七年级数学下册 第五章测评卷
七年级数学下册第五章 相交线与平行线试卷(5套)
abM P N 123B EDA CF87654321DCBA第五章相交线与平行线单元测试题(一)姓名: 分数:一、选择题(每题3分,共30分)1、如图1,直线a ,b 相交于点O ,若∠1等于40°,则∠2等于( )A .50°B .60°C .140°D .160°图1 图2 图3 2、如图2,已知AB ∥CD ,∠A =70°,则∠1的度数是( )A .70°B .100°C .110°D .130°3、如图3,AB CD ⊥,垂足为O ,EF 为过点O 的一条直线,则1∠ 与2∠的关系一定成立的是( )A .相等B .互余C .互补D .互为对顶角4、如图4,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .65图4 图5 图6 5、如图5,小明从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20方向行走至C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A .右转80°B .左转80°C .右转100°D .左转100° 6、如图6,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7;B .∠2=∠6C 、∠3+∠4+∠5+∠6=1800D 、∠4=∠87、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( ) A . 42138 、 B . 都是10 C . 42138 、或4210、 D . 以上都不对 8、下列语句:①三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中( )A .①、②是正确的命题;B .②、③是正确命题;C .①、③是正确命题 ;D .以上结论皆错 9、下列语句错误的是( )A .连接两点的线段的长度叫做两点间的距离;B .两条直线平行,同旁内角互补C .若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D .平移变换中,各组对应点连成两线段平行且相等 10、如图7,a b ∥,M N ,分别在a b ,上,P 为两平行线间一点,那么123∠+∠+∠=( ) A .180B .270C .360D .540图7二、填空题(每题4分,共24分)11、如图8,直线a b ∥,直线c 与a b ,相交.若170∠= ,则2_____∠=.12、如图9,已知170,270,360,∠=︒∠=︒∠=︒则4∠=______︒.13、如图10,已知AB ∥CD ,BE 平分∠ABC ,∠CDE =150°,则∠C =______图8 图9 图10 14、如图11,已知a b ∥,170∠=,240∠=,则3∠= . 15、如图12所示,请写出能判定CE ∥AB 的一个条件 . 16、如图13,已知AB CD //,∠α=____________DBAC1ab1 2OABCDEF21 O1 2bacbac d1234BCDEABCab1 2 3A BE图11 图12 三、解答题(共46分) 17、推理填空:(共8分)如图:①若∠1=∠2,则 ∥ ( )若∠DAB+∠ABC=1800,则 ∥ ( )②当 ∥ 时,∠ C+∠ABC=1800 ( ) 当 ∥ 时,∠3=∠C ()18、如图,∠1=30°,AB ⊥CD ,垂足为O ,EF 经过点O .求∠2、∠3的度数. ( 8分)19、已知:如图AB ∥CD ,EF 交AB 于G ,交CD 于F ,FH 平分∠EFD ,交AB 于H ,∠AGE=500,求:∠BHF 的度数.(8分)20、(10分)观察如图所示中的各图,寻找对顶角(不含平角):(1)如图a ,图中共有___________对对顶角;(2)如图b ,图中共有___________对对顶角; (3)如图c ,图中共有___________对对顶角.(4)研究(1)~(3)小题中直线条数与对顶角的对数之间的关系,若有n 条直线相交于一点,则可形成_________________________________对对顶角。
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元检测卷-人教版(含答案)题号一二三总分192021222324分数1.如图,直线b、c被直线a所截,则∠1与∠2是()A.内错角B.同位角C.同旁内角D.对顶角2.下列四个命题中,真命题的是()A.同角的补角相等B.相等的角是对顶角C.三角形的一个外角大于任何一个内角D.两条直线被第三条直线所截.内错角相等3.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.4.如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.75.如图,将△ABC沿BC方向平移2cm得到△DEF,若△ABC的周长为16cm,则四边形ABFD的周长为()A.16cm B.18cm C.20cm D.22cm6.如图,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,则线段A′B与线段AC的关系是()A.垂直B.相等C.平分D.平分且垂直7.如图,下列说法错误的是()A.∠A与∠3是同位角B.∠4与∠B是同旁内角C.∠A与∠C是内错角D.∠1与∠2是同旁内角8.如图,下列条件中,能判断a∥b的条件有()①∠1=∠2;②∠1=∠4;③∠1+∠3=180°;④∠1+∠5=180°A.1个B.2个C.3个D.4个9.如图,直线a∥b,将三角尺的直角顶点放在直线b上,若∠1=35°,则∠2等于()A.45°B.55°C.35°D.65°10.如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF=()A.110°B.115°C.120°D.130°二、填空题(每题3分,共24分)11.如图,请填写一个条件,使结论成立:∵__________,∴//a b.12.. 如图,直线AB,CD,EF相交于点O,则∠BOE的对顶角是,∠COE的邻补角是,∠COG的邻补角是.13.如图,∠B的内错角是.14.如图,直线a∥b,∠1=75°,那么∠2的度数是.15.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠2=24°,则∠1的度数为.16.如图所示,点E在AC的延长线上,有下列条件:①∠1=∠2,②∠3=∠4,③∠A=∠DCE,④∠D=∠DCE,⑤∠A+∠ABD=180°,⑥∠A+∠ACD=180°,其中能判断AB∥CD的是.17.如图,将△ABC沿BC所在的直线平移得到△DEF.如果GC=2,DF=4.5,那么AG=.18.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.三.解答题(19题6分,20、21、22、23、24题分别8分,共46分)19.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.20.给下面命题的说理过程填写依据.已知:如图,O是直线AB上的一点,OD是∠AOC的平分线,OE是∠COB的平分线.对OD⊥OE说明理由.理由:因为∠DOC=∠AOC().∠COE=∠COB().所以∠DOC+∠COE=∠AOC+∠COB=(∠AOC+∠COB)().所以∠DOE=∠AOB=×°=90°(两角和的定义)所以OD⊥OE().21.(8分)如图,已知AB∥CD,试再添加一个条件,使∠1=∠2成立.(1)写出两个不同的条件;(2)从(1)中选择一个来证明.22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.如图,已知AB∥CD,EF∥MN,且∠1=110°.(1)求∠2和∠4的度数;(2)根据(1)的结果可知,如果两个角的两边分别平行,那么这两个角;(3)利用(2)中的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.24. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.参考答案一、选择题:题号12345678910答案B A C A C D A D B B二、填空题:11. 【答案】:∠1=∠4或∠2=∠4或∠3+∠4=180°【解析】本题考查了平行线的判定,∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b,因此本题填:∠1=∠4或∠2=∠4或∠3+∠4=180°.12. 【答案】∠AOF∠COF和∠DOE∠DOG13.解:∠B的内错角是∠BAD;故答案为:∠BAD.14.解:∵周长为12的三角形ABC沿BC方向平移2个单位长度得到三角形DEF,∴AD=CF=2,AC=DF,∴四边形ABFD的周长=AB+BC+CF+DF+AD=AB+BC+AC+AD+CF=△ABC 的周长+2AD=12+2×2=16.故答案为16.14.解:如图,∵a∥b,∴∠1=∠3=75°,而∠2+∠3=180°,∴∠2=180°﹣75°=105°.故答案为:105°.15.解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵GH∥EF,∴∠AEC=∠2=24°,∴∠1=∠ABC﹣∠AEC=36°.故答案为:36°.16.解:①∵∠1=∠2,∴AB∥CD,正确;②∵∠3=∠4,∴BD∥AC,错误;③∵∠A=∠DCE,∴AB∥CD,正确;④∵∠D=∠DCE,∴BD∥AC,错误;⑤∵∠A+∠ABD=180°,∴BD∥AC,错误;⑥∵∠A+∠ACD=180°,∴AB∥CD,正确;故答案为:①③⑥17.解:∵△ABC沿BC所在的直线平移得到△DEF.∴AC=DF=4.5,∴AG=AC﹣GC=4.5﹣2=2.5.故答案为2.5.18.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.三.解答题:19..证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.20.解:根据题意,可知前两个空分别为角平分线的定义,第三个空是利用上面等式右边的代入计算,故属于等量代换,第四个空属于垂直的定义.故答案为:角平分线的定义,角平分线的定义,等量代换,垂直的定义.21.解:此题答案不唯一,合理即可.(1)添加∠FCB=∠CBE或CF∥BE.(2)已知AB∥CD,CF∥BE.求证:∠1=∠2.证明:∵AB∥CD,∴∠DCB=∠ABC.∵CF∥BE,∴∠FCB=∠CBE,∴∠DCB-∠FCB=∠ABC-∠CBE,即∠1=∠2.22.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.23. 解:(1) 因为AB∥CD,所以∠1=∠2=110°,又因为EF∥MN,所以∠2+∠4=180°,∠4=70°(2)相等或互补(3)因为这两个角中,其中一角是另一个角的两倍,由(2)得,这两个角互补.设其中一个角的度数是x,则另一个角的度数为2x,根据题意,得x+2x=180°,解得x=60°.所以其中一个角是60°另一个角是120°24. 解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.。
人教版初中数学七年级下册第五章《相交线与平行线》测试题(含答案)
第五章《相交线与平行线》检测题一、选择题(每小题只有一个正确答案)1.下列图形中,∠1与∠2是对顶角的是( )A. B. C. D.2.下列命题的逆命题不正确...的是()A. 同角的余角相等B. 等腰三角形的两个底角相等C. 两直线平行,内错角相等D. 线段中垂线上的点到线段两端的距离相等3.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A. 60°B. 50°C. 70°D. 80°4.下列图形中线段PQ的长度表示点P到直线a的距离的是()A. B. C. D.5.如图,有下列说法:①若DE∥AB,则∠DEF+∠EFB=180º;②能与∠DEF构成内错角的角的个数有2个;③能与∠BFE构成同位角的角的个数有2个;④能与∠C构成同旁内角的角的个数有4个.其中结论正确的是()A. ①②B. ③④C. ①③④D. ①②④6.如图所示,已知∠1=∠2,那么下列结论正确的是( )A. AB∥BCB. AB∥CDC. ∠C=∠DD. ∠3=∠47.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是().B. 如图2,展开后测得12∠=∠C. 如图3,测得12∠=∠D. 如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA OB =, OC OD = 8.如图,01,220,=B D ∠=∠∠=∠则( )A. 20B. 22C. 30D. 459.如图,从A 处出发沿北偏东60°方向行走至B 处,又沿北偏西20°方向行走至C 处,则∠ABC 的度数是( ) .A. 80°B. 90°C. 100°D. 95°10.如图,AB∥CD∥EF,则下列各式中正确的是( )A. ∠1+∠3=180°B. ∠1+∠2=∠3C. ∠2+∠3+∠1=180°D. ∠2+∠3﹣∠1=180°11.对于命题“若22a b >,则a b >”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是( ).A. 3a =, 2b =-B. 2a =-, 3b =C. 2a =, 3b =-D. 3a =-, 2b = 12.下面的每组图形中,左面的平移后可以得到右面的是( )A. B. C. D.二、填空题13.如图,DF 平分∠CDE .∠CDF =50°.∠C =80°,则________∥________.a b c d,若a∥b. a⊥c. b⊥d,则直线,c d的位置14.同一平面内有四条直线,,,关系_________.15.如图.直线a.b.且∠1.28°..2.50°.则∠ABC._______.16.下列说法:①三角形的一个外角等于它的两个内角和;②三角形的内角和等于180°,外角和等于360°.③若一个三角形的三边长分别为3.5.x,则x的取值范围是2.x.8.④角是轴对称图形,角的对称轴是角的平分线;⑤圆既是轴对称图形,也是中心对称图形,圆有无数条对称轴.其中正确的有_ __.(填序号)17.如图,Rt△AOB和Rt△COD中,∠AOB=∠COD=90°,∠B=50°,∠C=60°,点D 在边OA上,将图中的△AOB绕点O按每秒20°的速度沿逆时针方向旋转一周,在旋转的过程中,在第t秒时,边CD恰好与边AB平行,则t的值为________.三、解答题18.将一副直角三角尺拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F,试判断CF与AB是否平行,并说明理由.19.如图,已知,AB∥CD,∠1=∠2,AE与EF平行吗?为什么?20.完成下面的证明:如图.AB和CD相交于点O.∠C.∠COA.∠D.∠BOD.求证:∠A.∠B.21.如图,在6×8 方格纸中,. ABC 的三个顶点和点P .Q都在小方格的顶点上.按要求画一个三角形,使它的顶点在方格的顶点上:. 1)在图1中画. DEF,使. DEF 与. ABC 全等,且使点P在. DEF 的内部.. 2. 在图2中画. MNH,使. MNH 与. ABC 的面积相等,但不全等,且使Q在. MNH的边上.22.如图,已知射线CB∥OA,∠C=∠OAB=100°,点E,F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数;(2)若向右平移AB,其他条件都不变,那么∠OBC∶∠OFC的值是否随之变化?若变化,找出变化规律;若不变,求出这个比值.参考答案1.C 2.A 3.A 4.C 5.A 6.B 7.C 8.A 9.C 10.D 11.D 12.D 13. DE BC14.c ∥d 15.78° 16.②③⑤17.5.5秒或14.5秒 18.CF ∥AB 19.AE∥DF, . 20.证明:∵∠C.∠COA.∠D.∠BOD(已知). 又∵∠COA.∠BOD(__对顶角相等__). ∴∠C.__∠D__(等量代换).∴AC ∥__BD__(__内错角相等.两直线平行__). ∴∠A.∠B(__两直线平行.内错角相等__).21. 1)利用三角形平移的规律进而得出对应点位置即可; . 2)利用三角形面积公式求出符合题意的图形即可. 试题解析:解:(1)如图所示:. DEF 即为所求;.2)如图所示:.MNH 即为所求.22. (1)∵CB ∥OA ,180.C COA ∴∠+∠=︒100C OAB ∠=∠=︒Q ,80.COA ∴∠=︒ ∵OE 平分COF ∠, .COE EOF ∴∠=∠2COA COE EOF FOB AOB EOB ∠=∠+∠+∠+∠=∠Q ,40.EOB ∴∠=︒(2)这个比值不变,比值为1∶2.理由: ∵CB ∥OA ,.OBC BOA OFC FOA ∴∠=∠∠=∠,FOB BOA ∠=∠Q , 12BOA FOA ∴∠=∠,OBC OFC ∴∠=∠,:1:2.OBC OFC ∴∠∠=。
七年级下册第五章数学测试卷
七年级下册第五章数学测试卷一、选择题(每题3分,共30分)1. 下面四个图形中,∠1与∠2是对顶角的图形的个数是()A. 0个B. 1个C. 2个D. 3个。
2. 如图,直线AB、CD相交于点O,若∠1 + ∠2 = 100°,则∠BOC等于()A. 130°B. 140°C. 150°D. 160°.(此处可画一个简单的相交直线图,标注∠1、∠2和∠BOC)3. 如图,直线a∥b,∠1 = 70°,那么∠2的度数是()A. 50°B. 60°C. 70°D. 80°.(画直线a、b平行,标注∠1和∠2)4. 下列说法正确的是()A. 有且只有一条直线与已知直线平行。
B. 垂直于同一条直线的两条直线互相平行。
C. 从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。
D. 在平面内过一点有且只有一条直线与已知直线垂直。
5. 如图,能判定EB∥AC的条件是()A. ∠C = ∠ABEB. ∠A = ∠EBDC. ∠C = ∠ABCD. ∠A = ∠ABE. (画一个简单的三角形ABC,E在AB延长线上,标注相关角)6. 如图,将三角形ABC沿BC方向平移2cm得到三角形DEF,若三角形ABC的周长为16cm,则四边形ABFD的周长为()A. 16cmB. 18cmC. 20cmD. 22cm.(画出三角形ABC平移得到三角形DEF的图,标注平移距离2cm)7. 如图,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1 = 50°,则∠2等于()A. 50°B. 60°C. 65°D. 70°.(画AB∥CD,EF与它们相交,标注∠1,EG平分∠BEF,标注∠2)8. 下列命题中:相等的角是对顶角;在同一平面内,若a∥b,b∥c,则a∥c;同旁内角互补;④互为邻补角的两角的角平分线互相垂直。
人教版七年级数学下册第五章测试卷(含答案)
人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。
人教版七年级下册数学第五章检测试卷(附答案)
人教版七年级下册数学第五章检测试卷(附答案)一、单选题(共20题;共39分)1.在平面直角坐标系内点A、点B的坐标分别为(0,3)、(4,3),在坐标轴上找一点C,使△ABC是等腰三角形,则符合条件的点C的个数是()A. 5个B. 6个C. 7个D. 8个2.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(﹣1,0),AC=2.将Rt△ABC先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()2题图3题图A. (2,2)B. (1,2)C. (﹣1,2)D. (2,﹣1)3.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠1与∠4是内错角;④∠1与∠3是同位角. 其中正确的个数是A. 4个B. 3个C. 2个D. 1个4.如图,4根火柴棒形成象形“口”字,只通过平移火柴棒,原图形能变成的汉字是( )A. B. C. D.5.同一平面内的三条直线满足a⊥b,b⊥c,则下列式子成立的是()A. a∥cB. b⊥aC. a⊥cD. b∥c6.如图,一辆超市购物车放置在水平地面上,其侧面四边形ABCD与地面某条水平线l在同一平面内,且AB∥l,若∠A=93°,∠D=111°,则直线CD与l所夹锐角的度数为()A.15°B. 18°C. 21°D. 24°A. 对角线互相平分且相等的四边形是矩形B. 对角线垂直的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直平分的四边形是正方形8.如图,BC∥DE,∠1=105°, ∠AED=65°, 则∠A的大小是( )A. 25°B. 35°B. C. 40° D. 60°9.将点A(2,1)向上平移2个单位长度得到点A′,则点A′的坐标是()A. (2,3)B. (0,1)C. (4,1)D. (2,-1)10.如图,DE∥BC,CD平分∠ACB,∠AED=50°,则∠EDC的度数是()10题图11题图A. 50°B. 40°C. 30°D. 25°11.如图,与∠1是内错角的是()A. ∠2B. ∠3C. ∠4D. ∠512.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则()A. 点B到AO的距离为sin54°B. 点B到AO的距离为tan36°C. 点A到OC的距离为sin36°sin54°D. 点A到OC的距离为cos36°sin54°13.已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:① = ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()13题图14题图15题图A. 1B. 2C. 3D. 414.如图,,,,则的度数是()A. B. C. D.15.如图,与∠1是内错角的是( )A. ∠2B. ∠3C. ∠4D. ∠5A. 一个锐角与一个钝角一定互补B. 锐角的补角一定是钝角C. 互补的两个角一定不相等D. 互余的两个角一定不相等17.如图所示,图中内错角有()17题图18题图A. 2对B. 3对C. 4对D. 5对18.如图,△ABC中,BD平分∠ABC,交AC于D,CF平分∠ACB的邻补角∠ACE,CF交BA延长线于点F,交BD延长线于点M.在下列结论中:①∠BMC=∠MBC+∠F;②∠ABD+∠BAD=∠DCM+∠DMC;③2∠BMC=∠BAC;④3(∠BDC+∠F)=4∠BAC;其中正确的有()个.A. 1个B. 2个C. 3个D. 4个19.如图,,、、分别平分、和。
2022年人教版七年级数学下册第五章相交线与平行线综合测评试卷(精选)
七年级数学下册第五章相交线与平行线综合测评(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,直线AB 和CD 相交于点O ,若∠AOC =125°,则∠BOD 等于( )A .55°B .125°C .115°D .65°2、如图,直线AB ∥CD ,直线AB 、CD 被直线EF 所截,交点分别为点M 、点N ,若∠AME =130°,则∠DNM 的度数为( )A .30°B .40°C .50°D .60° 3、可以用来说明“若22a b =,则a b =.”是假命题的反例是( )A .1,2a b =-=B .2,2a b ==C .2,2a b =-=D .4,3a b ==4、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为()A.80°B.90°C.100°D.110°5、命题“如果a<0,b<0,那么ab>0”的逆命题是()A.如果a<0,b<o,那么ab<0 B.如果ab>0,那么a<0,b<0 C.如果a>0,b>0,那么a<0 D.如果ab<0,那么a>0,b>06、下列说法正确的是()A.命题是定理,但定理未必是命题B.公理和定理都是真命题C.定理和命题一样,有真有假D.“取线段AB的中点C”是一个真命题∠构成同位角的有()7、如图,能与αA.4个B.3个C.2个D.1个8、命题“等角的余角相等”中的余角是()A.结论的一部分B.题设的一部分C.既不属于结论也不属于题设D .同属于题设和结论部分9、如图,直线被所截,下列说法,正确的有( )①1∠与2∠是同旁内角;②1∠与ACE ∠是内错角;③B 与4∠是同位角;④1∠与3∠是内错角.A .①③④B .③④C .①②④D .①②③④10、如果存在一条直线将一个图形分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,那么我们把这种图形称为平移重合图形,下列图形中,不是平移重合图形的是( )A .B .C .D .二、填空题(5小题,每小题4分,共计20分)1、举例说明命题“如果22a b ≠,那么a b ”的逆命题为假命题__.2、如图,BD 平分ABC ∠,()430A x ∠=+︒,()15DBC x ∠=+︒,要使AD BC ∥,则x =______°.3、把命题“同角的余角相等”改写成:如果_____________________,那么_____________.4、已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a//b,a⊥c,那么b⊥c;②如果b//a,c//a,那么b//c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b//c.其中正确的是__.(填写序号)5、命题“垂直于同一直线的两条直线互相垂直”是______命题.(填“真”或“假”)三、解答题(5小题,每小题10分,共计50分)1、写出下列各命题的逆命题,并判断原命题和逆命题的真假.(1)同位角相等;(2)如果|a|=|b|,那么a=b;(3)等边三角形的三个角都是60°.2、阅读并完成下列推理过程,在括号内填写理由.已知:如图,点D ,E 分别在线段AB 、BC 上,AC DE ∥,AE 平分BAC ∠,DF 平分BDE ∠交BC 于点E 、F .求证:DF AE ∥.证明:AE ∵平分BAC ∠(已知),112(2BAC ∴∠=∠=∠ ). DF 平分BDE ∠(已知), 1342∴∠=∠= (角平分线的定义),AC DE ∥(已知),(BDE BAC ∴∠=∠ ).23(∴∠=∠ ).(DF AE ∴∥ ).3、在如图所示55⨯的网格中,每个正方形的边长都是1,横纵线段的交点叫做格点,线段AB 的两个端点都在格点上,点P 也在格点上;(1)在图①中过点P 作AB 的平行线;(2)在图②中过点P 作PQ ⊥AB ,垂足为Q ;连接AP 和BP ,则三角形ABP 的面积是 .4、如图1,点A 、O 、B 依次在直线MN 上,现将射线OA 绕点O 沿顺时针方向以每秒4°的速度旋转,同时射线OB 绕点O 沿逆时针方向以每秒6°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t (0≤t ≤30,单位:秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB达到60°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请直接写出t的值;如果不存在,请说明理由.5、如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC证明:∵ ∠1+∠AFE=180°∴ CD∥EF(,)∵∠A=∠2 ∴()(,)∴ AB∥CD∥EF(,)∴ ∠A= ,∠C= ,(,)∵ ∠AFE =∠EFC+∠AFC,∴ = .---------参考答案-----------一、单选题1、B【分析】根据对顶角相等即可求解.【详解】解:∵直线AB和CD相交于点O,∠AOC=125°,∴∠BOD等于125°.故选B.【点睛】本题主要考查了对顶角的性质,熟知对顶角相等的性质是解题的关键.2、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN =130°.3、C【分析】若22a b =,则包括a b =或a b =-,由此分析即可.【详解】解:∵22a b =,∴a b =或a b =-,∴反例可为2,2a b =-=,故选:C .【点睛】本题考查命题的判断,以及等式的性质,掌握举例证明命题真假的方法以及等式的性质是解题关键.4、D【分析】直接利用对顶角以及平行线的性质分析得出答案.【详解】解:∵∠1=70°,∴∠1=∠3=70°,∵AB //DC ,∴∠2+∠3=180°,∴∠2=180°−70°=110°.故答案为:D.【点睛】此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.5、B【分析】根据互逆命题概念解答即可.【详解】解:命题“如果a<0,b<0,那么ab>0”的逆命题是“如果ab>0,那么a<0,b<0”,故选:B.【点睛】本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.6、B【分析】命题是判断一件事情的句子,可分为真命题和假命题;公认的真命题称之为公理,经过证明的真命题称之为定理;命题的结构必须有条件和结论,由此进行分析判断即可得到答案.【详解】解:A、说法错误,定理是经过证明的真命题,但是命题不一定是定理;B、说法正确,公理和定理都是真命题;C、说法错误,定理是经过证明的真命题,命题有真假之分;D、说法错误,取线段AB的中点C是描述性语言,不是命题,更不是真命题.故选:B【点睛】本题考查命题的定义、公理和定理的概念等相关知识点,牢记定义内容是解此类题的关键.7、B【分析】根据同位角的定义判断即可;【详解】∠能构成同位角的有:∠1,∠2,∠3.如图,与α故选B.【点睛】本题主要考查了同位角的判断,准确分析判断是解题的关键.8、B【分析】根据命题题设与结论的定义:题设是已知事项,结论是已知事项推出的事项,进行逐一判断即可.【详解】解:“等角的余角相等”中题设是:两个等角的余角,结论是:相等,故选B.【点睛】本题主要考查了命题的题设与结论,熟知定义是解题的关键.9、D【分析】根据同位角、内错角、同旁内角的定义可直接得到答案.【详解】解:①1∠与2∠是同旁内角,说法正确;②1∠是内错角,说法正确;∠与ACE③B与4∠是同位角,说法正确;④1∠是内错角,说法正确,∠与3故选:D.【点睛】此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F” 形,内错角的边构成“Z”形,同旁内角的边构成“U”形.10、D【分析】如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF,证明平行四边形是平移重合图形,即可判断A、B、C;再由找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合即可判断D.【详解】解:如图,平行四边形ABCD中,取BC,AD的中点E,F,连接EF.则有:AF =FD ,BE =EC ,AB =EF =CD ,∴四边形ABEF 向右平移可以与四边形EFCD 重合,∴平行四边形ABCD 是平移重合图形.同理可证,正方形,长方形,也是平移重合图形,故选项A 、B 、C 不符合题意,而找不到一条直线将圆分割成两部分,使其中一部分图形按某个方向平移后能够与另一部分重合,则圆不是平移重合图形,故D 符合题意;故选D .【点睛】本题考查平移图形的定义,解题的关键是理解题意,灵活运用所学知识解决问题.二、填空题1、如果55-≠,而22(5)5-=(举例不唯一)【解析】【分析】首先要写出原命题的逆命题,然后通过实例说明逆命题不成立即可.【详解】解:如果22a b ≠,那么a b 的逆命题是:如果a b ,那么22a b ≠.如果55-≠,而22(5)5-=.故如果a b ,那么22a b ≠为假命题.故答案为:如果55-≠,而22(5)5-=(举例不唯一).【点睛】本题考查逆命题的相关知识,关键是能够写出原命题的逆命题.2、20【解析】【分析】利用角平分线的定义求解230,ABC x 再由AD BC ∥可得180,A ABC 再列方程求解即可.【详解】 解: BD 平分ABC ∠,()15DBC x ∠=+︒,2230,ABC DBC x由AD BC ∥,180,A ABC 而()430A x ∠=+︒,230430180,x x解得:20,x =所以当20x 时,AD BC ∥,故答案为:20【点睛】本题考查的是角平分线的定义,平行线的判定与性质,一元一次方程的应用,掌握平行线的判定与性质是解本题的关键.3、两个角是同一个角的余角 这两个角相等【解析】【分析】根据命题的概念把原命题改写成“如果…,那么…”的形式,根据余角的概念判断即可.【详解】解:命题“同角的余角相等”,改写成“如果…,那么…”的形式为:如果两个角是同一个角的余角,那么这两个角相等.故答案为:两个角是同一个角的余角,这两个角相等.【点睛】本题考查的是命题的概念,命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.4、①②④【解析】【分析】根据两直线的位置关系一一判断即可.【详解】解:在同一个平面内,①如果a//b,a⊥c,那么b⊥c,正确;②如果b//a,c//a,那么b//c,正确;③如果b⊥a,c⊥a,那么b//c,错误;④如果b⊥a,c⊥a,那么b//c,正确;故答案为:①②④.【点睛】本题考查两直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.5、假【解析】【分析】由平行线公理进行判断,即可得到答案.【详解】解:垂直于同一直线的两条直线互相平行;∴原命题是假命题;故答案为:假;【点睛】本题考查了判断命题的真假,解题的关键是熟记平行线公理进行判断.三、解答题1、(1)相等的角是同位角,是假命题;(2)如果a=b,那么|a|=|b|,是真命题;(3)三个角都是60°的三角形是等边三角形,是真命题.【分析】根据逆命题的概念分别写出各个命题的逆命题,判断真假即可.【详解】解:(1)同位角相等的逆命题是相等的角是同位角,是假命题;(2)如果|a|=|b|,那么a=b的逆命题是如果a=b,那么|a|=|b|,是真命题;(3)等边三角形的三个角都是60°的逆命题是三个角都是60°的三角形是等边三角形,是真命题.【点睛】h本题考查的是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.2、角平分线的定义;BDE;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【分析】根据角平分线的定义和平行线的性质与判定即可证明.【详解】证明:AE∵平分BAC∠(已知),1 122BAC∴∠=∠=∠(角平分线的定义).DF平分BDE∠(已知),1 342BDE∴∠=∠=∠(角平分线的定义),//AC DE(已知),BDE BAC∴∠=∠(两直线平行,同位角相等).23∴∠=∠(等量代换).//DF AE∴(同位角相等,两直线平行).故答案为:角平分线的定义;BDE∠;两直线平行,同位角相等;等量代换;同位角相等,两直线平行.【点睛】本题主要考查了角平分线的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.3、(1)见解析;(2)见解析,5.【分析】(1)根据平行线的画法即可得;(2)根据垂线的画法即可得,再利用1个长方形的面积减去3个直角三角形的面积即可得.【详解】解:(1)如图①,PC即为所求.(2)如图②,PQ 即为所求.三角形ABP 的面积为111343131425222⨯-⨯⨯-⨯⨯-⨯⨯=,故答案为:5.【点睛】本题考查了平行线和垂线的画法等知识点,熟练掌握平行线和垂线的画法是解题关键.4、(1)150°;(2)12或24;(3)存在,9秒、27秒【分析】(1)根据∠AOB =180°−∠AOM −∠BON 计算即可.(2)先求解,OA OB 重合时,=18,t 再分两种情况讨论:当0≤t ≤18时;当18≤t ≤30时;再构建方程求解即可.(3)分两种情形,当0≤t ≤18时;当18≤t ≤30时;分别构建方程求解即可.【详解】解:(1)当t =3时,∠AOB =180°−4°×3−6°×3=150°.(2)当,OA OB 重合时,46180,t t解得:18,t当0≤t ≤18时:60,AOB ∠=︒18060120,AOM BON∴ 4t +6t =120解得:12,t =当18≤t ≤30时:则18060,AOM BON∴ 4t +6t =180+60,解得 t =24,答:当∠AOB 达到60°时,t 的值为6或24秒.(3) 当0≤t ≤18时,由,OA OB ⊥90,AOB ∴∠=︒∴ 180−4t −6t =90,解得t =9,当18≤t ≤30时,同理可得:18090,AOM BON∴ 4t +6t =180+90解得t =27.030,t 所以大于30的答案不予讨论,答:在旋转过程中存在这样的t ,使得射线OB 与射线OA 垂直,t 的值为9秒、27秒.【点睛】本题考查的是平角的定义,角的和差关系,垂直的定义,一元一次方程的应用,熟练的利用一元一次方程解决几何角度问题,清晰的分类讨论是解本题的关键.5、同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【分析】根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE,∠C=∠EFC,根据角的和可得∠AFE =∠EFC+∠AFC即可.【详解】证明:∵ ∠1+∠AFE=180°∴ CD∥EF(同旁内角互补,两直线平行),∵∠A=∠2 ,∴(AB∥CD)(同位角相等,两直线平行),∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行)∴ ∠A= ∠AFE,∠C= ∠EFC,(两直线平行,内错角相等)∵ ∠AFE =∠EFC+∠AFC,∴∠A = ∠C+∠AFC.故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC.【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键.。
人教版七年级数学下册《第五章-相交线与平行线》单元测试卷-附参考答案
人教版七年级数学下册《第五章 相交线与平行线》单元测试卷-附参考答案(测试时间:90分钟 卷面满分:100分)班级 姓名 学号 分数一 选择题(本大题共10个小题 每小题3分 共30分 在每小题给出的四个选项中 只有一项是符合题目要求的)1.(2022春·全国·七年级单元测试)下图中 1∠和2∠是对顶角的是( )A .B .C .D . 【答案】B 【分析】根据对顶角的定义解答即可.【详解】解:A 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意B 1∠和2∠是对顶角 则此项符合题意C 1∠和2∠没有公共顶点 则不是对顶角 此项不符合题意D 1∠和2∠的某一边不是互为反向延长线 则不是对顶角 此项不符合题意故选:B .【点睛】本题考查了对顶角 解题的关键是熟记对顶角的定义:有一个公共顶点 并且一个角的两边分别是另一个角的两边的反向延长线 具有这种位置关系的两个角 互为对顶角. 2.(2022·全国·七年级单元测试)如图 直线AD BE 、 被直线BF 和AC 所截 则2∠的同位角有( )个.A .2B .3C .4D .1【答案】B【分析】根据同位角的定义求解即可:同位角:两条直线被第三条直线所截形成的角中 若两个角都在两直线的同侧 并且在第三条直线(截线)的同旁 则这样一对角叫做同位角.【详解】解:∠2的同位角有:∠1 ∠F AC ∠4 共三个.故选:B .【点睛】本题考查了同位角熟记同位角定义是解题的关键.3.(2022春·七年级单元测试)如图所示的图案可以看作由“基本图案”经过平移得到的是()A.B.C.D.【答案】B【分析】根据平移的概念:在平面内把一个图形整体沿某一的方向移动这种图形的平行移动叫做平移变换简称平移即可选出答案.【详解】解:A 不是由“基本图案”经过平移得到故此选项不符合题意B 是由“基本图案”经过平移得到故此选项符合题意C 不是由“基本图案”经过平移得到故此选项不符合题意D 不是由“基本图案”经过平移得到故此选项不符合题意故选B.【点睛】本题考查生活中的平移现象仔细观察各选项图形是解题的关键.4.(2022秋·江苏连云港·七年级校考单元测试)下列语句中属于命题的是()A.等角的余角相等B.两点之间线段最短吗C.连接P Q两点D.花儿会不会在春天开放【答案】A【分析】根据命题的定义对选项一一进行分析即可.【详解】解:选项A:是用语言可以判断真假的陈述句是命题故符合题意选项B C D:都不是可以判断真假的陈述句都不是命题故不符合题意.故选:A【点睛】本题考查了命题的定义解本题的关键在判断给出的语句是否用语言符号或式子表达是否为可以判断真假的陈述句.一般地对某件事情作出正确或不正确的判断的句子叫做命题命题可看做由题设和结论两部分组成.5.(2022·全国·七年级单元测试)如图若图形A经过平移与下方图形(阴影部分)拼成一个长方形则平移方式可以是()A .向右平移4个格 再向下平移4个格B .向右平移6个格 再向下平移5个格C .向右平移4个格 再向下平移3个格D .向右平移5个格 再向下平移4个格 【答案】A【分析】根据平移的性质 结合图形解答即可.【详解】解:图形A 向右平移4个格 再向下平移4个格可以与下方图形(阴影部分)拼成一个长方形 故选:A .【点睛】本题考查的是平移的性质 把一个图形整体沿某一直线方向移动 会得到一个新的图形 新图形与原图形的形状和大小完全相同.6.(2022春·黑龙江哈尔滨·七年级校考单元测试)如图 已知直线AB CD ∥ 130GEF ∠=︒ 135EFH ∠=︒ 则12∠+∠的度数为( )A .35︒B .45︒C .65︒D .85︒ 【答案】D【分析】由130GEF ∠=︒ 135EFH ∠=︒可得1324265︒∠+∠+∠+∠= 由ABCD 得34180∠+∠=︒ 进而可求出12∠+∠的度数.【详解】解:如下图所示∠130GEF ∠=︒∠13130︒∠+∠=∠135EFH ∠=︒∠24135︒∠+∠=∠1324265︒∠+∠+∠+∠=∠AB CD∠34180∠+∠=︒∠121324(34)26518085︒∠∠︒+∠=∠+∠+∠+∠-+∠=︒=-故选:D .【点睛】本题考查了平行线的性质 解题的关键是根据平行线的性质找出图中角度之间的关系.7.(2022春·江苏·七年级单元测试)下列说法中 错误的有( )①若a b ∥ b c ∥ 则a c ∥②若a 与c 相交 b 与c 相交 则a 与b 相交③相等的角是对顶角④过一点有且只有一条直线与已知直线平行.A .3个B .2个C .1个D .0个【答案】A【分析】根据平行公理及推论可判断① 若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 可判断② 对顶角相等 但相等的角不一定是对顶角 可判断③ 根据平行公理及推论可判断④.【详解】解:根据平行线公理及推论可知 ①正确若a 与c 相交 b 与c 相交 则a 与b 可能相交或平行 ②错误对顶角相等 但相等的角不一定是对顶角 ③错误过直线外一点有且只有一条直线与已知直线平行④错误.故错误的有3个故选:A.【点睛】本题考查平行公理及推论平行线的判定与性质熟练掌握平行线的判定与性质是解答本题的关键.8.(2022·全国·七年级单元测试)如图P为直线l外一点A B C在l上且PB∠l下列说法中正确的个数是()①P A PB PC三条线段中PB最短②线段PB叫做点P到直线l的距离③线段AB的长是点A到PB 的距离④线段AC的长是点A到PC的距离.A.1个B.2个C.3个D.4个【答案】B【分析】根据直线外一点到这条直线的垂线段的长度叫做点到直线的距离从直线外一点到这条直线上各点所连的线段中垂线段最短.逐一判断.【详解】解:①线段BP是点P到直线l的垂线段根据垂线段最短可知P A PB PC三条线段中PB 最短故原说法正确②线段BP是点P到直线l的垂线段故线段BP的长度叫做点P到直线l的距离故原说法错误③线段AB是点A到直线PB的垂线段故线段AB的长度叫做点P到直线l的距离故故原说法正确④由题意及图形无法判断线段AC的长是点A到PC的距离故原说法错误综上所述正确的说法有①③故选:B.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:①从直线外一点到这条直线的垂线段的长度叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中垂线段最短.∥的是()9.(2022春·天津·七年级校考单元测试)如图下列条件中能判断AB CDA .12∠=∠B .34∠∠=C .180DAB ABC ∠+∠=︒D .B D ∠=∠ 【答案】A 【分析】结合图形分析两角的位置关系 根据平行线的判定方法逐项进行判断即可得到结论.【详解】解:∠12∠=∠∠AB CD ∥故①选项符合题意∠34∠∠=∠AD BC ∥故②选项不符合题意∠180DAB ABC ∠+∠=︒∠AD BC ∥故③选项不符合题意∠B D ∠=∠ 不能判定AB CD ∥故④选项不符合题意故选:A .【点睛】本题主要考查了平行线的判定 能根据图形准确找出同位角 内错角和同旁内角是解决问题的关键.10.(2022秋·江苏盐城·七年级校联考单元测试)如图 在宽为20m 长为30m 的矩形地面上修建两条同样宽的道路 余下部分作为耕地.根据图中数据 计算耕地的面积为( )A .600m 2B .551m 2C .550m 2D .500m 2【答案】B【详解】由图可以看出两条路的宽度为:1m 长度分别为:20m 30m所以 可以得出路的总面积为:20×1+30×1-1×1=49m 2又知该矩形的面积为:20×30=600m 2所以 耕地的面积为:600-49=551m 2.故选B.二 填空题(本大题共8个小题 每题2分 共16分)11.(2022春·黑龙江哈尔滨·七年级哈尔滨工业大学附属中学校校考单元测试)如图 要把池水引到C 处 可作CD AB ⊥于点D 然后沿CD 开渠 可使所开渠道最短 依据是______.【答案】垂线段最短【分析】根据直线外一点到直线的距离解答.【详解】解:因为直线外一点到直线上各点的连线中 垂线段最短所以沿CD 开渠故答案为:垂线段最短.【点睛】本题考查垂线段的性质 熟练掌握垂线段最短是解决本题的关键.12.(2022秋·重庆铜梁·七年级校考单元测试)如图 O 是直线AB 上一点 32COB ∠=︒ 则1∠=___.【答案】148︒##148度 【分析】依据邻补角进行计算 即可得到∠1的度数.【详解】解:∠O 是直线AB 上一点 32COB ∠=︒∠118032148∠=︒-︒=︒故答案为:148︒.【点睛】本题主要考查了邻补角的概念 只有一条公共边 它们的另一边互为反向延长线 具有这种关系的两个角 互为邻补角.邻补角互补 即和为180︒.13.(2022秋·河南安阳·七年级统考单元测试)如图 给出下列条件:①∠1=∠2 ②∠3=∠4 ③∠A =∠CDE ④∠A +∠ADC =180°.其中 能推出AB //DC 的条件为_______.【答案】①③④【分析】根据平行线的判定定理逐个分析判断即可求解.【详解】解:①∠∠1=∠2∥符合题意∠AB DC②∠∠3=∠4∥不符合题意∠BC AD③∠∠A=∠CDE∥符合题意∠AB DC④∠∠A+∠ADC=180°∥符合题意∠AB DC故答案为:①③④.【点睛】本题考查了平行线的判定定理掌握平行线的判定定理是解题的关键.14.(2022秋·云南昭通·七年级校考单元测试)如图把三角尺的直角顶点放在直线b上.若∠1= 50° 则当∠2=____时a∥b.【答案】40°##40度【分析】根据三角尺的直角顶点在直线b上∠1=50° 即可得到∠3=180°−90°−∠1=40° 再根据a//b即可得到∠2=∠3=40°.【详解】解:如图∠三角尺的直角顶点在直线b上∠1=20°∠∠3=180°−90°−∠1=40°又∠要使得a b∠只需要∠2=∠3=40°故答案为:40.【点睛】本题主要考查了平行线的性质熟记两直线平行线同位角相等是解题的关键.15.(2022秋·河北石家庄·七年级统考单元测试)在同一平面内直线a b相交于P 若a∠c 则b与c的位置关系是______.【答案】相交【详解】解:因为a∠c 直线b相交所以直线b与c也有交点故答案为:相交.【点睛】本题考查了平行线和相交线.同一平面内一条直线与两条平行线中的一条相交则必与另一条直线也相交.16.(2022秋·北京·七年级校考单元测试)如图快艇从P处向正北航行到A处时向右转60︒航行到B处再向左转90︒继续航行此时的航行方向为北偏西______°.【答案】30【分析】根据平行线的性质与方位角的定义即可求解.【详解】解:如图∠//PC BE 60CAB ∠=︒∠60EBF ∠=︒∠906030DBE此时的航行方向为:北偏西30︒故答案为:30.【点睛】此题主要考查方位角 解题的关键是熟知方位角的定义及平行线的性质.17.(2022·全国·七年级单元测试)如图 在三角形ABC 中 90BAC ∠=︒ 4cm AB = 5cm =BC 3cm AC = 将三角形ABC 沿BC 方向平移cm(5)a a <得到三角形DEF 且AC 与DE 相交于点G 连接AD .(1)阴影部分的周长为______cm(2)若三角形ADG 的面积比三角形EGC 的面积大24.8cm 则a 的值为______.【答案】 12 4.5##92##142 【分析】(1)由平移的性质可得出cm AD BE a == 5cm DE AB ==.再根据()5cm CE BC BE a =-=- 即ADG S ABC CEG ABEG S S S =+四边形 即可得出1342ADG CEG S S =⨯⨯- 再根据24.8cm ADG CEG S S -= 列出关于a 的等式 解出a 即可.【详解】(1)∠三角形ABC 沿BC cm(5)a <得到三角形DEFCE BC =∴阴影部分的周长为故答案为:(2)过AABC S =3AH =ADG ABED S四边形 ADG S . ABC CEG ABEG S S S =+四边形1342CEG ABEG S S =⨯⨯-四边形121342ADG CEG BE S S ⨯-=⨯⨯- 即125ADG CEG S S -=ADG 的面积比三角形EGC 的面积大24.8cm 4.8cm ADG CEG SS -=4 4.8⨯= 18.(2022春·黑龙江哈尔滨·七年级单元测试)如图 直线AB CD ∥ 点E F 分别为直线AB 和CD 上的点 点P 为两条平行线间的一点 连接PE 和PF 过点P 作EPF ∠的平分线交直线CD 于点G 过点F 作FH PG ⊥ 垂足为H 若120DGP PFH ∠-∠=︒ 则AEP ∠=________︒.【答案】30︒【分析】设FPG x GPM y ∠∠=︒=︒, 过P 作PM CD ∥ 则AB CD PM ∥∥ 用x y ︒︒,表示PGD ∠ PFH ∠ 代入求出x y ︒-︒ 即AEP ∠的值可以解出.【详解】解:设FPG x GPM y ∠∠=︒=︒,PG 平分EPF ∠EPG FPG x ∠∠∴==︒过P 作PM CD ∥∥AB CDAB CD PM ∴∥∥AEP EPM EPG MPG x y ∠∠∠∠∴==-=︒-︒ 180180PGD MPG y ∠∠=︒-=︒-︒FH PG ⊥90PHF ∠∴=︒909090PFH FPG FPG x ∠∠∠∴=︒-=︒-=︒-︒120DGP PFH ∠-∠=︒()()18090120y x ∴︒-︒-︒-︒=︒ 即30x y ︒-︒=︒30AEP x y ∠∴=︒-︒=︒.故答案为:30︒.【点睛】本题考查平行线的性质 角平分线的性质 垂线的性质 熟练运用性质计算是解题的关键.三 解答题(本大题共8个小题 共54分 第19-22每小题6分 23-24每小题7分 25-26每小题8分)19.(2022·全国·七年级单元测试)如图 在边长为1个单位的正方形网格中 ABC 经过平移后得到A B C ''' 点B 的对应点为B ' 根据下列条件 利用网格点和无刻度的直尺画图并解答 保留痕迹:(1)画出A B C ''' 线段AC 扫过的图形的面积为______(2)在A B ''的右侧确定格点Q 使A B Q ''△的面积和ABC 的面积相等 请问这样的Q 点有______个? 根据平移的性质得出'''ABC线段)根据平行线之间的距离处处相等可得答案.A B C '''即为所求111022612411022A B ∥ 则点1234,,,Q Q Q Q 即为所求本题主要考查了作图——平移变换20.(2022秋·北京海淀·七年级校考单元测试)如图 点C 在MON ∠的一边OM 上 过点C 的直线AB ON ∥CD 平分ACM ∠.当60DCM ∠=︒时 求O ∠的度数.解:∠CD 平分ACM ∠∠ACM ∠= .∠60DCM ∠=︒∠ACM ∠= °.∠直线AB 与OM 交于点C∠OCB ∠=ACM ∠= °( )∠AB ON ∥∠+=180O OCB ∠∠︒( )∠O ∠= °.【答案】2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60【分析】根据角平分线的定义 即可得到∠ACM 的度数 进而得出∠OCB 的度数 再依据平行线的性质 即可得到∠O 的度数.【详解】解:∠CD 平分ACM ∠∠=2ACM DCM ∠∠.∠∠60DCM ∠=︒∠=120ACM ∠︒.∠直线AB 与OM 交于点C∠==120OCB ACM ∠∠︒(对顶角相等)∠AB ON ∥∠+=180O OCB ∠∠︒(两直线平行 同旁内角互补)∠=60O ∠︒.故答案为:2DCM ∠ 120 120 对顶角相等 两直线平行 同旁内角互补 60.【点晴】本题主要考查了角的计算 平行线的性质以及角平分线的定义 解题的关键是熟练掌握平行线的性质:两直线平行 同旁内角互补.21.(2022秋·重庆铜梁·七年级校考单元测试)如图 在四边形ABCD 中 130A ∠=︒ 50ADC ∠=︒ 试说明12∠=∠.【答案】AB CD 同旁内角互补 两直线平行 两直线平行 内错角相等【分析】由180A ADC ∠+∠=︒ 利用同旁内角互补 两直线平行可得AB CD ∥ 再利用平行线的性质可得答案.【详解】证明:∠130A ∠=︒ 50ADC ∠=︒(已知)∠180A ADC ∠+∠=︒(等式的性质)∠AB CD ∥ (同旁内角互补 两直线平行)∠12∠=∠(两直线平行 内错角相等).【点睛】本题考查的是平行线的判定与性质 熟记平行线的性质与判定方法是解本题的关键.22.(2022·全国·七年级单元测试)如图 己知点P Q 分别在AOB ∠的边OA OB 、上 按下列要求画图:(1)画射线PQ(2)过点P 画垂直于射线OB 的线段PC 垂足为点C(3)过点Q画直线QM平行于射线OA.【答案】(1)见解析(2)见解析(3)见解析【分析】根据题意过用直尺作图分别P画垂直于射线OB的射线PC垂足为点C过点Q画直线QM平行于射线OA.【详解】(1)如图射线PQ为所求(2)如图线段PC为所求(3)如图直线QM为所求【点睛】此题主要考查了基本作图正确把握相关定义是解题关键.23.(2022春·七年级单元测试)如图汽车站码头分别位于A B,两点直线b和波浪线分别表示公路与河流.(1)从汽车站A到码头B怎样走最近?画出最近路线并说明理由(2)从码头B到公路b怎样走最近?画出最近路线BC并说明理由.【答案】(1)作图见解析 理由见解析(2)作图见解析 理由见解析【分析】(1)根据两点之间线段最短解决问题.(2)根据垂线段最短解决问题.【详解】(1)解:如图 连接,A B 线段AB 即为所求作.(2)如图 过点B 作BC b ⊥于点C 线段BC 即为所求作.【点睛】本题考查作图﹣应用与设计作图 垂线段最短 两点之间线段最短等知识 解题的关键是理解题意 灵活运用所学知识解决问题.24.(2022春·七年级单元测试)如图 AB CD ⊥ 垂足为O .(1)比较AOD EOB AOE ∠∠∠,,的大小 并用“<”号连接.(2)若28EOC ∠=︒ 求EOB ∠和EOD ∠的度数.【答案】(1)AOE AOD EOB ∠<∠<∠(2)118152EOB EOD ∠=︒∠=︒,【分析】(1)根据图形可判断各角的大小.(2)根据图形可得90118EOB EOC ∠=∠+︒=︒,根据平角的定义求得EOD ∠. 【详解】(1)解:∠AB CD ⊥∠909090AOD EOB EOC AOE EOC ∠=︒∠=︒+∠∠=︒-∠,,∠AOE AOD EOB ∠<∠<∠(2)∠AB CD ⊥∠90118EOB EOC ∠=∠+︒=︒∠180********EOD EOC ∠=︒-∠=︒-︒=︒.【点睛】本题考查了角的关系 垂直的定义 通过已知角求得未知角 数形结合是解题的关键. 25.(2022春·广东·七年级单元测试)如图 直线CD EF 交于点O OA OB 分别平分COE ∠和DOE ∠ 已知1290∠+∠=︒ 且2:32:5∠∠=.(1)求BOF ∠的度数(2)试说明AB CD 的理由.∠+∠)解:12AOCAB CD.【点睛】本题主要考查了平行线的判定与性质是解题的关键.26.(2022秋·上海宝山·七年级校考单元测试)已知AB∠CD点M为平面内的一点∠AMD=90°.(1)当点M在如图1的位置时求∠MAB与∠D的数量关系(写出说理过程)(2)当点M在如图2的位置时则∠MAB与∠D的数量关系是(直接写出答案)(3)在(2)条件下如图3 过点M作ME∠AB垂足为E∠EMA与∠EMD的角平分线分别交射线EB于点F G回答下列问题(直接写出答案):图中与∠MAB相等的角是∠FMG=度.【答案】(1)∠MAB+∠D=90°见解析(2)∠MAB﹣∠D=90°(3)∠MAB=∠EMD45【分析】(1)在题干的基础上通过平行线的性质可得结论(2)仿照(1)的解题思路过点M作MN∠AB由平行线的性质可得结论(3)利用(2)中的结论结合角平分线的性质可得结论.【详解】(1)解:如图①过点M作MN∥AB∵AB∥CD∴MN∥AB∥CD(如果一条直线和两条平行线中的一条平行那么它和另一条也平行).∴∠D=∠NMD.∵MN∥AB∴∠MAB+∠NMA=180°.∴∠MAB+∠AMD+∠DMN=180°.∵∠AMD=90°∴∠MAB+∠DMN=90°.∴∠MAB+∠D=90°(2)解:如图②过点M作MN∥AB∵MN∥AB∴∠MAB+∠AMN=180°.∵AB∥CD∴MN∥AB∥CD.∴∠D=∠NMD.∵∠AMD=90°∴∠AMN=90°﹣∠NMD.∴∠AMN=90°﹣∠D.第21页共22页第22页共22页。
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)
七年级数学下册第五章《相交线与平行线》单元测试题-人教版(含答案)一、单选题1.在下图中,1∠和2∠是同位角的是( )A .(1)、(2)B .(1)、(3)C .(2)、(3)D .(2)、(4) 2.如图,直线AB 与CD 相交于点O ,75AOC ∠=︒,125∠=︒,则2∠的度数是( )A .25°B .30°C .40°D .50° 3.如图,直线1l 与2l 相交于点O ,1OM l ⊥,若4418α=︒',则β的度数是( )A .5542'︒B .4542'︒C .'4552︒D .4642'︒ 4.如图,两条直线交于点O ,若1280∠+∠=︒,则3∠的度数为( )A .40︒B .80︒C .100D .140︒ 5.如图,,AB CD BC EF ∥∥.若158∠=︒,则2∠的大小为( )A .120︒B .122︒C .132︒D .148︒ 6.如图,直线a ∥b ,将三角尺直角顶点放在直线b 上,若∠1=50°,则∠2的度数是( )A .20°B .30°C .40°D .50° 7.如图,将一副三角板按如图放置,则下列结论:∠13∠=∠;∠2180CAD ∠+∠=︒;∠如果235∠=︒,则有BC AD ∥;∠4275∠+∠=︒.其中正确的序号是( )A .∠∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠ 8.如图,点E 在BC 的延长线上,下列条件中不能判定//AB CD 的是( )A .3=4∠∠B .12∠=∠C .B DCE ∠=∠D .13180D ∠+∠+∠=︒9.下列语句是命题的是( )A .画出两个相等的角B .所有的直角都相等吗C .延长线段AB 到C ,使得BC BA =D .两直线平行,内错角相等10.如图,下列条件中能判定AB CE ∥的是( )A .∠B =∠ACE B .∠B =∠ACBC .∠A =∠ECD D .∠A =∠ACE=180°;∠∠7=∠5.其中能够说明a ∥b 的条件为( )A .∠∠B .∠∠C .∠∠D .∠∠ 12.如图,直线AB ,CD 相交于点E ,EF AB ⊥于点E ,若20FEC AEC ∠-∠=︒,那么AED ∠的度数为( )A .125°B .135°C .140°D .145°二、填空题 13.已知如图,三条直线1l 、2l 、3l 交于一点,则∠1+∠2+∠3=_________.14.如图,要把池水引到C 处,可作CD AB ⊥于点D ,然后沿CD 开渠,可使所开渠道最短,依据是______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西16.如图,AB CD ∥,若40A ∠=︒,26C ∠=︒,则∠E =______.17.如图,将∠ABE 向右平移2cm 得到∠DCF ,如果∠ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.18.如图,在四边形ABCD 中.点E 为AB 延长线上一点,点F 为CD 延长线上一点,连接EF ,交BC 于点G ,交AD 于点H ,若12∠=∠,A C ∠=∠,求证:E F ∠=∠.证明:13∠=∠( ),12∠=∠(已知). ∠ = (等量代换).∴AD BC ∥( )4180A ∴∠+∠=( ), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换). ∠ ∥ (同旁内角互补,两直线平行).19.如图直线AD 与直线BC 相交于点O ,OE 平分AOB ∠,130∠=︒,则EOD ∠的度数为___________°.三、解答题20.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE .(1)若∠AOC =76°,求∠BOF 的度数;(2)若∠BOF =36°,求∠AOC 的度数;21.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.22.如图,直线AB 和CD 相交于O 点,OE CD ⊥,142EOF ∠=︒,13BOD BOF ∠∠=::,求AOF ∠的度数.23.如图,两直线AB ,CD 相交于点O ,OE 平分∠BOD ,∠AOC :∠AOD =7:11.(1)求∠COE 的度数;(2)若OF ∠OE ,求∠COF 的度数.24.如图,直线CD 、EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,已知1290∠+∠=︒,且2:32:5∠∠=.(1)求BOF ∠的度数;(2)试说明AB CD 的理由.参考答案1.B2.D解:由题可知75BOD AOC ∠=∠=︒,125∠=︒,217525BOD ∴∠=∠-∠=︒-︒=50︒.3.B解:由题意得90180αβ++︒=︒,∠180904542βα'=︒-︒-=︒,4.D解:12∠=∠,1280∠+∠=︒,140∴∠=︒,13180∠+∠=︒,31801140∴∠=︒-∠=︒.5.B解:设CD 与EF 交于G ,∠AB ∠CD∠∠1=∠C =58°∠BC ∠FE ,∠∠C +∠CGE =180°,∠∠CGE =180°-58°=122°,∠∠2=∠CGE =122°,6.C解:如图,由题意得:∠3=180°-90°-∠1=40°,∠a ∥b ,∠∠2=∠3=40°,7.B解:∠1290CAB ∠=∠+∠=︒,3290EAD ∠=∠+∠=︒,∠13∠=∠,故∠正确;∠212329090180CAD ∠+∠=∠+∠+∠+∠=︒+︒=︒故∠正确;∠235∠=︒,∠3902903565∠=︒-∠=︒-︒=︒,1(18090)452B ∠=︒-︒=︒, ∠BC 与AD 不平行,故∠错误;∠43CBA EDA ∠+∠=∠+∠,即445330∠+︒=∠+︒,又∠2+3=90∠∠︒,∠44590230∠+︒=︒∠+︒-42=75∠+∠︒,故∠正确;综上,∠∠∠正确,8.A解:A 、∠3=4∠∠,∠//AD BC ,故选项A 不能判定//AB CD ,符合题意;B 、∠12∠=∠,∠//AB CD ,故选项B 能判定//AB CD ,不符合题意;C 、∠B DCE ∠=∠,∠//AB CD ,故选项C 能判定//AB CD ,不符合题意;D 、∠13180D ∠+∠+∠=︒,即180D DAB ∠+∠︒=,∠//AB CD ,故选项D 能判定//AB CD ,不符合题意;9.D解:A 、画出两个相等的角,没有做错判断,不是命题;B 、所有的直角都相等吗,没有做错判断,不是命题;C 、延长线段AB 到C ,使得BC BA =,没有做错判断,不是命题;D 、两直线平行,内错角相等,是命题;10.DA . ∠B =∠ACE ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;B . ∠B =∠ACB ,不是同位角,内错角,不能判定AB CE ∥,不符合题意;C . ∠A =∠ECD ,不是同位角,内错角,不能判定AB CE ∥,不符合题意; D . ∠A =∠ACE ,内错角相等,两直线平行,能判定AB CE ∥,符合题意;11.A∠∠∠1=∠5,∠a ∥b ,故正确;∠∠∠5=∠7,∠1=∠7,∠∠1=∠5,∠a ∥b ,故正确;∠∠2+∠3=180°,∠2和∠3是邻补角,不能说明任何一组直线平行,故错误; ∠∠7=∠5,∠7和∠5是对顶角,不能说明任何一组直线平行,故错误.12.D设AEC ∠为x ,则+20FEC x ∠=︒,∠EF AB ⊥,∠90AEF ∠=︒,∠90AEC FEC ∠+∠=︒,∠2090x x ++︒=︒,解得35x =︒,即35AEC ∠=︒,∠18035145AED ∠=︒-︒=︒.13.180°解:如图,14∠=∠,123423180∴∠+∠+∠=∠+∠+∠=︒.故答案为:180︒.14.垂线段最短15.48°先根据题意画出图形,利用平行线的性质解答即可.解:如图,∠AC∠BD ,∠1=48°,∠∠2=∠1=48°,根据方向角的概念可知,乙地所修公路的走向是南偏西48°.16.66︒解:如图所示,过点E 作EF AB ∥,∠EF AB AB CD ∥,∥,∠AB CD EF ∥∥,∠4026AEF A CEF C ==︒==︒∠∠,∠∠,∠66AEC AEF CEF =+=︒∠∠∠,故答案为:66︒.17.20cm解:∠∠ABE 向右平移2cm 得到∠DCF ,∠DF =AE ,∠四边形ABFD 的周长=AB +BE +DF +AD +EF ,=AB +BE +AE +AD +EF ,=∠ABE 的周长+AD +EF ,∠平移距离为2cm ,∠AD =EF =2cm ,∠∠ABE 的周长是16cm ,∠四边形ABFD 的周长=16+2+2=20cm .故答案为:20cm .18.对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.证明:13∠=∠(对顶角相等),12∠=∠(已知), 23∴∠=∠(等量代换),∴AD BC ∥(同位角相等,两直线平行),4180A ∴∠+∠=(两直线平行,同旁内角互补), A C ∠=∠(已知),4180C ∴∠+∠=(等量代换), ∴CF EA ∥(同旁内角互补,两直线平行),E F ∴∠=∠(两直线平行,内错角相等); 故答案为:对顶角相等;23∠∠,;同位角相等,两直线平行;两直线平行,同旁内角互补;CF ,EA ;两直线平行,内错角相等.19.105解:∠130∠=︒,∠180118030150AOB ∠=︒-∠=︒-︒=︒,∠OE 平分AOB ∠, ∠111507522BOE AOB ∠=∠=⨯︒=︒, ∠2130∠=∠=︒,∠27530105EOD BOE ∠=∠+∠=︒+︒=︒故答案为:10520.(1)∠BOF =33°(2)∠AOC =72°(1)∠∠AOC 、∠BOD 是对顶角,∠∠BOD=∠AOC=76°,∠OE 平分∠BOD , ∠∠DOE=∠BOE=12∠BOD=38°∠∠COE=142°,∠OF 平分∠COE . ∠∠EOF=12∠COE=71°,又∠BOE+∠BOF=∠EOF ,∠∠BOF=∠EOF−∠BOE=71°−38°=33°,(2)∠OE 平分∠BOD ,OF 平分∠COE ,∠BOE EOD COF FOE ∠=∠∠=∠,,∠设BOE x ∠=,则EOD x ∠=,故2COA x ∠=,36EOF COF x ∠=∠=+︒, 则23636180AOC COF BOF x x ∠+∠+∠=++︒+︒=︒, 解得36x =︒,故∠AOC =72°.21.(1)见解析(2)见解析(1)证明:∠AD BC ⊥,EF BC ⊥, ∠90EFB ∠=︒,90ADB ∠=︒(垂直的定义), ∠∠=∠EFB ADB (等量代换),∠EF AD ∥(同位角相等,两直线平行); (2)证明:∠EF AD ∥,∠1BAD ∠=∠(两直线平行,同位角相等), 又12∠=∠(已知),∠2BAD ∠=∠(等量代换),∠DG BA ∥(内错角相等,两直线平行), ∠180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补). 22.102AOF ∠=︒解:∠OE CD ⊥,∠90EOD ∠=︒,∠142EOF ∠=︒,∠1429052DOF ∠=︒-︒=︒,∠13BOD BOF ∠∠=::, ∠1262BOD DOF ∠=∠=︒, ∠78BOF BOD DOF ∠=∠+∠=︒,∠180AOF BOF ∠+∠=︒,∠180********AOF BOF ∠=︒-∠=︒-︒=︒. ∠102AOF ∠=︒.23.(1)145︒(2)125︒1)解:∠711180AOC AOD AOC AOD ∠∠=∠+∠=︒::,, ∠∠AOC =71818070⨯︒=︒, ∠∠DOB =∠AOC =70°,又∠OE 平分∠BOD ,∠DOE ∠=12DOB ∠=127035⨯︒=︒,∠180********COE DOE ∠=︒-∠=︒-︒=︒, (2)∠OF OE ⊥,∠90EOF ∠=︒,∠90903555FOD DOE ∠=︒-∠=︒-︒=︒, ∠180********COF FOD ∠=︒-∠=︒-︒=︒. 24.(1)BOF ∠的度数为140︒(2)见解析(1)解:∠OA ,OB 分别平分COE ∠和DOE ∠, ∠12AOE AOC COE ∠=∠=∠,122BOE DOE ∠=∠=∠, ∠180COE DOE ∠+∠=°,∠290AOC ∠+∠=︒,∠3COE ∠=∠, ∠132AOC ∠=∠, ∠123902∠+∠=︒,∠2:32:5∠∠=, ∠5322∠=∠, ∠15229022∠+⨯∠=︒,∠240∠=︒,∠3100∠=︒,∠23140BOF ∠=∠+∠=︒;(2)解:1290∠+∠=︒,290AOC ∠+∠=︒, ∠1AOC ∠=∠,∠AB CD .。
七年级数学下第五章测试题及答案
七年级数学下第五章测试题及答案
一、选择题
1. 设a, b为任意两个正数,若a > b,那么以下哪个不成立?
A. a + b > a - b
B. a × b > a ÷ b
C. a - b > b
D. a ÷ b > a - b
答案:D
2. 下列有理数中,哪个数是负数?
A. 3/4
B. -5/6
C. 2/3
D. 7/8
答案:B
3. 若两个有理数的和等于0,那么这两个有理数的关系是?
A. 互为相反数
B. 互为倒数
C. 相等
D. 互为互补数
答案:A
二、填空题
1. 300÷(-4)= ______
答案:-75
2. 若x = -3/5,那么 |x| = ______
答案:3/5
3. 三个有理数-1/3、2/5、-7/4按由小到大的顺序排列,得到:_______
答案:-7/4,-1/3,2/5
三、解答题
1. 请用齐次方程的定义解释“0是任何有理数的互补数”这个说法。
解答:
根据齐次方程的定义,两个数互为互补数的条件是它们的和等于0。
对于任意有理数a,可知a + 0 = a,所以0是任何有理数的互补数。
2. 计算下列各式的值:(1)-1/2 + (-1/3);(2)1/5 - 2/3
解答:
(1)-1/2 + (-1/3) = -(3/6) + (-2/6) = -5/6
(2)1/5 - 2/3 = 3/15 - 10/15 = -7/15。
七年级下册数学第五章测试卷【含答案】
七年级下册数学第五章测试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少?A. 24立方分米B. 20立方分米C. 18立方分米D. 22立方分米4. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/105. 如果a=3,那么2a+5的值是多少?A. 6B. 11C. 8D. 14二、判断题(每题1分,共5分)1. 两个质数相乘,其结果一定还是质数。
()2. 一个三角形的内角和总是等于180度。
()3. 任何两个奇数相加的结果一定是偶数。
()4. 1dm等于10cm。
()5. 分数3/4小于1。
()三、填空题(每题1分,共5分)1. 24是4和6的______数。
2. 一个三角形的两个内角分别是30度和60度,那么第三个内角是______度。
3. 2.5小时等于______分钟。
4. 如果一个长方体的体积是60立方厘米,长是5厘米,宽是3厘米,那么它的高是______厘米。
5. 0.75化成分数是______。
四、简答题(每题2分,共10分)1. 请解释质数和合数的区别。
2. 简述三角形内角和定理。
3. 解释最简分数的概念。
4. 请给出两个奇数,并计算它们的和。
5. 解释长方体的体积是如何计算的。
五、应用题(每题2分,共10分)1. 一个长方体的长是10cm,宽是6cm,高是8cm,计算它的体积。
2. 一个等腰三角形的底边长是8cm,腰长是5cm,计算这个三角形的周长。
3. 如果一个数的因数只有1和它本身,那么这个数是什么类型的数?4. 将0.6化成分数,并解释为什么这个分数是最简分数。
5. 如果一个长方体的长、宽、高分别是2dm、3dm、4dm,那么它的体积是多少立方厘米?六、分析题(每题5分,共10分)1. 有一个数,它的因数有1、2、3、4、6,请分析这个数是什么类型的数,并给出理由。
人教版七年级数学下册 第五章 达标检测卷(含答案)
人教版七年级数学下册第五章达标检测卷一、选择题(每题3分,共30分)1.在下图中,∠1和∠2是对顶角的是()2.如图,在所标识的角中,下列说法不正确的是()A.∠1和∠2是邻补角B.∠1和∠4是同位角C.∠2和∠4是内错角D.∠2和∠3是对顶角(第2题)(第3题)3.如图,在6×6的方格中,图①中的图形N平移后的位置如图②所示,则图形N的平移方法是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格4.点P为直线l外一点,点A,B,C为直线l上三点,P A=4 cm,PB=5 cm,PC=3 cm,则点P到直线l的距离()A.等于4 cm B.等于5 cm C.小于3 cm D.不大于3 cm 5.下列命题中:①对顶角相等;②同位角相等;③互补的两个角为邻补角;④若l1⊥l2,l1⊥l3,则l2⊥l3.其中真命题有()A.①B.①②③C.①③D.①②③④6.如图,AB∥CD,FE⊥DB,垂足为E,∠1=50°,则∠2的度数是() A.60°B.50°C.40°D.30°(第6题)(第7题)(第8题)7.如图,将木条a绕点O旋转,使其与木条b平行,则旋转的最小角度为()A.65°B.85°C.95°D.115°8.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于() A.73°B.56°C.68°D.146°9.如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐弯处的∠A是72°,第二次拐弯处的角是∠B,第三次拐弯处的∠C是153°,这时道路恰好和第一次拐弯之前的道路平行,则∠B等于()A.81°B.99°C.108°D.120°(第9题)(第10题)10.图①是长方形纸带,∠DEF=10°,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中∠CFE的度数是()A.160°B.150°C.120°D.110°二、填空题(每题3分,共30分)11.下列语句:①同旁内角相等;②如果a=b,那么a+c=b+c;③对顶角相等吗?④画线段AB;⑤两点确定一条直线.其中是命题的有__________;是真命题的有__________.(只填序号)12.如图,∠3的同旁内角是________,∠4的内错角是________,∠7的同位角是________.(第12题)(第13题)(第14题)13.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠COM=________.14.如图,跳远比赛时,小明从点A起跳落在沙坑内B处,跳远成绩是4.6米,则小明从起跳点到落脚点的距离________4.6米(填“大于”“小于”或“等于”).15.如图,小明从A处出发,沿北偏东60°的方向行走至B处,又沿北偏西20°的方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是________.(第15题)(第16题)(第17题)16.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=________.17.如图,将三角形ABC沿着点B到点C的方向平移3 cm得到三角形DEF,且DE交AC于点H,AB=6 cm,BC=9 cm,DH=2 cm,那么图中阴影部分的面积为________cm2.18.如图,a∥b,∠1=65°,∠2=140°,则∠3的度数是________.(第18题)(第19题)(第20题)19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=________.20.以下三种沿AB折叠的方法:(1)如图①,展开后测得∠1=∠2;(2)如图②,展开后测得∠1=∠2且∠3=∠4;(3)如图③,测得∠1=∠2.其中能判定纸带两条边线a,b互相平行的是________(填序号).三、解答题(24题10分,25题12分,26题14分,其余每题8分,共60分) 21.如图是一条河,C是河岸AB外一点.(1)过点C要修一条与河平行的绿化带(用直线表示),请作出正确的示意图;(2)现欲用水管从河岸AB将水引到C处,问:从河岸AB上的何处开口,才能使所用的水管最短?画图表示,并说明设计的理由.(第21题)22.如图,在边长为1个单位长度的小正方形组成的12×12网格中,给出了四边形ABCD的两条边AB与BC,且四边形ABCD是一个轴对称图形,其对称轴为直线AC.(1)试在图中标出点D,并画出该四边形的另两条边;(2)将四边形ABCD向下平移5个单位长度,画出平移后得到的四边形A′B′C′D′.(第22题)23.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.(第23题)24.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.(第24题)25.如图,把一张长方形纸片ABCD沿EF折叠后,点D,C分别落在D′,C′的位置,ED′与BC的交点为G,若∠EFG=55°,求∠1,∠2的度数.(第25题)26.如图,MN∥EF,C为两直线之间一点.(1)如图①,∠CAM与∠CBE的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图②,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图③,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请写出∠ACB与∠ADB的数量关系,并证明你的结论.(第26题)答案一、1.C 2.C 3.D 4.D 5.A 6.C 7.B 8.A(第9题)9.B 点拨:如图,过点B 作MN ∥AD ,∴∠ABN =∠A =72°.∵CH ∥AD ,AD∥MN ,∴CH ∥MN ,∴∠NBC +∠BCH =180°,∴∠NBC =180°-∠BCH=180°-153°=27°.∴∠ABC =∠ABN +∠NBC =72°+27°=99°.10.B 点拨:在题图①中,因为四边形ABCD 为长方形,所以AD ∥BC ,所以∠BFE =∠DEF =10°,则∠EFC =180°-∠BFE =170°.在题图②中,∠BFC=∠EFC -∠BFE =170°-10°=160°.在题图③中,∠CFE =∠BFC -∠BFE =160°-10°=150°.故选B .二、11.①②⑤;②⑤12.∠4,∠5;∠2,∠6;∠1,∠4 13. 38° 14. 大于15.向右转80°16.55° 点拨:∵∠1=110°,纸条的两条对边互相平行,∴∠3=180°-∠1=180°-110°=70°.根据折叠的性质可知∠2=12(180°-∠3)=12(180°-70°)=55°.17.15 点拨:由平移的性质知,DE =AB =6 cm ,HE =DE -DH =4 cm ,CF =BE =3 cm ,所以EC =6 cm ,所以S 阴影部分=S 三角形EFD -S 三角形ECH =12DE ·EF -12EH ·EC =12×6×9-12×4×6=15(cm 2). 18.105° 点拨:反向延长射线b ,如图,∵∠2+∠5=180°,∴∠5=180°-∠2=180°-140°=40°.∴∠4=180°-∠1-∠5=180°-65°-40°=75°.又∵a∥b ,∴∠3=180°-∠4=180°-75°=105°.(第18题)19.140°20.(1)(2)三、21.解:(1)如图,过点C画一条平行于AB的直线MN,则MN为绿化带.(2)如图,过点C作CD⊥AB于点D,从河岸AB上的点D处开口,才能使所用的水管最短.设计的理由是垂线段最短.(第21题)22.解:(1)点D及四边形ABCD的另两条边如图所示.(第22题)(2)得到的四边形A′B′C′D′如图所示.23.解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°.∵BC平分∠ABD,∴∠ABD=2∠ABC=130°.∴∠BDC=180°-∠ABD=50°.∴∠2=∠BDC=50°.24.解:如图,过点C作∠ACF=∠A,则AB∥CF.∵∠A+∠ACD+∠D=360°,∴∠ACF+∠ACD+∠D=360°.又∵∠ACF+∠ACD+∠FCD=360°,∴∠FCD=∠D,∴CF∥DE,∴AB∥DE.点拨:本题运用了构造法,通过添加辅助线构造平行线,从而利用平行公理的推论进行判定.(第24题)25.解:∵AD∥BC,∴∠FED=∠EFG=55°,∠2+∠1=180°.由折叠的性质得∠FED=∠FEG,∴∠1=180°-∠FED-∠FEG=180°-2∠FED=70°,∴∠2=180°-∠1=110°.26.解:(1)如图①,过点C作CG∥MN,过点D作DH∥MN,(第26题)因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠MAC=∠ACG,∠EBC=∠BCG.因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC=12∠ACG,∠2=12∠EBC=12∠BCG,所以∠ADB=12(∠ACG+∠BCG)=12∠ACB.因为∠ACB=100°,所以∠ADB=50°.(2)∠ADB=180°-12∠ACB.证明:如图②,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠1=∠ADH,∠2=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG. 因为∠MAC与∠EBC的平分线相交于点D,所以∠1=12∠MAC,∠2=12∠EBC,所以∠ADB=∠1+∠2=12(∠MAC+∠EBC)=12(180°-∠ACG+180°-∠BCG)=12(360°-∠ACB),所以∠ADB=180°-12∠ACB.(3)∠ADB=90°-12∠ACB.证明:如图③,过点C作CG∥MN,过点D作DH∥MN,因为MN∥EF,所以MN∥CG∥DH∥EF,所以∠DBE=∠BDH,∠NAC=∠ACG,∠FBC=∠BCG.因为∠MAC的平分线与∠FBC的平分线所在的直线相交于点D,所以∠CAD=12∠MAC,∠DBE=12∠CBF,所以∠ADB=180°-∠CAD-∠CAN-∠BDH=180°-12∠MAC-∠ACG-12∠CBF=180°-12∠MAC-∠ACG-12∠BCG=180°-12(180°-∠ACG)-∠ACG-12∠BCG=180°-90°+12∠ACG-∠ACG-12∠BCG=90°-12∠ACG-12∠BCG=90°-12(∠ACG+∠BCG)=90°-12∠ACB.点拨:解答本题的关键是过“拐点”(折线中两条线段的公共端点)作直线的平行线,利用平行线的判定和性质求角的度数或探究角的数量关系;由于条件类似,因此其解题过程也可以类比完成,所不同的是结论虽类似但也有些变化.。
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)
七年级数学下册第五章《相交线与平行线》测试卷-人教版(含答案)三总分题号一二19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列四个图案中,可能通过如图平移得到的是()A.B.C.D.2.下列说法正确的是()A.直线AB和直线BA是同一条直线 B.直线是射线的2倍C.射线AB与射线BA是同一条射线 D.三条直线两两相交,有三个交点3.下列各图中,∠1=∠2一定成立的是()A.B.C.D.4.如图,直线BC,DE相交于点O,AO⊥BC于点O.OM平分∠BOD,如果∠AOE =50°,那么∠BOM的度数()A.20°B.25°C.40°D.50°5.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,应建在()A.A点B.B点C.C点D.D点6.如图,点P在直线L外,点A,B在直线l上,PA=3,PB=7,点P到直线l 的距离可能是()A.2 B.4 C.7 D.87.如图所示,∠1和∠2不是同位角的是()A.①B.②C.③D.④8.如图所示,同位角共有()A.6对B.8对C.10对D.12对9.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④如果一条直线与两条平行线中的一条平行,那么它与另一条直线也互相平行.A.1 B.2 C.3 D.410.如图,a∥b,M、N分别在a,b上,P为两平行线间一点,那么∠1+∠2+∠3=()A .180°B .360°C .270°D .540°二、填空题(每题3分,共24分)11.把命题“等角的补角相等”改写成“如果…那么…”的形式是______. 12.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.13.把一个直角三角板(90GEF ∠=︒,30GFE ∠=︒)如图放置,已知AB ∥CD ,AF 平分BAE ∠,则AEG ∠=_____________14.如图,点E 在BC 延长线上,四个条件中:①13∠=∠;②25180+=︒∠∠,③4∠=∠B ;④B D ∠=∠;⑤180D BCD ∠+∠=︒,能判断//AB CD 的是______.(填序号).15.如图,已知12//l l ,直线l 分别与12,l l 相交于,C D 两点,现把一块含30角的直角三角中尺按如图所示的位置摆放.若1130∠=︒,则2∠=___________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.如图所示,将△ABC沿BC边平移得到△A1B1C1,若BC1=8,B1C=2,则平移距离为.18.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a<4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.三.解答题(共46分)19.(7分)如图,直线l1,l2,l3相交于点O,∠1=40°,∠2=50°,求∠3的度数.20.(7分)已知:如图,AB∥CD,CD∥EF.求证:∠B+∠BDF+∠F=360°.21.(8分)如图,直线DE与∠ABC的边BC相交于点P,现直线AB,DE被直线BC所截,∠1与∠2.∠1与∠3,∠1与∠4分别是什么角?22.(8分)如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.23.(8分)图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFG存在怎样的数量关系?并说明理由;(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFG的数量关系.24.(8分)已知,E、F分别是直线AB和CD上的点,AB∥CD,G、H在两条直线之间,且∠G=∠H.(1)如图1,试说明:∠AEG=∠HFD;(2)如图2,将一45°角∠ROS如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,若∠BEO=∠KEO,EG∥OS,判断∠AEG,∠GEK的数量关系,并说明理由;(3)如图3,将∠ROS=(n为大于1的整数)如图放置,OR交AB于E,OS交CD于F,设K为SO上一点,连接EK,若∠AEK=n∠CFS,则=.参考答案一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 CACAAACCDB二、填空题:11.如果两个角是等角的补角,那么它们相等. 12.146° 13.30°解:∵AB ∥CD ,AF 平分∠BAE , ∴∠BAF=∠EAF=∠AFE , 又∵∠GFE=30°,∴∠BAF=∠EAF=30°,即∠BAE=60°, ∴∠AEF=180°-60°=120°, 又∵∠GEF=90°,∴∠AEG=120°-90°=30°, 14.②③解:①∵∠1=∠3,∴AD ∥BC ;②∵∠2+∠5=180°,∵∠5=∠AGC ,∴∠2+∠AGC=180°,∴AB ∥DC ; ③∵∠4=∠B ,∴AB ∥DC ; ④∠B=∠D 无法判断出AD ∥BC ; ⑤∵∠D+∠BCD=180°,∴AD ∥BC . 15.20︒如图,∵121130,l l ∠=︒∥, ∴50CDB ∠=︒, ∵30ADB ∠=︒,∴2503020CDB ADB ∠=∠-∠=︒-︒=︒.16.如图1,ABCD是长方形纸带(AD∥BC),∠DEF=18°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠CFE的度数是126°.【分析】在图1中,由AD∥BC,利用“两直线平行,内错角相等”可得出∠BFE的度数,由折叠的性质可知,在图3中∠BFE处重叠了三次,进而可得出∠CFE+3∠BFE=180°,再代入∠BFE的度数即可求出结论.【解答】解:在图1中,AD∥BC,∴∠BFE=∠DEF=18°.由折叠的性质可知,在图3中,∠BFE处重叠了三次,∴∠CFE+3∠BFE=180°,∴∠CFE=180°﹣3×18°=126°.故答案为:126°.17.解:∵△ABC沿BC边平移得到△A1B1C1,∴BC=B1C1,BB1=CC1,∵BC1=8,B1C=2,∴BB1=CC1=,即平移距离为3,故答案为:3.18.180;3;内错角相等,两直线平行;两直线平行,同位角相等三.解答题:19.解:∵∠1=40°,∠2=50°,∴∠5=∠1=40°,∠4=∠2=50°,∴∠3=180°﹣∠5﹣∠4=180°﹣40°﹣50°=90°.20.证明:∵AB∥CD(已知)∴∠B+∠BDC=180°(两直线平行,同旁内角互补)∵CD∥EF(已知)∴∠CDF+∠F=180°(两直线平行,同旁内角互补)∴∠B+∠BDC+∠CDF+∠F=360°,∵∠BDF=∠BDC+∠CDF(已知)∴∠B+∠BDF+∠F=360°.21.解:∵直线AB,DE被直线BC所截,∴∠1与∠2是同旁内角,∠1与∠3是内错角,∠1与∠4是同位角.22.解:(1)如图1,作直线GH交AB于M,交CD于Q,∵AB∥CD,∴∠BMG=∠FQH,∵∠EGH=∠GHF,∴∠AEG=∠EGH﹣∠BMG=∠FHG﹣∠FQH=∠HFD;(2)∠GEK﹣2∠AEG=45°,如图2,延长KO交AB于M,∵EG∥MS,∴∠AEG=∠EMF,∠GEK=∠OKE,设∠OEM=α,则∠OEK=2α,∠OME=45°﹣α,∴∠OKE=180°﹣∠MEK﹣∠OME=135°﹣2α,∵EG∥OS,∴∠GEK=∠OKE=135°﹣2α,∴∠AEG=180°﹣∠GEK﹣∠MEK=180°﹣135°+2α﹣3α=45°﹣α,即∠GEK﹣2∠AEG=45°.(3)作OH∥AB,∵AB∥CD,∴OH∥CD,如图3,∵AB∥OH,∴∠OEB=∠EOH,又∵OH∥CD,∴∠FOH=∠OFD,又∵∠OFD=∠CFS=∠AEK,而∠EOH+∠HOF=,∴∠EOH =﹣∠AEK,即180°﹣n∠EOH=∠AEK,又∵∠OEK+∠AEK+∠EOH=180°,∴∠OEK+180°﹣n∠EOH+∠EOH=180°,∴∠OEK=(n﹣1)∠EOH,∴,又∵∠EOH=∠BEO,∴.故答案为:.。
人教版数学七年级下册第五章测试卷(含答案)
初中数学人教版七年级下学期第五章测试卷一、单选题(共6题;共12分)1. ( 2分) 如图所示,下列条件中不能判定DE∥BC的是()A. ∠1=∠CB. ∠2=∠3C. ∠1=∠2D. ∠2+∠4=180°2. ( 2分) 下面四个图形中,∠1与∠2是对顶角的是()A. B. C.D.3. ( 2分) 如图,,若,则的度数是( )A. B. C.D.4. ( 2分) 下列命题中,为真命题的是( )A. 对角线互相垂直的四边形是菱形B. 四边相等的四边形是正方形C. 对角线相等的四边形是矩形D. 两组对角分别相等的四边形是平行四边形5. ( 2分) 如图,已知CD∥BE,如果∠1=60°,那么∠B的度数为()A. 70°B. 100°C. 110°D. 120°6. ( 2分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A,B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是( )A. 25°B. 30°C. 35°D. 55°二、填空题(共6题;共10分)7. ( 1分) 如图,直线AB,CD相交于点O,射线OE⊥CD,给出下列结论:①∠2和∠4互为对顶角;②∠3+∠2=180°;③∠5与∠4互补;④∠5=∠3-∠1;其中正确的是________。
(填序号)8. ( 1分) 如图,直线a、b 被直线c所截,若满足________,则a∥b.9. ( 1分) 命题“等角的余角相等”的逆命题是________命题.10. ( 5分) 已知:如图,射线OA 与OB 被直线CD 和EF 所截,∠1+ ∠2 = 180°,求证:∠3 = ∠4 .11. ( 1分) 直角三角形从点出发沿着方向匀速平移得到三角形(如图1),当点平移至点时停止运动(如图2).若,当点恰好将分为两部分时,四边形的面积为,那么平移的距离是________.12. ( 1分) 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=6,DH=2,平移距离为3,则阴影部分的面积为________.三、解答题(共3题;共15分)13. ( 5分) 如图,已知∠B=∠C,∠B+∠D=180°,指出图中的平行线,并说明理由.14. ( 5分) 如图18,∠1=∠2,∠C=∠D,问∠A与∠F相等吗?为什么?15. ( 5分) 如图,,,,试求的大小.四、综合题(共2题;共21分)16. ( 10分) 如图,已知∠ABC=180°﹣∠A,BD⊥CD于D,EF⊥CD于F.(1)求证:AD∥BC;(2)若∠1=36°,求∠2的度数.17. ( 11分) 问题情景:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.(1)数学活动小组经过讨论形成下列推理,请你补全推理依据.如图2,过点P作PE∥AB,∵PE∥AB(作图知)又∵AB∥CD,∴PE∥CD.________∴∠A+∠APE=180°.∠C+∠CPE=180°.________∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°∴∠APC=∠APE+∠CPE=110°.(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=α,∠BCP=β,求∠CPD与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD与α、β之间的数量关系.答案解析部分一、单选题1.【答案】C【考点】同位角、内错角、同旁内角【解析】【解答】A、∵∠1=∠C,∴DE∥BC(同位角相等两直线平行),正确,不符合题意;B、∵∠2=∠3,∴DE∥BC(内错角相等两直线平行),正确,不符合题意;C、∠1=∠2,∴DF∥AC(内错角相等两直线平行),而不能得到DE∥BC,错误,符合题意;D、∠2+∠4=180°,∴DE∥BC(同旁内角互补两直线平行),正确,不符合题意;故答案为:C.【分析】根据平行线的判定定理分别分析判断即可,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行.2.【答案】B【考点】对顶角、邻补角【解析】【解答】解:根据对顶角的定义,A,D,C,不符合其中一个角是另一个角的边的反向延长线,是对顶角的只有第二个图形,故答案为:B【分析】根据对顶角的概念,即可.3.【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】∵,∴.∵,∴,故答案为:B.【分析】根据互相平行的两条直线同位角相等、平角为180°的性质,可得出结果。
人教版数学七年级下册第五章相交线与平行线测试卷(含答案)
人教版七年级下册第五章相交线与平行线测试卷(含答案)一、选择题(每小题3分,共24分)1.如图,直线a,b相交于点O,若∠1等于35°,则∠2等于( )A.35°B.55°C.135°D.145°2.下列各组角中,∠1与∠2是对顶角的为( )3.如图,直线AB∥CD,AB,CD与直线BE分别交于点B,E,∠B=70°,则∠BED=( )A.110°B.50°C.60°D.70°4.如图,有a,b,c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线( )A.a户最长B.b户最长C.c户最长D.三户一样长5.如图,描述同位角、内错角、同旁内角关系不正确的是( )A.∠1与∠4是同位角B.∠2与∠3是内错角C.∠3与∠4是同旁内角D.∠2与∠4是同旁内角6.如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于( )A.18°B.36°C.45°D.54°7.下列命题中,真命题的个数是( )①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.A.4B.3C.2D.18.如图,给出下列四个条件:①AC=BD;②∠DAC=∠BCA;③∠ABD=∠CDB;④∠ADB=∠CBD.其中能使AD∥BC的条件为( )A.①②B.③④C.②④D.①③④二、填空题(每小题4分,共16分)9.命题“同旁内角互补,两直线平行”写成“如果……,那么……”的形式是______________________________.它是__________命题(填“真”或“假”).10.如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段__________的长度.11.如图,已知∠1=∠2,∠B=40°,则∠3=__________.12.如图,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A,B两岛的视角∠ACB=__________.三、解答题(共60分)13.(6分)填写推理理由:已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.解:∵DF∥AB(已知),∴∠A+∠AFD=180°(____________________).∵DE∥AC(已知),∴∠AFD+∠EDF=180°(____________________).∴∠A=∠EDF(____________________).14.(10分)如图,直线CD与直线AB相交于点C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.15.(10分)如图所示,△ABC平移得△DEF,写出图中所有相等的线段、角以及平行的线段.16.(10分)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH.(1)直线AB与CD有怎样的位置关系?说明理由;(2)∠KOH的度数是多少?17.(12分)如图所示,已知∠1+∠2=180°,∠B=∠3,你能判断∠ACB与∠AED的大小关系吗?说明理由.18.(12分)如图,直线AB与CD相交于O,OF,OD分别是∠AOE,∠BOE的平分线.(1)写出∠DOE的补角;(2)若∠BOE=62°,求∠AOD和∠EOF的度数;(3)试问射线OD与OF之间有什么特殊的位置关系?为什么?参考答案1.D2.D3.D4.D5.D6.B7.D8.C9.如果同旁内角互补,那么这两条直线平行真10.AP 11.40°12.70°13.两直线平行,同旁内角互补两直线平行,同旁内角互补同角的补角相等14.(1)图略.(2)图略.(3)∠PQC=60°.理由如下:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=60°.15.相等的线段:AB=DE,BC=EF,AC=DF;相等的角:∠BAC=∠EDF,∠ABC=∠DEF,∠BCA=∠EFD;平行的线段:AB∥DE,BC∥EF,AC∥DF.16.(1)AB∥CD.理由:∵∠1+∠2=180°,∴AB∥CD.(2)∵AB∥CD,∠3=100°,∴∠GOD=∠3=100°.∵∠GOD+∠DOH=180°,∴∠DOH=80°.∵OK平分∠DOH,∴∠KOH=12∠DOH=40°.17.∠AED=∠ACB.理由如下:∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4.∴BD∥FE.∴∠3=∠ADE.∵∠3=∠B,∴∠B=∠ADE.∴DE∥BC.∴∠AED=∠ACB.18.(1)∠DOE的补角为:∠COE,∠AOD,∠BOC.(2)∵OD是∠BOE的平分线,∠BOE=62°,∴∠BOD=12∠BOE=31°.∴∠AOD=180°-∠BOD=149°. ∴∠AOE=180°-∠BOE=118°. 又∵OF是∠AOE的平分线,∴∠EOF=12∠AOE=59°.(3)射线OD与OF互相垂直. 理由如下:∵OF,OD分别是∠AOE,∠BOE的平分线,∴∠DOF=∠DOE+∠EOF=12∠BOE+12∠EOA=12(∠BOE+∠EOA)=12×180°=90°.∴OD⊥OF.。
七年级数学下册第五章检测卷(含答案)
第五章检测卷时间:120分钟满分:120分题号一二三四五六总分得分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列图形中,可以由其中一个图形通过平移得到的是()2.如图,与∠B是同旁内角的角有()A.1个B.2个C.3个D.4个第2题图第3题图3.如图,能判断EC∥AB的条件是()A.∠B=∠ACB B.∠A=∠ACEC.∠B=∠ACE D.∠A=∠ECD4.命题:①对顶角相等;②在同一平面内,垂直于同一条直线的两直线平行;③相等的角是对顶角;④内错角相等.其中假命题有()A.①②B.①③C.②④D.③④5.如图,已知l1∥l2,直角三角板的直角顶点在直线l2上.若∠1=58°,则下列结论错误的是()A.∠3=58°B.∠4=122°C.∠5=52°D.∠2=58°第5题图6.如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2的度数为()A.30°B.35°C.36°D.40°第6题图二、填空题(本大题共6小题,每小题3分,共18分)7.如图是一把剪刀,若∠1与∠2互为余角,则∠1=________°.第7题图第8题图8.如图,在线段AC,BC,CD中,线段________最短,理由是________________.9.如图,如果∠________=∠________,那么根据____________________________可得AD∥BC(写出一个正确的就可以).第9题图第10题图10.如图,一张三角形纸片ABC,∠B=45°,现将纸片的一角向内折叠,折痕ED∥BC,则∠AEB的度数为________.11.如图,将周长为12的三角形ABC沿着射线BC方向平移4个单位后得到三角形DEF,则四边形ABFD的周长等于________.第11题图12.若∠A与∠B的两条边分别平行,其中∠A=(x+30)°,∠B=(3x-10)°,则∠A的度数为__________.三、(本大题共5小题,每小题6分,共30分)13.如图,点O为直线BD上的一点,OC⊥OA,垂足为点O,∠COD=2∠BOC,求∠AOB的度数.14.如图,直线a∥b,BC平分∠ABD,DE⊥BC.若∠1=70°,求∠2的度数.15.如图,∠AOB内有一点P.根据下列语句画图:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.16.如图,在方格纸中,每个小方格的边长均为1,三角形ABC的三个顶点和点P都在小方格的顶点上.要求:①将三角形ABC平移,使点P落在平移后的三角形内部;②平移后的三角形的顶点在方格的顶点上.请你在图甲和图乙中分别画出符合要求的一个示意图,并写出平移的方法.17.完成证明,说明理由.已知:如图,BC∥DE,点E在AB边上,DE与AC交于点F,∠1=∠2,∠3=∠4,求证:AE∥CD.证明:∵BC∥DE(已知),∴∠4=∠FCB____________________.∵∠3=∠4(已知),∴∠3=________(等量代换).∵∠1=∠2(已知),∴∠1+∠FCE=∠2+∠FCE(____________).即∠FCB=________,∴∠3=∠ECD(____________).∴AE∥CD(____________________).四、(本大题共3小题,每小题8分,共24分)18.将直角三角形ABC沿CB方向平移得到直角三角形DEF.已知CF=6,AC=10,求阴影部分的面积.19.如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面,靠背DM与支架OE平行,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,当∠EOF=90°,∠ODC=30°时,人躺着最舒服,求此时扶手AB与支架OE的夹角∠AOE和扶手AB与靠背DM的夹角∠ANM的度数.20.如图,直线AB,CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角为________,∠BOE的邻补角为________;(2)若∠AOC=70°,且∠BOE∶∠EOD=2∶3,求∠AOE的度数.五、(本大题共2小题,每小题9分,共18分)21.如图,现有以下3个论断:①AB∥CD;②∠B=∠C;③∠E=∠F.请以其中2个论断为条件,第三个论断为结论构造命题.(1)你构造的是哪几个命题?(2)你构造的命题是真命题还是假命题?请选择其中一个真命题加以证明.22.如图①是一张长方形的纸带,将这张纸带沿EF折叠成图②,再沿BF折叠成图③.(1)若∠DEF=20°,请你求出图③中∠CFE度数;(2)若∠DEF=α,请你直接用含α的式子表示图③中∠CFE的度数.六、(本大题共12分)23.数学思考:(1)如图甲,已知AB∥CD,探究下面图形中∠APC和∠A,∠C的关系,并证明你的结论.推广延伸:(2)①如图乙,已知AA1∥BA3,请你猜想∠A1,∠B1,∠A2,∠B2,∠A3的关系,并证明你的猜想;②如图丙,已知AA1∥BA n,直接写出∠A1,∠B1,∠A2,∠B2,…,∠B n-1,∠A n的关系.拓展应用:(3)①如图丁,若AB∥EF,用含α,β,γ的式子表示x,应为()A.180°+α+β-γB.180°-α-γ+βC.β+γ-αD.α+β+γ②如图戊,AB∥CD,且∠AFE=40°,∠G=90°,∠M=30°,∠CNP=50°,请你根据上述结论直接写出∠H的度数是________.参考答案与解析1.B 2.C 3.B 4.D 5.C6.A 解析:如图,过点A 作l 1的平行线AC ,过点B 作l 2的平行线BD ,∴∠3=∠1,∠4=∠2.∵l 1∥l 2,∴AC ∥BD ,∴∠CAB +∠ABD =180°,∴∠3+∠4=125°+85°-180°=30°,∴∠1+∠2=30°.故选A.7.45 8.CD 垂线段最短9.5 B 同位角相等,两直线平行(答案不唯一) 10.90° 11.20 12.50°或70° 解析:∵∠A 与∠B 的两边分别平行,∴∠A =∠B 或∠A +∠B =180°,∴x +30=3x -10或x +30+3x -10=180,解得x =20或40,∴x +30=50或70,即∠A =50°或70°,故答案为50°或70°.13.解:∵点O 为直线BD 上一点,∴∠COD +∠BOC =180°,(1分)将∠COD =2∠BOC 代入,得2∠BOC +∠BOC =180°,解得∠BOC =60°.(4分)∵OC ⊥OA ,∴∠COA =90°,∴∠AOB =∠COA -∠BOC =90°-60°=30°.(6分)14.解:∵直线a ∥b ,∴∠ABD =∠1=70°.(2分)∵BC 平分∠ABD ,∴∠EBD =12∠ABD=35°.(4分)∵DE ⊥BC ,∴∠BED =90°,∴∠2=180°-∠BED -∠EBD =55°.(6分)15.解:(1)如图所示.(2分) (2)如图所示.(4分)(3)与∠O 相等的角有∠ACP ,∠PDB ,∠CPD .(6分)16.解:如图甲,将三角形ABC 先向右平移4个单位长度,(1分)再向上平移1个单位长度.(2分)(3分)如图乙,将三角形ABC 先向右平移3个单位长度,(4分)再向上平移1个单位长度.(5分)(6分)(答案不唯一)17.解:两直线平行,同位角相等(1分) ∠FCB (2分) 等式的性质(3分) ∠ECD (4分) 等量代换(5分) 内错角相等,两直线平行(6分)18.解:∵将三角形ABC 沿CB 向右平移CF 的长度后,得到三角形DEF ,∴AD ∥BE ,AD =BE =CF =6,(3分)∴四边形ACED 是梯形,(4分)∴S 阴影=S 梯形ACED -S 三角形ABC =12(AD+BC +BE )·AC -12AC ·BC =12×10×(6+6+BC )-12×10×BC =60+5BC -5BC =60.(8分)19.解:∵扶手AB 与底座CD 都平行于地面,∴AB ∥CD ,∴∠BOD =∠ODC =30°.(2分)又∵∠EOF =90°,∴∠AOE =180°-∠EOF -∠BOD =60°.(4分)∵DM ∥OE ,∴∠AND =∠AOE =60°,∴∠ANM =180°-∠AND =120°.(8分)20.解:(1)∠BOD ∠AOE (2分) (2)设∠BOE =2x °,则∠EOD =3x °,∴∠BOD =∠BOE +∠EOD =5x °.(4分)∵∠BOD =∠AOC =70°,∴5x =70,解得x =14,∴∠BOE =2x °=28°,(6分)∴∠AOE =180°-∠BOE =152°.(8分)21.解:(1)由①②得到③,由①③得到②,由②③得到①.(3分)(2)由①②得到③、由①③得到②、由②③得到①均为真命题.(5分)选择由①②得到③加以证明,证明如下:∵AB ∥CD ,∴∠B =∠CDF .(7分)∵∠B =∠C ,∴∠C =∠CDF ,(8分)∴CE ∥BF ,∴∠E =∠F ,故由①②得到③为真命题.(9分)[选择由①③得到②加以证明,证明如下:∵AB ∥CD ,∴∠B =∠CDF .(7分)∵∠E =∠F ,∴CE ∥BF ,(8分)∴∠C =∠CDF ,∴∠B =∠C ,故由①③得到②为真命题.(9分)或选择由②③得到①加以证明,证明如下:∵∠E =∠F ,∴CE ∥BF ,(7分)∴∠C =∠CDF .(8分)∵∠B =∠C ,∴∠B =∠CDF ,∴AB ∥CD ,故由②③得到①为真命题.(9分)]22.解:(1)∵长方形对边AD∥BC,∴CF∥DE,∴图①中,∠CFE=180°-∠DEF=180°-20°=160°.如图②,由翻折的性质可知∠1=∠DEF=20°.∵长方形对边AD∥BC,∴∠BFE=∠1=20°,(2分)∴图②中,∠BFC=160°-20°=140°.由翻折的性质得,图③中∠BFC=140°,∴图③中,∠CFE=∠BFC-∠BFE=120°,即图③中,∠CFE=120°.(4分)(2)∵长方形对边AD∥BC,∴CF∥DE,∴图①中,∠CFE=180°-∠DEF=180°-α.如图②,由翻折的性质可知∠1=∠DEF=α.∵长方形对边AD∥BC,∴∠BFE=∠1=α,∴图②中,∠BFC=180°-2α,(7分)由翻折的性质得,图③中∠BFC=180°-2α,∴图③中,∠CFE+α=180°-2α,∴图③中,∠CFE=180°-3α.(9分)23.解:(1)∠APC=∠A+∠C.证明如下:如图甲,过点P作PO∥AB.(1分)∵AB∥CD,∴PO∥AB∥CD,∴∠1=∠A,∠2=∠C,(2分)∴∠APC=∠1+∠2=∠A+∠C,即∠APC =∠A+∠C.(3分)(2)①如图乙,过点A2作A2O∥AA1,(4分)由(1)可知∠B1=∠A1+∠1,∠B2=∠2+∠A3,∴∠A1+∠A2+∠A3=∠B1+∠B2.(6分)②同①可知∠A1+∠A2+…+∠A n=∠B1+∠B2+…+∠B n-1.(8分)(3)①B(10分)解析:如图丁,过点C作CD∥AB.∵AB∥EF,∴AB∥CD∥EF,∴∠BCD =180°-α.由(1)可知DCG=β-γ,则x=(180°-α)+(β-γ)=180°-α-γ+β.②30°(12分)解析:如图戊,∠BFG=∠AFE=40°,∠MND=∠CNP=50°,由(2)可知∠BFG+∠H+∠MND=∠G+∠M,即40°+∠H+50°=90°+30°.∴∠H=90°+30°-40°-50°=30°.。
人教版七年级数学下册第五章测评卷
第五章测评卷(满分:100分 时间:45分钟)七年级 班 座号 姓名 成绩一,选择题(每小题5分,共计30分)1. 如图,直线a ,b 被直线c 所截,则下列说法中错误的是( ) (A )∠1与∠2是邻补角 (B)∠1与∠3是对顶角 (C )∠2与∠4是同位角(D )∠3与∠4是内错角 2. 如图,一条“U ”型水管中AB ∥CD ,若∠B=75°,则 ∠C 应该等于()(A )75° (B )95° (C )105° (D )125°3. 如图,将三个相同的三角板不重叠不留空隙地拼在一起,观察图形,在线段AB ,BD ,DE ,EC ,CA ,AE 中,相互平行的线段有( )(A )4组 (B )3组 (C )2组 (D )1组4. 如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF 的位置,下面正确的平移步骤是( ) (A )先向左平移5个单位,再向下平移2个单位 (B )先向右平移5个单位,再向下平移2个单位 (C )先向左平移5个单位,再向上平移2个单位 (D )先向右平移5个单位,再向上平移2个单位5. 下列各命题中,是真命题的是( )(A )同位角相等 (B )内错角相等 (C )邻补角相等 (D )对顶角相等 6. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ; ②AD ∥BC ;③∠B=∠CDA . 则正确的结论是( ) (A )①②③ (B )①② (C )① (D )②③二,填空题(每小题5分,共计30分)abc 12 34ABCD7. 如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足为B ,沿AB 挖水沟,水沟最短. 理由是 .8. 若直线a ∥b ,a ∥c ,则直线b 与c 的位置关系是 .9. 如图,请添加一个条件,使AB ∥CD ,那么你添加的这个条件是 . 10. 如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于 .11. 如图,将周长为8的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于 .12. 一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么∠ABC +∠BCD= 度.三,解答题(共计40分)13.(9分)如图,AB 、CD 相交于点O ,∠A=∠1,∠B=∠2,则∠C =∠D . 理由是:∵ ∠A=∠1,∠B=∠2,(已知)且∠1=∠2( )∴∠A=∠B .(等量代换)∴AC ∥BD ( ). ∴∠C =∠D ( ).14.(9分)如图,已知点E 在直线AB 外,请使用三角板与直尺画图,并回答第⑶题: (1)过点E 作直线CD ,使CD ∥AB ;1 2 34ABCABCDO 12(第7题)(第9题)(第10题)ABCDEF(第11题)(第12题)(2)过点E 作直线EF ,使EF ⊥AB ,垂足为F ; (3)请判断直线CD 与EF 的位置关系,并说明理由.15.(10分)如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分∠EAQ ,CD 平分∠CAN ,如果PQ ∥MN ,那么AB 与CD 平行吗?为什么?16.(12分)如图,已知∠ABC=40°,射线DE 与AB 相交于点O ,且DE ∥BC ,解答以下(1)、(2)两题:(1)画∠EDF ,使∠EDF 的另一边DF ∥AB ,请在下图①或图②中画出符合题意的图形,ABEABCD PQ MNEF并求∠EDF 的度数;(2)如果∠EDF 的顶点D 在∠ABC 的内部,边DE ⊥AB ,另一边DF ⊥BC ,请在下图③或图④中画出相应的图形,并使用量角器分别测量出∠ABC 与∠EDF 的度数后,直.接写出...∠ABC 与∠DEF 的关系,不必说明理由.高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )(图②)(图④)(图③)乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第5题图第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A.8个 B.6个 C.4个 D.12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图第9题图第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________……………………密………………………………….封……………………….线…………………………………………………………………………..这个几何体的主视图和俯视图分别为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章测评卷
(满分:100分 时间:45分钟)
七年级 班 座号 姓名 成绩
一,选择题(每小题5分,共计30分)
1. 如图,直线a ,b 被直线c 所截,则下列说法中错误的是( ) (A )∠1与∠2是邻补角 (B
)∠1与∠3是对顶角 (C )∠2与∠4是同位角
(D )∠3与∠4是内错角 2. 如图,一条“U ”型水管中AB ∥CD ,若∠B=75°,则 ∠C 应该等于(
)
(A )75° (B )95° (C )105° (D )125°
3. 如图,将三个相同的三角板不重叠不留空隙地拼在一起,观察图形,在线段AB ,BD ,
DE ,EC ,CA ,AE 中,相互平行的线段有( )
(A )4组 (B )3组 (C )2组 (D )1组
4. 如图,在10×6的网格中,每个小正方形的边长都是1个单位,将三角形ABC 平移到三角形DEF 的位置,下面正确的平移步骤是( ) (A )先向左平移5个单位,再向下平移2个单位 (B )先向右平移5个单位,再向下平移2个单位 (C )先向左平移5个单位,再向上平移2个单位 (D )先向右平移5个单位,再向上平移2个单位
5. 下列各命题中,是真命题的是( )
(A )同位角相等 (B )内错角相等 (C )邻补角相等 (D )对顶角相等 6. 如图,点D 在直线AE 上,量得∠CDE=∠A=∠C ,有以下三个结论:①AB ∥CD ; ②AD ∥BC ;③∠B=∠CDA . 则正确的结论是( ) (A )①②③ (B )①② (C )① (D )②③
二,填空题(每小题5分,共计30分)
a
b
c 1
2 3
4
A
B
C
D
7. 如图,把小河里的水引到田地A 处就作AB ⊥l ,垂足为B ,沿AB 挖水沟,水沟最短. 理由是 .
8. 若直线a ∥b ,a ∥c ,则直线b 与c 的位置关系是 .
9. 如图,请添加一个条件,使AB ∥CD ,那么你添加的这个条件是 . 10. 如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于 .
11. 如图,将周长为8的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于 .
12. 一个小区大门的栏杆如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,那么∠ABC +∠BCD= 度.
三,解答题(共计40分)
13.(9分)如图,AB 、CD 相交于点O ,∠A=∠1,∠B=∠2,则∠C =∠D . 理由是:
∵ ∠A=∠1,∠B=∠2,(已知)
且∠1=∠2( )
∴∠A=∠B .(等量代换)
∴AC ∥BD ( ). ∴∠C =∠D ( ).
14.(9分)如图,已知点E 在直线AB 外,请使用三角板与直尺画图,并回答第⑶题: (1)过点E 作直线CD ,使CD ∥AB ;
1 2 3
4
A
B
C
A
B
C
D
O 1
2
(第7题)
(第9题)
(第10题)
A
B
C
D
E
F
(第11题)
(第12题)
(2)过点E 作直线EF ,使EF ⊥AB ,垂足为F ; (3)请判断直线CD 与EF 的位置关系,并说明理由.
15.(10分)如图,直线PQ 、MN 被直线EF 所截,交点分别为A 、C ,AB 平分∠EAQ ,CD 平分∠CAN ,如果PQ ∥MN ,那么AB 与CD 平行吗?为什么?
16.(12分)如图,已知∠ABC=40°,射线DE 与AB 相交于点O ,且DE ∥BC ,解答以下(1)、(2)两题:
(1)画∠EDF ,使∠EDF 的另一边DF ∥AB ,请在下图①或图②中画出符合题意的图形,
A
E
A
B
C
D P
Q M
N
E
F C
E
并求∠EDF 的度数;
(2)如果∠EDF 的顶点D 在∠ABC 的内部,边DE ⊥AB ,另一边DF ⊥BC ,请在下图③或图④中画出相应的图形,并使用量角器分别测量出∠ABC 与∠EDF 的度数后,直接写...出.∠ABC 与∠DEF 的关系,不必说明理由.
(图②)
(图④)
(图③)。