初一数学第一章教案
七年级数学上册第一章《丰富的图形世界》教案
第一章丰富的图形世界1.在具体的情境中,认识并能够辨别出基本的几何体.2.进一步认识点、线、面、体,感受点、线、面、体之间的关系.3.通过展开与折叠活动,了解棱柱、圆柱、圆锥的侧面展开图,认识棱柱的某些特性,能根据展开图判断和制作简单的立体模型.4.进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形,了解圆柱、圆锥的侧面展开图,能根据展开图判断立体模型.5.让学生通过对一些几何体进行切和截的过程,初步了解空间图形与截面的关系,理解截面的意义.6.能够熟练地画立方体及其简单组合体的三种形状图.1.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验.2.在动手实践制作的过程中学会与他人合作,学会交流自己的思维与方法.3.通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步发展学生的空间观念,发展几何意识和感知.4.经历“从不同方向观察物体”的活动过程,发展学生的空间观念和合理的想象.5.通过观察和动手操作,经历和体验简单组合体的三种形状图的变化的过程,培养实验操作能力,进一步发展空间观念.1.有意识地引导学生积极参与到数学活动过程中,让学生逐步学会表达自我和倾听他人,提高学生合作交流的意识和技能.2.体验数学与日常生活是密切相关的,认识到许多数学研究的原型都源于生活实际,反过来,众多的实际问题也可以借助数学方法来解决.3.通过活动体验学习数学的快乐,增强学生学习数学的求知欲和数学活动的经验,并在合作学习中获得成功的体验,增强自信心,提高学习数学的兴趣,培养学生的合作、探究精神.《丰富的图形世界》是初中数学学习领域“空间与图形”中的最基础部分.“空间与图形”学习的核心目标是发展学生的空间观念,这一章为实现这个目标打下了坚实的基础.本章从生活中最常见的立体图形入手,经历从具体到抽象,再由抽象到具体的过程.从现实世界实物的考察开始,从中抽象出简单的几何体及点、线、面的一些性质,再通过展开与折叠、切截、从不同方向看等活动,在平面图形与几何体的转换中发展学生的空间观念,最后,由立体图形转向平面图形,使学生能从生活中抽象出简单的平面图形,并能了解一些简单的性质.展开与折叠、切截、从不同方向看,是认识到事物的重要手段,在学习过程中,要亲自去展开与折叠、切截,亲自去观察、思考,并与同伴交流,从而积累有关图形的经验,发展空间观念.本章主要包括三个方面:1.基本知识——圆柱、圆锥、长方体(正方体)、棱柱等基本几何体的认识及其展开图、截面和物体形状图的基本性质.2.基本活动——观察以及各种操作活动(展开、折叠、切截、从不同方向看),及其想象、转换与推理.3.发展空间观念——从直接到抽象、从实物操作到空间想象和转换.【重点】1.认识常见几何体的基本特征.2.进一步认识点、线、面、体,了解有关点、线及某些平面图形的简单性质.3.简单几何体的展开、折叠和切截.4.能认识简单物体的从三个不同的方向看到的几何体的形状,会画立方体及简单组合体的从三个不同的方向看到的几何体的形状.【难点】1.画立方体及简单组合体的从三个不同的方向看到的几何体的形状.2.简单几何体的展开、折叠和切截.1.充分利用现实情境以及现实生活中大量存在的物体进行教学,鼓励学生从现实世界中发现图形.例如,教材中提供了与学生日常学习和生活息息相关的各种实物图片及各种典型建筑物的图片等,试图让学生从中找到相应的几何体.教学中,在充分利用好这些资源的同时,还可以展示一些其他图片或观察周围的物体,如粉笔盒、字典、水杯等,尽可能让学生从身边去发现几何体.2.强调学生的动手实践和主动参与,让他们在观察、操作、想象、交流等大量活动中,积累有关图形的经验,发展空间观念.动手操作是学生学习过程中的重要一环,在学习的开始阶段,它可以帮助学生认识图形,以后它可以用来验证学生的空间想象.因此,在学习之初,应鼓励学生先动手、后思考,然后逐步过渡到先想象、再动手.如为了让学生认识圆柱、圆锥、正方体、球等简单几何体,了解它们的特征,在教学中,可以让学生闭眼用手摸各种实物的方法猜几何体,以加深对几何体特征的理解.3.在保证基本要求的同时,应有意识地满足学生多样化的学习需求.学生的思维水平和思考问题的方式方法是存在差异的,在教学中要正确对待这种现象,让学生都有展示自己不同方法的机会,并且对学生的要求不能一概而论.如对棱柱模型的制作,不同学生可能有不同的制作方法,在正方体表面展开图的学习中,对所有学生可要求剪切,得出相应的展开图.4.充分利用现代信息技术手段,丰富学生的学习资源,生动地展示图形.有些操作活动在课堂上较难通过实际操作实现,这时可以充分利用现代技术手段,如设计动画切截圆柱、正方体等几何体会比现场操作更形象、生动.时1生活中的立体图形1.在具体情境中认识生活中常见的几类几何体,学会用准确的语言描述它们的特征,并对它们进行分类.2.认识点、线、面,理解点、线、面的相互关系.3.培养观察与概括能力、判断与分类能力以及语言表达能力.4.熟练掌握几种特殊棱柱的线和面的特点.通过引导,让学生在不断实践中学习知识,从而激发学生的学习兴趣,提高他们的学习积极性.1.通过认识生活中常见的立体图形,激发起对图形学习的好奇心和求知欲.2.初步形成积极参与数学活动、主动与他人合作交流的意识.3.感受数学与生活的密切联系,体会数学的价值.【重点】1.认识常见的几何体,并用语言描述它们的某些特征.2.认识点、线、面,初步感受点、线、面的关系.【难点】1.常见的几何体的分类以及用语言描述它们的某些特征.2.知道“面与面相交得到线、线与线相交得到点”的事实.第课时1.能够在日常生活和具体情境中感知、认识圆柱、圆锥、长方体、正方体、棱柱、球等几何体.2.能够准确地描述出各种几何体的主要特征,并且能够进行辨析.经历从现实世界中抽象出图形的过程,通过丰富的生活实例,进一步认识立体图形的形状及结构特征.1.使学生感受图形世界的丰富多彩,激发学生学习空间图形的兴趣.2.鼓励学生间交流、活动、合作,初步形成参与数学活动、主动合作的意识.【重点】认识常见的几何体,并用语言描述它们的某些特征.【难点】常见几何体的分类以及用语言描述它们的某些特征.【教师准备】多媒体课件.【学生准备】搜集常见的立体图形.导入一:大家生活在一个丰富的图形世界里,在我们的周围,你会发现很多图形,它们美化了我们生活的空间.(同时多媒体出示图片)观察图片中有没有我们所熟悉的几何体.[设计意图]通过图片的展示使学生能够在丰富多彩的现实生活中辨认出特征鲜明的几何体,意识到我们所学习的这些几何体大到建筑物、小到日常生活用品,在现实生活中广泛存在,感受到图形世界的丰富多彩,体会数学与生活的紧密联系,同时激发学生的学习兴趣.导入二:今天,老师准备了“一架直升机”,带领同学们插上梦想的翅膀去飞行,我们飞向了祖国的蓝天,飞呀、飞呀,我们飞到了一座现代化大城市的上空,翻开课本看第一章的彩图,这座城市多漂亮啊!我们在欣赏这个城市的美景时,不妨用数学的眼光观察一下,这个美丽的城市也是我们的数学世界——丰富的图形世界,你能从中发现哪些熟悉的图形?在我们生活的周围有很多这样的图形,而正是这些丰富的图形使我们生活的环境变得很美丽.同学们是未来这些城市和乡村的建设者,老师相信,通过学习第一章“丰富的图形世界”,将来用这些图形去描绘我们的城市和乡村,一定会使它们变得更美丽.接下来,我们就来认识一下生活中常见的立体图形.[设计意图]借助教材第一页彩图和生活实际经验引入新课,可以让学生一方面明白要学习的主要内容,另一方面又可以使学生明白数学和生活息息相关,同时也为下一步的学习做好铺垫.探究活动1常见的几何体(展示)这是小明书房的一角,观察图片思考下列问题:(1)在小明的书房中,哪些物体的形状与你在小学学过的几何体类似?(2)你能找出图片中与笔筒形状类似的物体吗?(3)通过对你的周边物体的观察、想象,归纳一下常见的几何体有哪些?【师生活动】学生小组讨论,教师巡视、听取意见,归纳总结.(展示)下面是一些常见的几何体.[设计意图]教师可以依据提出的问题,通过学生的回答让他们直观地感受常见的几何体,为下一步学习几何体的分类打下了基础,接着让学生举例说明生活中还有哪些物体与上述几何体类似,学生回答如“教学楼门厅里的柱子是圆柱形的”“魔方是正方体形状”“圣诞老人的帽子是圆锥形的”“足球是球形”“超市里有些牛奶的包装盒是长方体形状”“铅笔的形状是棱柱形”……此时教师总结得出七种常见的几何体.利用学生已学过的几何体给出实际例子,让学生把生活中的实物抽象成几何体,既符合学生的认知规律,又让学生对所学知识有熟悉感,进而有学习的信心和兴趣,激发学生的求知欲,同时通过这个环节让学生经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩.探究活动2 几何体的分类(1)观察几何体,根据它们的特点对它们进行分类.(2)了解几何体常见的三种分类方法.【归纳总结】分类方法一:柱体:长方体、正方体、圆柱、棱柱.锥体:圆锥、棱锥.球体:球.分类方法二:曲面组成的几何体:圆柱、圆锥、球.平面组成的几何体:长方体、正方体、棱柱、棱锥.[设计意图]先通过观察几何体的特征,展示简单的分类方法.接着让学生对七种常见几何体进行分类,提出可以根据几何体的特点给出不同的分类方式.此时小组讨论交流得出答案.学生的方法很多,教师要给予肯定,只要理由充分即可,同时教师展示两种常见的分类方法.让学生通过观察几何体的特征,进一步了解几何体,并通过小组合作培养他们的协作交流的意识.探究活动3 认识棱柱思路一请学生自学教材第2~3页,思考以下问题.(1)与笔筒形状类似的几何体称为棱柱.以六棱柱为例认识棱柱的顶点、侧棱、侧面、底面.(2)棱柱的侧棱、底面、侧面有何特点?棱柱的所有侧棱长都相等,棱柱的上、下底面的形状相同,侧面的形状都是平行四边形.(3)长方体和正方体是棱柱吗?(4)棱柱的分类有哪些?①人们通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三角形、四边形、五边形、六边形……②棱柱又分为直棱柱和斜棱柱(如下图所示).本书讨论的棱柱都是直棱柱.(1)圆柱与圆锥(2)棱柱与圆柱【归纳总结】(1)圆柱与圆锥的相同点与不同点.相同点: 底面都是圆,侧面都是曲面.不同点:①圆柱有两个大小相同的底面,而圆锥只有一个底面;②圆柱没有顶点,而圆锥有一个顶点.(2)棱柱与圆柱的相同点与不同点.相同点:都有上、下两个底面,都有侧面.不同点:①棱柱的两个底面是形状和大小完全相同的多边形,圆柱的两个底面是大小相同的圆;②棱柱的侧面是长方形,圆柱的侧面是曲面;③棱柱有顶点,圆柱没有顶点.[设计意图]先以六棱柱为例介绍棱柱的顶点、侧棱、侧面、底面;接着小组合作探索棱柱的侧棱、侧面、底面的特点;学生回答后提出问题,长方体、正方体是棱柱吗?让学生判断,从而更熟悉棱柱的特点,也为下面棱柱的命名做了铺垫.从棱柱的命名引申到棱锥的命名,进而简述了多面体.对于棱柱的分类点明即可.教学中,要注意鼓励学生按照自己的理解描述这些几何体,并适时进行点评和提升;在小组讨论活动中,要注意提醒学生倾听他人的见解,适时、合理地表述自己的观点.这一活动,促进了学生的表达与交流,从而可以更为理性地表达自己的观点,学习他人经验,同时认识到不同几何体的共性与个性,为后续学习几何体的组成提供了依据.教师以表格的形式体现出来,使学生们更容易记忆.[知识拓展] 1.圆柱、圆锥的异同点:相同点是底面都是圆,侧面都是曲面;不同点是圆柱有三个面,上、下两个面的形状完全相同,是平行的两个圆面,侧面是曲面,圆锥有两个面及一个顶点.2.圆柱和棱柱的异同点:相同点是都有互相平行、形状、大小完全相同的上、下两个面;不同点是圆柱有三个面,上、下两面都是圆,侧面是曲面,棱柱有多个面,上、下面都是多边形,侧面是平的,侧面的个数与底面的边数相等.(1)柱柱(2)观察上表,你能发现a,b,c之间有什么关系吗?请写出关系式.解:(1)表格中空白处应填18.(2)三棱柱的顶点数为:3×2=6,棱数为:3×3=9,面数为:2+3=5;四棱柱的顶点数为:4×2=8,棱数为:4×3=12,面数为:2+4=6;五棱柱的顶点数为:5×2=10,棱数为:5×3=15,面数为:2+5=7;六棱柱的顶点数为:6×2=12,棱数为:6×3=18,面数为:2+6=8.所以a+c - b=2.如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如下图所示的是一个四棱柱和一个六棱锥,它们各有12条棱.下列选项中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱〔解析〕九棱锥的侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱.A.五棱柱共15条棱,故A错误;B.六棱柱共18条棱,故B正确;C.七棱柱共21条棱,故C错误;D.八棱柱共24条棱,故D错误.故选B.1.常见的几何体:正方体、长方体、圆柱、圆锥、棱柱、棱锥、球.2.几何体的分类方法:(1)可按柱体、锥体、球体来分;(2)可按有无顶点来分;(3)可按平面、曲面来分.正确识别常见的几何体,特别注意不要混淆棱柱和棱锥,要求掌握柱体和锥体的本质特点,能正确区分.1.下列立体图形中是圆柱的为 ()解析:根据圆柱的性质,可知圆柱的两个底面都是圆形,且大小相同,选项A是圆柱,选项B是圆锥,选项C是圆台,选项D是正方体.故选A.2.长方体的面的个数是 ()A.8B.6C.5D.4解析:长方体是特殊的四棱柱,所以根据其性质可知,长方体有6个面,包括2个底面和4个侧面.故选B.3.下列说法不正确的是 ()A.圆锥和圆柱的底面都是圆B.棱锥底面边数与侧棱数相等C.棱柱的上、下底面是形状、大小相同的多边形D.长方体是四棱柱,四棱柱是长方体解析:长方体是特殊的四棱柱,四棱柱不一定都是长方体,长方体的棱与底面垂直,当四棱柱的棱与底面不垂直时就不是长方体.故选D.4.下列说法正确的是()①教科书是长方形;②教科书是长方体,也是棱柱;③教科书的各个面是长方形.A.①②B.①③C.②③D.①②③解析:教科书是立体图形,属于长方体,其各个面都是长方形.故选C.5.下面图形:①三角形;②长方形;③正方体;④圆;⑤圆锥;⑥圆柱.其中属于立体图形的是.(填序号即可)解析:根据立体图形的性质,可知立体图形都占有一定的空间,所以立体图形有③⑤⑥.故填③⑤⑥.6.生活中的物体可以抽象成立体图形,请在横线上填上相应的几何体.①足球:;②魔方:;③硬币:;④漏斗:;⑤砖块:.解析:根据生活经验和实物可得:①球;②正方体;③圆柱;④圆锥;⑤长方体.答案:①球②正方体③圆柱④圆锥⑤长方体第1课时1.常见的几何体正方体、长方体、圆柱、圆锥、棱柱、棱锥、球2.几何体的分类方法(1)可按柱体、锥体、球来分(2)可按有无顶点来分(3)可按平面、曲面来分3.认识棱柱一、教材作业【必做题】教材第4页随堂练习的1,2题.【选做题】教材第4页习题1.1的1,2,3题.二、课后作业【基础巩固】1.下列立体图形中有十四条棱的是 ()2.六棱柱的棱的个数是()A.17B.18C.19D.203.把下列立体图形的名称填在相应的括号内.4.长方体有个顶点,经过每个顶点有条棱,共有条棱.【能力提升】5.连线题:把下列立体图形与对应的图形名称用线连接起来.6.将下图中的几何体进行分类,并说明理由.【拓展探究】7.如右图所示,已知一个正方体的六个面上分别写着六个连续的整数,且每两个相对面上的两个数的和都相等,图中所看到的数是16,19和20,求这六个整数的和.【答案与解析】1.D(解析:正方体有12条棱,四棱锥有8条棱,圆柱没有棱.故选D.)2.B(解析:因为六棱柱的每个底面有6条棱,所以两个底面共12条棱,侧棱共有6条,所以六棱柱的棱的个数是12+6=18.故选B.)3.圆柱五棱锥三棱柱球(解析:根据图形的形状和性质可以直接判定,关键是明确各个立体图形的名称.)4.8312 (解析:可先画出长方体,然后根据图形作答.)5.解:如下图所示.6.解:可分为两类:一类是(1)(4)(6);另一类是(2)(3)(5).分类的依据是几何体的各面是平面还是曲面.答案不唯一,合理即可.7.解:根据题目条件可得,当六个数分别为15,16,17,18,19,20时,16和19为相对的数字,不符合题意;当六个数分别为16,17,18,19,20,21时,符合题意,所以每对相对的数字之和为37,故这六个整数的和为111.1.通过展示大量的图片,给予学生感官上的认识和感悟,能使学生较好地理解几何体.2.寻找教材以外的资源,提高搜集、处理信息的能力.3.理论与实际相结合,加深对生活中立体图形的认识和理解.1.学生虽然有了一定的识图能力,但是画图能力还很欠缺.2.本课时活动设计较多,时间较为紧张,在学生有一定的生活经验和基础时,可适当减少活动.1.活动设计要精简,必要的予以补充,形象较为明确的可以删掉.2.给予学生充分的讨论、交流的时间,使学生在提高兴趣的同时,加深对知识的理解.随堂练习(教材第4页)1.解:答案不唯一.例如,六角螺母的形状类似于棱柱;圆筒形茶叶盒类似于圆柱;某些冰淇淋的形状类似于圆锥;篮球、排球、足球的形状类似于球.2.解:第一行:5,6,9;第二行:6,8,12.习题1.1(教材第4页)1.解:五棱柱有7个面,10个顶点,15条棱.六棱柱有8个面,12个顶点,18条棱.七棱柱有9个面,14个顶点,21条棱.验证略.2.解:(1)两个底面是六边形,侧面是长方形,两个底面的形状、大小完全相同,六个侧面的形状、大小完全相同. (2)6×5×4=120(cm2).3.解:答案不唯一.若按柱体、锥体、球体划分,则(1)(2)(4)(6)(7)是一类,即柱体.(5)是锥体.(3)是球体.4.解:(1)圆柱. (2)长方体. (3)球和圆柱. (4)六棱柱.5.解:(1)圆柱. (2)圆柱. (3)圆柱和圆锥. (4)长方体和球.6.解:都有上、下两个底面,且两底面形状、大小完全相同.(答案不唯一)(1)本节课为进入初中的第一课时,要求学生经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩,并在具体情境中认识圆柱、圆锥、正方体、长方体、棱柱、球,学会用自己的语言描述它们的特征.教学中注意让学生经历从具体到抽象,再由抽象上升到具体的学习过程,并在恰当时介绍几何的由来和学习几何的主要任务:识图、作图、测图(计算)、推理,研究和掌握一些基本图形的性质.(2)学生生活在一个丰富的图形世界里,让学生从生活中寻找并识别各种几何体是进行图形认识的很好途径.(3)教材呈现了生活中的一些物体,要求学生能从中“发现”熟悉的几何体.教师可以根据当地实际,选择其他实物或图片进行教学,也可以鼓励学生列举生活中常见的几何体,引导学生回忆小学学习过的几何体的特征,鼓励学生用自己的语言描述几何体的特征.如下图所示的8个几何体.其中,几何体是柱体的序号为;几何体是锥体的序号为;几何体是球体的序号为.〔解析〕几何体是柱体的序号为①②⑤⑦⑧;几何体是锥体的序号为④⑥;几何体是球体的序号为③.〔答案〕①②⑤⑦⑧④⑥③请把下列的立体图形与它们相应的名称用线连接起来.解:如下图所示.第课时通过丰富的实例,进一步认识点、线、面,初步感受点、线、面之间的关系.进一步经历从现实世界中抽象出图形的过程,从构成图形的基本元素的角度认识常见几何体的某些特征.在对图形进行观察、操作等过程中,积累处理图形的经验,发展空间观念.【重点】认识点、线、面,初步感受点、线、面的关系.【难点】知道“面与面相交得到线、线与线相交得到点”的事实.【教师准备】多媒体课件.【学生准备】棱柱或棱锥的实物几何体.导入一:师:同学们,老师手里的这个“包装盒”可以抽象成一个什么几何体?生:它是一个六棱柱.师:六棱柱是比较常见的几何体,生活中除了六棱柱之外还有没有其他的几何体呢?生:有圆柱、球、长方体、正方体和圆锥,还有棱柱和棱锥.师:很好!这些几何体都是我们生活中常见的几何体,我们把它们简称为“体”.今天就让我们来共同研究几何体是怎样形成的吧!导入二:上一节课我们认识了常见的几何体,并且可以从大量的实物中抽象出这些图形.我们知道世间万物都是由一些基本元素构成的,那么构成这些图形的基本元素是什么呢?(欣赏生活中的图片,感受生活中处处充满点、线、面. )[设计意图]通过欣赏图片,说出图片中的点、线、面.利用学生感兴趣的图片,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了生活中处处充满点、线、面,这也为新课的学习做好铺垫.探究活动1认识点、线、面请同学们找出下面各图中的点、线、面,并说明哪些线是直的?哪些线是曲的?哪些面是平的?哪些面是曲的?【师生活动】问题比较容易,教师引导解答.比如,已经学会了从生活中抽象出所认识的图形了,你能从中找出图中的点与线吗?学生可得到以下结论:点:地图上的城市,几何体的顶点;线:地图上的公路、铁路、河流,几何体的棱.[设计意图]让学生把生活中的实物抽象成几何体,再分析组成这些几何图形的基本元素,既符合学生的认知规律,又让学生对知识有熟悉感,进而有学习的信心和兴趣,熟悉中又提出新问题,利用七年级学生表现欲较强的心理激发学生的学习热情.探究活动2常见几何体中的点、线、面思路一师:现在我们回到刚才的话题中去,从“包装盒”中抽象出一个六棱柱,请问这个六棱柱有几个面?生:这个六棱柱有8个面.师:面与面相交形成了多少条线?生:形成了18条线.师:线与线相交形成了多少个点?生:形成了12个点.师:很好!通过问题的回答,你有没有什么发现?生:通过刚才的问题,我发现面与面相交可以形成线,线与线相交可以形成点.思路二结合如下图所示的几何体完成以下内容,小组内交流.。
七级数学教案有理数
七级数学教案有理数第一章:有理数的概念与分类1.1 学习目标了解有理数的定义与特点掌握有理数的分类及相互关系1.2 教学内容有理数的定义与特点有理数的分类:整数(正整数、负整数、零)、分数(正分数、负分数)有理数的大小比较1.3 教学步骤1. 引入话题:讨论日常生活中的数量,引导学生思考如何表示正负数和零。
2. 讲解有理数的定义与特点,通过实例加深理解。
3. 讲解有理数的分类,引导学生通过图形表示理解不同类型的有理数。
4. 练习有理数的大小比较,让学生通过实际操作来掌握规则。
1.4 作业布置完成课后练习题,巩固有理数的概念与分类。
第二章:有理数的运算2.1 学习目标掌握有理数的加法、减法、乘法、除法的运算规则能够正确进行有理数的混合运算2.2 教学内容有理数的加法与减法:同号相加、异号相加、零的加减法有理数的乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数有理数的除法:整数除以整数、分数除以整数、整数除以分数2.3 教学步骤1. 复习有理数的分类,引导学生回顾有理数的概念。
2. 讲解有理数的加法与减法运算规则,通过示例进行演示。
3. 讲解有理数的乘法运算规则,引导学生通过实际操作来理解。
4. 讲解有理数的除法运算规则,通过示例进行演示。
5. 练习有理数的混合运算,让学生通过实际操作来掌握规则。
2.4 作业布置完成课后练习题,巩固有理数的运算规则。
第三章:有理数的应用3.1 学习目标能够运用有理数解决实际问题掌握有理数在生活中的应用3.2 教学内容有理数在生活中的应用:购物、计算距离、温度转换等有理数的估算:整数与分数的估算方法3.3 教学步骤1. 引入话题:讨论日常生活中遇到的有理数问题,引导学生思考如何运用有理数解决实际问题。
2. 讲解有理数在生活中的应用,通过实例加深理解。
3. 讲解有理数的估算方法,引导学生通过实际操作来掌握。
3.4 作业布置完成课后练习题,巩固有理数在生活中的应用。
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
数学基础七年级第一章教学方案
数学基础七年级第一章教学方案一、教学目标1. 了解数学基础七年级第一章的内容和学习目标。
2. 掌握整数的概念、运算法则以及数轴表示。
3. 能够准确理解和运用加法和减法的运算规则。
4. 培养学生的逻辑思维和解决问题的能力。
二、教学重点1. 整数的概念和运算法则。
2. 加法和减法的运算规则。
三、教学内容及教学方法1. 整数的引入(时间:15分钟)教学方法:引入实际生活中的场景,如温度、海拔等,让学生认识和感知整数的概念。
2. 整数的表示和运算法则(时间:20分钟)教学方法:通过教师讲解和示范,引导学生掌握整数的表示方法和运算法则,如正数、负数、绝对值等。
3. 加法的运算规则(时间:25分钟)教学方法:以具体例子为基础,讲解加法的运算规则,如正数加正数、负数加负数、正数加负数等情况,并进行练习。
4. 减法的运算规则(时间:25分钟)教学方法:通过引入减法的实际例子,讲解减法的运算规则,如正数减正数、负数减负数、正数减负数等,并进行相应的练习。
5. 综合运用(时间:15分钟)教学方法:设计一些综合运用的题目,让学生运用所学知识解决实际问题,培养他们的逻辑思维和解决问题的能力。
四、教学评价1. 课堂讨论:通过提问和回答问题的方式,检查学生对整数的理解以及加法和减法的运算规则掌握情况,鼓励学生积极参与课堂讨论。
2. 练习评价:布置适量的练习题目,检验学生对所学内容的掌握情况,并及时给与反馈。
3. 作业评价:布置作业,要求学生对教学内容进行复习和总结,并注重作业的规范性和准确性。
五、教学资源1. 教材:数学基础七年级教材第一章内容。
2. 教具:数轴模型、整数卡片等。
3. 备课材料:教学课件、练习题等。
六、教学延伸1. 拓展练习:提供更多的练习题目,让学生进一步巩固所学知识。
2. 实际应用:引导学生将所学知识运用到实际生活中,如温度计的读数、海拔的计算等。
七、教学反思通过本次教学,学生能够掌握整数的概念和运算法则,理解加法和减法的运算规则,并能够灵活运用所学知识解决问题。
数学初一上册第一章教学方案
数学初一上册第一章教学方案一、教学内容概述数学初一上册第一章主要涉及数学的基本概念和计算方法。
本章包括数的概念、数的分类、数的读法和写法、比和比例、有理数的加减法等内容。
通过本章的学习,学生可以进一步了解数的概念和用法,奠定数学学习的基础。
二、教学目标1.了解数的概念,能将自然数、整数、分数、小数进行分类。
2.掌握数的读法和写法,能正确读写各类数。
3.了解比的概念,掌握比的计算方法。
4.掌握有理数的加减法运算方法。
三、教学重点1.数的概念和分类。
2.数的读法和写法。
3.比的概念及计算方法。
四、教学难点1.掌握有理数的加减法运算方法。
2.理解比的概念及其应用。
五、教学方法1.情境教学法:通过生活中的实际情境,引导学生主动探索数的概念和分类。
2.讲解法:通过示例和解题步骤的讲解,帮助学生理解数的读法、写法以及比的概念。
3.练习法:通过大量练习,巩固学生的计算能力和应用能力。
六、教学过程1.引入:通过一个关于购物的情境,引导学生思考如何表示商品的价格,并引出数的概念。
2.概念解释:介绍数的概念以及各类数的分类,并给出示例进行解释。
3.读法和写法:讲解数的读法和写法的规则,通过例题进行练习。
4.比的概念:引入比的概念,并通过实际物体的比较,让学生理解比的含义。
5.比的计算:讲解比的计算方法,通过例题进行练习。
6.有理数的加减法:介绍有理数的概念,讲解有理数的加减法运算方法,并通过实例进行讲解和练习。
7.巩固练习:布置一些练习题,巩固学生对本章内容的掌握。
七、教学资源1.教材:数学初一上册教材。
2.多媒体教学设备:投影仪、电脑等。
八、教学评估1.课堂练习:课堂上通过教师提问和学生回答的方式,了解学生对概念和应用的理解情况。
2.作业评估:通过布置的作业,检测学生对基本概念和计算方法的掌握情况。
九、教学反思本章教学主要包括了数的概念与分类、数的读法与写法、比的概念与计算、有理数的加减法等内容。
教学过程中,我采用了多种教学方法,并通过情境引导、讲解与练习相结合的方式进行教学。
七年级数学上册-第一章《丰富的图形世界》全部教案-北师大版
北师大版七年级数学上册第一章《丰富的图形世界》全部教案生活中的立体图形(一)1第一课时§ 一、教学目标:、经历从现实世界中抽象出图形的过程,感受图形世界的丰富多彩。
)1(、知识与技能目标:1、锥体的特征;)、在观察、摸索、讨论中直观认识立体图形,了解球体、柱体2()、通过一系列活动,培养学生的语言表达能力、总结归纳能力、实际动手1(、过程与方法:2能力及探索发现能力。
、过程中,建立一种互相了解合作的新型师生关系。
)2(、情感态度与价值观:3激发学生对丰富的图形世界的、)2(.使他们获得成功的体验通过直觉增进学生的理解力,、)1(兴趣,好奇心,初步形成积极参与活动,主动与他人合作交流的意识。
二、教学重点、难点:重点:直观认识规则的立体图形,正确区分各类立体图形。
难点:、找出各个立体图形的个性特征及它们之间的联系,进而掌握对图形认知、归纳的方法。
1 、研究正多面体的顶点数、棱数和面数之间的关系,得出欧拉公式。
2引导发现法三、教学方法:一辆玩具小公交车、一架玩具小飞车、笔筒四、教具准备:五、教学过程Ⅰ、创设现实情景,引入新课我们飞向了祖国的蓝天,带领同学们插上想像的翅膀去飞行,,“一架直升机”我准备了今天,页的彩图,这个城1飞呀、飞呀,我们飞到了一座现代化大城市的上空,翻开课本看第一章的第市多漂亮啊,我们在欣赏这个城市的美景时,不妨用数学的眼光观察一下,这个美丽的城市也是我们数学世界——丰富的图形世界,你能从中发现哪些熟悉的图形?大家先看这辆车是由哪些立体图形组成的?Ⅱ、根据现实情景,讲授新课、从生活中发现熟悉的几何体。
1[议一议])图中有茶杯,笛子,笔筒中的笔杆是圆柱形状,提球的网把球放进去上面一部分是圆锥1(的形状,书架上的小帽子是圆锥的形状。
而圆锥不同点是圆柱有上下两个底面都是圆的,圆柱和圆锥的相同点是底面都是圆的,)2(只有下底面,最上面只是一个顶点。
1)笔筒的形状我们把它叫棱柱,老师,对不对?3()地球是一个球体,与它形状类似的有足球。
人教版七年级数学第一章整数教案
人教版七年级数学第一章整数教案一、教学目标1. 了解整数的概念和表示方法。
2. 掌握整数的比较、加减法运算规则。
3. 运用整数解决实际问题。
二、教学重点1. 整数的概念和表示方法。
2. 整数的比较和运算规则。
三、教学内容1. 整数的定义和表示方法。
2. 整数的比较。
3. 整数的加法和减法运算。
四、教学步骤第一步整数的定义和表示方法1. 导入整数的概念,引导学生思考负数的概念。
2. 通过简单的例子,介绍整数的表示方法,包括正数、负数和零。
第二步整数的比较1. 通过实际生活中的例子,引导学生理解整数比较的概念。
2. 教授整数比较的基本规则,包括绝对值大小和正负性的判断。
第三步整数的加法和减法运算1. 解释整数的加法运算规则,包括同号相加、异号相减。
2. 解释整数的减法运算规则,将减法转化为加法。
3. 通过练题让学生进行加减法运算练。
第四步运用整数解决实际问题1. 出示一些实际问题,引导学生应用所学的整数知识解决问题。
2. 引导学生进行思考和讨论,培养解决实际问题的能力。
五、教学资源1. 教材《人教版七年级数学》第一章相关内容。
2. 课件和投影仪。
3. 教学课件和练题。
六、教学评估1. 在课堂上进行实时评估,观察学生的研究情况和掌握程度。
2. 布置相关作业和练题,以检验学生对整数知识的掌握情况。
3. 对学生的作业和练进行评分和反馈,帮助学生提高。
七、教学延伸1. 鼓励学生自主研究,提供相关的网络资源和练题。
2. 指导学生进行拓展性的研究,如整数的乘法和除法运算。
3. 鼓励学生参加数学竞赛等活动,提升数学能力。
以上是《人教版七年级数学第一章整数教案》的主要内容和安排。
希望能够帮助到您的教学工作。
2024年数学初一教案人教版初一数学教学教案
2024年数学初一教案人教版初一数学教学教案教案主题:第一章《有理数》第一节《有理数的概念》教学目标:1.让学生理解有理数的定义和分类。
2.培养学生运用有理数进行简单运算的能力。
3.培养学生的数感和逻辑思维能力。
教学重点:1.有理数的定义和分类。
2.有理数的运算规则。
教学难点:1.正负数的理解。
2.有理数的运算。
教学准备:1.教学课件。
2.练习题。
教学过程:一、导入1.利用课件展示生活中的实例,如温度计、水位、身高、体重等,让学生观察这些实例中出现的数。
2.引导学生思考:这些数有什么共同特点?它们与自然数、整数有什么不同?二、新课讲解1.有理数的定义:整数和分数统称为有理数。
2.有理数的分类:正有理数、0、负有理数。
3.正负数的理解:以温度为例,零上温度为正数,零下温度为负数;以水位为例,水位高于标准水位为正数,低于标准水位为负数。
4.有理数的运算规则:a)同号相加,异号相减。
b)正负号相乘,同号为正,异号为负。
c)0乘任何数都等于0。
三、案例分析1.出示几个实例,让学生判断这些数是有理数还是无理数,并说明原因。
a)3.14b)√2c)5/2d)-√32.让学生举例说明有理数的分类。
四、课堂练习b)将下列有理数按照正负分类:5,-2,0,1/2,-3/4。
c)计算:3+(-2),-5+1,-12,0×(-3)。
2.老师针对学生的答案进行讲解和指导。
五、课堂小结1.回顾本节课学习的有理数的概念、分类和运算规则。
2.强调有理数在生活中的应用,培养学生的数感和实际应用能力。
六、课后作业(课后自主完成)b)将下列有理数按照正负分类:4,-1/2,0,3/4,-5。
c)计算:-3+2,2(-1),-1×(-2),0×5。
2.家长签字确认。
教学反思:1.在讲解有理数的分类时,可能过于简化,未能充分挖掘学生的思维能力。
2.课堂练习环节,部分学生可能因为紧张或理解不深,未能完成练习题。
【教案】七年级数学上册 第一章1.1 正数和负数
第一章有理数1.1 正数和负数【知识与技能】1.了解正数与负数的产生是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.【过程与方法】通过对正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.【情感态度】1.通过教师、学生双方的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.2.通过对正负数的学习,渗透对立、统一的辩证思想.【教学重点】会判断正数、负数,运用正负数表示相反意义的量,理解0表示量的意义.【教学难点】负数的引入.一、情境导入,初步认识数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为两类:自然数(正整数和零)、分数(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,…….为了表示半小时、四元八角七分、……,我们需用到分数12和小数4.87、…….为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数或分数、小数表示.二、思考探究,获取新知问题某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚,因为它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8844.43m,吐鲁番盆地低于海平面155m,“高于”和“低于”其意义是相反的.又如,某仓库昨天运进货物812吨,今天运出货物412吨,“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.【教学说明】数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8844.43m,记作+8844.43m;低于海平面155m,记作-155m;运进货物812吨,记作+812吨;运出货物412吨,记作-412吨.……【归纳结论】为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它们相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动1每组同学之间相互合作交流,一同学任说有相反意义的一个量,由对方用正负数表示.活动2举出几对具有相反意义的量,并分别用正、负数表示.三、典例精析,掌握新知例1教材第3页例题.【教学说明】此例为教材中的例题,在教学过程中,应让学生独立思考后举手回答题中的问题,教师要让学生体会“负”与“正”是相对的,是表示相反意义的量.例题中,增加用正数表示,减少用负数表示.教材对话框中,增长-6.4%就是减少6.4%;当这年的商品进出口总额和上年的商品进出口总额相同时,增长率为0.在解答完这个例题之后,教师可引导学生做教材第3页练习.例2所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:-11,4.8,+73,-2.7,1/6,7/12,-8.12,-3/4【教学说明】此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用图表示集合,也可以用大括号表示集合.在解答这个例题后,教师可让学生阅读教材第4页上面的内容,并做下面的练习.四、运用新知,深化理解1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4,那么8年前记作.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg,小阳体重减少了2kg,则小阳增长了.2.任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ ……},负数集合:{ ……}.【教学说明】教师让两位同学口答两题,给予鼓励.【答案】略五、师生互动,课堂小结通过这节课的学习,你有什么收获和体会?【教学说明】引导学生共同归纳:由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.1.布置作业::从教材习题1.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.(2)某地图上的一个湖中标着-12m,这表明该湖的湖面与海平面相比的高度是怎样的?(3)在下列各数中,哪些是正数?哪些是负数?-16,0.004,+7/8,-1/2,3/5,25.8,-3.6,-4,9651,-0.1(4)如果-50元表示支出50元,那么+400元表示什么?本课时内容是学生在小学学过的数的基础上,通过用简洁清楚的方式表示实际生活中的相反意义的量,引入负数.让学生感到负数引入的必要性,同时感受到数学符号的优越性.引入负数后,进而给出正数、负数的描述性定义,通过练习具体认识正、负数在实际中的应用.教学的安排,强调自主学习,注重交流合作,从自主探索中获得新知和数学活动的体验.鼓励学生间用语言表述探究活动中的所思所得,互相评点,教师适时总结归纳.。
七年级数学优秀教案
七年级数学优秀教案【篇一:人教版七年级上数学教案(全册)】第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,?从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、?电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,?从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,?能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,?会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、?负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法4课时1.4 有理数的乘除法5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,?加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,?;为了表示“没有物体”、“空位”引进了数“0”,?测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2?页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前11面也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面33的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.?正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)、请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)、你能再举一些用正负数表示数量的实际例子吗?(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,?但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,?它们与负数具有相反的意义,我们把这样的数(即以前学过的0?以外的数)叫做正数,有时在正数前面11也加上“+”(正)号,例如,+3,+2,+0.5,+,?就是3,2,0.5,,?一个数前面的33“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。
初一数学第一章教案
初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。
过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。
教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。
讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。
七年级上册数学第一章教案
1.1.1生活中的立体图形教学目标知识与技能:在具体情境中认识圆柱、圆锥、正方体、长方体等几何体,能用自己的语言描述单个几何体的基本特征,并能根据几何体的某些特征将其分类。
过程与方法:经历从具体情景中辨别各种几何图形,感受图形世界的丰富多彩。
情感态度价值观:培养学生观察、操作、表达以及思维能力,学会合作、交流和自主探究的学习方式,发展空间观念,培养创造和实践能力,体验数学学习的乐趣,提高数学应用意识。
教学重点通过观察、讨论、思考和实践等活动,将生活中常见实物模型抽象成简单的几何体。
教学难点从具体实物中抽象出几何体的概念和动手做几何图形,并能用自己的语言准确地描述简单的几何体。
教学过程一、新课引入1、课件中呈现了生活中的一些物体,要求学生能从中“发现”熟悉的几何体。
2、教师课前准备选择实物进行教学。
3、想一想:在日常生活中有哪些你熟悉的几何体?二、新课讲解在上面讨论的基础上,以课本上房间的一角为背景,使学生进一步熟悉常见的几何体,并能用自己的语言描述这些几何体的特征。
看一看:请同学们观察一下书房中各个物体它们各是什么形状的?找一找:找出你所认识的几何图形。
辨一辨:圆柱圆锥正方体长方体棱柱球(1)上图中哪些物体的形状与长方体、正方体类似?(学生在回答桌面时老师应指出桌面是指整个层面)。
(2)上图中哪些物体的形状与圆柱、圆锥类似?挂篮球的网袋是否类似于圆锥?为什么?描述一下圆柱与圆锥的相同点与不同点.(3)请找出上图中与笔筒形状类似的物体?(4)请找出上图中与地球形状类似的物体?认一认:下面让我们一起来认识它们,(电脑显示上面各物体抽象出来的几何体)配注各几何体名称。
想一想:让我们一起来回想一下平时的日常生活中所见到过的哪些物体的形状类似于以上的几何体,(在实物与几何体模型之间建立对应关系)(尤其是组织学生分组讨论圆柱、圆锥的共同点与异同点,然后学生回答。
3、用自己的语言描述棱柱与圆柱的相同点与不同点。
七年级数学上册第一章教案
七年级数学上册第一章教案2022七年级数学上册第一章教案2022七年级数学上册第一章教案1教材分析1、知识结构2、重点、难点分析重点:真命题的证明步骤与格式、命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性、难点:推论证明的思路和方法、因为它体现了学生的抽象思维能力,由于学生对逻辑的理解不深刻,往往找不出的思维切入点,证明的盲目性很大,因此对学生证明的思路和方法的训练是教学的难点、(二)教学建议1、四个注意(1)注意:①公理是通过长期实践反复验证过的,不需要再进行推理论证而都承认的真命题;②公理可以作为判定其他命题真假的根据、(2)注意:定理都是真命题,但真命题不一定都是定理、一般选择一些最基本最常用的真命题作为定理,可以以它们为根据推证其他命题、这些被选作定理的真命题,在教科书中是用黑体字排印的(3)注意:在几何问题的研究上,必须经过证明,才能作出真实可靠的判断、如“两直线平行,同位角相等”这个命题,如果只采用测量的方法、只能测量有限个两平行直线的同位角是相等的但采用推理方法证明两平行直线的同位角相等,那么就可以确信任意两平行直线的同位角相等、(4)注意:证明中的每一步推理都要有根据,不能“想当然”、①论据必须是真命题,如:定义、公理、已经学过的定理和巳知条件;②论据的真实性不能依赖于论证的真实性;③论据应是论题的充足理由、2、逐步渗透数学证明的思想:(1)加强数学推理(证明)的语言训练使学生做到,能用准确的语言表述学过的概念和命题,即进行语言准确性训练;能学会一些基本的推理论证语言,如“因为……,所以……”句式,“如果……,那么……”句式等等;提高符号语言的识别和表达能力,例如,把要证明的命题结合图形,用已知,求证的形式写出来、(2)提高学生的“图形”能力,包括利用大纲允许的工具画图(垂线、平行线)的能力和在对要证命题的理解(如分清题设、结论)的基础上,画出要证明的命题的图形的'能力,后一点尤其重要,一般通过图形易于弄清命题并找出证明的方法、(3)加强各种推理训练,一般应先使学生从“模仿”教科书的形式开始训练、首先是用自然语言叙述只有一步推理的过程,然后用简化的“三段论”方法表述出这一过程,再进行有两步推理的过程的模仿;最后,在学完“命题、定理、证明”一单元后,总结证明的一般步骤,并进行多至三、四步的推理、在以上训练中,每一步推理的后面都应要求填注推理根据,这既可训练良好的推理习惯,又有助于掌握学过的命题、教学目标:1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤、2、能用符号语言写出一个命题的题设和结论、3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力、教学重难点教学重点:证明的步骤与格式、教学难点:将文字语言转化为几何符号语言、教学过程:一、复习提问1、命题“两直线平行,内错角相等”的题设和结论各是什么?2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)二、例题分析例1、证明:两直线平行,内错角相等、已知:a∥b,c是截线、求证:∠1=∠2、分析:要证∠1=∠2,只要证∠3=∠2即可,因为∠3与∠1是对顶角,根据平行线的性质,易得出∠3=∠2、证明:∵a∥b(已知),∴∠3=∠2(两直线平行,同位角相等)、∵∠1=∠3(对顶角相等),∴∠1=∠2(等量代换)、例2、证明:邻补角的平分线互相垂直、已知:如图,∠AOB+∠BOC=180°,OE平分∠AOB,OF平分∠BOC、求证:OE⊥OF、分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可、三、课堂练习:1、平行于同一条直线的两条直线平行、2、两条平行线被第三条直线所截,同位角的平分线互相平行、四、归纳小结主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识、然后见投影仪、五、布置作业课本P143 5、(2),7、六、课后思考:1、垂直于同一条直线的两条直线的位置关系怎样?2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?2022七年级数学上册第一章教案2一、教学目标1、了解推理、证明的格式,理解判定定理的证法、2、掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证、3、通过第二个判定定理的推导,培养学生分析问题、进行推理的能力、4、使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育、二、学法引导1、教师教法:启发式引导发现法、2、学生学法:积极参与、主动发现、发展思维、三、重点·难点及解决办法(一)重点判定定理的推导和例题的解答、(二)难点使用符号语言进行推理、(三)解决办法1、通过教师正确引导,学生积极思维,发现定理,解决重点、2、通过教师指导,学生自行完成推理过程,解决难点及疑点、四、课时安排1课时五、教具学具准备三角板、投影仪、自制胶片、六、师生互动活动设计1、通过设计练习,复习基础,创造情境,引入新课、2、通过教师指导,学生探索新知,练习巩固,完成新授、3、通过学生自己总结完成小结、七、教学步骤(一)明确目标掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力、(二)整体感知以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知、(三)教学过程创设情境,复习引入师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影)、学生活动:学生口答第1.2题、师:你能说出有什么条件,就可以判定两条直线平行呢?学生活动:由第l.2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行、教师将第3题图形画在黑板上、学生活动:学生口答理由,同角的补角相等、师:要求学生写出符号推理过程,并板书、【教法说明】本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1.2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行、第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点、师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?学生活动:同分内角、师:它们有什么关系、学生活动:互补、师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题、2022七年级数学上册第一章教案3一说教材:(一)地位、作用:本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册p80页的有理数的减法法则及有理数减法运算的例1、例2为课堂教学内容。
人教版七年级数学上册第一章有理数的概念(教案)
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。
初一数学第一章教案5篇
初一数学第一章教案5篇初一数学第一章教案1教学目的通过分析储蓄中的数量关系、商品利润等有关学问,经受运用方程解决实际问题的过程,进一步体会方程是刻画现实世界的有效数学模型。
重点、难点1.重点:探究这些实际问题中的等量关系,由此等量关系列出方程。
2.难点:找出能表示整个题意的等量关系。
教学过程一、复习1.储蓄中的利息、本金、利率、本利和等含义,关系:利息=本金×年利率×年数本利和=本金×利息×年数+本金2.商品利润等有关学问。
利润=售价-本钱; =商品利润率二、新授问题4.小明爸爸前年存了年利率为2.43%的二年期定期储蓄,今年到期后,扣除利息税,所得利息正好为小明买了一只价值48.6元的计算器,问小明爸爸前年存了多少元利息-利息税=48.6可设小明爸爸前年存了x元,那么二年后共得利息为2.43%×X×2,利息税为2.43%X×2×20%依据等量关系,得2.43%x·2-2.43%x×2×20%=48.6问,扣除利息的20%,那么实际得到的利息是多少扣除利息的20%,实际得到利息的80%,因此可得2.43%x·2·80%=48.6解方程,得x=1250例1.一家商店将某种服装按本钱价提高40%后标价,又以8折(即按标价的80%)优待卖出,结果每件仍获利15元,那么这种服装每件的本钱是多少元大家想一想这15元的利润是怎么来的标价的80%(即售价)-本钱=15假设设这种服装每件的本钱是x元,那么每件服装的标价为:(1+40%)x每件服装的实际售价为:(1+40%)x·80%每件服装的利润为:(1+40%)x·80%-x由等量关系,列出方程:(1+40%)x·80%-x=15解方程,得x=125答:每件服装的本钱是125元。
三、稳固练习教科书第15页,练习1、2。
七年级上册数学教案
七年级上册数学教案七年级上册数学教案15篇作为一名教职工,时常需要用到教案,教案是教学蓝图,可以有效提高教学效率。
我们应该怎么写教案呢?下面是小编整理的七年级上册数学教案,仅供参考,希望能够帮助到大家。
七年级上册数学教案1教学目的:(一)知识点目标:1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:引入新课:1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?内容:老师说出指令:向前两步,向后两步;向前一步,向后三步;向前两步,向后一步;向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:1.自然数的产生、分数的产生。
2.章头图。
问题见教材。
让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。
根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
七年级上册数学第一章教学计划(10篇)
七年级上册数学第一章教学计划(10篇)七年级上册数学第一章教学计划篇1一、学情分析:本人执教的七(3)、(4)两个班共85人,根据分班考试的情况来分析学生的数学成绩并不理想,总体的水平一般,尖子生少、低分的学生较多,而且学习欠缺勤奋,学习的自觉性不高。
七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。
七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。
七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。
学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。
学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。
学生大多存在学习粗心,作业马虎,对数学学习缺乏兴趣和信心的整体弱点,学习习惯差。
在知识结构上:学生在小学已学过的四则混合运算,相应的较为简单的应用题,对图形、图形的面积、体积,数据的收集与整理上有了初步的认识,无论是代数的知识,图形的知识都有待于进一步系统化、理论化,这就是初中的内容,本学期将要学习有关代数的初步知识,对图形的进一步认识;在数学的思维上:学生正处于形象思维向逻辑抽象思维的转变期,这期间,结合教学,让学生适当思考部分有利于思维的题目,无疑是对学生终身有用的;另一方面关注一题多解,多题一解,从不同的角度看问题,培养学生数学思维的活跃性和敏感性。
在学习习惯上:一些小学的坏习惯要改正,好习惯要巩固,比如独立思考,认真总结,及时批改作业。
一般来说,大部分学生对数学是感兴趣的,但仍有部分学生对数学信心不足,因此开学初要给学生树信心;对于小学升入初中,学生有一个适应的过程,刚开始起点宜低,讲解宜慢,使学生适应初中的学习生活。
七年级初中数学第一章教案
七年级初中数学第一章教案教学目标:1. 理解整数的定义及其性质;2. 掌握整数的加法、减法、乘法和除法的运算规则;3. 能够运用整数解决实际问题。
教学重点:1. 整数的定义及其性质;2. 整数的加法、减法、乘法和除法的运算规则;3. 运用整数解决实际问题。
教学难点:1. 整数的性质的理解和运用;2. 整数的运算规则的掌握和应用。
教学准备:1. 教学课件或黑板;2. 练习题。
教学过程:一、导入(5分钟)1. 引导学生回顾小学学过的整数知识,如整数的加法、减法、乘法和除法;2. 提问:你们知道整数有哪几个基本性质吗?二、新课讲解(20分钟)1. 讲解整数的定义:整数是包括正整数、负整数和零的数集;2. 讲解整数的性质:整数具有加法、减法、乘法和除法的基本运算规则;3. 举例讲解整数的加法、减法、乘法和除法的运算规则,并引导学生进行实际操作;4. 讲解整数的运算顺序:先乘除后加减,同一级运算从左到右依次进行。
三、巩固练习(15分钟)1. 出示练习题,让学生独立完成;2. 讲解练习题的答案,并引导学生理解解题思路和方法;3. 针对学生的掌握情况,进行针对性的辅导和讲解。
四、课堂小结(5分钟)1. 回顾本节课所学内容,让学生总结整数的定义、性质和运算规则;2. 强调整数在实际生活中的应用。
五、作业布置(5分钟)1. 布置课后练习题,让学生巩固所学知识;2. 鼓励学生进行自主学习,提前预习下一节课的内容。
教学反思:本节课通过讲解整数的定义、性质和运算规则,让学生掌握了整数的基本知识,并通过练习题进行了巩固。
在教学过程中,要注意关注学生的掌握情况,进行针对性的辅导和讲解。
同时,要注重培养学生的自主学习能力,提高他们的数学思维能力。
七年级数学第一章教案
七年级数学第一章教案教案标题:七年级数学第一章教案 - 整数的认识和运算教学目标:1. 了解整数的概念和特点;2. 掌握整数的加减法运算规则;3. 运用整数进行实际问题的解决。
教学重点:1. 整数的概念和特点;2. 整数的加法和减法运算规则。
教学难点:1. 整数的特点和运算规则的理解;2. 运用整数解决实际问题的能力。
教学准备:1. 教材:七年级数学教材;2. 教具:黑板、白板、彩色粉笔、教学PPT;3. 学具:整数计数器、整数拆分卡片。
教学过程:一、导入(5分钟)1. 利用教学PPT或黑板上展示一些负数的实例,引导学生思考负数的概念和特点;2. 提问:你们在生活中见过哪些负数的例子?请举例说明。
二、讲解整数的概念和特点(15分钟)1. 通过教学PPT或黑板上的示意图,讲解整数的概念和特点;2. 引导学生思考整数的正负性、大小比较等概念。
三、整数的加法运算规则(15分钟)1. 利用整数计数器或教具示范整数的加法运算;2. 讲解整数的加法运算规则,并通过例题进行讲解;3. 学生进行练习,巩固加法运算规则的掌握。
四、整数的减法运算规则(15分钟)1. 利用整数计数器或教具示范整数的减法运算;2. 讲解整数的减法运算规则,并通过例题进行讲解;3. 学生进行练习,巩固减法运算规则的掌握。
五、综合运用(15分钟)1. 提供一些实际问题,要求学生运用所学的整数概念和运算规则解决;2. 引导学生分析问题、列式解决问题,并进行讨论。
六、小结与作业布置(5分钟)1. 对整节课的内容进行小结,并强调整数的概念和运算规则;2. 布置作业:完成课后习题,巩固所学内容。
教学延伸:1. 针对学生掌握情况,可以适当增加或减少练习题的数量;2. 鼓励学生进行实际问题的拓展思考和解决。
教学评估:1. 教师观察学生的课堂表现,包括参与度、回答问题的准确性等;2. 批改作业,检查学生对整数概念和运算规则的掌握情况;3. 针对学生的理解程度,可以进行个别辅导或提供额外练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学第一章教案【篇一:新人教版七年级上册数学第1章有理数全章教案[1]】第一章有理数1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。
过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。
教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)1正数:以前学过的大于0的数(像1、2.5、3 、48等的数叫正数)31负数:在正数前面加上负号“-”的数.(像-1、-2.5,-,-48的数叫负数,31读作负1、负2.5、负、负48.) 3有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+” “-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。
课堂练习:读出下列各数,并指出其中那些是正数,那些是负数.-1,2.5,+42,0,-3.14,120,-1.732,-. 37在现实生活中,我们常常表示一些具有相反意义的量,利用正数和负数可以表示两种具有相反意义的量,例如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8844米,我们可以用正负数的来表示.珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.课堂练习:课本p3练习(四)、归纳小结1、什么是正数和负数2、怎样用正数和负数表示具有相反意义的量(五)课内外作业课本p5:1,2,4,51.1正数和负数(二)教学目标:知识与技能:在了解正负数的概念的基础上,使学生灵活运用正负数的来表示相反意义量过程与方法:通过用正负数的来表示相反意义量的教学,培养学生观察、比较和概括的思维能力.教法主要采用启发式教学学法引导学生自主探索去归纳怎样用正负数来表示相反意义量情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,学会交流教学重点:灵活掌握正负数的概念.教学难点:灵活运用正负数的来表示相反意义量.教学过程:(一)、提出问题师:为了表示物体的个数和事物的顺序,产生了1,2,3,4??这些数,我们把它叫做什么数?生:自然数师:为了表示“没有”,又引入了一个什么数?生:自然数0师:当测量和计算的结果不是整数时,又引进了什么数?生:分数(小数)师:可见数的概念是随着生产和生活的需要而不断发展的.请同学们想一想,在现实生活中,我们常常表示一些具有相反意义的量,利用正数和负数可以表示两种具有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最高峰珠穆朗玛高出海平面8844米,我们可以用正负数的来表示.珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m. 师:为了能灵活运用正负数的来表示相反意义量,我们继续学习正数与负数就节课的内容.[板书:1、1正数与负数](二)试一试让学生讨论怎样用正数和负数表示具有相反意义的量.1、相反意义的量师:在现实生活中,我们常常遇到一些具有相反意义的量,比如:a:汽车向东行驶2.5千米和向西行驶1.5千米;b:气温从零上6摄氏度下降到零下6摄氏度;c:风筝上升10米或下降5米.引导学生明确具有相反意义的量的特征:(1)有两个量(2)有相反的意义请学生举出一些相反意义的量的实例.教师归结:相反意义中的一些常用词有:盈利与亏损,存入与支出,增加与减少,运进与运出,上升与下降等.(三)、探索如何来表示具有相反意义的量呢?由师生讨论后得出:我们把一种意义的量规定为正的,用“+”(读作正)号来表示,同时把另一种与它相反意义的量规定为负的,用“-”(读作负)号来表示.例如,如果零上6℃记作+6℃(读作正6摄氏度),那么零下6℃记作-6℃(读作负6摄氏度),请同学们用同样的方法表示(1)、(2)两题.生:(1)如果向东行驶2.5千米记作+2.5千米(读作正2.5千米),那么向西行驶1.5千米记作-1.5千米(读作负1.5千米);(2)如果上升10米记作+10米(读作正10米),那么下降5米记作-5米(读作负5米).师:像+6,+10,+2.5等前面放有“+”号的数叫做正数,像-6,-5,-1.5等前面放有“-”号的数叫做负数.再次强调正号可以省略不写,如+5可以写成5,但负数的负号能省略不写吗?生:(讨论后得出)不能.例教材p4(板书并解答)课堂练习教材p4的练习学生进行“阅读与思考”2、补充练习,-0.35,11中,正数是,负数是;(2)(1)在-2,+2.5,0,如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?人以地面一层记为0,那么1楼、2楼、3楼??就表示为0,1,2??那么地下第二层表示为 .在同一问题中,分别用正数与负数表示的量具有相反的意义.(四)、归纳小结引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示. 在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示具有相反意义的量.(五)课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1有理数教学目标:知识与技能:1.使学生理解整数、分数、有理数的概念。
并会判断一个给定的数是整数或分数或有理数。
2.会对有理数进行分类,培养学生观察、比较和概括的思维能力过程与方法:1.教法主要采用启发式教学;学法引导学生去归纳、整理;2.从直观认识到理性认识、从而建立有理数概念。
3.通过学习有理数概念,体会对应的思想,数分类的思想。
情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想.教学重点:整数、分数、有理数的概念教学难点:给一个数能正确说出它属于的集合教学过程:(一)、提出问题我们学过的数有哪些?学生回答。
正整数,如1,2,3,┄;零, 0;负整数,如-1,-2,-3,┄; 1215正分数,如,,,0.1,5.32, ┄;23751负分数,如-0.5,-150.25,-,-, ┄. 27(二)、试一试0.1, -0.5, 5.32, -150.25等为什么被列为分数?(三)、探索(板书)整数:正整数、0、负整数统称整数。
分数:正分数和负分数统称分数。
有理数:整数和分数统称为有理数。
【篇二:苏教版七年级数学上册第一章教案】1.1 生活数学一、教学目的1.通过对生活中常见的图形、数字的观察与思考,感受生活中处处有数学;2.乐于接触社会环境中的数字、图形信息,了解数学是我们表达和交流的工具;3.通过本节课的学习,让学生学会尊重和理解他人的见解,敢于发表自己的观点。
二、教学重点与难点使学生体会到数学问题应用的普遍性,并能积极主动地去发现身边的数学问题,选择适当的方法加以交流和表达所获得的一些数学知识。
三、教学设计本节课从学生熟悉的生活出发,创设了不同的教学情境,以满足学生多样化的学习需要,引导学生进入一个崭新的数学世界,让学生感受到生活中处处有数学。
同时把那些现存在于学生脑中的不那么正规的数学知识和数学体验,通过师生的互动让学生知道学习数学就是不仅要“知其然”,而且要“知其所以然”,从中感受到数学学习的乐趣,增强学好数学的信心。
四、教学过程(一)创设情境情境一:课前让每位学生准备好居民身份证一张,可以向父母借用(如下图1所示)身份证是公民法定身份证件,是国家为每个公民编制的唯一的终生不变的身份代码,按照有关规定,居住在中华人民共和国境内的年满16周岁的中国公民,可以申请领取身份证。
请同学们仔细观察你所带的身份证,从身份证号码中你能获取那些信息?【设计说明:通过识别“身份证号码”信息的情境的创设,使学生感受到数字和生活的联系及其发挥的作用,在培养学生观察能力的同时,又培养了学生的语言表达能力。
教师还可以与学生共同分析教师本人的身份证号码(教师将自己的身份证号码写在黑板上),师生相互交流,体现了数学教学是数学活动的教学,是师生、生生交往互动的过程】图1 图2 图3情景二:教材p6(如图2),是某高速公路服务区的照片,其中包含了学多生活中常见的图形,同学们把它们一一找出来吗?【设计说明:感受生活中处处有图形,图形中时时蕴藏着数学知识】情景三:教材p7(如图3),是大家熟悉的“奥林匹克五环旗”,从中我们能获取哪些信息?【设计说明:感受图形不仅可以美化我们的生活,还是人们进行表达和交流的有效工具】(二)探索规律观察1:(如图4)从车票中你能得到什么信息?若擦除其中某个信息,将会怎样?(假如你是乘客)【设计说明:进一步感受交通生活领域中的数字信息】观察2:(如图5)下表为东陇海线旅客列车时刻表:假期内,家在连云港的小东和爸爸想去北京旅游,请你根据上述列车时刻表,回答下列问题:1图4 图5(1)他们应该在哪一个站点买票( )a.连云港 b.新沂 c.徐州 d.以上都不对(2)他们应该买哪一车次的票( )a.直快1444 b.直快1443 c.双优1503 d.双优1504(3)上车后,火车应该何时发车( )a.18:30b.18:35 c.19:30d.19:33(4)*他们应该乘坐哪一车次的火车返回连云港()a.直快1444b. 直快1443c. 双优1503d.双优1504(5)*从连云港去北京,他们在火车上的时间大约为()小时a.12b.13c.14d.15(6)*在他们去北京的途中,因有事想在徐州下车,则他们应该何时做好下车准备()a.19:33 b.21:00 c.21:15d.21:30【设计说明:随着我国铁路提速工程建设的不断发展,火车将会逐步走进我们的生活,成为我们日常交通工具之一,而首先能够识别火车时刻表,对于大家来说十分有必要,第(4)-(6)小题根据学生情况可选讲】(三)尝试反馈尝试1:今天是新学期的第一天,从今天起将和大家一起共同奋斗三年,三年后同学们将步入中考的考场,假如你是市招生办公室主任,如何合理编制参加中考的每一位考生的考试号呢?【设计说明:在小组合作学习中,培养学生“学数学用数学”的能力】尝试2:据广东省防总最新统计,2005年6月18日以来暴雨洪水灾害造成54人死亡和直接经济损失23.58亿元,大约有20万人的生活受到影响,而且各地水情、雨情、险情、灾情的威胁依然没有解除,可能要持续一个月。