数学建模模型案例
数学建模案例精选
数学建模案例精选数学建模是指利用数学方法和技术解决实际问题的过程,它在工程、经济、管理、自然科学等领域都有着广泛的应用。
在数学建模中,数学模型是解决问题的核心,通过建立合适的数学模型,可以更好地理解问题的本质,并找到解决问题的方法。
下面我们将介绍几个数学建模案例,来看看数学在实际问题中是如何发挥作用的。
案例一,交通拥堵问题。
在城市交通管理中,交通拥堵一直是一个严重的问题。
如何合理规划道路和交通流量,是一个复杂的问题。
数学建模可以通过建立交通流模型,分析不同道路的交通流量,预测交通拥堵的可能发生区域和时间,从而指导交通管理部门制定相应的交通疏导措施。
案例二,股票价格预测。
股票市场的波动一直是投资者关注的焦点,而股票价格的预测是投资决策的重要依据。
数学建模可以通过分析历史股票价格数据,建立股票价格预测模型,利用数学统计方法和时间序列分析方法,预测股票价格的未来走势,帮助投资者做出更明智的投资决策。
案例三,物流配送优化。
在物流配送领域,如何合理规划配送路线和减少配送成本是企业关注的重点。
数学建模可以通过建立物流配送网络模型,分析不同配送方案的成本和效率,优化配送路线,降低物流成本,提高配送效率,从而提升企业的竞争力。
案例四,环境污染监测。
环境污染是一个严重的问题,如何有效监测和治理环境污染成为了各国政府和环保部门的重要任务。
数学建模可以通过建立环境污染监测模型,分析环境污染源的分布和扩散规律,预测污染物的扩散范围和影响,为环境污染治理提供科学依据。
通过以上几个案例的介绍,我们可以看到数学建模在实际问题中的重要作用。
数学建模不仅可以帮助我们更好地理解和解决实际问题,还可以推动科学技术的发展,促进社会经济的进步。
因此,加强数学建模的研究和应用,对于推动科学技术创新和社会发展具有重要意义。
希望通过今后更多的实际案例和研究,能够进一步挖掘数学建模的潜力,为解决更多实际问题提供更加有效的方法和工具。
高等数学建模案例
高等数学建模案例
1. 水桶模型:用高等数学的积分和微分知识模拟水桶的溢出情况,以确定最大容量和最快的流出速度。
2. 热传导模型:通过热传导方程式和边界条件,建立热传导模型,研究热量在物体内的传递和分布。
3. 光学模型:运用高等数学的微积分和波动方程式,描述光线在介质中的传播和干涉现象,以及各种光学器件的工作原理。
4. 风电场建设模型:利用高等数学的多元函数、梯度和偏导数等知识,分析风电场建设的最佳布局、风能利用效率和风机数量等问题。
5. 市场建模:运用高等数学的统计学和概率论知识,对市场需求、供给、价格等因素进行建模,预测市场走向和未来的趋势。
6. 股票交易策略模型:通过高等数学的时间序列分析和随机过程模型,研究股票价格的波动规律和交易策略的制定。
7. 电力系统建模:利用高等数学的电路分析和微分方程式,建立电力系统的模型,预测电力系统的稳定性和故障情况。
8. 机器人运动模型:通过高等数学的向量和矩阵知识,描述机器人的运动轨迹和姿态变化,以及机器人的工作空间和运动范围。
9. 交通流模型:运用高等数学的微分方程式和概率论知识,建立交通流模型,分析交通拥堵的原因和解决方案。
10. 化学反应动力学模型:通过高等数学的微积分和差分方程式,建立化学反应动力学模型,研究反应速率、反应机理和反应过程中的状态变化。
数学建模案例分析--线性代数建模案例20例
线性代数建模案例汇编目录案例一. 交通网络流量分析问题1案例二. 配方问题4案例三. 投入产出问题6案例四. 平板的稳态温度分布问题7案例五. CT图像的代数重建问题11案例六. 平衡结构的梁受力计算13案例七. 化学方程式配平问题16案例八. 互付工资问题17案例九. 平衡价格问题19案例十. 电路设计问题20案例十一. 平面图形的几何变换22案例十二. 太空探测器轨道数据问题24案例十三. 应用矩阵编制Hill密码25案例十四. 显示器色彩制式转换问题27案例十五. 人员流动问题29案例十六. 金融公司支付基金的流动31案例十七. 选举问题33案例十八. 简单的种群增长问题34案例十九. 一阶常系数线性齐次微分方程组的求解36 案例二十. 最值问题38附录数学实验报告模板错误!未定义书签。
案例一. 交通网络流量分析问题城市道路网中每条道路、每个交叉路口的车流量调查,是分析、评价及改善城市交通状况的基础。
根据实际车流量信息可以设计流量控制方案,必要时设置单行线,以免大量车辆长时间拥堵。
【模型准备】 某城市单行线如下图所示, 其中的数字表示该路段每小时按箭头方向行驶的车流量(单位: 辆).图3 某城市单行线车流量(1) 建立确定每条道路流量的线性方程组.(2) 为了唯一确定未知流量, 还需要增添哪几条道路的流量统计? (3) 当x 4 = 350时, 确定x 1, x 2, x 3的值.(4) 若x 4 = 200, 则单行线应该如何改动才合理?【模型假设】 (1) 每条道路都是单行线. (2) 每个交叉路口进入和离开的车辆数目相等.【模型建立】 根据图3和上述假设, 在①, ②, ③, ④四个路口进出车辆数目分别满足500 = x 1 + x 2① 400 + x 1 = x 4 + 300 ② x 2 + x 3 = 100 + 200 ③ x 4 = x 3 + 300 ④ 【模型求解】根据上述等式可得如下线性方程组12142334500100300300x x x x x x x x +=⎧⎪-=-⎪⎨+=⎪⎪-+=⎩其增广矩阵(A , b ) =1100500100110001103000011300⎛⎫ ⎪--⎪ ⎪ ⎪-⎝⎭−−−−→初等行变换10011000101600001130000000--⎛⎫ ⎪⎪-- ⎪⎪⎝⎭由此可得142434100600300x x x x x x -=-⎧⎪+=⎨⎪-=-⎩ 即142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩. 为了唯一确定未知流量, 只要增添x 4统计的值即可. 当x 4 = 350时, 确定x 1 = 250, x 2 = 250, x 3 = 50.若x 4 = 200, 则x 1 = 100, x 2 = 400, x 3 = -100 < 0. 这表明单行线“③←④”应该改为“③→④”才合理.【模型分析】(1) 由(A , b )的行最简形可见, 上述方程组中的最后一个方程是多余的. 这意味着最后一个方程中的数据“300”可以不用统计.(2) 由142434100600300x x x x x x =-⎧⎪=-+⎨⎪=-⎩可得213141500200100x x x x x x =-+⎧⎪=-⎨⎪=+⎩, 123242500300600x x x x x x =-+⎧⎪=-+⎨⎪=-+⎩, 132343200300300x x x x x x =+⎧⎪=-+⎨⎪=+⎩, 这就是说x 1, x 2, x 3, x 4这四个未知量中, 任意一个未知量的值统计出来之后都可以确定出其他三个未知量的值.Matlab 实验题某城市有下图所示的交通图, 每条道路都是单行线, 需要调查每条道路每小时的车流量. 图中的数字表示该条路段的车流数. 如果每个交叉路口进入和离开的车数相等, 整个图中进入和离开的车数相等.图4 某城市单行线车流量(1)建立确定每条道路流量的线性方程组.(2)分析哪些流量数据是多余的.(3)为了唯一确定未知流量, 需要增添哪几条道路的流量统计.案例二. 配方问题在化工、医药、日常膳食等方面都经常涉及到配方问题. 在不考虑各种成分之间可能发生某些化学反应时, 配方问题可以用向量和线性方程组来建模. 【模型准备】一种佐料由四种原料A 、B 、C 、D 混合而成. 这种佐料现有两种规格, 这两种规格的佐料中, 四种原料的比例分别为2:3:1:1和1:2:1:2. 现在需要四种原料的比例为4:7:3:5的第三种规格的佐料. 问: 第三种规格的佐料能否由前两种规格的佐料按一定比例配制而成?【模型假设】 (1) 假设四种原料混合在一起时不发生化学变化. (2) 假设四种原料的比例是按重量计算的. (3) 假设前两种规格的佐料分装成袋, 比如说第一种规格的佐料每袋净重7克(其中A 、B 、C 、D 四种原料分别为2克, 3克, 1克, 1克), 第二种规格的佐料每袋净重6克(其中A 、B 、C 、D 四种原料分别为1克, 2克, 1克, 2克). 【模型建立】 根据已知数据和上述假设, 可以进一步假设将x 袋第一种规格的佐料与y 袋第二种规格的佐料混合在一起, 得到的混合物中A 、B 、C 、D 四种原料分别为4克, 7克, 3克, 5克, 则有以下线性方程组24,327,3,2 5.x y x y x y x y +=⎧⎪+=⎨+=⎪+=⎩ 【模型求解】上述线性方程组的增广矩阵(A , b ) =214327113125⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭−−−−→初等行变换101012000000⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭,可见{1,2.x y == 又因为第一种规格的佐料每袋净重7克, 第二种规格的佐料每袋净重6克, 所以第三种规格的佐料能由前两种规格的佐料按7:12的比例配制而成. 【模型分析】(1) 若令α1 = (2, 3, 1, 1)T , α2 = (1, 2, 1, 1)T , β = (4, 7, 5, 3)T , 则原问题等价于“线性方程组Ax = b 是否有解”, 也等价于“β能否由α1, α2线性表示”.(2) 若四种原料的比例是按体积计算的, 则还要考虑混合前后体积的关系(未必是简单的叠加), 因而最好还是先根据具体情况将体积比转换为重量比, 然后再按上述方法处理.(3) 上面的模型假设中的第三个假设只是起到简化运算的作用. 如果直接设x 克第一种规格的佐料与y 克第二种规格的佐料混合得第三种规格的佐料, 则有下表因而有如下线性方程组214(),7619327(),7619113(),7619125().7619x y x y x y x y x y x y x y x y ⎧+=+⎪⎪⎪+=+⎪⎨⎪+=+⎪⎪⎪+=+⎪⎩(*) 【模型检验】把x = 7, y = 12代入上述方程组(*), 则各等式都成立. 可见模型假设中的第三个假设不影响解的正确性.Matlab 实验题蛋白质、碳水化合物和脂肪是人体每日必须的三种营养, 但过量的脂肪摄入不利于健康.人们可以通过适量的运动来消耗多余的脂肪. 设三种食物(脱脂牛奶、大豆面粉、乳清)每100克中蛋白质、碳水化合物和脂肪的含量以及慢跑5分钟消耗蛋白质、碳水化合物和脂肪的量如下表.问怎样安排饮食和运动才能实现每日的营养需求?案例三. 投入产出问题在研究多个经济部门之间的投入产出关系时, W. Leontief 提出了投入产出模型. 这为经济学研究提供了强有力的手段. W. Leontief 因此获得了1973年的Nobel 经济学奖.【模型准备】某地有一座煤矿, 一个发电厂和一条铁路. 经成本核算, 每生产价值1元钱的煤需消耗0.3元的电; 为了把这1元钱的煤运出去需花费0.2元的运费; 每生产1元的电需0.6元的煤作燃料; 为了运行电厂的辅助设备需消耗本身0.1元的电, 还需要花费0.1元的运费; 作为铁路局, 每提供1元运费的运输需消耗0.5元的煤, 辅助设备要消耗0.1元的电. 现煤矿接到外地6万元煤的订货, 电厂有10万元电的外地需求, 问: 煤矿和电厂各生产多少才能满足需求? 【模型假设】假设不考虑价格变动等其他因素.【模型建立】设煤矿, 电厂, 铁路分别产出x 元, y 元, z 元刚好满足需求. 则有下表根据需求, 应该有(0.60.5)60000(0.30.10.1)100000(0.20.1)0x y z y x y z z x y -+=⎧⎪-++=⎨⎪-+=⎩, 即0.60.5600000.30.90.11000000.20.10x y z x y z x y z --=⎧⎪-+-=⎨⎪--+=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.6,-0.5;-0.3,0.9,-0.1;-0.2,-0.1,1]; b = [60000;100000;0]; >> x = A\bMatlab 执行后得 x =1.0e+005 *1.99661.84150.5835可见煤矿要生产1.9966⨯105元的煤, 电厂要生产1.8415⨯105元的电恰好满足需求.【模型分析】令x =xyz⎛⎫⎪⎪⎝⎭, A =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭, b =60000100000⎛⎫⎪⎪⎝⎭, 其中x称为总产值列向量,A称为消耗系数矩阵, b称为最终产品向量, 则Ax =00.60.50.30.10.10.20.10⎛⎫⎪⎪⎝⎭xyz⎛⎫⎪⎪⎝⎭=0.60.50.30.10.10.20.1y zx y zx y+⎛⎫⎪++⎪+⎝⎭根据需求, 应该有x-Ax = b, 即(E-A)x = b. 故x = (E-A)-1b.Matlab实验题某乡镇有甲、乙、丙三个企业. 甲企业每生产1元的产品要消耗0.25元乙企业的产品和0.25元丙企业的产品. 乙企业每生产1元的产品要消耗0.65元甲企业的产品, 0.05元自产的产品和0.05元丙企业的产品. 丙企业每生产1元的产品要消耗0.5元甲企业的产品和0.1元乙企业的产品. 在一个生产周期内, 甲、乙、丙三个企业生产的产品价值分别为100万元, 120万元, 60万元, 同时各自的固定资产折旧分别为20万元, 5万元和5万元.(1) 求一个生产周期内这三个企业扣除消耗和折旧后的新创价值.(2) 如果这三个企业接到外来订单分别为50万元, 60万元, 40万元, 那么他们各生产多少才能满足需求?案例四. 平板的稳态温度分布问题在热传导的研究中, 一个重要的问题是确定一块平板的稳态温度分布. 根据…定律, 只要测定一块矩形平板四周的温度就可以确定平板上各点的温度.图8 一块平板的温度分布图【模型准备】如图9所示的平板代表一条金属梁的截面. 已知四周8个节点处的温度(单位°C), 求中间4个点处的温度T 1, T 2, T 3, T 4.图9 一块平板的温度分布图【模型假设】假设忽略垂直于该截面方向上的热传导, 并且每个节点的温度等于与它相邻的四个节点温度的平均值.【模型建立】根据已知条件和上述假设, 有如下线性方程组1232143144231(90100)41(8060)41(8060)41(5050)4T T T T T T T T T T T T ⎧=+++⎪⎪⎪=+++⎪⎨⎪=+++⎪⎪=+++⎪⎩ 【模型求解】将上述线性方程组整理得1231241342344190414041404100T T T T T T T T T T T T --=⎧⎪-+-=⎪⎨-+-=⎪--+=⎪⎩. 在Matlab 命令窗口输入以下命令T 1T 2 T 3 T 4 10080908060506050>> A = [4,-1,-1,0;-1,4,0,-1;-1,0,4,-1;0,-1,-1,4]; b = [190;140;140;100];>> x = A\b; x’Matlab执行后得ans =82.9167 70.8333 70.8333 60.4167可见T1 = 82.9167, T2 = 70.8333, T3 = 70.8333, T4 = 60.4167.参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 15-16.Matlab实验题假定下图中的平板代表一条金属梁的截面, 并忽略垂直于该截面方向上的热传导. 已知平板内部有30个节点, 每个节点的温度近似等于与它相邻的四个节点温度的平均值. 设4条边界上的温度分别等于每位同学学号的后四位的5倍, 例如学号为16308209的同学计算本题时, 选择T l = 40, T u = 10, T r = 0, T d = 45.图10 一块平板的温度分布图(1) 建立可以确定平板内节点温度的线性方程组.(2) 用Matlab软件求解该线性方程组.(3) 用Matlab中的函数mesh绘制三维平板温度分布图.案例五. CT图像的代数重建问题X射线透视可以得到3维对象在2维平面上的投影, CT则通过不同角度的X射线得到3维对象的多个2维投影, 并以此重建对象内部的3维图像. 代数重建方法就是从这些2维投影出发, 通过求解超定线性方程组, 获得对象内部3维图像的方法.图11双层螺旋CT 图12 CT图像这里我们考虑一个更简单的模型, 从2维图像的1维投影重建原先的2维图像. 一个长方形图像可以用一个横竖均匀划分的离散网格来覆盖, 每个网格对应一个像素, 它是该网格上各点像素的均值. 这样一个图像就可以用一个矩阵表示,其元素就是图像在一点的灰度值(黑白图像). 下面我们以3⨯3图像为例来说明.3⨯3图像各点的灰度值水平方向上的叠加值x1 = 1 x2 = 0 x3 = 0 x1 + x2 + x3 = 1x4 = 0 x5 = 0.5 x6 = 0.5 x4 + x5 + x6 = 1x7 = 0.5 x8 = 0 x9 = 1 x7 + x8 + x9 = 1.5 竖直方向上的叠加值x1 + x4 + x7= 1.5x2 + x5 + x8= 0.5x3 + x6 + x9= 1.5i色. 如果我们不知道网格中的数值, 只知道沿竖直方向和水平方向的叠加值, 为了确定网格中的灰度值, 可以建立线性方程组(含有6个方程, 9个未知数)123456369111x x xx x xx x x++=⎧⎪++=⎪⎨⎪++=⎪⎩显然该方程组的解是不唯一的, 为了重建图像, 必须增加叠加值. 如我们增加从右上方到左下方的叠加值, 则方程组将增加5个方程x1 = 1,x2 + x4 = 0,x3 + x5 + x7 = 1,x 6 + x 8 = 0.5, x 9 = 1,和上面的6个方程放在一起构成一个含有11个方程, 9个未知数的线性方程组. 【模型准备】设3⨯3图像中第一行3个点的灰度值依次为x 1, x 2, x 3, 第二行3个点的灰度值依次为x 4, x 5,x 6, 第三行3个点的灰度值依次为x 7, x 8, x 9. 沿竖直方向的叠加值依次为1.5, 0.5, 1.5, 沿水平方向的叠加值依次为1, 1, 1.5, 沿右上方到左下方的叠加值依次为1, 0, 1, 0.5, 1. 确定x 1, x 2, …, x 9的值.【模型建立】由已知条件可得(含有11个方程, 9个未知数的)线性方程组1234569111x x x x x x x ++=⎧⎪++=⎪⎨⎪=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,1,0,0,0,0,0,0;0,0,0,1,1,1,0,0,0;0,0,0,0,0,0,1,1,1;1,0,0,1,0,0,1,0,0;0,1,0,0,1,0,0,1,0;0,0,1,0,0,1,0,0,1; 1,0,0,0,0,0,0,0,0;0,1,0,1,0,0,0,0,0;0,0,1,0,1,0,1,0,0; 0,0,0,0,0,1,0,1,0;0,0,0,0,0,0,0,0,1];>> b = [1;1;1.5;1.5;0.5;1.5;1;0;1;0.5;1]; >> x = A\b; x ’Matlab 执行后得Warning: Rank deficient, rank = 8 tol =4.2305e-015. ans =1.0000 0.0000 0 -0.0000 0.5000 0.5000 0.5000 -0.0000 1.0000 可见上述方程组的解不唯一. 其中的一个特解为x 1 = 1, x 2 = 0, x 3 = 0, x 4 = 0, x 5 = 0.5, x 6 = 0.5, x 7 = 0.5, x 8 = 0, x 9 = 1.【模型分析】上述结果表明, 仅有三个方向上的叠加值还不够.可以再增加从左上方到右下方的叠加值. 在实际情况下, 由于测量误差, 上述线性方程组可能是超定的. 这时可以将超定方程组的近似解作为重建的图像数据.Matlab 实验题给定一个3⨯3图像的2个方向上的灰度叠加值: 沿左上方到右下方的灰度叠加值依次为0.8, 1.2, 1.7, 0.2, 0.3; 沿右上方到左下方的灰度叠加值依次为0.6, 0.2, 1.6, 1.2, 0.6.(1) 建立可以确定网格数据的线性方程组, 并用Matlab 求解. (2) 将网格数据乘以256, 再取整, 用Matlab 绘制该灰度图像.案例六. 平衡结构的梁受力计算在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情.图14 埃菲尔铁塔局部下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G1 = 200牛顿, 长L1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G2 = 100牛顿, 长L2 = 2米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A, B, C所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力.图15双杆系统【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示.【模型建立】对于杆1:水平方向受到的合力为零, 故N1 = N3,竖直方向受到的合力为零, 故N2 + N4 = G1,以点A为支点的合力矩为零, 故(L1sinθ1)N3 + (L1cosθ1)N4 = (12L1cosθ1)G1.图16 两杆受力情况对于杆2类似地有AC杆1杆2CN1N2N3N5N6G1G2A B杆1杆2π/6π/4N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (12L 2cos θ2)G 2.此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组:132414800N N N N G N N -=⎧⎪+=⎪⎨⎪⎪-=⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0;0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1];>> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans =95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献陈怀琛, 高淑萍, 杨威, 工程线性代数,: 电子工业, 2007. 页码: 157- 158.Matlab 实验题有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45º.(1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况.图17 一个平面结构的梁案例七. 化学方程式配平问题在用化学方法处理污水过程中, 有时会涉及到复杂的化学反应. 这些反应的化学方程式是分析计算和工艺设计的重要依据. 在定性地检测出反应物和生成物之后,可以通过求解线性方程组配平化学方程式.【模型准备】某厂废水中含K, 其浓度为650mg/L. 现用氯氧化法处理, 发生如下反应:K + 2KOH + Cl 2 = KO+ 2KCl + H 2O.投入过量液氯, 可将氰酸盐进一步氧化为氮气. 请配平下列化学方程式:KO +KOH +Cl 2 ===CO 2+N 2+KCl +H 2O.(注: 题目摘自XX 省XX 外国语学校2008-2009学年高三第三次月考化学试卷) 【模型建立】设x 1KO +x 2KOH +x 3Cl 2 === x 4CO 2 +x 5N 2 +x 6KCl +x 7H 2O,则1261247141527362222x x x x x x xx x x x x x x x +=⎧⎪+=+⎪⎪=⎪⎨=⎪⎪=⎪=⎪⎩, 即1261247141527360200202020x x x x x x x x x x x x x x x +-=⎧⎪+--=⎪⎪-=⎪⎨-=⎪⎪-=⎪-=⎪⎩ 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,1,0,0,0,-1,0;1,1,0,-2,0,0,-1;1,0,0,-1,0,0,0;1,0,0,0,-2,0,0;0,1,0,0,0,0,-2;0,0,2,0,0,-1,0];>> x = null(A,’r ’); format rat, x ’Matlab 执行后得 ans =1 2 3/2 1 1/2 3 1 可见上述齐次线性方程组的通解为x = k (1, 2, 3/2, 1, 1/2, 3, 1)T .取k = 2得x = (2, 4, 3, 2, 1, 6, 2)T . 可见配平后的化学方程式如下2KO + 4KOH + 3Cl 2 ===2CO 2+ N 2+ 6KCl + 2H 2O.【模型分析】利用线性方程组配平化学方程式是一种待定系数法. 关键是根据化学方程式两边所涉及到的各种元素的量相等的原则列出方程. 所得到的齐次线性方程组Ax = θ中所含方程的个数等于化学方程式中元素的种数s , 未知数的个数就是化学方程式中的项数n .当r(A ) = n -1时, Ax = θ的基础解系中含有1个(线性无关的)解向量. 这时在通解中取常数k 为各分量分母的最小公倍数即可. 例如本例中1, 2, 3/2, 1, 1/2, 3, 1分母的最小公倍数为2, 故取k = 2.当r(A ) ≤n -2时, Ax = θ的基础解系中含有2个以上的线性无关的解向量. 这时可以根据化学方程式中元素的化合价的上升与下降的情况, 在原线性方程组中添加新的方程. Matlab 实验题配平下列反应式(1) FeS + KMnO 4 + H 2SO 4—— K 2SO 4 + MnSO 4 + Fe 2(SO 4)3 + H 2O + S ↓ (2) Al 2(SO 4)3 + Na 2CO 3 + H 2O —— Al(OH)3↓+ CO 2↑+ Na 2SO 4案例八. 互付工资问题互付工资问题是多方合作相互提供劳动过程中产生的. 比如农忙季节, 多户农民组成互助组, 共同完成各户的耕、种、收等农活. 又如木工, 电工, 油漆工等组成互助组, 共同完成各家的装潢工作. 由于不同工种的劳动量有所不同, 为了均衡各方的利益, 就要计算互付工资的标准.【模型准备】现有一个木工, 电工, 油漆工. 相互装修他们的房子, 他们有如下协议:(1) 每人工作10天(包括在自己家的日子), (2) 每人的日工资一般的市价在60~80元之间, (3) 日工资数应使每人的总收入和总支出相等.求每人的日工资. 【模型假设】假设每人每天工作时间长度相同. 无论谁在谁家干活都按正常情况工作, 既不偷懒, 也不加班.【模型建立】设木工, 电工, 油漆工的日工资分别为x , y , z 元, 则由下表可得2610451044310x y z xx y z y x y z z++=⎧⎪++=⎨⎪++=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩【模型求解】在Matlab 命令窗口输入以下命令>> A = [-8,1,6;4,-5,1;4,4,-7];>> x = null(A,’r ’); format rat, x ’ Matlab 执行后得ans =31/36 8/9 1可见上述齐次线性方程组的通解为x = k (31/36, 8/9, 1)T . 因而根据“每人的日工资一般的市价在60~80元之间”可知60 ≤3631k <98k < k ≤ 80, 即 312160≤k ≤ 80.也就是说, 木工, 电工, 油漆工的日工资分别为3631k 元, 98k 元, k 元, 其中312160≤k ≤ 80. 为了简便起见, 可取k = 72, 于是木工, 电工, 油漆工的日工资分别为62元, 64元, 72元.【模型分析】事实上各人都不必付自己工资, 这时各家应付工资和各人应得收入如下6845447y z x x z y x y z +=⎧⎪+=⎨⎪+=⎩, 即8604504470x y z x y z x y z -++=⎧⎪-+=⎨⎪+-=⎩ 可见这样得到的方程组与前面得到的方程组是一样的.Matlab 实验题甲, 乙, 丙三个农民组成互助组, 每人工作6天(包括为自己家干活的天数), 刚好完成他们三人家的农活, 其中甲在甲, 乙, 丙三家干活的天数依次为: 2, 2.5, 1.5; 乙在甲, 乙, 丙三家各干2天活, 丙在甲, 乙, 丙三家干活的天数依次为: 1.5, 2, 2.5. 根据三人干活的种类, 速度和时间, 他们确定三人不必相互支付工资刚好公平. 随后三人又合作到邻村帮忙干了2天(各人干活的种类和强度不变), 共获得工资500元.问他们应该怎样分配这500元工资才合理?案例九. 平衡价格问题为了协调多个相互依存的行业的平衡发展, 有关部门需要根据每个行业的产出在各个行业中的分配情况确定每个行业产品的指导价格, 使得每个行业的投入与产出都大致相等.【模型准备】假设一个经济系统由煤炭、电力、钢铁行业组成, 每个行业的产出在各个行业中的分配如下表所示:等的平衡价格.【模型假设】假设不考虑这个系统与外界的联系.【模型建立】把煤炭、电力、钢铁行业每年总产出的价格分别用x 1,x 2, x 3表示, 则123212331230.40.60.60.10.20.40.50.2x x x x x x x x x x x =+⎧⎪=++⎨⎪=++⎩, 即1231231230.40.600.60.90.200.40.50.80x x x x x x x x x --=⎧⎪-+-=⎨⎪--+=⎩. 【模型求解】在Matlab 命令窗口输入以下命令>> A = [1,-0.4,-0.6;-0.6,0.9,-0.2;-0.4,-0.5,0.8]; >> x = null(A,’r ’); format short, x ’ Matlab 执行后得ans =0.9394 0.8485 1.0000 可见上述齐次线性方程组的通解为x = k(0.9394, 0.8485, 1)T.这就是说, 如果煤炭、电力、钢铁行业每年总产出的价格分别0.9394亿元, 0.8485亿元, 1亿元, 那么每个行业的投入与产出都相等.【模型分析】实际上, 一个比较完整的经济系统不可能只涉及三个行业, 因此需要统计更多的行业间的分配数据.Matlab实验题假设一个经济系统由煤炭、石油、电力、钢铁、机械制造、运输行业组成, 每个行业的产出在各个行业中的分配如下表所示:产出分配购买者煤炭石油电力钢铁制造运输0 0 0.2 0.1 0.2 0.2 煤炭0 0 0.1 0.1 0.2 0.1 石油0.5 0.1 0.1 0.2 0.1 0.1 电力0.4 0.1 0.2 0 0.1 0.4 钢铁0 0.1 0.3 0.6 0 0.2 制造0.1 0.7 0.1 0 0.4 0 运输等的平衡价格.案例十. 电路设计问题电路是电子元件的神经系统. 参数的计算是电路设计的重要环节. 其依据来自两个方面: 一是客观需要, 二是物理学定律.图22 USB扩展板【模型准备】假设图23中的方框代表某类具有输入和输出终端的电路. 用11vi⎛⎫⎪⎝⎭记录输入电压和输入电流(电压v以伏特为单位, 电流i以安培为单位), 用22vi⎛⎫⎪⎝⎭记录输出电压和输入电流. 若22vi⎛⎫⎪⎝⎭= A11vi⎛⎫⎪⎝⎭,则称矩阵A为转移矩阵.图23 具有输入和输出终端的电子电路图图24给出了一个梯形网络, 左边的电路称为串联电路, 电阻为R 1(单位: 欧姆). 右边的电路是并联电路, 电路R 2. 利用欧姆定理和楚列斯基定律, 我们可以得到串联电路和并联电路的转移矩阵分别是1101R -⎛⎫ ⎪⎝⎭和2101/1R ⎛⎫ ⎪-⎝⎭串联电路 并联电路图24 梯形网络设计一个梯形网络, 其转移矩阵是180.55-⎛⎫⎪-⎝⎭. 【模型假设】假设导线的电阻为零.【模型建立】设A 1和A 2分别是串联电路和并联电路的转移矩阵, 则输入向量x 先变换成A 1x , 再变换到A 2(A 1x ). 其中A 2A 1 =2101/1R ⎛⎫ ⎪-⎝⎭1101R -⎛⎫ ⎪⎝⎭=121211/1/R R R R -⎛⎫ ⎪-+⎝⎭就是图22中梯形网络的转移矩阵.于是, 原问题转化为求R 1, R 2的值使得121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭. 【模型求解】由121211/1/R R R R -⎛⎫ ⎪-+⎝⎭=180.55-⎛⎫ ⎪-⎝⎭可得121281/0.51/5R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据其中的前两个方程可得R 1 = 8, R 2 = 2. 把R 1 = 8, R 2 = 2代入上面的第三个方程确实能使等式成立. 这就是说在图22中梯形网络中取R 1 = 8, R 2 = 2即为所求.【模型分析】若要求的转移矩阵改为180.54-⎛⎫⎪-⎝⎭, 则上面的梯形网络无法实现. 因为v 2这时对应的方程组是121281/0.51/4R R R R -=-⎧⎪-=-⎨⎪+=⎩. 根据前两个方程依然得到R 1 = 8, R 2 = 2, 但把R 1= 8, R 2 = 2代入上第三个方程却不能使等式成立.练习题根据基尔霍夫回路电路定律(各节点处流入和流出的电流强度的代数和为零, 各回路中各支路的电压降之和为零), 列出下图所示电路中电流i 1, i 2, i 3所满足的线性方程组, 并用矩阵形式表示:图25简单的回路案例十一. 平面图形的几何变换随着计算机科学技术的发展, 计算机图形学的应用领域越来越广, 如仿真设计、效果图制作、动画片制作、电子游戏开发等.图形的几何变换, 包括图形的平移、旋转、放缩等, 是计算机图形学中经常遇到的问题. 这里暂时只讨论平面图形的几何变换.【模型准备】平面图形的旋转和放缩都很容易用矩阵乘法实现, 但是图形的平移并不是线性运算, 不能直接用矩阵乘法表示. 现在要求用一种方法使平移、旋转、放缩能统一用矩阵乘法来实现. 【模型假设】设平移变换为(x , y ) → (x +a , y +b )旋转变换(绕原点逆时针旋转θ角度)为(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)放缩变换(沿x 轴方向放大s 倍, 沿y 轴方向放大t 倍)为(x , y ) → (sx , ty )【模型求解】R 2中的每个点(x , y )可以对应于R 3中的(x , y , 1). 它在xOy 平面上方1单E 12位的平面上. 我们称(x , y , 1)是(x , y )的齐次坐标. 在齐次坐标下, 平移变换(x , y ) → (x +a , y +b )可以用齐次坐标写成(x , y , 1) → (x +a , y +b , 1).于是可以用矩阵乘积1001001a b ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1x a y b +⎛⎫⎪+ ⎪⎝⎭实现.旋转变换(x , y ) → (x cos θ-y sin θ, x sin θ + y cos θ)可以用齐次坐标写成(x , y , 1) → (x cos θ-y sin θ, x sin θ + y cos θ, 1). 于是可以用矩阵乘积cos sin 0sin cos 0001θθθθ-⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=cos sin sin cos 1x y x y θθθθ-⎛⎫⎪+ ⎪⎝⎭实现.放缩变换(x , y ) → (sx , ty )可以用齐次坐标写成(x , y , 1) → (sx , ty , 1).于是可以用矩阵乘积0000001s t ⎛⎫ ⎪ ⎪⎝⎭1x y ⎛⎫ ⎪ ⎪⎝⎭=1sx ty ⎛⎫⎪ ⎪⎝⎭实现.【模型分析】由上述求解可以看出, R 2中的任何线性变换都可以用分块矩阵1⎛⎫⎪⎝⎭A O O 乘以齐次坐标实现, 其中A 是2阶方阵. 这样, 只要把平面图形上点的齐次坐标写成列向量, 平面图形的每一次几何变换, 都可通过左乘一个3阶变换矩阵来实现.参考文献David C. Lay, 线性代数及其应用, 沈复兴, 傅莺莺等译,: 人民邮电, 2009. 页码: 139-141.Matlab 实验题在Matlab 命令窗口输入以下命令 >>clear all , clc,>>t=[1,3,5,11,13,15]*pi/8; >>x=sin(t); y=cos(t); >>fill(x,y,'r'); >>grid on ;>>axis([-2.4, 2.4, -2, 2])运行后得图25.图26Matlab绘制的图形(1) 写出该图形每个顶点的齐次坐标;; 最后进行横(2) 编写Matlab程序, 先将上面图形放大0.9倍; 再逆时针旋转3坐标加0.8, 纵坐标减1的图形平移. 分别绘制上述变换后的图形.案例十二. 太空探测器轨道数据问题太空航天探测器发射以后, 可能需要调整以使探测器处在精确计算的轨道里. 雷达监测到一组列向量x1, …, x k,它们给出了不同时刻探测器的实际位置与预定轨道之间的偏差的信息.图28 火星探测器【模型准备】令X k = [x1, …, x k]. 在雷达进行数据分析时需要计算出矩阵G k = X k X k T. 一旦接收到数据向量x k+1,必须计算出新矩阵G k+1. 因为数据向量到达的速度非常快, 随着k的增加, 直接计算的负担会越来越重. 现需要给出一个算法, 使得计算G k的负担不会因为k的增加而加重.【模型求解】因为G k = X k X k T=[x 1, …, x k ]T 1T k⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦x x =T 1k i i i =∑x x ,G k +1 = X k +1T1k +X =[X k , x k +1]T T 1k k +⎡⎤⎢⎥⎣⎦X x = X k X k T +x k +1T 1k +x =G k +x k +1T 1k +x ,所以一旦接收到数据向量x k +1, 只要计算x k +1T1k +x , 然后把它与上一步计算得到的G k相加即可. 这样计算G k 的负担不会因为k 的增加而加重.【模型分析】计算机计算加法的时间与计算乘法的时间相比可以忽略不计. 因此在考虑计算矩阵乘积的负担时, 只要考察乘法的次数就可以了. 设x k 的维数是n , 则X k = [x 1, …, x k ]是n ⨯k 的矩阵, G k = X k X k T 是n ⨯n 的矩阵. 直接计算G k = X k X k T 需要做n 2k 次乘法. 因而计算的负担会随着k 的增加而增加. 但是对于每一个k , 计算x k Tk x 始终只要做n 2次乘法.Matlab 实验题用Matlab 编写一个程序用于处理这个问题.案例十三. 应用矩阵编制Hill 密码密码学在经济和军事方面起着极其重要的作用. 现代密码学涉及很多高深的数学知识. 这里无法展开介绍.图29 XX 通信的基本模型密码学中将信息代码称为密码, 尚未转换成密码的文字信息称为明文, 由密码表示的信息称为密文. 从明文到密文的过程称为加密, 反之为解密. 1929年, 希尔(Hill)通过线性变换对待传输信息进行加密处理, 提出了在密码史上有重要地位的希尔加密算法. 下面我们略去一些实际应用中的细节, 只介绍最基本的思想.【模型准备】若要发出信息action, 现需要利用矩阵乘法给出加密方法和加密后得到的密文, 并给出相应的解密方法.。
数学教学中的数学建模案例
数学教学中的数学建模案例数学建模是指运用数学原理与方法解决实际问题的过程。
在数学教学中,数学建模可以帮助学生将抽象的数学概念与实际问题相结合,提高他们解决问题的能力和应用数学的能力。
本文将介绍几个数学建模在数学教学中的典型案例。
案例一:用数学建模解决实际问题我们以一个实例开始,假设一个园区的供电系统需要进行优化和改造,以降低能耗和成本。
为了解决这个问题,我们可以通过数学建模来分析和优化供电系统。
首先,我们可以收集园区的用电数据,包括用电量、峰谷电价等信息。
然后,我们可以建立数学模型,使用线性规划等方法来优化供电系统的运行。
通过调整供电系统的负荷分配和电源配置,我们可以找到一种最优方案,以达到降低能耗和成本的目标。
在数学教学中,我们可以通过这个案例引导学生运用数学知识和方法解决实际问题。
学生可以根据实际场景,收集数据,建立数学模型,并利用计算机软件进行模拟和优化。
这样,学生不仅可以巩固数学知识,还可以提高他们的问题解决能力和创新思维。
案例二:用数学建模解决交通流问题交通流问题是城市规划中的一个重要问题。
如何合理安排信号灯的时序,以及交通流的优化调度,都是需要运用数学建模来解决的。
我们可以以某个路口的交通流问题为例。
假设某个路口存在交通拥堵问题,我们需要通过数学建模来优化车辆的行驶路径和交通信号。
首先,我们可以通过收集交通流数据,包括车辆数量、车速等信息。
然后,我们可以建立数学模型,使用图论等方法来分析交通网络的拓扑结构,考虑车辆的速度、密度等因素,并结合交通信号的控制,来优化交通流的调度和路口的通行效率。
在数学教学中,我们可以通过这个案例让学生了解到数学在交通规划中的应用。
学生可以通过收集数据、建立数学模型,运用图论等数学知识,来解决交通流问题。
通过这种实践性的学习,学生可以更好地理解数学的应用和实际问题的解决方法。
案例三:用数学建模解决金融风险问题金融风险管理是银行和其他金融机构需要处理的一个重要问题。
数学建模的创新案例与思考
数学建模的创新案例与思考在现代社会中,数学建模已经成为解决复杂问题和开展科学研究的重要方法之一。
通过数学建模,我们可以将现实问题抽象化、分析化,找到问题的本质,并通过数学方法进行求解和优化。
本文将介绍一些数学建模的创新案例,并对其进行思考和总结。
案例一:交通路径规划随着城市交通问题的日益凸显,优化交通路径规划成为一项重要任务。
基于数学建模的方法,我们可以借助图论、最短路径算法等工具,对城市路网和交通流量进行建模和分析,从而为交通管理者提供最佳路径规划方案。
以某城市为例,我们可以通过收集该城市的交通数据,包括道路长度、道路拓扑结构、交通流量等信息。
然后,我们可以建立数学模型,将城市道路网络抽象为图,并根据交通流量分布情况确定边的权重。
接下来,可以使用最短路径算法,如迪杰斯特拉算法或A*算法,从而求解出最优路径。
通过该数学建模方法,我们能够准确评估交通路线的效率,并提出改进建议。
在实践中,这种方法已经被应用于公交车路径优化、快递员配送路线规划等方面,取得了显著的效果。
案例二:股票价格预测股票价格的预测一直是金融领域的热门研究课题之一。
传统的技术分析和基本面分析方法存在局限性,而数学建模方法则可以更准确地预测股票价格的走势。
在这种情况下,我们可以使用时间序列分析和回归分析等方法来构建数学模型。
首先,我们需要收集大量的历史股票数据,包括价格、交易量、市场指标等信息。
然后,利用统计学方法对数据进行分析,并建立相应的模型。
最后,通过模型的拟合和预测,我们可以得到对股票价格走势的预测结果。
值得注意的是,股票市场的复杂性使得股票价格的预测存在一定的不确定性。
因此,在实际应用中,我们需要结合多种建模方法和技术指标,综合考虑各种因素,提高预测的准确性和可靠性。
总结与思考数学建模作为一种创新的思维方式和工具,已经在各个领域展现出了巨大的潜力和广泛的应用前景。
通过数学建模,我们可以更好地理解和解决现实问题,并推动科学研究的发展。
银行数学建模竞赛案例
银行数学建模竞赛案例以下是一个可能的银行数学建模竞赛案例:题目:银行客户流失预测模型背景:某银行希望通过数学建模来预测客户的流失情况,以便采取措施提高客户的留存率。
该银行提供各种金融服务,包括储蓄账户、贷款、信用卡等。
要求:针对该银行的客户数据库,建立一个客户流失预测模型,并使用该模型预测未来一年内的客户流失率。
数据集:- 客户特征数据:包括客户的年龄、性别、职业、收入、信用评级等。
- 服务使用情况数据:包括客户是否使用过各种金融产品,如储蓄账户、贷款、信用卡等。
- 客户流失数据:包括客户是否在过去一年内流失。
任务:1. 数据探索:对提供的数据进行统计分析和可视化,了解数据的分布、关联性等。
2. 特征工程:根据数据探索的结果,选择合适的特征用于模型建立,并进行数据预处理(如缺失值处理、标准化等)。
3. 模型建立:选择合适的机器学习模型或统计模型来建立客户流失预测模型。
可选择的模型包括逻辑回归、决策树、随机森林、支持向量机等。
4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标(如准确率、召回率、F1分数等)。
5. 模型优化:根据评估结果,对模型进行优化,可以尝试不同的特征选择、模型调参等方法。
6. 未来预测:使用优化后的模型预测未来一年内客户的流失率,并给出相关报告和建议。
参考解决思路:1. 数据探索:使用统计方法和可视化工具对数据进行探索,分析客户特征和服务使用情况之间的关系,并观察流失客户与非流失客户的差异。
2. 特征工程:根据数据探索的结果选择重要的特征,并对数据进行预处理,如处理缺失值、进行标准化或归一化等。
3. 模型建立:根据任务的要求选择合适的模型进行建立,可以尝试多种模型并进行比较。
4. 模型评估:使用交叉验证等方法评估模型的性能,并选择合适的评估指标进行评估。
5. 模型优化:根据评估结果对模型进行优化,可以尝试不同的特征选择、模型调参等方法来提高模型的性能。
6. 未来预测:使用优化后的模型对未来一年内客户的流失率进行预测,并给出相关报告和建议,如哪些客户群体容易流失,可以采取什么措施来提高他们的留存率等。
3.数学建模之优化模型实例
3.数学建模之优化模型实例3.优化模型实例数学建模资料优化建模例1 钢管下料问题某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割后售出。
从钢管厂进货时得到的原料钢管都是19米长。
1) 现有一客户需要50根4米长、20根6米长和15根8米长的钢管。
应如何下料最节省?2) 零售商如果采用的不同切割模式太多,将会导致生产过程的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同切割模式不能超过3种。
此外,该客户除需要1)中的三种钢管外,还需要10根5米长的钢管。
应如何下料最节省?数学建模资料优化建模问题1)的求解问题分析首先,应当确定哪些切割模式是可行的。
所谓一个切割模式,是指按照客户需要在原料钢管上安排切割的一种组合。
例如,我们可以将19米长的钢管切割成3根4米长的钢管,余料为7米显然,可行的切割模式是很多的。
其次,应当确定哪些切割模式是合理的。
通常假设一个合理的切割模式的余料不应该大于或等于客户需要的钢管的最小尺寸。
在这种合理性假设下,切割模式一共有7种,如表1所示。
数学建模资料优化建模表1 钢管下料的合理切割模式4米钢管根数6米钢管根数8米钢管根数余料(米) 4 0 0 3 3 1 0 1 2 0 1 3模式1 模式2 模式3 模式4 模式5 模式6 模式71 1 0 02 13 00 1 0 23 1 1 3数学建模资料优化建模问题化为在满足客户需要的条件下,按照哪些种合理的模式,切割多少根原料钢管,最为节省。
而所谓节省,可以有两种标准,一是切割后剩余的总余料量最小,二是切割原料钢管的总根数最少。
下面将对这两个目标分别讨论。
数学建模资料优化建模模型建立决策变量用xi 表示按照第i种模式(i=1, 2, 。
, 7) 切割的原料钢管的根数,显然它们应当是非负整数。
决策目标以切割后剩余的总余料量最小为目标,则由表1可得Min Z13x1 x2 3x3 3x4 x5 x6 3x7(32)以切割原料钢管的总根数最少为目标,则有Min Z 2 x1 x2 x3 x4 x5 x6 x7(33)下面分别在这两种目标下求解。
小学数学建模案例
小学数学建模案例在小学数学教学中,建模思想的渗透对于培养学生的数学思维和解决实际问题的能力具有重要意义。
下面将通过几个具体的案例来展示小学数学建模的应用。
案例一:行程问题假设小明和小红分别从 A、B 两地同时出发,相向而行。
小明的速度是每小时 5 千米,小红的速度是每小时 4 千米,经过 3 小时两人相遇。
求 A、B 两地的距离。
在解决这个问题时,我们可以引导学生建立一个数学模型。
首先,明确速度、时间和路程之间的关系:路程=速度 ×时间。
对于小明来说,他走的路程是 5×3 = 15 千米;对于小红来说,她走的路程是 4×3 = 12 千米。
因为两人是相向而行,所以 A、B 两地的距离就是两人所走路程之和,即 15 + 12 = 27 千米。
通过这个案例,学生能够理解和运用速度、时间和路程的关系来解决实际问题,建立起初步的数学模型。
案例二:购物中的折扣问题商场在进行促销活动,一件原价 200 元的衣服,现在打八折出售。
请问现在这件衣服的价格是多少?在解决这个问题时,我们可以建立这样的模型:折扣后的价格=原价 ×折扣率。
这里的折扣率是八折,也就是 80%(08)。
所以这件衣服现在的价格是 200×08 = 160 元。
进一步拓展,如果买两件这样的衣服,商场再给总价打九折,那么购买两件衣服需要花费多少钱?首先算出两件衣服不打折的总价是 200×2 = 400 元。
打八折后的价格是 400×08 = 320 元。
然后再打九折,最终价格是 320×09 = 288 元。
通过这个案例,学生能够理解折扣的概念,并运用数学模型计算出实际的价格。
案例三:图形面积问题有一块长方形的草地,长是 8 米,宽是 5 米。
在草地的周围围上一圈篱笆,篱笆的长度是多少?解决这个问题,我们需要建立周长的模型。
长方形的周长=(长+宽)× 2。
数学建模获奖作品范例
数学建模获奖作品范例数学建模是一种通过数学模型来解决实际问题的方法。
许多学生和研究人员都参与了数学建模竞赛,通过自己的努力和创新,获得了获奖的机会。
本文将以数学建模获奖作品范例为主题,介绍一些获奖作品的内容和方法,以期激发更多人对数学建模的兴趣和热情。
一、基于人口增长的城市规划优化在城市规划过程中,人口增长是一个重要的考虑因素。
一组学生在数学建模竞赛中提出了一种基于人口增长的城市规划优化模型。
他们首先收集了一座城市的人口数据,并通过数学方法对未来的人口增长进行预测。
然后,他们建立了一个优化模型,考虑了城市的土地利用、交通网络和公共设施等因素,以最大化城市的可持续发展和居民的生活质量。
通过对模型的求解和分析,他们得出了一些关于城市规划的有价值的结论,并在竞赛中获得了一等奖。
二、基于数据挖掘的股票预测模型股票市场是一个充满不确定性的领域,许多投资者希望能够通过分析历史数据来预测未来的股票走势。
一组研究人员在数学建模竞赛中提出了一种基于数据挖掘的股票预测模型。
他们首先收集了大量的股票市场数据,并通过数学方法对这些数据进行分析和挖掘。
然后,他们建立了一个预测模型,可以根据历史数据预测未来的股票走势。
通过对模型的验证和比较,他们发现这个模型在股票预测方面具有一定的准确性和可靠性,因此在竞赛中获得了特等奖。
三、基于运筹学的物流优化模型物流是现代经济中一个重要的环节,对于企业的运营效率和成本控制都起着至关重要的作用。
一组学生在数学建模竞赛中提出了一种基于运筹学的物流优化模型。
他们通过收集一家物流公司的运输数据和成本数据,建立了一个数学模型来优化物流网络和运输路径。
通过对模型的求解和分析,他们得出了一些关于物流优化的有益结论,为物流公司提供了一些建议和改进措施。
他们的工作得到了评委的认可,获得了一等奖。
四、基于图论的社交网络分析模型社交网络在当今的互联网时代中扮演着重要的角色,许多人希望能够通过分析社交网络的结构和关系来了解人际关系的特点和演变规律。
数学建模动态优化模型例题
数学建模动态优化模型例题例题:动态投资组合优化假设有一个投资者,在每年初都需要重新配置其投资组合。
该投资者面临两个主要问题:首先,选择在哪些资产上进行投资;其次,在每个资产上分配多少资金。
假设该投资者有n个不同的资产可供选择,每个资产的预期收益率和风险不同。
此外,该投资者还有一个总共可投资的资金总额B。
为了最大化预期收益并控制风险,投资者希望找到一个最优的投资组合。
假设每年初的投资组合决策可以视为一个动态优化问题。
投资者可以在每个年初选择不同的投资组合来适应市场的变化。
投资者需要考虑以下因素:1. 资产的预期收益率和风险。
2. 投资组合的总收益率和风险。
3. 投资组合在不同时间点的波动。
数学建模:1. 定义变量:- x(i, t): 在第t年开始时投资于第i个资产的金额。
- r(i): 第i个资产的预期年收益率。
- σ(i): 第i个资产的年波动率。
- R(t): 第t年的总投资组合收益率。
- Σ(t): 第t年的总投资组合波动率。
2. 约束条件:- ∑(i=1 to n) x(i, t) = B,总投资金额等于可投资的资金总额。
3. 目标函数:- max ∑(t=1 to T) R(t),总收益最大化。
4. 模型建立:- 目标函数为最大化投资组合的总收益。
- 约束条件为总投资金额等于可投资的资金总额。
- 根据预期收益率和波动率,计算每一年投资组合的收益率和波动率。
- 使用动态规划等方法,通过逐年调整投资组合来找到最优解。
以上是一个简化的动态投资组合优化模型。
在实际应用中,还需要考虑更多的因素,例如纳税规则、市场交易成本等。
此外,还需要根据实际情况进行数据收集、参数估计和模型求解。
数学专业的数学建模案例
数学专业的数学建模案例数学建模是数学应用的重要领域之一,也是数学专业学生必备的技能。
通过数学建模,我们可以探索和解决各种实际问题,为决策提供科学依据。
本文将介绍数学专业中的数学建模案例,展示数学在现实生活中的应用。
1. 圆桌问题在宴会上,主办方需要安排N个人坐在一个圆桌周围,要求每个人旁边至少有一个人坐着,并且相邻两个人的学术研究领域尽量不同。
为了满足这些要求,数学建模可以采用图论的方法进行模拟和求解。
通过构建关系矩阵、定义优化目标函数,并借助线性规划等工具,我们可以得到最优的座位安排方案。
2. 物流路径优化物流路径优化是物流领域中的一个重要问题。
假设有N个物流节点需要连接,每个节点之间有不同的运输距离和运输成本。
数学建模可以通过图论中的最短路径算法来解决这个问题。
通过构建图模型,利用Dijkstra算法或Floyd-Warshall算法,可以找到使总运输成本最小的最优路径。
3. 疾病传播模型疾病传播模型是流行病学研究中的一个重要课题。
数学建模可以使用传染病模型,如SIR模型(易感者-感染者-康复者模型),来描述疾病在人群中的传播过程。
通过设置各项参数,如感染率、康复率等,并结合微分方程的求解,可以预测疾病传播的趋势,为疫情防控提供科学依据。
4. 金融风险评估金融风险评估是金融领域中的一个重要问题。
数学建模可以使用随机过程和蒙特卡洛模拟来评估金融资产的风险。
通过建立数学模型,模拟不同的金融市场变动情景,并进行大量的随机模拟试验,可以计算出不同风险水平下的资产价值和风险价值,为投资决策提供科学参考。
总结:数学建模是数学专业学生必备的技能之一,广泛应用于各个领域。
本文介绍了数学专业中的数学建模案例,包括圆桌问题、物流路径优化、疾病传播模型和金融风险评估。
这些案例展示了数学在现实生活中的重要应用,通过数学建模,我们可以更好地理解和解决实际问题,为社会发展提供科学支持。
数学专业的学生应该学习并掌握数学建模技能,以应对未来的挑战。
数学建模案例分析--最优化方法建模3分派与装载
数学建模案例分析--最优化方法建模3分派与装载在物流运输中,分派与装载是一项重要的任务,旨在最大化运输效益并降低成本。
在这个案例分析中,我们将使用最优化方法来解决一个分派与装载的问题。
问题描述:一家货运公司负责将货物从一处仓库运输到多个目的地。
仓库具有不同类型的货物,每个目的地需要不同类型的货物,并且每个货物具有不同的重量和体积。
公司有多辆不同载重和容量的卡车可供选择。
目标是通过合理地分派和装载货物,使得每辆卡车的装载量最大,并且所有货物都被及时运送到目的地。
数据收集与整理:1.仓库中可用货物的类型和数量。
2.每个目的地所需货物的类型和数量。
3.每种货物的重量和体积。
4.每辆卡车的载重和容量。
问题思路及数学建模:1.首先,我们将定义一些决策变量,包括每辆卡车所装载的每种货物的数量。
令x[i,j]表示第i辆卡车所装载的第j种货物的数量(i=1,2,...,m,j=1,2,...,n,其中m为卡车数量,n为货物类型数量)。
2. 其次,我们需要定义一些约束条件,确保每辆卡车所装载的货物不超过其载重和容量。
例如,对于每辆卡车i,其载重约束可表示为∑(j=1 to n) (x[i,j] * weight[j]) ≤ max_weight[i],其中weight[j]表示第j种货物的重量,max_weight[i]表示第i辆卡车的最大载重量。
3. 我们还应该确保每个目的地所需货物的数量都能够得到满足。
例如,对于每个目的地k,其需求约束可表示为∑(i=1 to m) x[i,k] = demand[k],其中demand[k]表示目的地k所需货物的数量。
4. 最后,我们需要定义一个目标函数,以最大化卡车的装载量。
例如,目标函数可定义为maximize ∑(i=1 to m) ∑(j=1 to n) x[i,j]。
5.将上述决策变量、约束条件和目标函数整合在一起,形成一个数学模型。
最后,我们可以使用最优化方法,如线性规划或整数规划,来求解这个数学模型,并得到最优的分派与装载方案。
matlab数学建模30个案例分析
案例4:基于微分方程的最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度,一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益。考虑对某种鱼的最优捕鱼策略:假设这种鱼分4个年龄组:称1龄鱼,…,4龄组,各年龄组每条鱼的平均重量分别为5.07,11.55,17.86,22.99(克)各年龄组鱼的自然死亡率均为0.8(1/年)这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为1.109× 个,3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵 产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22 × /1.22× +n)
案例12:基于主成分分析的长江水质的评价和预测模型
运用主成分分析法对长江流域主要城市水质检测报告进行分析,选取主成分,并把主成分得分按方差贡献率加权求和,得出每个地区的污染综合评价指数,进而可以计算每个月长江流域的污染综合评价指数。
第三部分 优化问题
案例13:基于线性规划求解飞行管理模型
第二部分 评价问题
案例7:基于层次分析法的高考志愿选择策略
一年一度的高考结束后,许多考生面临估分后填写志愿的决策过程。这个决策关系重大,请你建立一个数学模型,帮考生考虑到各种决策因素使之能轻松应对这一重大决策。成都丙、重庆丁四所大学。
现有某市直属单位因工作需要,拟向社会公开招聘8名公务员。该单位拟将录用的8名公务员安排到所属的7个部门,并且要求每个部门至少安排一名公务员。这7个部门按工作性质可分为四类:(1)行政管理、 (2)技术管理、(3)行政执法、(4)公共事业。
招聘领导小组在确定录用名单的过程中,本着公平、公开的原则,同时考虑录用人员的合理分配和使用,有利于发挥个人的特长和能力。招聘领导小组将7个用人单位的基本情况(包括福利待遇、工作条件、劳动强度、晋升机会和学习深造机会等)和四类工作对聘用公务员的具体条件的希望达到的要求都向所有应聘人员公布。每一位参加面试人员都可以申报两个自己的工作类别志愿。
数学建模模型案例
数学建模模型案例1. 汽车加速度模型在这个模型中,我们可以通过测量汽车的速度和时间来确定汽车的加速度。
通过使用加速度的定义,我们可以得到一个基本的数学模型,该模型描述了汽车在给定时间内的速度变化情况。
我们可以使用这个模型来预测汽车的行驶速度,或者评估不同驾驶条件下的加速性能。
2. 疫情蔓延模型疫情蔓延模型用于描述传染病在人群中的传播过程。
通过考虑人群的接触模式和传染病的传播机制,可以建立数学模型来预测疫情的蔓延速度和范围。
这个模型可以帮助政府和卫生机构制定有效的疫情控制策略,以减少疫情的影响。
3. 股票价格预测模型股票价格预测模型是通过分析历史股票价格和相关经济指标来预测未来股票价格的数学模型。
通过使用统计方法和机器学习算法,可以建立一个模型,该模型可以根据过去的数据来预测未来的股票价格走势。
这个模型可以帮助投资者做出更明智的投资决策。
4. 能源消耗模型能源消耗模型用于估计不同能源消耗的量和趋势。
通过分析能源的使用模式和相关因素,可以建立一个数学模型,该模型可以预测未来能源消耗的变化。
这个模型可以帮助能源公司和政府制定合理的能源规划,以提高能源利用效率。
5. 物流配送模型物流配送模型用于优化物流配送过程中的路线规划和资源分配。
通过考虑不同的因素,如货物数量、距离和交通情况,可以建立一个数学模型,该模型可以帮助物流公司或配送中心确定最优的配送路线和资源分配方案,以提高效率和降低成本。
6. 生产计划模型生产计划模型用于优化生产过程中的资源分配和生产安排。
通过考虑不同的因素,如生产能力、订单需求和原材料供应,可以建立一个数学模型,该模型可以帮助生产企业确定最优的生产计划,以提高生产效率和降低成本。
7. 交通流模型交通流模型用于描述交通流量和交通拥堵情况。
通过考虑不同的因素,如道路容量、车辆速度和交通信号灯,可以建立一个数学模型,该模型可以帮助交通管理部门优化交通信号灯控制和道路规划,以减少交通拥堵和提高通行效率。
数学建模30种经典模型matlab
一、概述数学建模是数学与实际问题相结合的产物,通过建立数学模型来解决现实生活中的复杂问题。
Matlab作为一个强大的数学计算工具,在数学建模中具有重要的应用价值。
本文将介绍30种经典的数学建模模型,以及如何利用Matlab对这些模型进行建模和求解。
二、线性规划模型1. 线性规划是数学建模中常用的一种模型,用于寻找最优化的解决方案。
在Matlab中,可以使用linprog函数对线性规划模型进行建模和求解。
2. 举例:假设有一家工厂生产两种产品,分别为A和B,要求最大化利润。
产品A的利润为$5,产品B的利润为$8,而生产每单位产品A 和B分别需要8个单位的原料X和10个单位的原料Y。
此时,可以建立线性规划模型,使用Matlab求解最大化利润。
三、非线性规划模型3. 非线性规划是一类更加复杂的规划问题,其中目标函数或约束条件存在非线性关系。
在Matlab中,可以使用fmincon函数对非线性规划模型进行建模和求解。
4. 举例:考虑一个有约束条件的目标函数,可以使用fmincon函数在Matlab中进行建模和求解。
四、整数规划模型5. 整数规划是一种特殊的线性规划问题,其中决策变量被限制为整数。
在Matlab中,可以使用intlinprog函数对整数规划模型进行建模和求解。
6. 举例:假设有一家工厂需要决定购物哪种机器设备,以最大化利润。
设备的成本、维护费用和每台设备能生产的产品数量均为已知条件。
可以使用Matlab的intlinprog函数对该整数规划模型进行建模和求解。
五、动态规划模型7. 动态规划是一种数学优化方法,常用于多阶段决策问题。
在Matlab 中,可以使用dynamic programming toolbox对动态规划模型进行建模和求解。
8. 举例:考虑一个多阶段生产问题,在每个阶段都需要做出决策以最大化总利润。
可以使用Matlab的dynamic programming toolbox对该动态规划模型进行建模和求解。
生活中的数学模型案例
生活中的数学模型案例1. 购物车优化当去超市购物时,每个人都会选择不同数量和种类的物品。
在收银台前,有时要花费额外的时间重新排列购物车,以最大程度地优化其布局,并使所有商品都适合购物车。
为此,人们可以使用数学模型来确定如何在购物车中放置商品的最佳位置,以最大程度地减少时间和精力。
2. 神经网络神经网络是一种流行的数学模型,它用于解决各种问题,包括图像分类和语音识别。
在神经网络中,大脑似乎有许多人工神经元进行计算,并产生输出。
这种模型可以模仿人脑的运行方式,并且在计算机科学和人工智能领域得到了广泛应用。
3. 销售预测销售预测是一种非常重要的数学模型,它可以帮助商家预测产品的销售情况。
这种预测可以通过许多因素进行,例如过去的销售数字、季节性趋势、市场变化和经济环境。
4. 飞机降落控制飞机降落是一项需要精确计算的任务。
通过使用数学模型,可以计算出最佳降落角度、飞机速度和其他参数,以获得最佳降落的方法。
这种模型不仅可以帮助飞行员更准确地降落,还可以在设计新航空器时使用。
5. 金融风险管理金融风险管理是一项使用数学模型的复杂任务。
这种模型是通过分析资产价格和市场走势来评估风险级别的。
通过这种方法,金融机构可以有效地管理资产和负债,以保护自己免受损失。
6. 全球温度模型全球温度模型是一种使用数学模型的气候研究方法。
通过收集气候数据,并使用计算方法将本地数据联合分析,可以更好地了解气候和气候变化的趋势。
这种模型可以使我们更好地理解气候变化,从而为政策制定者提供更好的指导建议。
7. 电力网络电力网络需要使用数学模型来进行规划和管理。
通过模拟不同负荷条件下的电力需求,并分析各种电力产生和传输方式的效率,可以创建最优化的电力网络。
这种模型可以最大限度地提高电力网络的效率和可靠性。
8. 航海导航航海导航需要使用多个数学模型来管理和计算船只和海洋的位置和运动。
从地球的曲率到节拍的影响,各种因素都需要考虑。
通过使用计算机和数学模型,导航员可以找到最优化的航线,确保最快、最安全地到达目的地。
数学建模概率模型案例
数学建模概率模型案例概率模型是数学建模的重要工具之一,广泛应用于各个领域。
以下是一个基于概率模型的数学建模案例。
问题描述:医院的急诊科接诊员需要根据患者的症状来判断是否需要进行心电图检查。
根据以往的医疗记录,我们知道有一种患者患有心脏病的概率是0.1,有心脏病的患者在进行心电图检查时有90%的准确率,没有心脏病的患者在进行心电图检查时有95%的准确率。
急诊科接诊员在给患者进行评估时会根据患者的症状判断是否需要进行心电图检查,但出于经济和时间的考虑,每天只能对20%的患者进行心电图检查。
问题分析:在这个问题中,我们需要建立一个概率模型来评估患者是否需要进行心电图检查。
我们需要考虑两个因素:患者是否有心脏病以及是否进行了心电图检查。
建立概率模型:1.定义事件:-A:患者有心脏病-B:患者进行了心电图检查-C:急诊科接诊员推荐患者进行心电图检查2.计算概率:-P(A)=0.1,患者有心脏病的概率-P(A')=0.9,患者没有心脏病的概率-P(B,A)=0.9,有心脏病的患者进行心电图检查的准确率-P(B,A')=0.95,没有心脏病的患者进行心电图检查的准确率3.根据贝叶斯定理计算后验概率:-P(A,B)=P(B,A)*P(A)/P(B)-P(A',B)=P(B,A')*P(A')/P(B)4.根据给定条件计算先验概率:-P(B)=P(B,A)*P(A)+P(B,A')*P(A')5.根据条件概率计算P(C,B):-P(C,B)=P(C,B)/P(B)进一步分析:根据模型,我们可以进行一些进一步的分析。
1.如果患者没有进行心电图检查,根据模型我们可以计算出他是否有心脏病的概率。
2.如果患者进行了心电图检查,根据模型我们可以计算出他有心脏病的概率。
3.根据模型的输出,急诊科接诊员可以根据患者的症状和推荐指标来判断是否进行心电图检查。
总结:这个案例展示了如何建立一个基于概率模型的数学建模问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学建模模型案例
一、旅行商问题(TSP)
旅行商问题是一个典型的数学优化问题,在旅行商问题中,旅行商需要在给定的一系列城市之间找到一条最短路径,使得他能够只经过每个城市一次并最终回到起点城市。
这个问题可以用图论和线性规划等方法来进行建模和求解,可以应用于物流配送、路径规划等领域。
二、股票价格预测模型
股票价格预测是金融领域中的一个重要问题。
可以使用时间序列分析、机器学习等方法来建立股票价格预测模型。
模型需要考虑多个因素,如历史股价、经济指标、市场情绪等,以预测未来股票价格的趋势和波动。
三、疫情传播模型
疫情传播模型是在流行病学领域中使用的一种数学模型,用于研究疾病在人群中的传播规律。
常见的疫情传播模型有SIR模型、SEIR 模型等,这些模型可以用来预测疫情的传播速度、感染人数以及制定相应的防控策略。
四、能源优化调度模型
能源优化调度模型用于优化电力系统、能源系统等中的能源调度问
题。
这种模型需要考虑电力需求、能源供应、能源转换效率等因素,以最小化成本或最大化效益,并且满足各种约束条件。
五、机器学习分类模型
机器学习分类模型用于将数据集中的样本分为不同的类别。
这种模型可以使用各种机器学习算法,如逻辑回归、决策树、支持向量机等,以根据样本的特征来预测其所属的类别。
六、交通拥堵预测模型
交通拥堵预测模型用于预测城市交通网络中的拥堵情况。
这种模型可以使用历史交通数据、天气数据、道路网络数据等进行建模,以预测未来某个时刻某个路段的交通状况,并提供相应的交通管理建议。
七、供应链优化模型
供应链优化模型用于优化供应链中的物流和库存管理等问题。
这种模型需要考虑供应商、生产商、分销商之间的关系,以最小化库存成本、运输成本等,并满足客户需求。
八、排课调度模型
排课调度模型用于学校或大学的课程安排问题。
这种模型需要考虑教室、教师、学生、课程等因素,以最大化教学效果、减少冲突,
并满足各种约束条件。
九、旅行路线规划模型
旅行路线规划模型用于帮助旅行者规划旅行路线。
这种模型可以考虑旅行者的偏好、时间、预算等因素,以找到一条最优的旅行路线,并提供相应的旅行建议。
十、投资组合优化模型
投资组合优化模型用于优化投资组合中的资产配置问题。
这种模型需要考虑不同资产的收益、风险、相关性等因素,以最大化投资组合的收益或最小化风险,并满足投资者的约束条件。
以上是十个数学建模模型案例,涵盖了不同领域中的常见问题,并展示了数学建模在实际问题中的应用价值。
这些模型可以帮助决策者做出科学合理的决策,并优化相关问题的解决方案。