第二十二章 二次函数 单元要点分析

合集下载

人教版九年级上册 第22章 二次函数复习知识点总结和题型讲解

人教版九年级上册  第22章 二次函数复习知识点总结和题型讲解

二次函数复习知识点一、二次函数概念:1.二次函数的概念:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a≠0,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数y=ax2+bx+c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次多项式。

(①含自变量的代数式是整式,②自变量的最高次数是2,③二次项系数不为0.)⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式1. y=ax2的性质:2. y=ax2+k的性质:(k上加下减)3. y=a(x-h)2的性质:(h左加右减)4. y =a (x -h)2+k 的性质:5. y =ax2+bx+c 的性质:三、二次函数的图象与各项系数之间的关系1. 二次项系数a.(a 决定了抛物线开口的大小和方向)二次函数2y ax bx c =++中,a 作为二次项系数,显然a ≠0 ① 当0a >时,抛物线开口向上,当0a <时,抛物线开口向下;②a 的绝对值越大,开口越小,反之a 的绝对值越小,开口越大。

总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.2. 一次项系数b (a 和b 共同决定抛物线对称轴的位置).抛物线c bx ax y ++=2的对称轴是直线abx 2-=,故:①0=b 时,对称轴为y 轴;② (即a 、b 同号)时,对称轴在y 轴左侧;③ (即a 、b 异号)时,对称轴在y 轴右侧.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”3. 常数项c(c 决定了抛物线与y 轴交点的位置)⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. 四、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿x 轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)五、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 六、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.七、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.八、二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠),适用条件:已知抛物线上三点的坐标,一般选用一般式;2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠),适用条件:已知图像上点两坐标,且其中一点为抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 交点式(两根式):12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标), 适用条件:已知图像上三点坐标,其中两点为抛物线与x 轴的两个交点(1x ,0),(2x ,0),一般选用交点式;九、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

九年级数学人教版第二十二章二次函数整章知识详解(同步课本知识图文结合例题详解)

九年级数学人教版第二十二章二次函数整章知识详解(同步课本知识图文结合例题详解)
问题1:
正方体六个面是全等的正方形,设正方体棱长为 x ,表 面积为 y ,则 y 关于x 的关系式为_y_=6_x2____.
九年级数学第22章二次函数
问题2: 多边形的对角线总数 d 与边数 n 有什么关系? n边形有__n _个顶点,从一个顶点出发,连接与这点不相 邻的各顶点,可作_(_n-_3_)条对角线.因此,n边形的对角 线总数_d_= 12_n2 _ 32_n 此式表示了多边形的对角线总数d与边数n之间的关系, 对于n的每一个值,d都有一个对应值,即d是n的函数.
我们来画最简单的二次函数y=x2的图象.
x … -3 -2 -1 0 1 2 y=x2 … 9 4 1 0 1 4
∴y=30x2+10x
九年级数学第22章二次函数
5.(哈尔滨中考)体育课上,老师用绳子围成一个周长为30 米的游戏场地,围成的场地是如图所示的矩形ABCD.设边AB 的长为x(单位:米),矩形ABCD的面积为S(单位:平方 米). (1)求S与x之间的函数关系式(不要求写出自变量x的取值 范围); (2)若矩形ABCD的面积为50平方米,且AB<AD,请求出此时 AB的长.
为什么a≠0呢?
九年级数学第22章二次函数
写出下列各函数关系,并判断它们是什么类型的函数 (1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之 间的函数关系; (2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数 关系; (3)菱形的两条对角线的和为26cm,写出菱形的面积S(cm2) 与一对角线长x(cm)之间的函数关系.
1.正方形边长为x(cm),它的面积y(cm2)是多少? 2.矩形的长是4厘米,宽是3厘米,如果将其长增加x厘米, 宽增加2x厘米,则面积增加到y平方厘米,试写出y与x的关 系式. 【解析】 (1)y=x2

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳复习总结

人教版数学九年级上学期《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. (2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k);(2) 当h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y轴,则设y=ax2;如果对称轴是y轴,但不过原点,则设y=ax2+k4.抛物线的性质(1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

新人教版初中数学第二十二章二次函数知识点总结附例题

新人教版初中数学第二十二章二次函数知识点总结附例题

课题 二次函数复习教学内容一、 框架二、二次函数的定义及基本性质已知函数 是关于x 的二次数.(1) 求满足条件的m 的值,并写出解析式;(2)抛物线有最高点和最低点吗?二次函数有最大值还是最小值?最值是多少? (3)当x 为何值时y 随x 的增大而减小?()25823m m y m x ++=++三、二次函数图象的对称性x2+bx+c的部分图象如图所示,则当y>0时,x的取值范围是.四、二次函数图象的变换抛物线y=a(x-h)2+k的平移规律:左右平移,括号内左加右减;上下平移,括号外上加下减.要得到抛物线y=2(x-4)2-1,可以将抛物线y=2x2 ( )A.向左平移4个单位长度,再向上平移1个单位长度B.向左平移4个单位长度,再向下平移1个单位长度C.向右平移4个单位长度,再向上平移1个单位长度D.向右平移4个单位长度,再向下平移1个单位长度五、二次函数图象与系数的关系抛物线y=ax2+bx+c中的符号问题:①a的符号决定开口方向;②a、b的符号共同决定对称轴的位置,“左同右异”;③c的符号决定抛物线与y轴的交点位置.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为直线x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c>0;③abc>0;④当y <0时,x<-1或x>3.其中正确的是()A.①②B. ①③C.①④D. ②③如图,函数y=ax2-2x+1和y=ax+a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()六、二次函数与一元二次方程的关系已知抛物线y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c-8=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等的实数根D.没有实数根七、待定系数法求二次函数的解析式你能求出图中抛物线的解析式吗?课堂总结。

2024九年级数学上册“第二十二章 二次函数”必背知识点

2024九年级数学上册“第二十二章 二次函数”必背知识点

2024九年级数学上册“第二十二章二次函数”必背知识点一、二次函数的定义与表达式定义:一般地,自变量x和因变量y之间存在如下关系:y = ax² + bx + c(a, b, c为常数,a ≠ 0)。

这样的函数称为二次函数,其中a决定函数的开口方向,b和a共同决定对称轴的位置,c决定抛物线与y轴的交点。

三种表达式:1. 一般式:y = ax² + bx + c (a, b, c为常数,a ≠ 0)。

2. 顶点式:y = a(x - h)² + k,其中(h, k)为抛物线的顶点坐标。

3. 交点式:y = a(x - x₁)(x - x₂),仅限于与x轴有交点A(x₁, 0)和B(x₂, 0)的抛物线。

二、二次函数的图像与性质图像:二次函数的图像是一条抛物线。

开口方向与大小:由二次项系数a决定。

当a > 0时,开口向上;当a < 0时,开口向下。

|a|越大,开口越小;|a|越小,开口越大。

对称轴:1. 一般式:对称轴为直线x = -b/2a。

2. 顶点式:对称轴为直线x = h。

3. 交点式:对称轴为直线x = (x₁ + x₂)/2。

顶点坐标:1. 顶点式直接给出为(h, k)。

2. 一般式可通过公式计算得到(-b/2a, (4ac - b²)/4a)。

最值:1. 当a > 0时,函数有最小值,最小值为(4ac - b²)/4a,此时x = -b/2a。

2. 当a < 0时,函数有最大值,最大值为(4ac - b²)/4a,此时x = -b/2a。

三、二次函数与一元二次方程当二次函数y = ax² + bx + c中y = 0时,即转化为一元二次方程ax² + bx + c = 0。

函数图像与x轴的交点即为该方程的根。

根据判别式Δ = b² - 4ac的值,可以判断抛物线与x轴的交点个数:1. Δ > 0时,抛物线与x轴有两个交点。

初中数学第二十二单元 二次函数知识点总结

初中数学第二十二单元 二次函数知识点总结

- 1 -第二十二单元 二次函数一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式二次函数的基本形式()2y a x h k =-+的性质: a 的绝对值越大,抛物线的开口越小。

三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中a 的符号开口方向 顶点坐标 对称轴 性质0a > 向上()h k , X=hx h >时,y 随x 的增大而增大;x h <时,y随x 的增大而减小;x h =时,y 有最小值k .0a <向下 ()h k ,X=hx h >时,y 随x 的增大而减小;x h <时,y随x 的增大而增大;x h =时,y 有最大值k .- 2 -2424b ac b h k a a-=-=,. 五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y a x b x c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a=-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时,y 随x 的增大而减小;当2bx a>-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac ba-. 2. 当0a <时,抛物线开口向下,对称轴为2bx a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2bx a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac ba-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异”)04(2422≥--±-=ac b aac b b x二次函数解析式的确定:一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,acx x =21。

第二十二章《二次函数》知识点总结人教版数学九年级上册

第二十二章《二次函数》知识点总结人教版数学九年级上册

《二次函数》知识点总结【知识点1 二次函数的表达式】1. 一般式: . 顶点坐标: . 对称轴: .2. 顶点式: .顶点坐标: . 对称轴: . 【知识点2 二次函数的图象与性质】 1. 二次项系数a 决定抛物线的 开口方向 ;①当0>a 时,抛物线的 ; ②当0<a 时,抛物线的 ; ③ ||a 越大,抛物线的开口 .3.常数项c 决定抛物线 与y 轴 交点的位置 . ①当0=c ,抛物线与y 轴交于 ; ②当0>c ,抛物线与y 轴交于 ; ③当0<c ,抛物线与y 轴交于 .5.根据a 、b 、c 的符号,画出二次函数的草图:①已知 a <0、b <0、c <0 ②已知 a>0、b <0、c >0 6.描述下面二次函数c bx ax y ++=2的增减性: 【知识点3 抛物线与坐标轴的交点】 1. 抛物线c bx ax y ++=2与x 轴的交点个数,即02=++c bx ax . ①当 ,抛物线与x 轴有两个交点; ②当 ,抛物线与x 轴有1个交点; ③当 ,抛物线与x 轴有没有交点;2.求抛物线c bx ax y ++=2与x 轴的交点的过程: 3.求抛物线c bx ax y ++=2与y 轴的交点的过程:4.函数 y = ax 2 + bx + c 的图象如图,那么 ①方程 ax 2 + bx + c =2 的根是 ______________;2.系数a 和b 共同决定抛物线 对称轴的位置 . ①a 和b 同号,对称轴在原点的 ; ②a 和b 异号, .4.根据图象判断出a 、b 、c 的符号:方法总结:第一步:求出对称轴;第二步:用箭头在对称轴两侧标出上升和下降;第三步:描述增减性.①当 时,随的增大而减小; ②当 时, 随的增大而增大;∵轴上的点, 为零,∴ . ∵轴上的点, 为零,∴ .②不等式 ax 2 + bx + c >0 的解集是 ___________; ③不等式 ax 2 + bx + c <2 的解集是 _________.④ a + b + c 0 ,4a 2 b + c 0 , 9a +3 b + c 0 .【知识点4 抛物线的平移】二次函数 y = ax 2 + bx + c 的平移口诀:“上下平移, ;左右平移, .” 【 * *知识点5 抛物线的对称 ** 】抛物线c bx ax y ++=2关于x 轴对称的解析式为 . 抛物线c bx ax y ++=2关于y 轴对称的解析式为 . 【 * *知识点6 二次函数图象的画法 ** 】 画出二次函数3-2-2x x y =的的图象.【典型例题 】1.m2+1+2x −是二次函数,则m 的值为( )C. −1D. 1或−12.【求顶点坐标 】抛物线y =2(x −3)4的顶点坐标是( ) A. (3,4)B. (−3,4)C. (3,−4)D. (2,4)3.【与坐标轴的交点 】抛物线y =−x 2+4x −4与坐标轴的交点个数为( ) A. 0B. 1C. 2D. 34.【平移】将函数y =x 2的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( ) A. 向左平移1个单位 B. 向右平移3个单位C. 向上平移3个单位D. 向下平移1个单位5.【平移】抛物线y =x 2+6x +7可由抛物线y =x 2如何平移得到的( )A. 先向左平移3个单位,再向下平移2个单位B. 先向左平移6个单位,再向上平移7个单位C. 先向上平移2个单位,再向左平移3个单位D. 先向右平移3个单位,再向上平移2个单位 6.【图象与性质】对于抛物线y =−3(x +1)2−2,下列说法正确的是( ) A. 抛物线开口向上 B. 当x >−1时,y 随x 的增大而减小 C. 函数最小值为−2D. 顶点坐标为(1,−2)7.【增减性】已知(−3,y 1),(−1,y 2),(2,y 3)是抛物线y =−3x 2+6x +m 上的三个点.则( ) A. y 1<y 3<y 2B. y 3<y 2<y 1C. y 1<y 2<y 3D. y 2<y 1<y 38.【最值】已知二次函数y=x2−4x+2,关于该函数在−1≤x≤3的取值范围内,下列说法正确的是( )A. 有最大值−1,有最小值−2B. 有最大值0,有最小值−1C. 有最大值7,有最小值−1D. 有最大值7,有最小值−29.【系数与图象】二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系中的图象大致为( )A. B. C. D.10.【求解析式】如图所示,已知二次函数y=ax2+bx+c的图象,求二次函数的解析式.11.如图,已知二次函数y=ax2−4x+c的图象经过点A(−1,−1)和点B(3,−9).(1)求该二次函数的解析式、对称轴及顶点坐标;(2)点C是抛物线与x轴的一个交点,点D是抛物线与y轴的交点,求三角形ACD 的面积;(3)已知点M(x1,y1)和N(1+x1,y2)在抛物线对称轴的右侧,判段y1和y2的大小.12.在运动会比赛时,九年级的一名男同学推铅球,已知铅球经过的路线是某二次函数图象的一部分(如图所示),如果这名男同学的出手处A点的坐标为(0,2),铅球路线的最高处B点的坐标为(6,5).(1)求出这个二次函数的解析式;(2)请求出这名男同学比赛时的成绩?13.如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m.(1)建立平面直角坐标系,求抛物线的解析式;(2)如果水面下降1m,则水面宽度是多少米?14.某商场一种商品的进价为每件30元,售价为每件50元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件40.5元,求两次下降的百分率;(2)经调查,若该商品每降价2元,每天可多销售16件,那么每天要想获得最大利润,每件售价应多少元?最大利润是多少?。

第22章《二次函数》小结与复习课件

第22章《二次函数》小结与复习课件
形 DEBG 的面积为 S,求 S 与 x 的函数关系式; (3)当 x 为何值时,S 有最大值?并求出这个最大值.
(2)∵∠F =∠A = 45°,∠CBF =∠ABC = 90°,
∴∠BGF =∠F = 45°,1BG = BF1 = 2x -130. 1
所= 以 32Sx△2D+EF60-xS-△4G5BF0.= 2DE2 - 2BF2 = 2 x2 - 2 (2x - 30)2
若点 A(x1,y1),B(x2,y2)在此函数图象上,且
x1<x2<1,则 y1 与 y2 的大小关系是 ( B )
A.y1≤y2 B.y1<y2 C.y1≤y2 D.y1>y2
x
【解析】由图象看出,抛物线开口向下,对称轴是 x=1, 当 x<1时,y 随 x 的增大而增大.∵x1<x2<1,∴ y1<y2.
解:W = (x-60)•(-x+120) = -x2+180x-7200 = -(x-90)2 +900,
∵抛物线的开口向下, ∴当 x<90 时,W 随 x 的增大而增大. 而 60≤x≤60×(1 + 45%),即 60≤x≤87. ∴当 x = 87 时,W 有最大值,
此时 W = -(87- 90)2 + 900 = 891.
售量 y (件)与销售单价 x (元)符合一次函数 y=kx+b,且 x=65
时,y=55;x=75 时,y=45.
(1) 求一次函数的解析式;
解:根据题意,得
65k 75k
b b
55,解得
45.
k
=
-1,b
=
120.
故所求一次函数的解析式为 y = -x + 120.

人教版九年级数学上册第22章 二次函数考点

人教版九年级数学上册第22章  二次函数考点

第22章二次函数考点☆考点1、二次函数的定义定义:y=ax2+bx+c(a、b、c是常数,aH0)定义要点:①aH0②最高次数为2③代数式一定是整式练习:1、y=-x2,y=2x2-2/x,y=100-5x2,y=3x2-2x3+5,其中是二次函数的有个。

m2-m2._____ 当m时,函数y=(m+1)x-2x+1是二次函数?☆考点2、二次函数的图像及性质表达式、对称轴、顶点坐标、位置、增减性、最值、练习:1、已知二次函数(1)求抛物线开口方向,对称轴和顶点M的坐标。

(2)设抛物线与y轴交于C点,与x轴交于A、B两点,求C,A,B的坐标。

(3)x为何值时,y随的增大而减少,x为何值时,y有最大(小)值,这个最大(小)值是多少?(4)x为何值时,y<0?x为何值时,y>0?2、直线y=ax+c与抛物线y=ax2+bx+c在同一坐标系内大致的图象是()1,一般式:已知抛物线上的三点,通常设解析式y=ax2+bx+c(aH0)2,顶点式:已知抛物线顶点坐标(h,k),通常设抛物线解析式y=a(x-h)2+k(aH0)3,交点式:已知抛物线与x轴的两个交点(x1,0)、(x2,0),通常设解析式y=a(x-x1)(x-x2)(aH0)练习:1、根据下列条件,求二次函数的解析式。

(1)、图象经过(0,0),(1,-2),(2,3)三点;(2)、图象的顶点(2,3),且经过点(3,1);(3)、图象经过(0,0),(12,0),且最高点的纵坐标是3。

2、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,—6)。

求a、b、c。

☆考点4、a,b,c符号的确定。

第22章二次函数全章知识点归纳总结人教版九年级数学上册

第22章二次函数全章知识点归纳总结人教版九年级数学上册

初三上学期二次函数全章知识点归纳总结【例1】下列函数是二次函数的有()①y=(x+1)2﹣x2;②y=﹣3x2+5;③y=x3﹣2x;④y=x2−1x+3.A.1个B.2个C.3个D.4个【变式11】下列函数中,是二次函数的有()①y=√x2+2;②y=﹣x2﹣3x;③y=x(x2+x+1);④y=11+x2;⑤y=﹣x+x2.A.1个B.2个C.3个D.4个【例2】若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣1【变式21】函数y=(a﹣5)x a2+4a+5+2x﹣1,当a=时,它是一次函数;当a=时,它是二次函数.【例3】关于函数y=(500﹣10x)(40+x),下列说法不正确的是()A.y是x的二次函数B.二次项系数是﹣10C.一次项是100D.常数项是20000【例4】下列具有二次函数关系的是()A.正方形的周长y与边长x B.速度一定时,路程s与时间tC.正方形的面积y与边长x D.三角形的高一定时,面积y与底边长x【例5】某种商品的价格是2元,准备进行两次降价.如果每次降价的百分率都是x,经过两次降价后的价格y(单位:元)随每次降价的百分率x的变化而变化,则y关于x的函数解析式是()A.y=2(x+1)2B.y=2(1﹣x)2C.y=(x+1)2D.y=(x﹣1)2【变式51】据省统计局公布的数据,合肥市2021年第一季度GDP总值约为2.4千亿元人民币,若我市第三季度GDP总值为y千亿元人民币,平均每个季度GDP增长的百分率为x,则y关于x的函数表达式是()A.y=2.4(1+2x)B.y=2.4(1﹣x)2C.y=2.4(1+x)2D.y=2.4+2.4(1+x)+2.4(1+x)【例1】用配方法将下列函数化成y=a(x+h)2+k的形式,并指出抛物线的开口方向,对称轴和顶点坐标.(1)y=12x2﹣2x+3;(2)y=(1﹣x)(1+2x).【变式11】把下列二次函数化成顶点式,即y=a(x+m)2+k的形式,并写出他们顶点坐标及最大值或最小值.(1)y=﹣2x﹣3+12x2(2)y=﹣2x2﹣5x+7【变式12】用配方法可以解一元二次方程,还可以用它来解决很多问题例如:因为5a2≥0,所以5a2+1≥1,即:当a=0时,5a2+1有最小值1.同样,因为﹣5(a2+1)≤0,所以﹣5(a2+1)+6≤6有最大值1,即当a=1时,﹣5(a2+1)+6有最大值6.(1)当x=时,代数式﹣3(x﹣2)2+4有最(填写大或小)值为.(2)当x=时,代数式﹣x2+4x+4有最(填写大或小)值为.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是14m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. 【例2】已知二次函数y =ax 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:x … 0 1 2 3 4 … y…52125…(1)求该二次函数的表达式; (2)当x =6时,求y 的值;(3)在所给坐标系中画出该二次函数的图象.【变式21】如图,已知二次函数y =−12x 2+bx +c 的图象经过A (2,0)、B (0,﹣6)两点. (1)求这个二次函数的解析式;(2)求该二次函数图象的顶点坐标、对称轴以及二次函数图象与x 轴的另一个交点; (3)在右图的直角坐标系内描点画出该二次函数的图象及对称轴. 【知识点3 二次函数的图象与各系数之间的关系】在y 轴的右侧则0<ab ,概括的说就是“左同右异” ③常数项c :总结起来,c 决定了抛物线与y 轴交点的位置. 【知识点4 二次函数图象的平移变换】 (1)平移步骤:变式21例2①将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ①保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【例4】把抛物线y =ax 2+bx +c 的图象先向右平移2个单位,再向上平移2个单位,所得的图象的解析式是y =(x ﹣3)2+5,则a +b +c = .【变式41】要得到函数y =﹣(x ﹣2)2+3的图象,可以将函数y =﹣(x ﹣3)2的图象( ) A .向右平移1个单位,再向上平移3个单位 B .向右平移1个单位,再向下平移3个单位 C .向左平移1个单位,再向上平移3个单位 D .向左平移1个单位,再向下平移3个单位 【知识点5 二次函数图象的对称变换】 (1)关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;(2)关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;(3)关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; (4)关于顶点对称(即:抛物线绕顶点旋转180°)()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.向上 向下【例1】已知二次函数y =x 2﹣2x ﹣3的自变量x 1,x 2,x 3对应的函数值分别为y 1,y 2,y 3.当﹣1<x 1<0,1<x 2<2,x 3>3时,y 1,y 2,y 3三者之间的大小关系是( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3【例2】在二次函数y =﹣x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:则m 、n 的大小关系为x … ﹣1 1 3 4 … y … ﹣6m n﹣6…A .m <nB .m >nC .m =nD .无法确定0a >0a <【变式21】二次函数y=ax2+bx+c(a≠0)中x,y的部分对应值如下表:x…﹣2﹣1012…y…0﹣4﹣6﹣6﹣4…则该二次函数图象的对称轴为()A.y轴B.直线x=12C.直线x=1D.直线x=32【知识点1 二次函数图象与x轴的交点情况决定一元二次方程根的情况】二次函数的图象【例1】抛物线y=(x﹣x1)(x﹣x2)+mx+n与x轴只有一个交点(x1,0).下列式子中正确的是()A.x1﹣x2=m B.x2﹣x1=m C.m(x1﹣x2)=n D.m(x1+x2)=n【变式11】抛物线y=x2+2x﹣3与坐标轴的交点个数有()A.0个B.1个C.2个D.3个【例2】二次函数与一元二次方程有着紧密的联系,一元二次方程问题有时可以转化为二次函数问题.请你根据这句话所提供的思想方法解决如下问题:若s,t(s<t)是关于x的方程1+(x﹣m)(x﹣n)=0的两根,且m<n,则m,n,s,t的大小关系是()A.s<m<n<t B.m<s<n<t C.m<s<t<n D.s<m<t<n【知识点1 解二次函数的实际应用问题的一般步骤】审:审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系);设:设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确;列:列函数解析式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数;解:按题目要求结合二次函数的性质解答相应的问题;检:检验所得的解,是否符合实际,即是否为所提问题的答案;答:写出答案.【例1】为优化迪荡湖公园的灯光布局,需要在一处岸堤(岸堤足够长)为一边,用总长为80m的灯带在湖中围成了如图所示的①②③三块灯光喷泉的矩形区域,且要求这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.(1)求y与x之间的函数关系式,并注明自变量x的取值范围;(2)x为何值时,y有最大值?最大值是多少?【变式11】爱动脑筋的小明在学过用配方法解一元二次方程后,他发现二次三项式也可以配方,从而解决一些问题.例如:x2﹣6x+10=(x2﹣6x+9﹣9)+10=(x﹣3)2﹣9+10=(x﹣3)2+1≥1;因此x2﹣6x+10有最小值是1,只有当x=3时,才能得到这个式子的最小值1.同样﹣3x2﹣6x+5=﹣3(x2+2x+1﹣1)+5=﹣3(x+1)2+8,因此﹣3x2﹣6x+5有最大值是8,只有当x=﹣1时,才能得到这个式子的最小值8.(1)当x=时,代数式﹣2(x﹣3)2+5有最大值为.(2)当x=时,代数式2x2+4x+3有最小值为.(3)矩形自行车场地ABCD一边靠墙(墙长10m),在AB和BC边各开一个1米宽的小门(不用木板),现有能围成14m长的木板,当AD长为多少时,自行车场地的面积最大?最大面积是多少?【例2】如图,在矩形ABCD中,AB=12cm,BC=9cm.P、Q两点同时从点B、D出发,分别沿BA、DA 方向匀速运动(当P运动到A时,P、Q同时停止运动),已知P点的速度比Q点大1cm/s,设P点的运动时间为x秒,△P AQ的面积为ycm2,(1)经过3秒△P AQ的面积是矩形ABCD面积的1时,求P、Q两点的运动速度分别是多少?3(2)以(1)中求出的结论为条件,写出y与x的函数关系式,并求出自变量x的取值范围.【变式31】廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图.已知水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.(结果保留根号)。

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

人教版数学九年级上册 第二十二章《二次函数》章节知识点归纳总结

《二次函数》章节知识点归纳总结一、二次函数概念:1.二次函数的概念:(1)一般地,形如2y ax bx c =++(a b c ,,是常数,a ≠0)的函数,叫做二次函数。

(2)这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域(x)是全体实数.2. 二次函数 2y ax bx c =++ 的结构特征:(1)等号左边是函数,右边是关于自变量x的二次式,x 的最高次数是2.(2)a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.3. 二次函数解析式的几种形式(1)一般式:y=ax 2+bx+c (a ,b ,c 为常数,a ≠0) (2)顶点式:y=a(x-h)2+k [抛物线的顶点P ( h ,k )](3)交点式:y=a(x-x 1)(x-x 2)[仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线]其中x 1,x 2是抛物线与x 轴的交点的横坐标,即一元二次方程ax 2+bx+c =0的两个根,a ≠0. x 1,x 2 = (-b ±ac 4b 2-)/2a 在三种形式的互相转化中,有如下关系:h= -b / 2a ; k=(4ac-b 2) / 4a ; x 1,x 2 = (-b ±ac 4b 2-) / 2a说明:(1)任何一个二次函数通过配方都可以化为顶点式y =a(x-h)2+k ,抛物线的顶点坐标是(h,k);(2) 当h =0时,抛物线y =ax 2+k 的顶点在y 轴上;当k =0时,抛物线a(x-h)2的顶点在x 轴上;当h =0且k =0时,抛物线y =ax 2的顶点在原点;(3) 如果图像经过原点,并且对称轴是y 轴,则设y=ax 2;如果对称轴是y 轴,但不过原点,则设y=ax 2+k4、抛物线的性质: (1).抛物线是轴对称图形。

对称轴为直线 x = -b/2a 。

人教版九年级数学上第22章二次函数知识点、考点、典型题集锦(带详细解析答案)

人教版九年级数学上第22章二次函数知识点、考点、典型题集锦(带详细解析答案)

二次函数知识点、考点、典型试题集锦(带详细解析答案)考点1:二次函数的图象和性质一、考点讲解:1.二次函数的定义:形如c bx axy ++=2(a ≠0,a ,b ,c 为常数)的函数为二次函数. 2.二次函数的图象及性质:⑴ 二次函数y=ax 2 (a ≠0)的图象是一条抛物线,其顶点是原点,对称轴是y 轴;当a >0时,抛物线开口向上,顶点是最低点;当a <0时,抛物线开口向下,顶点是最高点;a 越小,抛物线开口越大.y=a(x -h)2+k 的对称轴是x=h ,顶点坐标是(h ,k )。

⑵ 二次函数c bx ax y ++=2的图象是一条抛物线.顶点为(-2b a ,244ac b a -),对称轴x=-2b a ;当a >0时,抛物线开口向上,图象有最低点,且x >-2b a ,y 随x的增大而增大,x <-2b a ,y 随x 的增大而减小;当a <0时,抛物线开口向下,图象有最高点,且x >-2b a ,y 随x 的增大而减小,x <-2b a ,y 随x 的增大而增大.⑶ 当a >0时,当x=-2b a 时,函数有最小值244ac b a -;当a <0时,当 x=-2ba 时,函数有最大值244ac b a -。

3.图象的平移:将二次函数y=ax 2 (a ≠0)的图象进行平移,可得到y=ax 2+c ,y=a(x -h)2,y=a(x -h)2+k 的图象.⑴ 将y=ax 2的图象向上(c >0)或向下(c< 0)平移|c|个单位,即可得到y=ax 2+c 的图象.其顶点是(0,c ),形状、对称轴、开口方向与抛物线y=ax 2相同.⑵ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,即可得到y=a(x -h)2的图象.其顶点是(h ,0),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.⑶ 将y=ax 2的图象向左(h<0)或向右(h >0)平移|h|个单位,再向上(k>0)或向下(k<0)平移|k|个单位,即可得到y=a(x -h)2 +k 的图象,其顶点是(h ,k ),对称轴是直线x=h ,形状、开口方向与抛物线y=ax 2相同.注意:二次函数y=ax 2 与y =-ax 2 的图像关于x 轴对称。

第22章《二次函数》全章教材分析

第22章《二次函数》全章教材分析

第22章 二次函数教材分析本章的主要内容有二次函数的概念、二次函数的图象、二次函数的性质和二次函数的应用。

函数是数学的核心概念,也是初中数学的基本概念,函数不仅仅可以看成变量之间的依赖关系,同时,函数的思想方法将贯穿整个数学学习过程。

学生在学习了正比例函数、一次函数之后学习二次函数,这是对函数及其应用知识学习的深化和提高,是学生学习函数知识的过程中的一个重要环节,起到承上启下的作用,为学生进入高中后进一步学习函数知识奠定基础。

本章的内容在日常生活和生产实际中有着广泛的应用,是培养学生数学建模和数学思想的重要素材。

二次函数的图象是它性质的直观体现,对了解和掌握二次函数的性质具有形象直观的优势,二次函数作为初中阶段学习的重要函数模型,对理解函数的性质,掌握研究函数的方法,体会函数的思想是十分重要的,因此本章的重点是二次函数的图象与性质的理解与掌握,应教会学生画二次函数图象,学会观察函数图象,借助函数图象来研究函数性质并解决相关的问题。

本章的难点是体会二次函数学习过程中所蕴含的数学思想方法,函数图象的特征和变换有及二次函数性质的灵活应用。

一、教学目标1.结合具体情境体会二次函数的含义,了解二次函数的有关概念,确定二次函数的表达式。

2.会用描点法画出二次函数的图象,能通过图象认识二次函数的性质。

3.通过具体例子在探索二次函数图象的过程中,学会利用配方法将数字系数的二次函数表达式表示成:()2y a x h k =-+的形式,从而确定二次函数图象的顶点和对称轴。

(不要求推导、记忆一般的公式。

)课程标准原来提法是:会根据公式确定图象的顶点、开口方向和对称轴。

4.二次函数的图象求一元二次方程的近似解。

5. 经历探索具体问题中数量关系和变化规律的过程,体会二次函数是刻画现实世界的一个有效的数学模型,能应用二次函数的相关知识解决简单的实际问题。

二、课时安排§22.1 二次函数 1课时二次函数的图象和性质 5课时§22.2 二次函数与一元二次方程 2课时§22.3 实际问题与二次函数 3课时章节复习 2课时三、教学建议1.注意与学生已有知识的联系,减少对新概念接受的困难。

新人教版九年级数学上册第22章单元教材分析

新人教版九年级数学上册第22章单元教材分析

新人教版九年级数学上册第22章单元教材分析
第二十二章二次函数
本章总共分三个模块的内容。

模块一:二次函数的概念、图象和性质;模块二:二次函数与一元二次方程的联系;模块三:利用二次函数的图象和性质解决实际问题.
【本章重点】
1. 二次函数的图象和性质。

2.利用二次函数的图象和性质解决实际问题。

【本章难点】
1.利用二次函数的图象和性质解决实际问题。

2.二次函数与其他知识的综合应用。

【本章思想方法】
1.体会和掌握类比的学习方法:类比一次函数来学习二次函数,注意与一次函数、一元二次方程、不等式的联系与相互转化。

2.体会数形结合的思想方法:由于二次函数(数)的图象是抛物线(形),故二次函数与抛物线有内在联系,二次函数
的性质由函数反映出来.反之,抛物线体现二次函数的性质,能直观、形象地反映问题。

3.体会数学模型思想:本章函数建模就是通过探索实际应用问题中的数量关系和变化规律,从中抽象二次函数模型,并运用二次函数的知识解决实际问题。

22.1二次函数的图象和性质7课时
22.2二次函数与一元二次方程1课时
22.3实际问题与二次函数1课时。

第22章 二次函数小结第1课时 知识结构与要点-九年级数学上册课件(人教版)

第22章 二次函数小结第1课时 知识结构与要点-九年级数学上册课件(人教版)
2.求二次函数的解析式.
解:∵ 当 x = −2 或 4 时,y = −16,且函数的最大值为 2.
∴ 对称轴为直线
.
∴ 顶点为 (1,2).
设二次函数解析式为 y = a(x − 1)2 + 2,
把 (−2,−16) 代入得 −16 = 9a + 2,解得 a = −2.
∴ y = −2(x − 1)2 + 2.
∴ 二次函数解析式为 y = −2x2 + 4x.
6 已知二次函数 y = x2 − 2mx + m2 − 1( m 为常数).
求证:不论 m 为何值,该函数的图象与 x 轴总有两个公共点.
证明:(−2m)2 − 4(m2 − 1) = 4>0,
故不论 m 为何值,该函数的图象与 x 轴总有两个公共点.

时,y 随 x 的增大而增大;
2

x>−
时,y 随 x 的增大而减小.
2
当 x<函数与一元二次方程的关系
抛物线与 x 轴的交点
数形结合
2 + bx + c
y
=
ax
y
y >0
y >0
x1 O
一元二次方程 ax2 + bx + c = 0 的根
y <0
x2
x
二次函数 y = ax2
)
2
4

对称轴:x=2
3.一般式 y = ax²+ bx + c (a≠0) 的图和性质
a> 0
a< 0
y
O


x=−
2
y
x
时,y最小值 =
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、课前检测板书课题
检测内容:
1.什么是一元二次方程?什么是一元二次方程的一般形式?
2.什么是一元二次方程的根?
今天我们学习用开平方法解一元二次方程.
二、揭示目标指导自学
自学目标:
1.会解形如x2=p(p≥0)的一元二次方程和(mx+n)2=p (p≥0)型的一元二次方程;
2.理解“降次”的转化思维;
自学指导:
认真看课本P5-P6练习前的内容:
探究课本问题1分析:
1.用列方程方法解题的等量关系是什么?
2.解方程的依据是什么?
3.方程的解是什么?问题的答案是什么?
4.该方程的结构是怎样的?
解决课本思考
1如何理解降次?
2本题中的一元二次方程是通过什么方法降次的?
3能化为(x+m)2=n(n≥0)的形式的方程需要具备什1 2.
一、课前检测 板书课题
课堂检测:
用适当的方法解方程: (1)23(1)12x +=; (2)2
410y y ++=;
(3)2884x x -=; (4)2
310y y ++=.
导语:同一元一次方程,二元一次方程(组)等一样,一元二次方程和实际问题,也有紧密的联系,本节课就来讨论如何利用一元二次方程来解决实际问题.
二、揭示目标 指导自学
学习目标:
会用一元二次方程解决生活中的实际问题; 指导自学:
1、 探究课本P2的问题1和问题2
2、 探究课本P5的问题1;
3、探究课本19页探究2并完成P20的思考; 8分钟后,比谁能正确地做出与例题类似的习题。

三、课堂训练 及时反馈
练习册。

相关文档
最新文档