系统的状态变量分析
第6章状态变量分析法
间变化而描述的路径,称为状态轨迹。
6
通信与信息基础教学部
状态与状态空间(3) 状态变量分析法的一般步骤
用状态变量来描述和分析系统的方法称为状态变量分 析法。当已知系统的模型及激励,用状态变量分析法时, 一般分两步进行:
一是选定状态变量,并列写出用状态变量描述系统特 性的方程,一般是一阶微分(或差分)方程组,它建立了 状态变量与激励之间的关系;同时,还要建立有关响应与 激励、状态变量关系的输出方程,一般是一组代数方程;
M
M
M
M
M
yr (t) cr1x1 (t) cr2 x2 (t) L crn xn (t) dr1 f1 (t) dr2 f2 (t) L drm fm (t)
11
Байду номын сангаас
通信与信息基础教学部
连续系统状态方程的一般形式(4)
状态方程、输出方程(P323)
x1
x
Mxx2n
a11
16
通信与信息基础教学部
由电路图建立状态方程(1) 由电路直接建立状态方程的步骤
(1) 选择独立的电容电压和电感电流作为状态变量;
(2)
对于电容C应用KCL写出该电容的电流
iC
C
dvC dt
与其它状态
变量和输入变量的关系式;
(3)
对于电感L应用KVL写出该电感的电压
vL
L
diL dt
与其它状态
变量和输入变量的关系式;
(4) 消除非状态变量(称为中间变量); (5) 整理成状态方程和输出方程的标准形式。
17
通信与信息基础教学部
由电路图建立状态方程(2)
M
M
M
M
第七章 系统的状态变量分析法
1.由系统的模拟框图列写
方法是选取积分器的输出信号作为状态变量。
例1:如图以 x1(t), x2 (t) 为状态变量,以 yt 为响应写出状态方程和输出
方程
b1
et
q''
q'
x2 '(t) x2(t)
a1
q
x1(t)
a0
yt
b0
解:x1'(t) x2(t)
x2'(t) a0x1(t) a1x2(t) e(t)
例2:已知一系统函数bs33s
3 b2s a2s2
2 b1s b0 a1s a0
解:此时:m n b3
b2
es
s3q(s) sx3 (s)
1 s2q(s) s x3(s)
1 sq(s) s x2 (s)
b1
1 q(s)
s x1(s)
b0
a2 a1
a0
ys
x1' ( t ) 0 1 0x1( t ) 0
1
f
2
(t)ຫໍສະໝຸດ Y CX DF输出方程------ 用状态变量和输入激励表示输出量的方程。其中每一
等式左边是输出变量,右边是只包含系统参数,状态
变量和激励的一般函数表达式,其中没有变量的微分 和积分运算。
7.2 连续时间系统状态方程的建立
一.状态方程和输出方程的一般形式
假设有一个系统
有n个状态变量x1, x2 xn
例1:列写图示电路的状态方程
(1)选i(t),uc (t)作为状态变量
+
u(s)
duc dt
1i c
-
di
dt
1 L
u
系统的状态变量分析法
出
状
方
态
程
方
程
9-1 连续系统状态空间方程建立
一、引例 t<0,K在2;t=0,K从2打到1。求t>0时,电压uR和uL。
(
状
态
方
程
)
( 输 出
uR t Ri(t)
方 程
uL t Ri(t) uc (t) us (t)
)
状态方程和输出方程通称为
状态空间方程
uc(t)和i(t)称为状态变量
说明:同一系统函数或微分方程,可以有不同的模拟图或信号流图,所以 可以得到不同的状态方程和输出方程,但特征根相同,同一系统,它的系 统矩阵A相似。
练习1:列写状态方程和输出方程,已知系统函数为
状态变量:选积分器输出。
练习2:已知系统函数,用级联型信号流图列写状态方程和 输出方程
状态变量:选积分器输出。来自3、系统函数矩阵与单位冲激响应矩阵 1)系统函数矩阵
2)单位冲激响应矩阵: 3)系统自然频率:
意义:第j个激励单独作用时 与所产生的第i个响应之间的 关系。
3、状态方程:描述系统状态变量和激励与状态变量一阶导数关系 的微分方程组。
4、输出方程:描述系统状态变量和激励与输出响应关系的代数方程组。 5、状态向量:由状态变量做分量所构成的向量。(n维) 6、状态空间:状态变量所有取值的集合。即状态向量所在的空间。 7、状态轨迹:在状态空间中状态向量端点随时间变化所形成的轨迹。
(2)便捷的运用到多输入多输出系统; (3)可以分析系统的“可观测性”和“可控制性”; (4)可以描述非线性系统和时变系统; (5)便于计算机求解(一阶微分方程、差分方程)。
4、分析方法:状态变量法
以系统内部的状
第十二章系统的状态变量分析
1 + b0i z −1 H i (z ) = 1 + a0i z −1
1 + b1i z −1 + b0i z − 2 H i (z ) = 1 + a1i z −1 + a0i z − 2
一阶节为
x1 = x − a0i z −1 x1 x = x1 (1 + a0i z −1 )
x2 = x1 + b0i z −1 x1 = x1 (1 + b0i z −1 ) x2 1 + b0i z −1 Hi ( z ) = = x 1 + a0i z −1
b1i H i (z ) = 1 + a0i z −1
b2i + b1i z −1 H i (z ) = 1 + a1i z −1 + a0i z − 2
例:某连续系统的转移函数为
2s + 4 H (s ) = 3 s + 3s 2 + 5s + 3
试用几种形式模拟此系统。 解:1)直接形式
H (s ) =
三、信号流图的性质 1、信号只能沿箭头方向传输,支路的输出是该支路输入与支路 增益的乘积。 2、结点可以把所有输入支路的信号叠加,并把总和信号传送到 所有输出支路。 3、具有输入和输出支路的混合结点,通过增加一个具有单位传 输的支路,可以把它变成输出结点来处理。
4、给定系统,信号流图形式不是唯一的。 5、流图转置后,其转移函数保持不变。 *转置:把流图中各支路的信号传输方向调转,同时把输入、输 出结点对换。
与书p290页式11-73一致 四、信号流图得化简(代数运算) 1、只有一个输入支路得结点值等于输入信号乘以支路增益。
2、串联支路:
第11章 线性系统的状态变量分析法
duC 1 dt RC di 1 L dt L
1 uC 0 C i 1 uS ( t ) 0 L L
若uL,ic,uR,iR作为输出
uL iC u R iR 1 1/ R 1 1/ R 0 1 1 uC 0 0 i L 0 uS ( t ) 0 0
L + uS(t) + uL iL + uC iC iL R C R 2 + uR
选uC , iL 为状态变量
列微分方程
duC uC iC C iL dt R
di L uL L uS ( t ) uC dt
duC 1 dt RC di 1 L dt L
输出方程
x1 x 2 y b0 ,b1 ,...., bm ,0,..., 0 x 3 ... xn
bm s m bm 1s m 1 b1s b0 x(t ) A x(t ) B e(t ) H (s) n n 1 s an 1s a1s a0
输出方程:
x1 y 10 4 0 x 2 x3
r(t)=10x1+4x2
y(t ) C x(t ) D e(t )
状态方程: x(t ) A x(t ) B e(t ) 输出方程:
y(t ) C x(t ) D e(t )
取相变量为状态变量
状态方程
1 0 x1 ' 0 x ' 0 1 2 0 x 3 ' 0 0 0 .. ... .. x n a 0 a1 a 2 0
系统的状态变量分析
则状态方程和输出方程分别为:
12((tt))
a111(t) a211(t)
a1nn (t) b11x1(t) b1m xm (t) a2nn (t) b21x1(t) b2m xm (t)
n (t) an11(t) annn (t) bn1x1(t) bnm xm (t)
X (s)
Y (s)
H(s)
X (s) H(s) Y (s)
Y(s) H(s)X (s)
例:将下图所示系统的方框图转化成信号流图。
X (s)
解:
s1 • s1 • s1
b1
b2
•
Y (s)
a1 a2 a3
由两个及两个以上的 箭头指向的节点可兼 做加法器。
b1
X (s)
1
s 1
a1
s 1
2 1 La 1 G2H 2
a
1 (G1H1 G2H 2G3H3 G1G2G3H4 ) G1G3H1H3
G1 H1H2H3H5, 1 1
G2 H4H5, 2 1 La 1 G2 H 2
a
H
1
K
GK K
1
(G11
G22 )
H1H2 H3H5 H4 H5 (1 G2 H2 )
上述状态方程和输出方程可以写成矩阵形式:
状态方程: 输出方程:
[n
1] k 1
[ A]kk
[n]k1
[B]km
x[n] m1
y[n] r1 [C]rk
[n] k1 [D]rm
x[n] m1
其中:
1[n 1]
[n
1]
2 [n
L
1]
k
[n
1]
8.系统分析的状态变量法_信号与系统
8 系统分析的状态变量法
8.2.1 连续时间系统状态方程的建立
一个动态连续系统的时域数学模型可利用信号 的各阶导数来描述。 的各阶导数来描述 。 作为连续系统的状态方程表现 为状态变量的联立一阶微分方程组. 为状态变量的联立一阶微分方程组 标准形式的状态方程为
或记为
8 系统分析的状态变量法 表示状态变量, 式中 表示状态变量, 为常数矩阵。 和 为常数矩阵。 是与外加信号有关的项, 是与外加信号有关的项,
8 系统分析的状态变量法 6.状态轨迹 在描述一个动态系统的状态空间中, 在描述一个动态系统的状态空间中,状态向 量的端点随时间变化所经历的路径称为系统的状 态轨迹。一个动态系统的状态轨迹不仅取决于系 态轨迹。 统的内部结构,还与系统的输入有关,因此, 统的内部结构,还与系统的输入有关,因此,系 统的状态轨迹可以形象地描绘出在确定的输入作 用下系统内部的动态过程。 用下系统内部的动态过程。
8 系统分析的状态变量法 【例】 试写出下图所示电路的状态方程。 试写出下图所示电路的状态方程。
ቤተ መጻሕፍቲ ባይዱ
根据电路结构可知,电容电压、 根据电路结构可知,电容电压、电感电流 可作为为状态变量即 . 建立状态变量 之间的方程为 和激励
8 系统分析的状态变量法 状态变量分析法优点: 状态变量分析法优点: (1)便于研究系统内部物理量的变化 (1)便于研究系统内部物理量的变化 (2)适合于多输入多输出系统 (2)适合于多输入多输出系统 (3)也适用于非线性系统或时变系统 (3)也适用于非线性系统或时变系统 (4)便于分析系统的稳定性 (4)便于分析系统的稳定性 (5)便于采用数字解法 便于采用数字解法, (5)便于采用数字解法,为计算机分析系统提供了 有效途径 (6)引出了可观测性和可控制性两个重要概念 引出了可观测性和可控制性两个重要概念。 (6)引出了可观测性和可控制性两个重要概念。
信号与系统第五章
P289
➢ 仅有输出支路,而无输入支路的节点称为源点(或输入结
点),如图中的 x1 。
➢ 仅有输入支路,而无输出支路的结点称为汇点(或输出结
点),如图中的 x5。
➢ 既有输入支路又有输出支路的结点称为混合结点,如图中
的x2 、x3 和x4 。
➢ 从任一结点出发沿支路箭头方向连续经过各相连的不同的 支路和结点,到达另一结点的路径称为通路。
梅逊公式为
H1
k
gkk
式中: 1 La LbLc Ld LeLf L
a
b,c
d ,e, f
称为信号流图的特征行列式; La是所有不同环路的增益
之和;
Lb
Lc
a
是所有两两互不接触环路的增益乘积之和;
b,c
Ld LeLf 是所有三个互不接触环路的增益乘积之和;…
d ,e, f
H 1
流图所描述的方程是
x2 ax1 x3 bx2 ex5 x4 cx2 dx3 x5 fx4 x6 x5
联立求解后,可得 x6 Hx1 ,结果完全同上。
b.化简信号流图的具体步骤可不同,但最终结果必相同。 即不同结构的框图可实现同一功能。
3.信号流图的Mason(梅逊)公式 P293
用化简信号流图的方法求系统输入输出间的系统函数比较 复杂。若利用梅逊公式可直接由初始的、未经化简的信号流 图很方便地求得输入输出间的系统函数。
若将式
dy t
dt
a0
y
t
b0
x
t
与
dy t
dt
a0
y
t
b1
dx t
dt
b0
x
t
信号与线性系统分析系统的状态变量分析(精)
1
t
t0
u L d
1 t0 其中:iL t0 u L d L
1 iC d C1
t
0
1 iC d C1
t0
1
i
t0
t
C1
d
1 t 1 t0 uC t 0 iC d 其中: uC1 t0 iC1 d C1 t C1 1 t 1 t 1 t uC t iC d iC d iC d C2 C2 C2 t
上一页
2018/9/15
信号与线性系统分析——系统的状态变量分析
4
本章讨论一种系统的近代分析法:状态变量分
析法或状态空间分析法。这种分析方法的特点是:
①在多输入、多输出系统分析中显示出其优越性;
②它既可以描述系统的外部特性,也可以描述系统
的内部特性;③而且还可以推广到时变系统和非线 性系统中;④它与数字计算机的应用紧密地结合起 来——数值计算。由此可知状态变量分析法已为系 统理论开拓出新的研究领域。
dt
dt
i2
u1
u1
1H
iL
u2
3
uL
f1 t
1
1F 2
iC
uC
u2 i2
uC
f 2 t
iL
iC
f1 t
f 2 t
上一页
2018/9/15
信号与线性系统分析——系统的状态变量分析
19
u L t 1 iL t uC t f1 t 1 uC t f 2 t i t i t C L 3
信号与系统第9章系统的状态变量分析法
1
C
vC
(t)
0
1
0 R2
iL1 iL2
(t ) (t)
L1 0
L2
0
0
e1 e2
(t) (t)
1
L2
(9.1-5)
v(t) 0 iC (t) 0
0 1
R2 1
vC iL1 iL2
(t) (t) (t)
0 0
1 e1(t)
0
e2
(t
)
(9.1-6)
第9章 系统的状态变量分析法
9.1.2 连续系统的状态方程和输出方程
对于一个 n 阶多输入/多输出的连续时间系统,其状态方程和输出 方程的一般形式可以表示为
状
d1(t)
dt
f1 1(t), 2 (t),
, n (t); e1(t), e2 (t),
, em (t), t
态 方
d2 (t) dt
dvC
(t
)
dt
1 C
iL1
(t)
1 C
iL2
(t)
diL1 (t dt
)
1 L1
vC
(t)
R1 L1
iL1
(t)
1 L1
e1 (t )
diL2
(t
)
dt
1 L2
vC (t)
R2 L2
iL2
(t)
1 L2
e2 (t)
(9.1-3)
第9章 系统的状态变量分析法
式(9.1-3)是由三个内部变量 vC (t) 、 iL1 (t) 和 iL2 (t) 构成的一阶微分联立方程组。由微分方程理论 可知,如果这三个变量在初始时刻 t t0 的值 vC (t0 ) 、iL1 (t0 ) 和 iL2 (t0 ) 已知,那么根据 t t0 时的激励 e1(t) 和 e2 (t) ,就可以唯一地确定该一阶微分方程组在 t t0 时的解 vC (t) 、iL1 (t) 和 iL2 (t) 。这样,系统的输出 v(t) 和 iC (t) 就可以很容易通过这三个内部变量 vC (t) 、 iL1 (t) 、 iL2 (t) 和系统的激励 e1(t) 、 e2 (t) 求出,此时
第八章 系统的状态变量分析
二、由模拟框图建立状态方程
(1) 选取积分器的输出作为状态变量; 选取积分器的输出作为状态变量 积分器的输出作为状态变量; (2) 围绕加法器列写状态方程和输出方程。 围绕加法器列写状态方程 输出方程。 加法器列写状态方程和
三、由微分方程或系统函数建立状态方程
(1) 由微分方程或系统函数,画出相应的模拟框图。 由微分方程或系统函数,画出相应的模拟框图 模拟框图。 (2) 再由模拟框图建立系统的状态方程。 再由模拟框图建立系统的状态方程 模拟框图建立系统的状态方程。
b12 b 22 ⋅⋅⋅ bn2
d 12 d 22 ⋅⋅⋅ d p2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
b1 m b2m ⋅⋅⋅ b nm
d 1m d 2m ⋅⋅⋅ d pm
连续时间系统状态方程的建立
由电路建立状态方程 由模拟框图建立状态方程 由微分方程或系统函数建立状态方程 状态方程的规范型实现
b11 b 21 ⋅⋅⋅ bn1
b12 b22 ⋅⋅⋅ bn 2
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
(n*m阶)
b1m x1 b2 m x 2 ⋅ ⋅ ⋅ ⋅⋅⋅ bnm xm
(m维)
一、连续时间系统状态方程的一般形式
& & q3 (t ) = 2.5q2 + q2 − 4q3 = 2q1 (t ) − 0.5q2 (t ) − 4q3 (t ) y (t ) = q3 (t )
例2 已知一个LTI系统的系统函数为 LTI系统
2s + 5 H (s) = 3 s + 9 s 2 + 26 s + 24
信号与系统分析第9章 线性系统的状态变量分析
设iL 0 0, vC 0 0,
et Eut , R 2 L
则
C
i
L
t
E L
te0t
vC t E 1 e 0t 0t 1
0
1 LC
iL t
I Lmax
O 1 0
t
vC t
E
O
t
iL t
I Lmax t0
t 0 t 1 0
E vC t
用状态变量分析系统的优点:
... bn 2
... ... ...
...
bnm
f
m
•
x Ax Bf
3.输出方程
y1 c11 c12 ... c1n x1 d11 d12 ... d1m f1
y2
c21
c22
...
c2n
x2
d21
d22
...
d2m
f2
... .... ... ... ... ... .... ... ... ... ...
(1)提供了系统的内部特性以供研究; (2)一阶微分(或差分)方程组便于计算机进行
数值计算; (3)便于分析多输入-多输出系统; (4)容易推广应用于时变系统或非线性系统;
(5)引出了可观测性和可控制性两个重要概念。
9.2 连续时间系统状态方程的建立
1.状态变量的选取
对于一个电路,选择状态变量最常用的方 法时取全部独立的电感电流和独立的电 容电压. 状态变量的个数,等于系统的阶数.
3.状态方程的矢量表示
•
x1
a11
a12
...
a1n x1 b11
b12
... b1m f1
系统的状态空间分析
则状态方程为:
x1 a11x1 a12 x2 a1n xn b11 f1 b12 f2 b1p f p x2 a21x1 a22 x2 a2n xn b21 f1 b22 f2 b2 p f p xn an1x1 an2 x2 ann xn bn1 f1 bn2 f2 bnp f p
二、状态空间分析法的应用及优点:
1、可以提供系统的内部信息,使人们能够比较容易地解 决那些与系统内部情况有关的分析设计问题。
2、不仅适用于线性、时不变、单输入单输出系统分析, 也适用于非线性、时变、多输入多输出系统分析。
3、描述方法规律性强,便于用计算机解决复杂系统的分 析设计问题。
第第88--33页页
信号与系统 电电子子教教案案
8.1 系统的状态空间描述
输出方程: 描述系统输出、输入、状态之间关系的代数方程组。
输出方程一般形式:
设n阶系统有n个状态、p个输入、q个输出,则输出方程为:
y1 c11x1 c12x2 c1n xn d11 f1 d12 f2 d1p f p
设t0时刻的初始状态为:x1(t0 ), x2 (t0 )......, xn (t0 ). 则系统的状态变量— — 任一时刻t的状态为:
x1(t), x2 (t)......, xn (t)
第第88--66页页
■
©西安电子科技大学电路与系统教研中心
信号与系统 电电子子教教案案
8.1 系统的状态空间描述
xn (k 1) an1
an2
ann
xn
( k )
bn1
bn 2
bnp
f p
第8章 系统的状态变量分析
+ b1m xm (t) + b2m xm (t)
+ bnm xm (t)
(8-4)
和
⎧ y1(t) = c11λ1(t) + c12λ2 (t) +
⎪⎪ ⎨
y2
(t
)
=
c21λ1
(t
)
+
c22λ2
(t
)
+
⎪
⎪⎩ yr (t) = cr1λ1(t) + cr2λ2 (t) +
的一阶导数与状态变量和激励的关系。式(8-3)形式的代数方程称为输出方程(output equation),
它描述了系统输出与状态变量和激励之间的关系。
状态变量分析法对于离散时间系统也是同样适用的,即上面给出的概念对离散时间系统同
样有效。只不过对于离散时间系统,其状态方程是一阶联立差分方程组,状态变量λ[n]是离散
输出方程可写为
λ(t)n×1 = An×n λ(t)n×1 + Bn×m x(t)m×1
(8-6)
y(t)r×1 = Cr×n λ(t)n×1 + Dr×m x(t)m×1
(8-7)
其中
λ(t) = ⎡⎣λ1(t), λ2 (t), , λn (t)⎤⎦T , λ (t ) = [λ1(t),λ 2 (t),… , λ n ( t )]T,
(constant matrix);如果系数矩阵中有的是时间 t 的函数,则此系统是线性时变系统。
2. 离散时间系统状态方程和输出方程的一般形式
对于一个动态的离散时间系统,它的时域数学模型是一个高阶差分方程。作为其状态方程
系统的状态变量分析
形式与连续时间系统的形式相同。
用状态变量分析法研究系统具有如下优点。
(1) 便于研究系统内部的一些物理量在信号转换过程中的变化。这些物理量可以用状态矢
量的一个分量表现出来,从而便于研究其变化规律。
361
(2) 系统的状态变量分析法与系统的复杂程度无关,它和简单系统的数学模型相似,都表 现为一些状态变量的线性组合,因而这种分析法更适用于多输入多输出系统。
(3) 状态变量分析法还适用于非线性和时变系统,因为一阶微分方程或差分方程是研究非 线性和时变系统的有效方法。
(4) 状态变量分析法可以用来定性地研究系统的稳定性及如何控制各个参数使系统的性能 达到最佳等。
(5) 由于状态方程都是一阶联立微分方程组或一阶联立差分方程组,因而便于采用数值解 法,从而为使用计算机进行分析系统提供有效的途径。
时间信号。
上述关于状态变量和状态方程的基本概念,可用于讨论系统状态方程和输出方程的一般形
式。
1. 连续时间系统状态方程和输出方程的一般形式
一个动态连续时间系统的时域数学模型都是用输入、输出信号的各阶导数来描述的。作为
连续时间系统的状态方程表现为状态变量的一阶联立微分方程组,对于线性时不变系统,状态
方程和输出方程简化为状态变量和输入信号的线性组合,即线性时不变系统的状态方程和输出
的一阶导数与状态变量和激励的关系。式(8-3)形式的代数方程称为输出方程(output equation),
它描述了系统输出与状态变量和激励之间的关系。
状态变量分析法对于离散时间系统也是同样适用的,即上面给出的概念对离散时间系统同
样有效。只不过对于离散时间系统,其状态方程是一阶联立差分方程组,状态变量λ[n]是离散
(8-8)
信号与系统课件:系统的状态变量分析
输出方程为
系统的状态变量分析 写成矩阵形式,状态方程和输出方程分别为
系统的状态变量分析
2. 并联模拟 由式(7. 2-15b ),系统函数可写为
系统的状态变量分析 即可用 3 个简单的子系统的并联来表示。其中每个简 单子系统的系统函数为
其模拟框图如图 7.2-4 所示。
系统的状态变量分析
(1)可以有效地提供系统内部的信息,使人们能够较为 容易地解决那些与系统内部情况有关的分析设计问题。
(2)状态变量描述法不仅适用于线性非时变的单输入单 输出系统特性的描述,也适用于非线性时变多输入多输出系 统特性的描述。
(3)描述方法规律性强,便于应用计算机技术解决复杂 系统的分析设计问题。
系统的状态变量分析 【例 7.2-1 】 电路如图 7. 2 1 所示,激励为 u s ( t ),
响应为 i (t ),试写出其状态方程和输出方程。
图 7.2-1 例 7. 2-1 用图
系统的状态变量分析
系统的状态变量分析
将式(7. 2-2 )中状态变量的一阶导数放在等式左端,把状态 变量和激励放在等式右端,则可写成
前面几章讨论的分析方法属于输入 输出描述法( Input-OutputDescription ),又称端口分析法,也称外部法。 它主要关心的是系统的激励与响应之间的关系,而不直接涉 及系统的内部情况。这种分析法对于较为简单系统的分析是 合适的。其相应的数学模型是 n 阶微分(或差分)方程。
系统的状态变量分析
系统的状态变量分析 将式(7. 2-12 )最高阶导数项留在等式左边,其余各项移到 等式右边,代入状态变量符号,得
于是,写出其状态方程和输出方程为
系统的状态变量分析 写成矩阵形式,状态方程为
信号与系统_张华清_第八章系统的状态变量分析
其特征根 1 2 2 是二重根。
齐次解的函数表达式为:
yh (k) (C1k C2 )(2)k, k 0
在特征根是共轭复根的情况下,齐次解的形式可以是等 幅、增幅或衰减等形式的正弦(或余弦)序列。
假设 1, 2 e j 是一对共轭复根,则在齐次解中,相
应部分齐次解为: C1 cos(k) C2 sin(k) k
k
例3.2-5
信号与系统 第三章例题
例3.2-5 已知某线性时不变离散系统的差分方程如下式所示,
试写出其齐次解的函数形式。
y(k) 4y(k 1) 4y(k 2) e(k) 3e(k 1)
解
此差分方程所对应的特征方程为
2 4 4 0 ( 2)2 0
法。
离散系统的数学模型为差分方程,所谓离散系统的时域 分析,就是在时间域(简称时域)中求解差分方程,以及求 解系统的单位序列响应、阶跃响应等。
求解差分方程与求解微分方程有许多相似之处,其经典 解法的全解也可分为齐次解和特解。
离散系统按照响应的不同来源也可分为零输入响应和零 状态响应;求零状态响应也可利用卷积计算求解。
其特征根为: 1 2,2 3 则其齐次解可写为: yh (k) C1(2)k C2 (3)k, k 0
将 y(0) = 1, y(1) = 0,代入上式,可得
C1 C2 1 2C1 3C2
0
C1 C2
3 2
所以
yh (k) 3(2)k 2(3)k, k 0
解
此齐次差分方程所对应的特征方程为
4 23 22 2 1 0 ( 1)2 (2 1) 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chap.9 系统的状态变量分析
1.系统状态及状态方程的基本概念
2. 信号流图signal flow graph
信号流图的代数运算
1. 只有一个输入支路的结点值等于输入信号乘以支路增益。
3. 并联支路的合并:并联支路的总增益等于所有各支路增益之和(并联相加)。
2. 串联支路的合并:串联支路的总增益等于所有各支路增益的乘积(串联相乘)。
x 3
信号流图的代数运算(续)
4.结点的吸收和变换:输出结点可以消掉,混合结点也可以通过增加一个具有单位传输的支路变为输出结点。
5. 环路吸收:带有环路系统的总增益等于断开环路后所有输入输出支路增益乘积除以因式(1-环路增益)。
信号流图简化步骤
环路吸收,去掉结点1
X 例2
结点吸收环路吸收
信号流图简化步骤(续)
环路吸收,去掉结点闭环
4X 结点吸收,去掉结点4
X
信号流图简化步骤(续)
4
422332214324433224
3213322224444432133224
3211)
1)(1(1)
1)(1(G H G H G H G H G H H H G H G H G H H H H H H G H G G H H G H G H H H G H G H G H H H H H ++++++=
++−−−−
++=
得到系统函数
并联相加环路吸收
)
()(14422332214324433224
321G H G H G H G H G H H H G H G H G H H H H H H ++++++=
对于例2, 用梅森公式求系统的转移函数。
求信号流图的特征行列式△△=1+(H 2G 2+ H 3G 3+ H 4G 4+H 2H 3H 4G 1)+(H 2G 2H 3G 3+ H 2G 2H 4G 4)系统具有4个环路,分别为:
L1=(X 1→X 2→X 1)=-H 2G 2L2= (X 3→X 4→X 3)=-H 3G 3L3= (X 4→Y →X 4)=-H 4G 4
L4= (X 1→X 2→X 3→X 4→Y →X 1)=-H 2H 3H 4G 1
互不接触环路为:L1和L2, L1和L3
前向通路只有一条:g1=H 1H 2H 3H 4,其特征行列式的余子式△1为△1=1 –0 + 0 -……
22
)()0t e b
)(t e i βp 1
i α−1)(t r i p α+
321===λλλ&&&321
⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡λλλ&&&。