分别是∠5,∠6,∠BDA,∠7,∠EDC,∠8,∠ADG,∠BDG.(3)能用一个大写字母表示的角有2个,分别是∠B,∠C;∠BAC不能用∠A表示,因为以A为顶点的角不止一个角.(4)图中共有17个角.探究点2角的度量典例2(1)填空:①57.18°=度分秒;②17°31'48″=度.(2)解答:38°15'与38.15°相等吗?如不等,谁大?[解析](1)①571048②17.53(2)因为38.15°=38°9',38°9'<38°15',所以38°15'大.(1)36.33°可化为()A.36°30'3″B.36°33'C.36°30'30″D.36°19'48″(2)15°24'36″=°.[答案](1)D(2)15.41°【技巧点拨】用度、分、秒表示的角度和用度表示的角度的相互转化的过程正好相反:大单位化小单位乘以进率;而小单位化大单位要除以进率.三、板书设计角角{角的概念角的表示方法度、分、秒的换算◇教学反思◇通过本节课的学习,学生做到了以下三个方面:首先,理解角的定义并掌握角的四种表示方法.其次,能够熟练进行度、分、秒的换算,为接下来角的和差运算打下良好的基础.最后,形成严谨的学习态度.4.3.2角的比较与运算◇教学目标◇【知识与技能】1.掌握角的大小比较方法和角的和差运算;2.理解角平分线的定义及表示方法并能在实际情景中应用.【过程与方法】经历比较角的大小、用量角器画角平分线、用折纸法确定角平分线的过程,积累活动经验,培养动手操作能力.【情感、态度与价值观】让学生认识到用新知识构建新意义的过程,增强学生学习数学的愿望和信心,培养学生爱思考,善于交流的良好的学习习惯.◇教学重难点◇【教学重点】理解角平分线的定义.【教学难点】角平分线的定义、表示及应用.◇教学过程◇一、情境导入前面我们已经学习了比较两条线段的方法,那么怎样比较两个角的大小呢?二、合作探究探究点1角的大小比较典例1如图,射线OC,OD分别在直角∠AOB的内部,外部,则下列各式正确的是()A.∠AOB<∠BOCB.∠AOB=∠CODC.∠AOB<∠AODD.∠BOC>∠DOC[解析]∠BOC在∠AOB的内部,所以∠AOB>∠BOC,A错误;∠AOB与∠COD无重叠的边,∠AOB在∠AOD的内部,所以∠AOB<∠AOD,C正确;同理可得D错误.[答案] C探究点2探究角的和差运算典例2计算:(1)65°53'26″+37°14'53″;(2)106°27'30″-98°25'42″;(3)23°25'24″×4;(4)102°48'21″÷3.[解析](1)65°53'26″+37°14'53″=102°8'19″.(2)106°27'30″-98°25'42″=8°1'48″.(3)23°25'24″×4=93°41'36″.(4)102°48'21″÷3=34°16'7″.计算:(1)45°4'+2°58'=;(2)180°-72°55'=;(3)108°×5=;(4)180°26'÷5=.[答案](1)48°2'(2)107°5'(3)540°(4)36°5'12″探究点3探究角平分线的定义及表示典例3如图,OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,如果∠AOE =130°,求∠BOD 的度数.[解析] 因为OB 是∠AOC 的平分线,OD 是∠EOC 的平分线,所以∠COB =12∠AOC ,∠COD =12∠COE ,所以∠BOD =∠COB +∠COD =12(∠AOC +∠COE )=12∠AOE =65°.三、板书设计角的比较与运算角的比较与运算{角的大小比较角的和差运算角平分线的定义及相关计算◇教学反思◇在讲授知识的过程中必须对旧的知识进行适当的复习,使学生能对角的知识有一个更深的记忆.在角的形象比较中,要努力引导学生的思维方向.重叠法是一个难点,但此法比较适用于实际中的比较.对于角度的计算要设计各个类型的教学.4.3.3余角和补角◇教学目标◇【知识与技能】1.掌握余角、补角的定义、性质及应用;2.理解方位角的意义,会画方位角.【过程与方法】经历余角、补角性质的推导和应用过程,初步掌握图形语言与符号语言之间的相互转化,进一步提高识图能力,发展空间观念.【情感、态度与价值观】通过互余、互补性质的学习过程,培养善于观察、独立思考、合作交流的良好学习习惯.◇教学重难点◇【教学重点】方位角的辨析与应用.【教学难点】余角、补角的性质及应用.◇教学过程◇一、情境导入知识回顾(1)叙述直角、平角的概念.(2)画出直角、平角的图形.二、合作探究探究点1探究余角、补角的性质典例1点A,O,B在一直线上,射线OD,OE分别平分∠AOC和∠BOC.(1)图中互余的角有对;(2)∠3的补角是.[解析](1)由已知,∠1=∠2,∠3=∠4,且∠2+∠4=90°,所以互余的角有:∠1与∠3,∠1与∠4,∠2与∠3,∠2与∠4共4对;(2)∠3的补角是∠AOE.[答案](1)4(2)∠AOE探究点2角的计算还多1°,求这个角.典例2一个角的补角与这个角的余角的和是平角的34×180+1,解得[解析]设这个角为x°,则它的余角为(90-x)°,补角为(180-x)°,则(90-x+180-x)=34x=67.答:这个角为67°.,则这个角的度数是.一个角的补角与它的余角的2倍的差是平角的13[答案]60°探究点3方位角典例3如图,O点是学校所在位置,A村位于学校南偏东42°方向,B村位于学校北偏东25°方向,C村位于学校北偏西65°方向,在B村和C村间的公路OE(射线)平分∠BOC.(1)求∠AOE的度数;(2)公路OE上的车站D相对于学校O的方位是什么?(以正北、正南方向为基准)[解析](1)因为A村位于学校南偏东42°方向,所以∠1=42°,则∠2=48°.因为C村位于学校北偏西65°方向,所以∠COM=65°.因为B村位于学校北偏东25°方向,所以∠4=25°,所以∠BOC=90°.因为OE(射线)平分∠BOC,所以∠COE=45°,∠EOM==20°,所以∠AOE=20°+90°+48°=158°.(2)由(1)可得∠EOM=20°,则车站D相对于学校O的方位是北偏西20°.三、板书设计余角和补角余角和补角{余角、补角的性质余角、补角的计算方位角◇教学反思◇对于七年级学生来说,他们在生活中已有一定的确定位置的经验,方位角的概念、方位角的表示是学生在小学就有所了解的,但根据题意画出方位角以及运用方位角的知识确定点的方位是学生不熟悉的.。
新人教版七年级上册数学第4章-图形认识初步全章教案
第四章图形认识初步多姿多彩的图形§几何图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体. 2、过程与方法!(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观(1).形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程)1.创设情境,导入新课.(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里.引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗(2)用幻灯片展示一些实物图片并引导学生观察.从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.<(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.}3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗(4)下图中实物的形状对应哪些立体图形把相应的实物与图形用线连起来#4.小结这节课你有什么收获5.作业设计课本第123页习题第1、2题;第125页习题第7、8题。
人教版七年级数学上册第四章《几何图形初步》教案
(二)直线、射线、线段
1、基本概念
直线射线线 段
图形
端点个数无一个两个
表示法直线a
直线AB(BA)射线AB线段a
线段AB(BA)
作法叙述作直线AB;
作直线a作射线AB作线段a;
作线段AB;
连接AB
延长叙述不能延长反向延 长射线AB延长线段AB;
你能再举出一些常见的图形吗?
明确目标,开展自主学习
(2)所有的锐角:________________
(3)与∠CDA互补的角:_______________
4、如图:AOC= + __
BOC= BOD-
= AOC-
5、如图, BC=4cm,BD=7cm,且D是AC的中点,则AC=________
6.已知点A、B、C三个点在同一条直线上,若线段AB=8,BC=5,则线段AC=_________
36°56′+18°14′=____;108°- 56°23′=________;
27°17′×5 =____;15°20′÷6 =____(精确到分)
2、60°=____平角;直角=______度;周角=______度。
3、如图,∠ACB = 90°,∠CDA = 90°,写出图中
(1)所有的线段:_______________;
(三)角
1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):
3、角的度量单位及换算
4、角的分类
∠β锐角直角钝角平角周角
范围0<∠β<90°∠β=90°90°<∠β<180°∠β=180°∠β=360°
5、角的比较方法
(1)度量法
(2)叠合法
2022年人教版七年级数学上册第四章几何图形初步教案 直线、射线、线段(第1课时)
第四章几何图形初步4.2 直线、射线、线段第1课时一、教学目标【知识与技能】1.知道直线的两个基本特征,会用两种方法表示一条直线.2.知道点和直线的两种位置关系,会按照语句画出点和直线位置关系的图形.3.知道两条直线相交及交点的意义,会按照语句画出直线相交的图形.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度与价值观】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】射线,线段的概念及表示法.【教学难点】射线的表示法和直线,射线,线段之间的区别与联系.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规、铅笔。
六、教学过程(一)导入新课同学们,你们注意过吗,建筑工人在砌墙时经常会在墙的两头分别固定两根木桩,然后在木桩之间拉一条细绳,沿着细绳砌砖.这样做有什么道理呢?(出示课件2)(二)探索新知1.师生互动,探究直线、线段、射线的概念教师问1:过一点O可以画几条直线?过两点A,B可以画几条直线?(出示课件4)学生回答:过一点可以画无数条直线;过两点只能画一条直线.教师讲解:经过两点有一条直线,并且只有一条直线.简述为:两点确定一条直线.教师问2:如果你想将一根木条固定在墙上并使其不能转动,至少需要几个钉子?你知道这样做的依据是什么吗?学生回答:至少需要两个钉子;依据;两点确定一条直线。
教师问3:如图,有哪些方法可以表示下列直线?(出示课件9)师生共同探究:我们可以用一条直线上的两点来表示这条直线.譬如,直线上一点是点C,直线上另一点是点E,这条直线可以记作直线CE或者直线EC.需要强调的是,点必须用大写字母表示,所以这里的A、B都是大写字母.教师问4:表示直线还有第二种方法.如何表示呢?师生共同解答如下:在这条直线的旁边写上小写字母m,这条直线可以记作直线m。
人教版七年级数学上册第四章几何图形初步教案
第四章几何图形初步4.1 几何图形4.1.1立体图形与平面图形第1课时认识几何图形01 教学目标1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.知道什么是立体图形和平面图形,能够认识立体图形和平面图形.02 预习反馈阅读教材P114~116,完成下列内容.1.几何图形包括平面图形和立体图形.2.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,这样的几何图形叫做平面图形.3.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,这样的几何图形叫做立体图形.03 名校讲坛知识点1认识平面图形例1(教材P115“思考”)图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来.解:答案见图中连线.【跟踪训练1】(《名校课堂》4.1.1第1课时习题)请写出图中的立体图形的名称.(1) (2) (3) (4)(1)圆柱;(2)三棱柱;(3)三棱锥;(4)圆锥.知识点2认识平面图形例2(教材P116“思考”) 如图,下列各图中包含哪些简单平面图形?请再举出一些平面图形的例子.解:第①个图形包含长方形、五角星;第②个图形包含圆;第③个图形包含正方形、长方形、三角形、圆;第④个图形包含正方形、三角形;第⑤个图形包含长方形、正方形、三角形;第⑥个图形包含圆、长方形、正方形、梯形.举例:【跟踪训练2】(《名校课堂》4.1.1第1课时习题)下图中包含哪些简单的平面图形?解:图中包含圆、正方形、长方形、三角形、平行四边形.04 巩固训练1.下面几种几何图形中,属于平面图形的是(A)①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥2.下面的几何体中,属于棱柱的有(C)A.1个B.2个C.3个D.4个3.如图是一座房子的平面图,组成这幅图的几何图形有(C)A.三角形、长方形B.三角形、正方形、长方形C.三角形、正方形、长方形、梯形D.正方形、长方形、梯形第3题图第4题图4.如图所示,电镀螺杆呈现出了两个几何体的组合,则这两个几何体分别是圆柱体,六棱柱.5.观察图中的立体图形,分别写出它们的名称.,球) ,圆锥) ,正方体) ,圆柱体) ,长方体)05 课堂小结1.知道常见的立体图形,平面图形.2.生活中很多图案都由简单的几何图形构成,我们也有能力设计美观、有意义的图案.第2课时展开、折叠与从不同方向观察立体图形01 教学目标1.能够识别常见立体图形从不同方向看到的图形并能够正确的画出它们.2.能够识别常见立体图形的平面展开图.02 预习反馈阅读教材P117~118,思完成列内容.1.从三个方向看立体图形包括哪三种?解:从三个方向看立体图形:从正面看,从左面看,从上面看.2.什么是立体图形的展开图?解:将立体图形的表面适当剪开,展开成平面图形,这样的平面图形为立体图形的展开图.03 名校讲坛知识点1从不同方向观察立体图形例1(教材P117“探究”)如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?解:从正面看从左面看从上面看【跟踪训练1】(《名校课堂》 4.1.1第2课时习题)下列基本几何体中,从正面、上面、左面观察都是相同图形的是(C)A.圆柱B.三棱柱C.球D.长方体知识点2立体图形的展开与折叠例2(教材P118“探究”)你还记得长方体和圆柱的展开图吗?下图是一些立体图形的展开图,用它们能围成什么样的立体图形?把它们画在一张硬纸片上,剪下来,折叠、粘贴,看看得到的图形和你想象的是否相同.解:第一个图形能围成正方体;第二个图形能围成圆柱(含上、下底面);第三个图形能围成三棱柱(含上、下底面);第四个图形能围成圆锥(含底面);第五个图形能围成四棱柱(或长方体).【跟踪训练2】(《名校课堂》4.1.1第2课时习题)下列图形中,不可以作为一个正方体的展开图的是(C)A B C D04 巩固训练1.如图是书桌上放的一本书,则从上面看得到的平面图形是(A)A B C D2.在下面的四个几何体中,从左面和正面看得到的图形不相同的几何体是(B)A B C D3.下面形状的四张纸板,按图中线经过折叠可以围成一个三棱柱的是(C)A B C D4.一个正方体的每个面都有一个汉字,其展开图如图所示,那么在该正方体中,和“值”字相对的字是(A)A.记B.观C.心D.间5.请分别指出与图中表面展开图相应的立体图形的名称.(1) (2) (3) (4)解:(1)三棱柱.(2)圆柱.(3)四棱锥.(4)圆锥.05 课堂小结1.知道常见立体图形从三个方向看得到的图形.2.学会简单几何体(如棱柱、正方体等)的平面展开图,知道按不同的方式展开会得到不同的展开图.3.学会动手实践,与同学合作.4.不是所有立体图形都有平面展开图.4.1.2点、线、面、体01 教学目标1.了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面.2.了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.3.激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.02 预习反馈阅读教材P119~120,完成下列问题.1.几何图形都是由点、线、面、体组成的,点是构成图形的基本元素.2.体是由面组成,面与面相交成线,线与线相交成点.3.点没有大小之分,线没有粗细之分.03 名校讲坛知识点1点、线、面、体例1(《名校课堂》4.1.2习题)如图所示的是一个棱柱,请问:(1)这个棱柱由几个面围成?各面的交线有几条?它们是直的还是曲的?(2)这个棱柱的底面和侧面各是什么形状?(3)该棱柱有几个顶点?解:(1)这个棱柱由5个面围成,各面的交线有9条,它们是直的.(2)棱柱的底面是三角形,侧面是长方形.(3)有6个顶点.【跟踪训练1】给出下列结论:①圆柱由3个面围成,这3个面都是平的;②圆锥由2个面围成,这2个面中,1个面是平的,1个面是曲的;③球仅由1个面围成,这个面是曲的;④长方体由6个面围成,这6个面都是平的.其中正确的是(B)A.①②③B.②③④C.①③④D.①②④知识点2由平面图形旋转而成的立体图形例2(教材P120练习T2)如图,上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.解:答案见图中连线.【跟踪训练2】下列图形绕着它的一边所在的直线旋转一周,能得到圆柱的是(B)A.三角形B.长方形C.五边形D.半圆04 巩固训练1.笔尖在纸上写字说明点动成线;车轮旋转时看起来像个圆面,这说明线动成面;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明面动成体.2.如图的几何体有4个面,6条棱,4个顶点.3.围成下面这些立体图形的各个面中,哪些面是平的,哪些面是曲的?解:球的表面、圆柱和圆锥的侧面都是曲面.其余的面都是平面.4.用第一行的平面图形绕轴旋转一周,便得到第二行中的某个几何体,用线连一连.解:如图.05 课堂小结1.多姿多彩的图形是由点、线、面、体组成.点是构成图形的基本元素.2.点无大小,线有直线和曲线,面有平面和曲面.3.体由面围成,面与面相交成线,线与线相交成点.4.点动成线,线动成面,面动成体.4.2 直线、射线、线段第1课时直线、射线、线段01 教学目标1.能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,能用几何语言描述直线性质.2.会用字母表示直线、射线、线段,会根据语言描述画出图形.掌握三者的联系和区别.3.培养学生的基本画图能力.02 预习反馈阅读教材P125~126,回忆直线、射线、线段的一些基本概念和基本知识,并认真总结下列问题,体会直线的公理.1.直线、射线、线段的联系与区别.图形表示方法端点个数延伸方向线段线段AB或线段a 两个不向任何一方延伸射线射线AB或射线a 一个向一方无限延伸直线直线AB或直线a 0 向两方无限延伸2.直线公理:两点确定一条直线.【点拨】(1)表示线段、射线、直线的时候,都要在字母前注明“线段”“射线”“直线”.(2)用两个大写字母表示直线或线段时,两个字母可以交换位置,表示射线的两个大写字母不能交换位置,必须把端点字母放在前面.03 名校讲坛例1(教材P126练习T2)按下列语句画出图形:(1)直线EF经过点C;(2)点A在直线l外;(3)经过点O的三条线段a,b,c;(4)线段AB,CD相交于点B.解:(1)如图所示:(2)如图所示:(3)如图所示:(4)如图所示:【跟踪训练】(《名校课堂》4.2第1课时习题)下列表示方法正确的是(B)A.①②B.②④C.③④D.①④04 巩固训练1.下列语句:①点a在直线l上;②直线的一半就是射线;③延长直线AB到C;④射线OA与射线AO是同一条射线. 其中正确的语句有(A)A.0句B.1句C.2句 D.3句2.如图给出的直线、射线、线段,根据各自的性质,能相交的是(D)A B C D3.下列事实可以用“经过两点有且只有一条直线”来说明的是(B)A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线4.线段有2个端点,射线有1个端点,直线没有端点.5.如图,图中共有6条线段,8条射线.6.平面上有三点A、B、C,①连接其中任意两点,共可得线段3条;②经过任意两点画直线,共可得到直线1条或3条.7.如图,已知平面上四点A、B、C、D.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于点E;(4)连接AC、BD相交于点F.解:略05 课堂小结1.掌握直线、射线、线段的表示方法.2.理解直线、射线、线段的联系和区别.3.知道直线的性质.4.经过两点有一条直线,并且只有一条直线.第2课时比较线段的长短及线段的性质01 教学目标1.掌握线段比较的两种方法,会表示线段的和差.2.理解线段中点的意义及表示方法,理解两点的距离的意义.3.会运用“两点之间,线段最短”的性质解决生活中的实际问题.02 预习反馈阅读教材P126~129,完成下列内容.1.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.2.点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.3.两点的所有连线中,线段最短,简单说成:两点之间,线段最短.4.连接两点间的线段的长度,叫做这两点的距离.03 名校讲坛知识点1 线段的中点及等分点例1(《名校课堂》4.2第2课时习题)如图,点C 是线段AB 上的点,点D 是线段BC 的中点.(1)若AB =10,AC =6,求CD 的长;(2)若AC =30,BD =10,求AB 的长.解:(1)因为点D 是线段BC 的中点,所以CD =12BC. 因为AB =10,AC =6,所以BC =AB -AC =10-6=4.所以CD =12BC =2. (2)因为点D 是线段BC 的中点,所以BC =2BD.因为BD =10,所以BC =2×10=20.因为AB =AC +BC ,所以AB =30+20=50.【跟踪训练1】 如图,在直线上顺次取A ,B ,C 三点,使AB =4 cm ,BC =3 cm ,如果O 是线段AC 的中点,求线段OB 的长度.解:因为AB =4 cm ,BC =3 cm ,所以AC =AB +BC =7 cm.因为点O 是线段AC 的中点,所以OC =12AC =3.5 cm. 所以OB =OC -BC =3.5-3=0.5(cm).知识点2 线段的性质例2 如图,这是A 、B 两地之间的公路,在公路工程改造计划时,为使A 、B 两地行程最短,应如何设计线路?在图中画出,并说明你的理由.解:如图所示,连接AB.理由:两点的所有连线中,线段最短.【跟踪训练2】如图,平面上有A、B、C、D四个村庄,为解决当地缺水问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水池P的位置,使它与4个村庄的距离之和最小.解:连接AC、BD的交点即为P点的位置,如图.04 巩固训练1.下列说法正确的是(D)A.连接两点的线段就叫做两点间的距离B.在所有连接两点的线中直线一定最短C.线段AB就是表示点A到点B的距离D.线段AB的长度是点A到点B的距离2.如图,下列关系式中与图不符合的式子是(C)A.AD-CD=AB+BC B.AC-BC=AD-BDC.AC-BC=AC+BD D.AD-AC=BD-BC3.为比较两条线段AB与CD的大小,小明将点A与点C重合使两条线段在一条直线上,点B在CD的延长线上,则(B)A.AB<CD B.AB>CDC.AB=CD D.以上都有可能4.如图,从A到B有4条路径,最短的路径是③,理由是(D)A.因为③是直的B.两点确定一条直线C.两点间距离的定义D.两点之间线段最短5.已知线段AB=6,若C为AB的中点,则AC=3.6.若线段AB=5 cm,BC=2 cm,且A,B,C三点在同一条直线上,则点C可能在AB上,也可能在AB的延长线上,则AC的长等于3__cm或7__cm.7.如图,已知线段a和b,且a>b,用直尺和圆规作一条线段,使它等于2a+b.解:图略.8.已知,如图,AB =16 cm ,C 是AB 上一点,且AC =10 cm ,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.解:因为D 是AC 的中点,AC =10 cm ,所以DC =12AC =5 cm. 又因为AB =16 cm ,所以BC =AB -AC =6 cm.因为E 是BC 的中点,所以CE =12BC =3 cm. 所以DE =DC +CE =8 cm.05 课堂小结线段⎩⎪⎨⎪⎧线段的大小比较⎩⎨⎧度量法叠合法线段的中点线段的性质:两点之间,线段最短4.3 角4.3.1 角01 教学目标1.理解角的两种定义,识别角的符号.2.知道角的几种表示方法,并能够正确表示.3.掌握角的度量单位及度、分、秒的进位制,能够熟练的进行转换.02 预习反馈阅读教材P132,知道角的定义、角的表示方法、周角、平角,完成下列内容.1.角是由两条具有公共端点的射线组成的图形,角也可以看作一条射线绕端点旋转而形成的图形.2.如果一个角的终边旋转到与始边成一条直线时,所成的角叫做平角.继续旋转,当终边旋转到与始边重合时,所成的角叫做周角.3.角的表示方法:角用“∠”表示,读做“角”.(1)用三个大写字母表示;(2)用表示角的顶点的字母表示;(3)用一个数字或一个希腊字母(α、β、γ、θ)表示.(4)度、分、秒是角的基本度量单位:1°的角等分成60份就是1′的角;1′的角等分成60份就是1″的角.角度制:1°=60′,1′=(160)°,1′=60″,1″=(160)′,1°=3__600″.【点拨】度、分、秒是60进制的.03 名校讲坛知识点1角的定义和表示方法例1(《名校课堂》 4.3.1习题)如图,∠1,∠2表示的角可分别用大写字母表示为∠ABC,∠BCN;∠A也可表示为∠BAC,还可以表示为∠MAN.【跟踪训练1】如图,能用∠1,∠ACB ,∠C三种方法表示同一个角的是(C)A B C D知识点2角的度量例2(教材P134练习T2)(1)35°等于多少分?等于多少秒?(2)38°15′和38.15°相等吗?如不相等,哪一个大?解:(1)35°=35×60=2 100分=2 100×60=126 000秒.(2)38.15°=38.15×60=2 289分.38°15′=38×60+15=2 295分.所以38°15′>38.15°.【跟踪训练2】已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是(A)A.∠1=∠3 B.∠1=∠2C.∠1<∠2 D.∠2=∠304 巩固训练1.下列关于角的说法正确的个数是(A)①角是由两条射线组成的图形;②角的边越长,角越大;③在角一边的延长线上取一点D ;④角可以看作由一条射线绕着它的端点旋转而形成的图形.A .1B .2 C.3 D .42.若∠A =20°20′,∠B =20.20°,∠C =20.5°,则下面的结论正确的是(D)A .∠A =∠B B.∠A =∠CC .∠C =∠B D.∠A ,∠B ,∠C 两两不等3.如图,能用一个字母表示的角有∠B ,用三个大写字母表示∠1为∠MCB ,∠2为∠AMC.第3题图第4题图4.如图,A ,O ,D 三点在一条直线上,写出图中小于平角的角:∠AOC ,∠AOE ,∠COE ,∠C OD ,∠EOD .5.如图是一个时钟的钟面,下午1点30分,时钟的分针与时针所夹的角等于135°.6.如图:(1)以B 为顶点的角有几个?把它们表示出来;(2)指出以射线BA 为边的角;(3)以D 为顶点,DC 为一边的锐角有几个?分别表示出来.解:(1)以B 为顶点的角有3个,分别是∠ABD 、∠ABC 、∠DBC.(2)以射线BA 为边的角有2个,分别是∠ABD 和∠ABC.(3)以D 为顶点,DC 为一边的锐角有1个,是∠CDE.7.如图,在∠AOB 的内部,从顶点O 引出1条射线,此图中共有几个角?如果引出2条?引出3条呢?依此规律,引出n 条可得到多少个角?解:从顶点O 引出1条射线,图中共有3个角;引出2条射线,图中共有6个角;引出3条射线,图中共有10个角;引出n 条射线,可得到(n +1)(n +2)2个角. 05 课堂小结角⎩⎪⎨⎪⎧角的概念角的表示方法角的度量与换算4.3.2 角的比较与运算01 教学目标1.会用量角器度量角,并会比较两个角的大小.2.会根据图形判断角的和差倍分.3.记住角平分线的定义.02 预习反馈阅读教材P134~136,完成下列内容.1.比较两个角的大小,我们可以用量角器量出角的度数,然后比较它们的大小,也可以把它们叠合在一起比较它们的大小,这两种方法分别叫度量法和叠合法.2.角平分线的定义:从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如:如图,若OB 是∠AOC 的平分线,则∠AOC =2∠AOB =2∠BOC ,∠AOB =∠BOC =12∠AOC . 03 名校讲坛知识点1 角的大小比较例1(教材补充例题)如图,点A ,O ,B 在一条直线上,OD 平分∠AOB ,回答下列问题:(1)试比较∠AOB 、∠AOD 、∠AOE 、∠AOC 的大小;(2)找出图中的三个等量关系.解:(1)因为点A ,O ,B 在一条直线上,所以∠AOB 是平角.因为OD 平分∠AOB ,所以∠AOD =12∠AOB =90°. 由图知∠AOC 是钝角、∠AOD 是直角、∠AOE 是锐角,所以∠AOB >∠AOC >∠AOD >∠AOE.(2)等量关系有:∠COE =∠EOD +∠COD ,∠AOB =2∠AOD =∠AOE +∠BOE ,∠DOB =∠COD +∠BOC.【点拨】 角的大小比较的方法:(1)如果已知角是锐角、直角、周角、平角、钝角,就可以直接由它们之间的关系比较大小;(2)可以通过量角器量角度来比较大小;(3)可以根据各角在同一图中的位置关系比较角的大小.【跟踪训练1】在∠AOB的内部任取一点C,作射线OC,则一定存在(A)A.∠AOB>∠AOC B.∠AOB<∠BOCC.∠BOC>∠AOC D.∠AOC>∠BOC知识点2角度的运算例2计算:(1)90°-36°12′15″(2)32°17′53″+42°42′7″(3)25°12′35″×5;(4)53°÷6.解:(1)90°-36°12′15″=53°47′45″.(2)32°17′53″+42°42′7″=74°59′60″=75°.(3)25°12′35″×5=125°60′175″=126°2′55″.(4)53°÷6=8°50′.【点拨】度、分、秒的运算方法:(1)在进行角度的加法运算时,先算秒,再算分,最后算度,满60″时,把60″化为1′,满60′时,把60′化为1°;(2)进行角度的减法时,不够减,借1°化为60′,借1′化为60″;(3)关于度、分、秒的乘法运算,把度、分、秒分别乘乘数,满60″时,把60″化为1′,满60′时,把60′化为1°;(4)关于度、分、秒的除法运算,把度的余数化成分或把分的余数化为秒后再进行除法运算.知识点3与角平分线有关的计算例3如图,OC是∠AOD的平分线,OE是∠DOB的平分线.(1)如果∠AOB=130°,那么∠COE是多少度?(2)在(1)的条件下,如果∠COD=20°,那么∠BOE是多少度?解:(1)因为OC 是∠AOD 的平分线,所以∠COD =12∠AOD. 因为OE 是∠BOD 的平分线,所以∠DOE =12∠BOD. 所以∠COD +∠DOE =12∠AOD +12∠BOD =12(∠AOD +∠BOD). 因为∠COD +∠DOE =∠COE ,∠AOD +∠BOD =∠AOB ,所以∠COE =12∠AOB. 因为∠AOB =130゚,所以∠COE =65°.(2)因为∠COE =65°,∠COD =20°,所以∠DOE =∠COE -∠COD =45°.又因为OE 平分∠DOB ,所以∠BOE =∠DOE =45°.【跟踪训练2】如图所示,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,则∠MON 等于135°.04 巩固训练1.射线OC 在∠AOB 内部,下列四个选项不能判定OC 是∠AOB 的平分线的是(C)A .∠AOB =2∠AOC B .∠AOC =12∠AOB C .∠AOC +∠BOC =∠AOB D .∠AOC =∠BOC2.如图,在横线上填上适当的角:(1)∠BOD =∠BOC +∠COD =∠AOD -∠AOB ;(2)∠AOB =∠AOC -∠COB =∠AOD -∠BOD ;(3)∠BOC =∠AOC -∠AOB =∠AOD -∠COD -∠AOB.第2题图第3题图3.如图,若OC 平分∠AOB ,∠AOB =60°,则∠1=30°.4.已知∠AOB =80°,∠AOC =40°,则∠BOC 的度数为120°或40°.5.计算:(1)15°37′+42°51′; (2)90°-68°17′50″;(3)5°26′×3; (4)178°53′÷5.解:(1)原式=58°28′.(2)原式=21°42′10″.(3)原式=16°18′.(4)原式=35°46′36″.6.如图,已知O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,求∠BOD 的度数.解:因为O 是直线CD 上的点,OA 平分∠BOC ,∠AOC =35°,所以∠BOC =2∠AOC =70°.所以∠BOD =180°-∠BOC =110°.05 课堂小结 角的大小比较和运算⎩⎪⎨⎪⎧角的大小比较⎩⎨⎧度量法叠合法角的运算角平分线4.3.3 余角和补角01 教学目标 1.了解两个角互余或互补的意义.2.掌握同角或等角的余角相等,同角或等角的补角相等.3.理解方位角的概念,会用角描述方向,解决实际问题.02 预习反馈阅读教材P137~138,完成下列内容.1.一般地,如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角.几何语言表示为:如果∠1+∠2=90°,那么∠1与∠2互为余角.2.一般地,如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.几何语言表示为:如果∠1+∠2=180°,那么∠1与∠2互为补角.3.性质:等角(同角)的余角相等,等角(同角)的补角相等.4.判断题:(1)90度的角叫余角,180度的角叫补角.(×)(2)若∠1+∠2+∠3=90°,则∠1,∠2,∠3互为余角.(×)(3)如果一个角有补角,那么这个角一定是钝角.(×)(4)互补的两个角不可能相等.(×)(5)钝角没有余角,但一定有补角.(√)(6)互余的两个角一定都是锐角,两个锐角一定互余.(×)(7)如果∠A=25°,∠B=75°,那么∠A与∠B互为余角.(×)(8)如果∠A=x°,∠B=(90-x)°,那么∠A与∠B互余.(√)03 名校讲坛知识点1余角、补角例1如图,点O在直线AB上,OD平分∠COA,OE平分∠COB.(1)∠COB+∠AOC=180°,∠EOD=90°;(2)图中互余的角有4对,互补的角有5对.【跟踪训练】1.若∠1+∠2=180°,∠2+∠3=180°,则∠1=∠3.理由是同角的补角相等.2.已知一个角的补角是这个角的余角的3倍,求这个角的度数.解:设这个角是x,则这个角的补角为180°-x,余角为90°-x,所以3(90°-x)=180°-x,整理,得2x=90°,解得x=45°,即这个角的度数为45°.知识点2方位角例2如图1,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上.同时,在它北偏东40°、南偏西10°、西北(即北偏西45°)方向上又分别发现了客轮B、货轮C和海岛D.仿照表示灯塔A方位的方法,画出表示客轮B、货轮C和海岛D方向的射线.图1 图2画法:以点O为顶点,表示正北方向的射线为角的一边,画40°的角,使它的另一边OB落在东与北之间.射线OB的方向就是北偏东40°(图2),即客轮B所在的方向.请你在图2上画出表示货轮C和海岛D方向的射线.解:略.【跟踪训练】3.(《名校课堂》习题)如图,根据点A,B,C,D,E在图中的位置填空.(1)射线OA表示东北方向;(2)射线OB表示北偏西30°;(3)射线OC表示南偏西60°;(4)射线OD表示正南方向;(5)射线OE表示南偏东50°.04 巩固训练1.若∠1=40°,则∠1的余角的度数是(C)A.20°B.40°C.50°D.60°2.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为(C)A.69°B.111°C.141°D.159°3.下列结论正确的个数为(C)①互余且相等的两个角是45°;②锐角的补角是钝角;③锐角没有余角,钝角没有补角;④两个钝角不可能互补.A.1 B.2 C.3 D.44.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°.(2)∠DOC=12∠BOC=35°,∠AOE=12∠AOC=25°.∠DOE与∠AOB互补.理由:∠DOE=∠DOC+∠COE=35°+25°=60°,∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补.05 课堂小结1.余角、补角的概念:(1)和为90°的两个角互为余角;(2)和为180°的两个角互为补角.2.余角、补角的性质:(1)等角(同角)的余角相等;(2)等角(同角)的补角相等.。
人教版七年级数学上册同步备课《第四章》 4.1.2 从不同方向看立体图形与立体图形的展开图(教学设计
4.1.2 从不同方向看立体图形与立体图形的展开图教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.1.2 从不同方向看立体图形与立体图形的展开图,内容包括:能识别简单物体从正面看、从左面看、从上面看的平面图形;知道一些简单的立体图形的展开图.2.内容解析本节课是人教版数学七年级上册第四章第一节第二课时的内容,在认识了常见的平面图形和立体图形以后,教材安排了从不同方向看立体图形和展开立体图形的内容,目的是让学生在这样的活动中体验立体图形和平面图形之间的相互转化,从而初步建立空间观念,培养空间想象力.在本节中,学生只要能从一组图形中辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形以及他们的简单组合得到的平面图形即可,对由视图想象出立体图形本章不作要求.基于以上分析,确定本节课的教学重点为:认识几何体与众不同方向看它所得的平面图形之间的关系;了解一些简单的立体图形和它的展开图之间的关系.二、目标和目标解析1.目标(1)通过自主阅读教材中的内容,了解正数与负数是从实际需要中产生的,培养学生的抽象能力.(2)结合实际生活情境中的具体数字,理解正数、负数及0的意义,掌握正数、负数的表示方法.(3)会用正数、负数表示具有相反意义的量,培养学生的抽象能力和应用意识.2.目标解析使学生能从一组图形辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形(直棱柱、圆柱、圆锥、球) 以及它们的简单组合得到的平面图形;在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉;能从不同方向看立体图形,并用平面图形描述从不同方向看一些立体图形得到的平面图形;形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.三、教学问题诊断分析学生通过前一学段的学习已经认识了部分常见的几何图形,具有了一定的认知基础。
七年级数学上册 第四章图形认识初步教案 人教新课标版
第四章图形认识初步单元要点分析教学内容本章主要内容有多姿多彩的图形,直线、射线、线段,角的度量,角的比较与运算.教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的数学活动过程,认识一些常见的几何体及点、线、面的一些特征和性质;通过裁剪、展开、制作及从不同方向看等活动,在几何体与平面图形的转换过程中发展学生的空间观念;通过实例,在丰富的现实情境中,使学生经历对简单的平面图形直线、射线、线段与角的研究的数学活动过程,通过动手画图、线段的大小比较及角的度量、比较与运算等活动过程,理解并掌握这些图形的一些简单性质,感受丰富多彩的图形世界,并为今后进一步学习平面几何知识奠定基础.三维目标1.知识与技能(1)经历探究物体的形状与几何体的关系过程,•能从现实物体中抽象得出立体图形.(2)经历立体图形与平面图形的转换过程,•掌握一些简单的立体图形与平面图形的互相转化的技能.(3)经历对点、线、面、体关系的研究的数学活动过程,•建立平面图形与立体图形的联系.(4)经历画图等数学活动过程,掌握直线和角的一些简单性质;掌握直线、•射线、线段和角的表示方法;掌握角的度量方法.(5)在现实情境中,探索两条线段、两个角的比较方法及比较的结果,•探索线段与线段之间、角与角之间的数量关系.(6)认识线段的等分点,角的平分线、角角和补角的概念.2.过程与方法(1)会用掌握的几何体知识描述现实物体的形状,•在探索立体图形与平面图形的关系中,发展空间观念.(2)通过对本章的学习,学会在具体的现实情境中,抽象概括出数学原理.(3)学会在解决问题的过程中,进行合理的想象,进行简单的、•有条理的思考.(4)能在现实物体中,发现立体图形和平面图形.(5)能在具体的现实情境中,发现并提出一些数学问题.(6)通过小组合作、动手操作、实验验证的方法解决数学问题.3.情感态度与价值观.(1)积极参与数学活动的过程,敢于面对数学活动中的困难,•并能独立地或通过小组合作的方法,运用数学知识克服困难,解决问题.(2)通过对本章的学习,培养和提高抽象概括能力和空间想象能力,•体验数学活动中探索性和创造性,感受丰富多彩的图形世界.重、难点与关键1.重点:(1)掌握立体图形与平面图形的关系,学会它们之间的相互转化;•初步建立空间观念.(2)掌握两点确定一条直线的性质,掌握两点之间线段最短的性质,•会用符号表示直线、射线和线段,会比较线段的大小,会画一条线段等于已知线段,了解两点距离的定义.(3)会用符号表示一个角,学会度量一个角,掌握余角和补角的性质,•理解角的平分线的定义,会比较两个角的大小,确定几个角的运算关系.2.难点:(1)立体图形与平面图形之间的互相转化.(2)从现实情境中,抽象概括出图形的性质,•用数学语言对这些性质进行描述.3.关键:(1)从实际出发,用直观的形式,让学生感受图形的丰富多彩,•激发学生学习的兴趣.(2)结合具体问题,让学生感受到学习空间与图形知识的重要性和必要性.课时划分4.1 多姿多彩的图形 2课时4.2 直线、射线、线段 2课时4.3 角 4课时数学活动 1课时回顾与思考 2课时4.1.1 几何图形教学目标:1.知识与技能(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.过程与方法(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.(2)经历问题解决的过程,提高解决问题的能力.3.情感态度与价值观(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.教学过程一、引入新课1.打开多媒体,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.四、作业布置1.课本第123页至第124页习题4.1第1~6题.五、板书设计:4.1.1 几何图形一、问题导入二、例题三、课堂练习六、课后反思:4.1.2 点、线、面、体教学目标1.知识与技能(1)了解几何体、平面和曲面的意义,•能正确判定围成几何体的面是平面还是曲面;(2)了解几何图形构成的基本元素是点、线、面、体及其关系,•能正确判定由点、线、面、体经过运动变化形成的简单的几何图形.2.过程与方法经历探索点、线、面、体的关系的数学活动过程,提高空间想像能力和抽象思维能力,发展运动变化的观念.3.情感态度与价值观经历本节课的数学活动过程,养成主动探索、求知的学习态度,激发学生对数学的好奇心和求知欲,体验数学活动中小组合作的重要性.重、难点与关键1.重点:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、•体之间的关系是重点.2.难点:探索点、线、面、体运动变化后形成的图形是难点.3.关键:让学生在现实情境中,进行探究学习是本节课的关键.教具准备长方体、圆柱体模型,投影机和幻灯片.教学过程一、引入新课1.出示一个长方体模型,请同学们认真观察.2.提出问题:这个长方体有几个面?面和面相交成了几条线?•线和线相交成几个点?二、新授1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,•评价并修正自己的结论. 2.各小组学生公布自己小组讨论后的结论.教师活动:在探索问题解决方法和小组讨论过程中,教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价.3.几何体的概念.(1)长方体是一个几何体,我们学过的正方体、圆柱、圆锥、球、棱柱、•棱锥等都是几何体.(2)提出问题:观察长方体和圆柱体,说出围成这两个几何体的面有哪些?•这些面有什么区别?4.给出面的分类.通过对上面问题的解决,给出面的分类:平面和曲面.教师活动:板书:平面和曲面.提出问题:(1)用幻灯机放映图片,让学生观察.(2)提出问题:通过观察,你得出什么结论?(3)进行小组讨论中,综合小组中每个同学意见,得出观察图片发现的结论.(4)在小组活动中,教师指导学生看课本第121~122页内容,•得出观察图片能发现的结论.师生互动:请学生给出观察结论:点动成线,线动成面,面动成体.教师对学生的回答给出正面评价,并把学生观察结论板书.注:在探索问题解决的方法活动过程中,教师应充分调动学生的想像能力,鼓励学生进行深入探究.思考课后思考题,让学生进行小组讨论,教师给以必要的指导,然后得出合理的解释.5.点、线、面、体与几何图形关系.指导学生阅读课本第122页内容,总结出点、线、面、体与几何图形的关系.三、课堂小结1.本节课我们主要探究了几何体的形成:由平面和曲成围成一个几何体.2.点、线、面、体之间的关系.3.体验了在数学活动过程中小组合作的重要性.四、作业布置1.课本第125~126页习题4.1第7~12、13、14题.2.选用课时作业设计.五、板书设计:4.2 直线、射线、线段(1)教学目标1.知识与技能(1)能在现实情境中,经历画图的数学活动过程,理解并掌握直线的性质,•能用几何语言描述直线性质.(2)会用字母表示直线、射线、线段,会根据语言描述画出图形.2.过程与方法(1)能在现实情境中,进行抽象的数学思考,提高抽象概括能力.(2)经历画图的数学活动过程,提高学生的动手操作与实践能力.3.情感态度与价值观体验通过实验获得数学猜想,得到直线性质的过程.重、难点与关键1.重点:理解并掌握直线性质,•会用字母表示图形和根据语言描述画出图形.2.难点:根据语言描述画出图形.3.关键:理解画图语言,建立图形与语言之间的联系.教具准备一把直尺、木工墨盒.教学过程一、引入新课1.出示墨盒,请一个同学演示使用墨盒弹出一条直线的过程.2.提出问题:为什么这样拉出线是直的?其关键是什么?二、新授学生活动:学生经过小组交流后,总结出结论:两点确定一条直线.其关键在于先固定墨盒中墨线上两个点.教师活动:参与学生活动,并请学生思考:这个现象符合数学上的什么原理?1.探究直线性质.学生活动:完成课本第128页探究课题,学生动手按要求画图,•并进行小组交流,总结出课题结论.教师活动:巡视小组活动情况,并给出课题:板书直线、射线、线段,直线的性质.2.寻找生活中直线性质应用的例子.想一想:日常生活中有哪些现象是应用的直线的性质?学生回答(只要答案合理,教师都给以肯定的评价).3.直线、射线、线段的表示方法.学生活动:阅读课本第129页有关内容.教师活动:讲解直线、射线、线段的表示方法.三、巩固练习1.提出问题:下图中,有几条直线?几条射线?几条线段?•说出它们的名称.DAC B注:此题在学生完成后,教师再行讲评,并对学生的完成情况作出适当、肯定的评价.2.根据语句画出图形.例:读下列语句,并按照语句画出图形:(1)直线L经过A、B两点,点B在点A的左边.(2)直线AB、CD都经过点O,点E不在直线AB上,但在直线CD上.注:此例让学生独立完成后在小组中交流和自我评价,然后教师进行讲评.3.完成课本第129页练习.注:此练习请四个同学进行板书,教师巡视学生完成的情况给予评价,•并请学生作出自我评价.四、课堂小结1.提问:直线的性质是什么?如何表示直线、射线、线段?2.本节课还学习了根据语句画图,•知道了每一个语句都对应着一个几何图形.五、作业布置1.课本第132页至第134页习题3.2第1、2、3、4、10题.2.选用课时作业设计.六、板书设计:4.2 直线、射线、线段(2)教学目标1.知识与技能(1)会用尺规画一条线段等于已知线段,会比较两条线段的长短.(2)理解线段等分点的意义,理解两点间距离的意义,借助现实的情境,•了解“两点之间,线段最短”的线段性质.2.过程与方法培养学生的动手操作能力,提高学生的抽象概括能力,能从实际问题中抽象出数学问题,初步学会数学的建模方法.3.情感态度与价值观积极参与实验数学活动中,体会数学是解决实际问题的重要工具,通过对解决问题过程的反思,懂得知识源于生活并用于生活.重、难点与关键1.重点:画一条线段等于已知线段,比较两条线段的长短是一个重点,•在现实情境中,了解线段的性质“两点之间,线段最短”是另一个重点.2.难点:画一条线段等于已知线段的尺规作图方法,•正确比较两条线段长短是难点. 3.关键:学生积极参与画图等动手操作的数学活动中,通过小组交流,•获取数学信息是学好本节课知识的关键.教具准备直尺、圆规、刻度尺、三根木棒(两根等长)、多媒体设备.教学过程一、引入新课1.提出问题:有一根长木棒,如何从它上面截下一段,•使截下的木棒等于另一根木棒的长?教师活动:出示长短不同的两根木棒.学生活动:小组讨论,探索方法,总结出问题的解决方法.注:教师对学生给出的解决方法,应进行可操作性评价,对好的方法给予鼓励和肯定,以激发学生的学习兴趣.2.提出数学问题:上面的问题,可以转化为如下一个数学问题:已知线段a,画一条线段等于已知线段a.二、新授学生活动:独立思考,动手画图,小组讨论交流,总结出问题的解决方法.教师活动:参与学生小组讨论,指导学生探索问题的解决方法.1.用刻度尺量出已知线段长,•在画出的射线(或直线)上量出相同长度的一条线段.2.用尺规截取.(按课本第130页所讲方法) 教师活动:打开电脑,演示尺规作图过程. 板书:画一条线段等于已知线段.3.思考课本第130页的问题,从中得出数学问题:如何比较两条线段的长短? 4.探索比较两条线段长短的方法:学生活动:小组交流,总结出比较方法.教师活动:评价学生总结出的比较方法,并用教具请一个学生进行演示,板书:比较线段的长短.(1)用刻度尺分别测量出它们的长度进行比较.(2)用把一条线段移到另一条线段上,端点对齐的方法进行比较. 5.线段长短的比较结果.学生活动:通过上面的讨论,总结出线段比较结果.教师活动:用教具(三根木棒)演示线段比较方法,评价学生得出的比较结果,再用多媒体演示两条线段的比较方法和比较结果.板书:(1)AB<CD (2)AB>CD (3)AB=CD(D)(C)BA(D)(C)BA(D)(C)BA6.线段的等分点. (1)线段的中点:教师活动:用多媒体演示,取线段AB 上一点M ,移动线段AM 到线段MB 上,当AM•与MB 完全重合时,线段AM=MB ,此时点M 就叫做线段AB 的中点. 板书: AM=MB=12AB (2)线段的等分点:通过类比线段的中点,可得出线段的三等分点、四等分点.板书:NMB AN MPB AAM=MN=NB=13AB AM=MN=NP=PB=14AB 7.探索线段的性质.(1)完成课本第132页思考题. (2)提出问题:由这个思考题,你能得出线段的性质?学生活动:联想以前所学知识及生活常识,经过小组讨论,得出直线的性质:两点之间,线段最短.教师活动:板书:线段的性质,并用几何语言完整归纳出线段性质. (3)举例说明线段的性质在生活中的应用.(4)在直线L上顺次取三点A、B、C,使得AB=4cm,BC=3cm,如果O是线段AC的中点,求线段OB的长度.注:这两个问题先请学生在小组中独立完成后进行交流,教师再作评价.8.两点的距离.教师活动:讲解两点的距离定义.三、课堂小结1.本节课学会了画一条线段等于已知线段,学会了比较线段的长短.2.本节课学习了线段的性质和两点间距离的定义.3.懂得了知识来源于生活并用于生活的道理.四、作业布置1.课本第133页至第114页习题4.2第5、6、7、8、9、11题.2.选用课时作业设计.五、板书设计:4.3.1 角的度量(1)教学目标1.知识与技能(1)在现实情境中,认识角是一种基本的几何图形,理解角的概念,•学会角的表示方法.(2)认识角的度量单位度、分、秒,会进行简单的换算和角度计算.2.过程与方法提高学生的识图能力,学会用运动变化的观点看问题.3.情感态度与价值观经历在现实情境中认识角的数学活动过程,感受图形世界的丰富多彩,增强审美意识,激发学生的求知欲.重、难点与关键1.重点:会用不同的方法表示一个角,会进行角度的换算是重点.2.难点:角的表示、角度的换算是难点.3.关键:学会观察图形是正确表示一个角的关键.教具准备多媒体设备、量角器、时钟、四棱锥.教学过程一、引入新课1.观察时钟、四棱锥.2.提出问题:时钟的时针与分针,棱锥相交的两条棱,都给我们什么样的平面图形的形象?请把它画出来.学生活动:进行独立思考、画图,然后观看教师的演示过程.教师活动:用多媒体演示角的形成过程:一条射线OA绕端点O旋转到OB的位置,得到的平面图形──角.板书:角.二、新授1.角的概念.(1)提出问题:从上面活动过程中,你能知道角是由什么图形组成的吗?学生回答:两条射线.(2)角的定义:有公共端点的两条射线组成的图形叫做角,•这个公共端点是角的顶点,这两条射线是角的两条边.(如下图)2.角的表示.学生活动:阅读课本第137页有关内容,了解角的表示方法.教师活动:讲解角的不同表示方法,着重讲解一个顶点有多个角的表示方法.请用适当的方法表示下图中的每个角.学生活动:请一个学生板书练习,其余学生独立练习.教师活动:巡视学生练习情况,给予评价,对多数同学作出肯定评价.学生活动:阅读课本第138页思考题,进行小组交流,获得问题结论.教师活动:参与学生交流,并用多媒体演示平角、周角的形成过程,启发引导学生对问题进行探索,并对学生讨论结果进行评价.答案:分别形成平角、周角.3.角的度量.教师活动:指导学生阅读课本P138页内容,讲解角的度量方法及度、分、秒的换算.板书:1周角=_____°,1平角=_____°,1°=____′,1′=____″.学生活动:思考并完成上面的填空.例:把一个周角7等分,每一份是多少度的角(精确到分)?三、巩固练习1.课本第139页练习.2.计算:(1)48°39′+67°41′;(2)90°-78°19′40″;(3)22°30′×8;(4)176°52′÷3.此:此练习由学生独立完成,在练习过程中充分地进行小组交流以解决练习过程中的疑难,教师巡视过程中对个别学习困难的学生及时给以答疑解惑,并请学生板书后再讲评.3.想一想:时钟在5点15分时,时钟的时针与分针所成的角是多少度?师生互动:观察时钟在5点15分时,时针与分针所处位置,教师引导、启发学生先从时针在分针转动到15分时,分针转过的角度与时针转过的角度的关系,并请学生在小组中进行交流,得出答案..四、课堂小结师生互动,完成本节课的小结:1.什么是角?组成角的图形是什么?如何表示一个角?2.本节课还复习了平面、周角?怎样得到这两种角?3.角的度量单位是什么?它们是如何换算的?五、作业布置1.课本第144页习题4.3第1、2、3、4题.六、板书设计:4.3.1 角的度量(2)教学目标1.知识与技能会用量角器测一个角的大小,能借助三角板画出30°,45°,60°,90•°等特殊角及用量角器画出一个给定度数的角,会用尺规作图画一个角等于已知角,熟悉并理解画法语言.2.过程与方法经历本节课的画一个角等于已知角,测量角的大小数学活动,提高学生的动手操作能力.3.情感态度与价值观经历本节课的数学活动过程,尝试从不同角度寻求解决问题的方法,体会不同方法间的差异,能够在测量画图等操作活动过程中发挥主动作用.重、难点与关键1.重点:会用量角器测量角的大小,会用尺规画一个角等于已知角.2.难点:用尺规画一个角等于已知角.3.关键:引导学生积极参与画图的数学活动过程,才能熟练掌握画图步骤.教具准备一副三角板、量角器、多媒体设备、投影仪.教学过程一、引入新课1.投影一个五角星的图案,请学生观察图形.(如右图)2.提出问题:你知道五角星的五个角是多少度吗?你是怎样知道的?二、新授学生活动:在小组中交流测量角的大小方法,可借助三角板估计角的度数,或用量角器量出角的度数.教师活动:巡视收集学生测量的方法,并请学生说明不同方法得出的结论有何不同,对学生的活动过程给予积极评价.结论:每个角均为36°.1.画一个角等于已知角.(1)提出问题:你能用量角器画一个角等于36°吗?能画一个角等于108°吗?学生活动:两个学生板书演示画图过程,其余同学独立完成.教师活动:巡视并指导学生画图.(2)提出问题:你能用三角板画出30°,45°,60°,90°等特殊角吗?学生活动:动手画图.教师活动:指导个别学生画图,评价学生的画图结果.2.用尺规画一个角等于已知角.探究:已知∠AOB,画一个角等于这个角.学生活动:先进行独立思考,阅读课本第139页探究内容,动手画图,•小组交流解决疑难,根据教师的演示,进行自我评价.教师活动:启发引导学生画图,并巡视指导学生画图,然后板书演示画图过程(画图过程中指导学生阅读课本中的画法),指导学生进行自我评价:用量角器量∠A′O′B′与∠AOB,看一看度数是否相等.三、巩固练习任意画一个钝角∠AOB,用尺规画一个角等于∠AOB.师生互动:教师在黑板上画钝角∠AOB,•请一个学生板书画图教师巡视指导其余学生画图.请同学们用三角板画出(1)15°;(2)75°;(3)105°;(4)120°;(5)135°的角.教师活动:在学生活动过程中,教师对学生进行必要的指导,如15°看成45•°~30°,用两块三角板画出15°的角.四、课堂小结本节课我们通过测量角的度数,复习了角的度量方法,学会了用不同的工具画角.提出问题:请同学们说出你所知道的测量角的大小的仪器.(同学互相补充)教师活动:打开多媒体播放有关用仪器测量角的活动片子,让学生认识测量角的仪器.五、作业布置1.课本第145页至第146页习题4.3第6、11、14题.2.选用课时作业设计.六、板书设计:。
人教版数学七年级上册第四章 图形认识初步复习 教学设计
课题:第四章图形认识初步复习教案(人教版数学七年级第四章)二、基础知识回顾(夯实根基,打好基础)1、几何图形包括图形和图形。
图中的一些物体与我们学过的哪些图形相类似?把相应的物体和图形连接起来2、如图,这是一幅电热水壶的正面看的图,则从上面看的图是()(第3题图) A. B. C. D.3、一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.微D.山4、直线、射线、线段的比较名称直线射线线段图形表示方法延伸性端点个数作图叙述5、经过两点有条直线,并且只有。
在墙上钉一根木条需_______个钉子,其根据是________.6、线段上的一点把线段分成的线段,这点叫做线段的中点。
7、两点的所有连线中,最短,即为,最短。
如右图,把河道由弯曲改直,根据__________说明1、指导学生完成任务,并在学生回答完之后,总结一下常见的柱体和椎体2、3、提醒学生三视图的看法,让学生自主完成4、让学生独立完成,在学生回答后,注意对学生的辅导。
1、学生连线2、学生思考并根据从不同的方向看,可以很容易地完成选择3、学生观察,判断,并回答自己的答案。
4、学生可以讨论完成5、6、7、8、9、 10、学生自主完成二、通过生活中的现象发现数学问题可以激发学生的求知欲和兴趣。
2、让学生进一步感受体和形的关系,图形是从物体中抽象出来的。
3、复习正方体的表面展开图的形式4、复习“三线”,正确认识它们的区别和联系。
主要是复习直建设和谐微山第3题图这六个展开图的特点是这三个展开图的特点是这两个展开图的特点是2、如图、线段AB=28cm,C是AB上一点,且AC=18cm,O是AB的中点,求线段OC的长度。
3、如图,已知∠AOB=90°,∠AOC是60°,OD平分∠BOC,OE平分∠AOC。
求∠DOE。
师与学生共同探讨。
规律为:141型231型阶梯型教师让学生先自主思考,可以到学生中知道完成。
人教版七年级数学上册《 第四章 几何图形初步 》教案
人教版七年级数学上册《第四章几何图形初步》教案一. 教材分析《第四章几何图形初步》是人教版七年级数学上册的一章重要内容,主要介绍了平面几何图形的性质和分类,包括线段、角、三角形、四边形等基本几何图形的性质和判定。
本章内容是学生进一步学习几何的基础,对于培养学生的空间观念和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于图形的认知也有一定的了解。
但是,学生对于几何图形的性质和分类还不够清晰,对于证明和推理的能力还有待提高。
因此,在教学过程中,需要注重引导学生从直观到抽象的思维过程,培养学生的空间想象能力和逻辑推理能力。
三. 教学目标1.了解和掌握基本几何图形的性质和分类。
2.能够运用几何知识解决一些实际问题。
3.培养学生的空间观念和逻辑思维能力。
四. 教学重难点1.重点:基本几何图形的性质和分类。
2.难点:对于几何图形的证明和推理。
五. 教学方法1.情境教学法:通过实际问题,引导学生思考和探索,激发学生的学习兴趣。
2.直观教学法:通过实物模型和图形,帮助学生直观地理解几何图形的性质。
3.推理教学法:引导学生运用逻辑推理的方法,证明几何图形的性质。
六. 教学准备1.准备相关的实物模型和图形,如线段、角、三角形等。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如测量线段长度、计算角度等,引导学生思考和探索,激发学生的学习兴趣。
2.呈现(10分钟)教师通过实物模型和图形,向学生介绍线段、角、三角形等基本几何图形的性质。
引导学生通过观察和操作,发现和总结几何图形的性质。
3.操练(10分钟)教师给出一些练习题,让学生运用所学的几何知识进行解答。
教师可以通过多媒体教学设备,展示学生的解答过程,并进行讲解和指导。
4.巩固(10分钟)教师通过一些实际问题,让学生运用所学的几何知识进行解决。
教师可以引导学生进行小组讨论和交流,帮助学生巩固所学的知识。
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
科目
授课时间节次
--年—月—日(星期——)第—节
指导教师
授课班级、授课课时
授课题目
(包括教材及章节名称)
2024秋七年级数学上册第四章几何图形初步4.1几何图形1认识几何图形教学设计(新版)新人教版
教学内容分析
核心素养目标
本节课的核心素养目标主要有以下几点:
1.逻辑推理:通过学习几何图形的基本概念和性质,培养学生运用逻辑推理能力,能够从已知信息推出未知信息。
2.空间想象:培养学生空间想象力,能够直观地认识和理解几何图形,并在脑海中形成清晰的图像。
3.几何直观:培养学生运用几何直观能力,能够运用图形语言表达问题和解决问题的能力。
-线:由无数个点组成,有长度没有宽度
-面:由无数个线组成,有长度和宽度
-体:由无数个面组成,有长度、宽度和高度
2.几何图形的性质和特点
- ①几何图形具有稳定性
- ②几何图形具有有序性
- ③几何图形具有简洁性
3.几何图形在实际生活中的应用
- ①几何图形在建筑设计中的应用
- ②几何图形在艺术创作中的应用
-讨论法:学生分组讨论几何图形的问题,促进学生之间的交流和合作。
-案例研究:分析实际问题中的几何图形,培养学生运用几何知识解决问题的能力。
-项目导向学习:学生分组完成几何图形相关的项目,提高学生的自主学习和综合运用知识的能力。
2.设计具体的教学活动:
-角色扮演:学生扮演几何图形的角色,通过情景模拟的方式,加深对几何图形特点的理解。
-《几何图形的故事》:通过讲述几何图形的历史和发展,激发学生对几何图形学习的兴趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(此文档为word格式,下载后您可任意编辑修改!)第四章图形认识初步1、内容结构分析《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“图形认识初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.2、教学重点与难点:教学重点:⑴数学与我们的成长密切相关;⑵数学伴随着人类的进步与发展,人类离不开数学;⑶人人都能学会数学,激发学生学习数学的兴趣;⑷将实际问题转化为数学问题;⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.教学难点:⑴体会数学与我们的成长密切相关;⑵学生剪图拼图的具体操作;⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.3、教学目标:⑴知识与技能:直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.⑵过程与方法:通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.⑶情感、态度与价值观:在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.4、课时分配4.1多姿多彩的图形 4课时4.2直线、射线、线段 3课时4.3角 2课时4.4课题学习 2课时小结 3课时单元测试与评讲 3课时课题: 4.1.1 立体图形与平面图形(1)教学目标1、通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2、能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.3、从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动,主动与他人合作交流的意识.教学重点:识别简单几何体.教学难点:从具体事物中抽象出几何图形教学过程设计:教学反思:课题: 4.1.1 立体图形与平面图形(2)教学目标:1、经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2、能画出从不同方向看一些基本几何体(直棱柱、国柱、国锥、球)以及它们的简单组合得到的平面图形.3、在立体图形与平面图形相互转换的过程中,初步建立空间观念,发展几何直觉.4、激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.教学难点:画出从正面、左面、上面看正方体及简单组合体的平面图.教学重点:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.教学过程:教学过程设计:教学反思:课题:4.1.1 立体形与平面图形(3)教学目标:1、能直观认识立体图形和展开图,了解研究立体图形方法.2、通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉.3、通过与其他同学交流,活动,初步形成积极参与数学活动,主动与他人合作交流的意识.4、通过课堂教学活动,体验数学与日常生活是密切相关的,认识到许多数学研究的原型都源于生活实际,反过来,众多的实际问题也可以借助数学方法来解决.教学重点:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图.教学难点:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形.教学准备:准备一些硬纸板,大小一样的长方体纸盒.教学过程设计:教学反思:4.1.2点、线、面、体(4)教学目标:知识技能:1.进一步认识点、线、面、体的概念.2.明确点、线、面、体之间的关系.数学思考:1.通过学习点、线、面、体之间的关系,进一步发展概括能力和形象思维的能力.2.通过学习点、线、面、体之间的关系,发展从不同角度体现事物之间联系的能力.解决问题:通过对点、线、面、体的认识,使我们经历用图形描述现实世界的过程,用它们来解释生活中的现象.情感目标:通过联系现实世界中的各种常见的几何体及情景,认识到数学与现实生活的密切联系.在各种数学活动中发展学生与他人相互交流、合作的意识.教学重点:点、线、面、体之间的关系.教学难点:点动成线、线动成面、面动成体的活动.教学过程设计:教学反思:4.2直线、射线、线段(第1课时)教学目的:1.了解射线,线段和线段的延长线的有关概念及射线,线段,直线的区别和联系;2.掌握射线,线段的表示法,会用尺子正确画射线,线段的延长线.教学重点:射线,线段的概念及表示法;教学难点:射线的表示法和直线,射线,线段之间的区别与联系.教学过程设计:教学反思:4.2线段的比较与画法(第2课时)教学目标:1.使学生在理解线段概念的基础上,了解线段的长度可以用正数来表示,因而线段可以度量、比较大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.使学生学会线段的两种比较方法及表示法.3.通过本课的教学,进一步培养学生的动手能力、观察能力.教学重点和难点对线段与数之间的关系的认识,掌握线段比较的正确方法,是本节的重点,也是难点.教学过程设计:教学反思:4.2 直线、射线、线段(3)教学目标:知识技能:1、掌握线段的比较方法.2、掌握线段中点的形与数量的关系3、掌握线段的性质及理解两点间距离的概念.数学思考:1、通过学习线段的比较方法,培养学生的抽象概括能力.2、通过学习线段的中点的形与数的关系,培养学生的数形结合的能力.解决问题:通过学习线段的性质及其在生活中的应用,培养学生学数学,用数学的意识. 情感态度:感受数学在生活中应用的准确性和必要性.从而体会数学这门学科的重要性. 教学重点:1.两点确定一条直线;2.线段中点的形与数量关系的结合.教学难点:线段中点的形与数量关系的结合教学过程设计:教学反思:课题: 4.3 角的度量(1)教学目标:1、通过丰富的实例,帮助学生理解角的形成,建立几何中角的概念,掌握角的两种定义形式和四种表示方法.2、通过在图片、实例中找角,培养学生的观察、探究、抽象、概括的能力以及把实际问题转化为数学问题的能力.3、通过实际操作,体会角在实际生活中的应用,培养学生积极参与数学学习活动的热情和对数学的好奇心与求知欲.教学重点:角的概念与角的表示方法.知识难点:正确理解角的概念.教学准备:教师准备:圆规、量角器、三角尺、时钟、红领巾、中国地图、多媒体课件.学生准备:圆规、量角器、三角尺.教学过程设计:教学反思:课题: 4.3 角的比较与运算(2)教学目标:1、会比较角的大小,能估计一个角的大小.在操作活动中认识角的平分线;2、实际观察、操作,体会角的大小,培养学生的观察思维能力;3、角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.教学重点:角的大小比较方法知识难点:从图形中观察角的和、差关系教学准备:圆规、量角器、三角尺、角的纸片数张教学过程设计:请大家讨论一下,用什么方法可以比较这两个角的大小?二、探究新知:、分组讨论角的比较方法.在学生讨论过程中,教师深入学教学反思:4.4 课题学习设计制作长方体形状的包装纸盒(共2课时)教学目标:知识技能:利用立体图形的平面展开图制作包装纸盒.数学思考:通过问题的解决使学生进一步理解立体图形和相应平面图形之间的转化关系.解决问题:通过包装纸盒的制作,使学生掌握制作长方体纸盒的一般方法,能够独立制作出相关的包装盒.情感态度:在解决问题的过程中,使学生提高对合作意识的认识,培养合作精神.教学重点:如何把立体图形转化为平面图形,制作包装纸盒.教学难点:如何把立体图形转化为平面图形.教学过程设计:教学反思:第四章图形认识初步单元复习(共3课时)教学目标:1.知识与技能直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.2.过程与方法经历相关内容的归纳、总结,巩固对图形的直观认识,了解图形的分割和组合,探索学习空间与图形的方法;通过实验、操作,提高对图形的认识和动手能力.3.情感、态度与价值观在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.教学重点:立体图形与平面图形的互相转化,及一些重要的概念、性质等.解决方法:通过观察、测量、折叠、模型制作与团设计等活动,发展空间观念,自然就加强了对概念及其性质的理解和掌握.教学难点:建立和发展空间观念;对图形的表示方法,对几何语言的认识与运用.解决办法:通过多实践操作;加强对几何语言的运用.教学方法:引导式.教具准备:投影仪.教学安排:3课时.教学过程设计:图3—162 图3-163图3-165图3-166图3-186图3-187教学反思:。