细胞的能量转换线粒体和叶绿体

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章细胞的能量转换—线粒体和叶绿体

教学目的:掌握线粒体、叶绿体的超微结构及功能

教学重点:1线粒体、叶绿体的超微结构

2化学渗透学说

3线粒体、叶绿体的半自主性

教学难点:线粒体、叶绿体的超微结构及功能的关系

讲授与讨论

第一节线粒体与氧化磷酸化

一、线粒体形态、大小、数目和分布

二、线粒体的超微结构

本世纪50年代后,在电镜下观察研究线粒体的结构问题。是由双层单位膜套叠成的所谓“囊中之囊”,在空间结构上人为地划分为四大部分,即外膜、内膜、外室、内室。

(一)外膜(outer membrane)

指包围在线粒体最外面的一层膜,看上去平整光滑而具有弹性,膜厚约

6nm。对各种小分子物质(分子量在10000 doldon以内,如电解质、水、蔗糖等)的通透性较高,有人认为外膜上具有小孔(ф2~3nm)。(二)内膜(inner membrane)

也是一单位膜,约厚6~8nm。内膜不同于外膜。首先是在结构上,内膜不是平滑的,而是由许多向线粒体腔内的突起(褶叠或小管),被称为“线粒体嵴”(mitochondria cristae),是线粒体最富有标志性的结构,它的存在大大扩大了内膜的表面积,增加了内膜的代谢效率。(三)外室(outer space)(膜间隙)

指内、外膜之间的窄小空隙,宽约6~8 nm,又称膜间隙(intermembrane space)。

(四)内室(mner space)

指由内膜包围的空间,其内充满蛋白质性质的物质,称线粒体基质(mitochondria matrix)。

三、线粒体的化学组成及定位(chemical composition)

(一)蛋白质外膜含量(60%)低于内膜含量(80%),主要为酶类(约120余种)。

外膜:单胺氧化酶(标记酶)、NADH—细胞色素C还原酶、脂肪酸辅

酶A连接酶等等;

内膜:呼吸链酶系(细胞色素氧化酶为标记酶)、ATP合成酶、琥珀酸脱H酶等等;

外室:腺苷酸激酶(标记酶)、核苷二磷酸激酶;

内室:三羧酸循环酶系(其中苹果酸脱H酶是标记酶)、脂肪酸氧化酶、蛋白质合成酶系等等

(二)脂类外膜中含量(40%)高于内膜中的含量(20%)。其中内膜不含胆固醇,而含心磷脂较多。

(三)核酸基质中有DNA,称mt—DNA

四、线粒体的功能——生物氧化(biological oxidation)

亦称细胞呼吸(cellular respiration),指各类有机物质在细胞内进行氧化分解,最终产生CO2和H2O,同时释放能量(ATP)的过程。包括TCA环、电子传递和氧化磷酸化三个步骤,分别是在线粒体的不同部位进行的。

(一)生物氧化的分区和定位

(二)电子传递和氧化磷酸化的结构基础

虽然电子传递和氧化磷酸化偶连在一起,但它们又是通过不同的结构完

成的。1968年,E.Racker等的亚线粒体小泡重建实验说明了这一问题(图示)。

由此可见,电子传递是在线粒体内膜上,氧化磷酸化由基粒承担。

1 电子传递链(呼吸链)(electron transport chain,respiration chain)

呼吸链是由存在于线粒体内膜上的众多酶系和其它分子组成的电子传

递链。

(1)复合物I NADH—Q还原酶,催化NADH的2个电子→辅酶Q (2)复合物Ⅱ 琥珀酸—Q还原酶,催化电子从琥珀酸通过FAD和铁硫蛋白传至辅酶Q

(3)复合物Ⅲ 细胞色素还原酶,催化电子从辅酶Q传至CytC (4)复合物Ⅳ 细胞色素氧化酶,将电子从CytC→氧。

2 基粒(F1—FO复合物)的超微结构

F1—FO复合物,又称内膜亚单位、呼吸集合体、ATP酶复合物、ATP 合成酶等。这一结构最初是在1962年,由Fernadezmoran经负染色在电镜下观察到的,后来D.Green将其称为线粒体基粒,后改称基粒,实际上是一种ATP酶复合体,分子量约在448000。

它是由多条多肽链构成的复合结构,可分为三部分,即头、柄、膜三部。

在ATP形成过程中共同发挥作用。

3 氧化磷酸化的偶联机制

(1)化学偶联假说(Chemieal coupling hypothesis)

(2)构象偶联假说(Conformational coupling hypothesis)(3)化学渗透学说(Chemiosmotic coupling hypothesis)

亦称电化学偶联学说,是1961年英国生化学家P.Mitchell提出的。对电子传递和氧化磷酸化问题作了较为另人信服的解释,故普遍为人接受,米切尔因此而获1978年诺贝尔化学奖。

这一假说的中心思想是:在电子传递过程中所释放的能量转化成了跨膜的氢离子浓度梯度的势能,这种势能驱动氧化磷酸化反应,合成ATP。(1)NADH提供一对电子,经电子传递链,最后为O2所接受。(2)电子传递链中的载氢体和电子传递体相间排列,每当电子由载氢体传向电子传递体时,载氢体的H+便释放到内膜外。一对电子在呼吸链三次穿膜运动,向外室排放三对H+ 。

(3)内膜对H+具有不可透性,故随电子传递过程的不断进行,H+ 在外室中积累,造成膜两侧的质子浓度差。

(4)外室中H+有顺浓度梯度返回基质的倾向,当H+通过F1—FO复合物时,ATP酶利用这一势能合成ATP。

(5)F1—FO复合物需2个质子合成一个ATP。

第二节叶绿体与光合作用(chloroplast & photosynthesis)

叶绿体是植物细胞特有的双层膜围成的细胞器,它对生物界的存在和进化有着重大贡献(三个最初:一是人类、动物、多数微生物的食物的最初来源;二是人类社会利用的古生物燃料——煤、石油、天然气的最初来源;三是地球上氧气的最初来源),主要功能在于:吸收光能,合成碳水化合物,同时产生分子氧,总称为光合作用(photosynthesis)

一、叶绿体的形状、大小、数目、分布

二、超微结构

近年来,先后有许多学者采用超薄切片、负染色和冰冻蚀刻等先进技术,研究叶绿体的形态和组成,揭示叶绿体囊状膜系统的超微结构。

1 叶绿体膜(chl membrane)

是两层光滑的单位膜(内、外膜)6-8nm,也称外被(outer envelope),是一个有选择的屏障,控制着叶绿体代谢物质的进入和排出。

2 基质(stroma)

指叶绿体膜包围的,无结构,呈流动状态的物质。即叶绿体内膜与类囊

相关文档
最新文档