排列组合讲义

合集下载

排列组合讲义

排列组合讲义

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。

○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m mnn n A A n m-=-; (3)11nn n nn n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 mn C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C . 1.分类计数原理(加法原理) 12n N m m m =+++ 2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m mn n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++ *()n N ∈ (2)1k n k k k n T C a b -+= (3)∑=nr rnC=n2(4)13502412n n n n n n n C C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

排列组合基础讲义

排列组合基础讲义
2 C1 C4 C3 2· 11+C2· 11=825(种), 5 或采用间接法:C5 13-C11=825(种);
(4)至多有两名女生含有三类:有两名女生、只有一名 女生、没有女生.
3 1 4 5 故选法有 C2 · C + C · C + C 5 8 5 8 8=966(种);

(5)分两类:第一类是女队长当选,共 C4 12(种). 第二类是女队长不当选,有
2 ∴Cm = C 8 8=28.



【点评】在求组合数中的未知数时要注意必须使 组合数公式本身有意义,同时在计算时要注意合理选 用组合数的两个计算公式,简化计算.下面一道题是 有关排列数的问题,在考查排列数公式的应用时,一 定要注意到排列数是一些连续正整数的乘积,在解题 时注意到这个特点进行约分,可简化计算.
变式题 [2009· 海南宁夏卷] 7 名志愿者中安排 6 人 在周六、 周日两天参加社区公益活动若每天安排 3 人, 则 不同的安排方案共有________种.(用数字作答)
【思路】只要从 7 人中先选 3 人安排在周六,再从余 下的4人中选出3人安排在周日即可.
【答案】 140
【解析】方法 1:从 7 人中先选 3 人安排在周六、再
【解答】 B 3 位男生的全排列数是 A3 3=6,隔开四个 2 空隙,把 3 位女生中的 2 位“捆绑”有方法数 C2 3A2=6,将 3 位女生当两个看,安插在四个空隙中的两个有方法数 A2 4= 12,故“6 位同学站成一排,3 位女生中有且只有两位女生 2 2 2 相邻的排法”有 A3 其中男生甲站两端的男 3C3A2A4=432 种; 2 生排法种数是 A1 A 2 2=4,此时只能在甲的一侧的三个空隙 2 2 中安插经过“捆绑”处理后的三个女生,有方法数 C2 3A2A3= 36,故“3 位男生和 3 位女生共 6 位同学站成一排,若男生 甲站两端,3 位女生中有且只有两位女生相邻的”的排法有 1 2 2 2 2 A2A2C3A2A3=144 种,综上,故符合条件的排法共有 432 -144=288 种.

排列与组合讲义-高三数学一轮复习

排列与组合讲义-高三数学一轮复习

排列与组合一、学习目标理解排列、组合的概念,能利用计数原理推导排列数公式、组合数公式.二、知识梳理1.排列与组合的概念(1)排列:从n 个不同元素中取出m (m ≤n ) 个元素,按照 排成一列.(2)组合:从n 个不同元素中取出m (m ≤n ) 个元素作为一组.2.排列数、组合数的定义、公式、性质(1)排列数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)A n m =n (n −1)(n −2)…(n −m +1)= .(iii)A n n =n ! ,0!=1 .(2)组合数(i ) 从n 个不同元素中取出m (m ≤n ) 个元素的所有 的个数.(ii)C n m =A nm A m m =n (n−1)(n−2)…(n−m+1)m != .(iii)C n m =C n n−m ,C n m +C n m−1=C n+1m ,C n n =1 ,C n 0=1 .三、典例探究例1 已知7位同学站成一排.(1) 甲站在中间的位置,共有多少种不同的排法?(2) 甲、乙只能站在两端的排法共有多少种?(3)甲、乙两同学必须相邻的排法共有多少种?(4)甲、乙两同学不能相邻的排法共有多少种?变式:3男3女共6位同学站成一排,则3位女生中有且只有2位女生相邻的不同排法种数是( )A. 576B. 432C. 388D. 216例2小明在学校里学习了二十四节气歌后,打算在网上搜集一些与二十四节气有关的古诗,他准备在冬季的6个节气:立冬、小雪、大雪、冬至、小寒、大寒与春季的6个节气:立春、雨水、惊蛰、春分、清明、谷雨中一共选出4个节气,搜集与之相关的古诗,如果冬季节气和春季节气各至少被选出1个,那么小明选取节气的不同情况的种数是( ) A. 345 B. 465 C. 1 620 D. 1 860变式:共有10级台阶,某人一步可跨一级台阶,也可跨两级台阶或三级台阶,则他恰好6步上完全部台阶的方法种数是( )A. 30B. 90C. 75D. 60方法感悟1.解排列、组合问题要遵循的两个原则(1)按元素(位置)的性质进行分类.(2)按事情发生的过程进行分步.2.两类含有附加条件的组合问题的解题方法(1)“含”或“不含”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的组合题型:“至少”与“至多”问题用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.四、课堂练习1.从4本不同的课外读物中,买3本送给3名同学,每人各1本,则不同的送法种数是()A.12B.24C.64D.812.6名学生排成两排,每排3人,则不同的排法种数为()A.36B.120C.720D.2403.现有3名学生报名参加校园文化活动的3个项目,每人须报1项且只报1项,则恰有2名学生报同一项目的报名方法有( )A. 36种B. 18种C. 9种D. 6种4.某市从6名优秀教师中选派3名同时去3个灾区支教(每地1人),其中甲和乙不同去,则不同的选派方案的种数为()A.48B.60C.96D.1685. 从4本不同的课外读物中,选3本送给3位同学,每人1本,则不同的送法种数是( )A. 12B. 24C. 64D. 816. 6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A. 120种B. 90种C. 60种D. 30种。

排列组合讲义(含答案)

排列组合讲义(含答案)

排列组合讲义(含答案)排列组合、⼆项式定理、参数⽅程、极坐标.⼀、排列组合:主⼲⽅法:特殊优先,分开插空,相邻捆绑,正难则反,先选后排,分类穷举,定序扣数,分组分堆.1.将5名志愿者分配到3个不同的奥运场馆参加接待⼯作,每个场馆⾄少分配⼀名志愿者的⽅案种数为()A. 540B. 300C. 180D. 1502. 某⼯程队有6项⼯程需要单独完成,其中⼯程⼄必须在⼯程甲完成后才能进⾏,⼯程丙必须在⼯程⼄完成后才能进⾏,有⼯程丁必须在⼯程丙完成后⽴即进⾏。

那么安排这6项⼯程的不同排法种数是。

(⽤数字作答)3. 某外商计划在四个候选城市投资3个不同的项⽬,且在同⼀个城市投资的项⽬不超过2个,则该外商不同的投资⽅案有 ( )A.16种B.36种C.42种D.60种4. 3张卡⽚的两⾯分别写有1和2,3和4,5和6,将这三张卡⽚任意拼盘,可以组成多少个不同的三位数?_________.5.现从男.⼥共8名候选学⽣中选出2名男⽣,2名⼥⽣分别参加全校资源、⽣态、环保三个夏令营,且每个夏令营⾄少⼀⼈参加,已知共有1080种不同的参加⽅案.则候选的8位学⽣的构成情况是( )A.2名男⽣、6名⼥⽣B.6名男⽣、2名⼥⽣C.4名男⽣、4名⼥⽣D.5名男⽣、3名⼥⽣6.5名乒乓球队员中,有2名⽼队员和3名新队员.现从中选出3名队员排成1、2、3号参加团体⽐赛,则⼊选的3名队员中⾄少有⼀名⽼队员,且1、2号中⾄少有1名新队员的排法有_______种.(以数作答)7. 有4张分别标有数字1,2,3,4的红⾊卡⽚和4张分别标有数字1,2,3,4的蓝⾊卡⽚,从这8张卡⽚中取出4张卡⽚排成⼀⾏.如果取出的4张卡⽚所标数字之和等于10,则不同的排法共有________________种(⽤数字作答).8.某⼈有4种颜⾊的灯泡(每种颜⾊的灯泡⾜够多),要在如题图所⽰的6个点A 、B 、C 、A 1、B 1、C 1上各装⼀个灯泡,要求同⼀条线段两端的灯泡不同⾊,则每种颜⾊的灯泡都⾄少⽤⼀个的安装⽅法共有种(⽤数字作答).例8图A BC 1A1B练习:如图,⽤四种不同颜⾊给图中的A,B,C,D,E,F 六个点涂⾊,要求每个点涂⼀种颜⾊,且图中每条线段的两个端点涂不同颜⾊,则不同的涂⾊⽅法有(A )288种(B )264种(C )240种(D )168种答案:例1.D ;例2.20;例3.D ;例4.48;例5.D ;例6.48.例7.432.例8.216⼆、⼆项式定理:1.若对于任意实数x ,有3230123(2)(2)(2)x a a x a x a x =+-+-+-,则2a 的值为()A .3B .6C .9D .122. 在()()1n x n N *+∈的⼆项展开式中,若只有5x 的系数最⼤,则n =A .8B . 9 C. 10 D .113.已知n 展开式中,各项系数的和与其各项⼆项式系数的和之⽐为64,则n 等于()A.4B.5 C.6 D.7 4.设2921101211(1)(21)(2)(2)(2)x x a a x a x a x ++=+++++++ ,则01211a a a a ++++ 的值为()A.2- B.1-C.1 D.2 5. 如果2323n x x ??- ??的展开式中含有⾮零常数项,则正整数n 的最⼩值为()A.3 B.5 C.6 D.106. (1+2x 2)(x -1x )8的展开式中常数项为。

排列组合专项讲义(知识点+例题+练习含详解)

排列组合专项讲义(知识点+例题+练习含详解)

排列组合问题专项讲义知识点+例题+练习题+详细解析基本知识框架:加法原理排列数 排列数公式综合应用乘法原理 组合数 组合数公式一、基本概念:乘法原理:一般地,如果完成一件事情需要n 步,其中,做第一步有a 种不同的方法,做第二步有b 种不同的方法,…,做第n 步有x 种不同的方法,那么,完成这件事一共有:N =a ×b ×…×x种不同的方法。

加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有a 种不同的做法,第二类方法中有b 种不同的做法,…,第n 类有x 种不同的做法,那么,完成这件事一共有:N =a +b +…+x种不同的方法。

排列、排列数一般地,从n 个不同的元素中任意取出m(n ≥m)个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。

从n 个不同的元素中取出m(n ≥m)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列数。

记做mn A 。

m n A =n(n -1)(n -2)(n -3)…(n -m +1)组合、组合数一般地,从n 个不同的元素中取出m(n ≥m)个元素组成一组,不计组内各元素的次序,叫做从n 个不同的元素中取出m 个元素的一个组合。

从n 个不同的元素中取出m(n ≥m)个元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数。

记座mn C 。

m nC =m n m m A A =n(n -1)(n -2)(n -3)…(n -m +1)÷!m 二、常见的解题策略1、特殊元素优先排列2、合理分步与准确分类3、排列、组合混合问题先选后排4、正难则反,等价转化5、相邻问题捆绑法6、不相邻问题插空法7、定序问题除法处理8、分排问题直排处理 9、“小集团”问题先整体后局部10、构造模型 11、树形图三、排列组合例题1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?8.从5个声母,3个韵母中每次取出3个声母2个韵母的排列方法有多少种?9.4名男生5名女生站成一排,如果男生不分开,女生也不分开,有多少种不同的站法?10.五对孪生兄妹排成一排,每对兄妹不能分开,共有多少种排法?11.7人站成一排,其中4名男生,3名女生;如果限定女生不站两头,且女生站在一起,一共有多少种不同的站法?四、应用排列组合解决计数问题1、在一个半圆周上共有12个点,如右图,以这些点为顶点,可以画出多少个三角形?方法一解:三个顶点都在半圆弧上的三角形有37C =35(个)两个顶点在半圆弧上,一个顶点在线段上的三角形有27C ×15C =105(个)一个顶点在半圆弧上,两个顶点在线段上的三角形有17C ×25C =70(个)由加法原理得:35+105+70=210(个)答:略方法二(排除法)解:312C -35C =220-10=210(个)答:略2、如下图,问:①右图中,共有多少条线段? A B C D E F G②下右图中,共有多少个角?解:①图中任何两点都可以得到一条线段,这是一个组合问题,图中共有7点,所以:27C =21共有21条线段。

排列组合的讲义

排列组合的讲义

万华:公考传奇缔造者!万华:公考培训黄埔军校!排列组合的讲义一、排列组合定义1、什么是C公式C是指组合,从N个元素取R个,不进行排列(即不排序)。

例如:编号1~3的盒子,我们找出2个来使用,这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。

即C(3,2)=32、什么是P或A公式P是指排列,从N个元素取R个进行排列(即排序)。

例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P22,就构成了C(3,2)×P(2,2)=A(3,2)3、A和C的关系事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。

4、计算方式以及技巧要求组合:C(M,N)=M!÷(N!×(M-N)!)条件:N<=M排列:A(M,N)=M!÷(M-N)!条件:N<=M为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘,当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。

如果不大。

我们可以求C(M,[M-N]),因为C(M,N)=C(M,[M-N])二、排列组合常见的恒等公式1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n2、C(m,n)+C(m,n+1)=C(m+1,n+1)针对这2组公式我来举例运用(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法?解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法之和为70,求,甲挑选了多少副参加展览?C(8,n)=70 n=4 即得到甲选出了4副。

万华:公考传奇缔造者!万华:公考培训黄埔军校!三、排列组合的基本理论精要部分(分类和分步)(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。

排列组合讲义

排列组合讲义

1.分类加法计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有N m m m =+++种不同的方法.又称加法原理.3条公路,2条铁路,某人要从甲地到乙地,共有多少种不同的方法?2.分步乘法计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有N m m m =⨯⨯⨯种不同的方法.又称乘法原理.2条道路,那么从甲地经乙地到丙地共有多少种不同的方法?【教师备案】因为我们在必修3的时候讲过计数原理,所以本讲我们在讲计数原理之前给学生复习一下加法和乘法原理,老师可以借助于上边的两个图让学生从直观理解加法和乘法原理,讲完两个原理之后就可以让学生做例1.【例1】 两个原理⑴一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. ① 从两个口袋中任取一封信,有多少种不同的取法? ②从两个口袋里各取一封信,有多少种不同的取法?③ 把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? ⑵乘积()()()ab c d m n x y z ++++++展开后共有多少项?【解析】 ⑴①任取一封信,不论从哪个口袋里取,都能单独完成这件事,因此是两类办法,用分类计数原理,共有549+=种.②各取一封信,不论从哪个口袋中取,都不能算完成了这件事,因此应分两个步骤完成,由分步计数原理,共有5420⨯=种.③若以邮筒装信的可能性考虑,第一个邮筒有10种可能性,即可能装入0,1,2,…,9封信等不同情况.但再考虑第二个邮筒时,装信的情况要受到第一个邮筒装信情况的影响,非常麻烦;若以每封信投入邮筒的可能性考虑,第一封信投入邮筒有4种可能,第二封信仍有4种可能……第九封信还有4种可能.由分类计数原理可知,共有94种不同的放法. ⑵由分步计数原理得一共有42324⨯⨯=项.3.1课前回顾经典精讲知识点睛丙乙甲乙甲铁路2铁路1公路3公路2公路1将三封不同的信投入五个信箱里,共有几种投信方法?【解析】 125种【思路】第一封信可投入5个信箱中任一个,故有5种投法;第二、三封信也可随机地投入5个信箱中的任一个,各有5种投法,依乘法原理,共有35555125⨯⨯==种投法.【错因分析】误区:分步,第一个信箱可以不放信,放1封,放2封,放3封,共有4种不同的放法,所以共有54种投信方法.错误原因是对完成一件事的过程认识模糊,且对象选定不准,若第一步三封信都在第一个信箱里,则事件已完成,不需后续几步;若五步都没有放信,则五步全做完,事件还未完成.【备选】 ⑴ 5名学生从3项体育项目中选择参赛,若每一名学生只能参加一项,则有多少种不同的参赛方法?⑵ 若5名学生争夺3项比赛冠军(每一名学生参赛项目不限),则冠军获得者有几种不同情况(没有并列冠军)?【解析】 ⑴每名学生都可从3项体育项目中选1项,有3种选法,故5名学生的参赛方法有53种;⑵每个冠军皆有可能被5名学生中任1人获得,3个冠军依次被获得的不同情况有35种.1.排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)【教师备案】在日常生活中我们经常遇到下面一些问题,这些问题有什么共同特征呢? 问题1:3名同学排成一行照相,有多少种排法? 方法1(枚举法)把3名同学用A B C ,,作为代号,于是有以下6种排法: ABC ACB BCA BAC CAB CBA ,,,,, 方法2(分步计数)A B C ,,三人排成一行,可以看作将字母A B C ,,顺次排入图中的方格中.首先排第一个位置:从 A B C ,,中任选1个人,有3种方法;其次排第二个位置:从 剩下的2个人中任选1人,有2种方法;最后排第三个位置:只有1种方法.根据乘法原理,3名同学排成一行照相,共有3216⨯⨯=种排法.问题2:北京、广州、南京、天津4个城市相互通航,应该有多少种机票? 方法1(枚举法)列出每一个起点和终点情况,如图所示:所以一共有12种机票.方法2(分步计数)我们按照始点、终点站的顺序进行排列:第一步:先确定起始站,起始站有4种选择方法;第二步:再确定终点站,对应于起始站的每一种选择,终点站都有3种选择方法.根据乘法原理,共有4312⨯=种机票.问题3:从4面不同颜色的旗子中,选出3面排成一行作为一种信号,能组成多少种信号:解决这个问题可以分三步进行: 知识点睛3.2排列广州广州天津北京第一步:先选第1面旗子,有4种选择方法;第二步:在剩下的3种颜色中,再选第2面旗子,有3种选法;第三步:在剩下的2种颜色中,选最后一面旗子,有2种选法.根据乘法原理,共有43224⨯⨯=种选法,而每种选法对应一种信号,故共能组成24种信号在上面讨论的问题中,问题1是从3个不同元素中取出3个元素的排列,问题2是从4个不同元素中取出2个元素的排列问题,问题3是从4个不同元素中取出3个元素的排列问题.【挑战五分钟】写出:⑴从4个元素a b c d ,,,中任取2个元素的所有排列;⑵从5个元素a b c d e ,,,,中任取3个元素且包含e 的所有排列.【解析】 ⑴ab ac ad bc bd cd ,,,,,,ba ca da cb db dc ,,,,,⑵从排列的直观意义可以看出是从⑴中的每个排列加一个e 就可以了,而e 又可以随便放,所以共有:abe ace ade bce bde cde ,,,,,,bae cae dae cbe dbe dce ,,,,,, aeb aec aed bec bed ced ,,,,,,bea cea dea ceb deb dec ,,,,,, eab eac ead ebc ebd ecd ,,,,,,eba eca eda ecb edb edc ,,,,,2.排列数:从n 个不同的元素中取出()m m n m n +∈N ≤,,个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m 表示.3.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n *∈N ,,并且m n ≤.从形式上看排列数A m n 等于从n 开始的m 个数相乘,比如:39A 987=⨯⨯是从9开始的3个数相乘.【教师备案】在讲排列时我们讲了几个排列问题,那么,对于一般的排列问题如何计算所有排列的个数呢?我们把从n 个不同的元素中任意取出()m m n ≤个元素的排列,看成从n 个不同的球中选出m 个球,放入排好的m 个盒子中,每个盒子里放一个球,我们用乘法原理排列这些球第2步:从剩下的1n -个球中选出一个放入第2个盒子,有1n -种选法; 第3步:从剩下的2n -个球中选出一个放入第3个盒子,有2n -种选法;第m 步:从剩下的()1n m --个球中选出一个放入第m 个盒子,有()1n m --种选法.根据乘法原理,一共有()()()121n n n n m ----⎡⎤⎣⎦种放法.4.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.()A 121!n n n n n =⨯-⨯⨯⨯= ()!A (1)(2)(1)!m n n n n n n m n m =---+=-. 【教师备案】我们可以对A (1)(2)(1)m n n n n n m =---+进行变形:A (1)(2)(1)m n n n n n m =---+()()()()()()()()121121!121!n n n n m n m n m n n m n m n m ⋅-⋅-⋅⋅-+⋅-⋅--⋅⋅⋅==-⋅--⋅⋅⋅-【教师备案】老师在讲排列时,建议先讲排列问题,什么是排列,让学生从直观上理解排列,多举几个小例子,具体例子见上边排列问题中的教师备案,然后让学生写排列,这时就可以让学生做【挑战五分钟】了.学生会写所有的排列之后,那排列数是多少呢?不可能每次做题时都把所有的排列写出来,然后数一下,这时,我们就需要排列数的公式了,所以老师就可以给学生讲解排列数公式,讲完排列数之后,要让学生熟练的运用排列数公式,这时,就可以做例 2.学生理解排列并知道排列数如何计算后,就要从直观理解排列,具体见例3.最后讲数字问题,在讲数字问题时,先以【铺垫】为例,给学生讲一个最简单的排数字问题,然后再讲例4,含有0的排数字问题.【例2】 计算排列数⑴计算310A ,66A ,4288A 2A -,548885892A 7A A A +- ⑵求证:11A A A m m m n n n m -+-=. ⑶解方程322A 100A x x =.【解析】 ⑴310A 1098720=⨯⨯=,66A 654321720=⨯⨯⨯⨯⨯=,4288A 2A 87652871568-=⨯⨯⨯-⨯⨯=,548885892A 7A 28765478765A A 8765432198765+⨯⨯⨯⨯⨯+⨯⨯⨯⨯=-⨯⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯8765(87)18765(249)⨯⨯⨯⨯+==⨯⨯⨯⨯-. ⑵ 解法一:∵1(1)!!A A (1)!()!m mn n n n n m n m ++-=-+--!11()!1n n n m n m +⎛⎫=⋅- ⎪-+-⎝⎭1!!A ()!(1)(1)!m n n m n m m n m n m n m -=⋅=⋅=-+-+-,∴11A A A m m m n n nm -+-=. 解法二:可以从排列的直观意义解释,1A m n +表示从1n +个元素中取m 个元素的排列个数,其中不含某元素1a 的有A m n 个,故含1a 的排列共有1A A m m n n +-种;含有1a 的可这样进行排列:先排1a ,有m 种排法,再从另外n 个元素中取出1m -个元素排在剩下的1m -个位置,有1A m n -种排法,故含1a 的排法有1A m nm -种.所以11A A A m m m n n n m -+-=. ⑶ 原方程可化为2(21)(22)100(1)x x x x x --=-∵0x ≠且1x ≠,∴2125x -=解得13x =,经检验13x =是原方程的根.【备选】学生刚接触排列,所以对排列数的计算还不是很熟悉,要求学生加强训练,老师可以从下面的题中挑选几个让学生练练. 计算下列各题:⑴25A =_____,⑵46A =____,⑶48A =____,⑷210A =____,⑸410A =____, ⑹332A =____,⑺55A =____,⑻56A =____,⑼88A =_____,⑽4399A A -=____, ⑾32109A A -=____,⑿32545A 4A +=_____,⒀4288A 4A -=____,⒁12344444A A A A +++=_____,⒂1148A A =_____,⒃1299A A =_____,⒄812712A A =_____,⒅7312512122A A A =_____,⒆37107A A 10!=_____,⒇54101054994A A A A -=-____ 【解析】 ⑴25A 5420=⨯=;⑵46A 6543360=⨯⨯⨯=;⑶48A 87651680=⨯⨯⨯=; ⑷210A 10990=⨯=;⑸410A 109875040=⨯⨯⨯=;⑹332A 232112=⨯⨯⨯=; ⑺55A 54321120=⨯⨯⨯⨯=;⑻56A 65432720=⨯⨯⨯⨯=;⑼88A 8765432140320=⨯⨯⨯⨯⨯⨯⨯=;⑽4399A A 98769872520-=⨯⨯⨯-⨯⨯=; ⑾32109A A 109898648-=⨯⨯-⨯=;⑿32545A 4A 5543443348+=⨯⨯⨯+⨯⨯=; ⒀4288A 4A 87654871456-=⨯⨯⨯-⨯⨯=; 经典精讲⒁12344444A A A A 443432432164+++=+⨯+⨯⨯+⨯⨯⨯=;⒂1148A A 4832=⨯=;⒃1299A A 998648=⨯⨯=;⒄812712A 121110987655A 1211109876⨯⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯; ⒅7312512122A A 212111098765431A 121110987654321⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯; ⒆37107A A 10987654321110!10987654321⨯⨯⨯⨯⨯⨯⨯⨯⨯==⨯⨯⨯⨯⨯⨯⨯⨯⨯;⒇54101054994A A 410987610987115A A 98765987612-⨯⨯⨯⨯⨯-⨯⨯⨯==-⨯⨯⨯⨯-⨯⨯⨯.【铺垫】⑴一家有四口人,每年照一张全家福,他们突然想到一件事情,想让每年这四个人的排列方式都不完全相同.比如今年是ABCD ,明年就可以是ABDC .那么这家人的 “全家福”计划最多可以实行多少年呢?⑵这家人掐指一算,发现很快就不能继续拍了,可能过了某年之后,无论怎么排列都会和往 年重复,于是这家人决定要一个小孩,这样又可以多拍几年,那么假设有了一个孩子之后, “全家福”计划最多可以实行多少年呢?【解析】 ⑴若一家有4口人,则能得到每张全家福每个人的位置都不相同的照片,因为4个人全排有44A 24=种情况,也就是24年内可以不重复,以后就会出现重复,所以“全家福”计划最多实行24年.⑵5个人全排有55A 120=种情况,所以“全家福”计划最多实行120年.【例3】从直观上理解排列⑴从4种不同的蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行试验,有多少 种不同的种植方法?⑵在某乒乓球团体赛中,有一方派了4名运动员参赛,采取三局两胜制,前两局单打,最后一局双打,每个运动员只出场一次,则有几种出场顺序?【追问】在2012年的伦敦奥运会中,参加乒乓球团体赛的有3个人,每名运动员出场两次,按照五局三胜制,一、二、四、五场单打,第三场双打,并且比赛顺序是:第一场:A ;第二场:B ;第三场:C A +或B ;第四场:A 或B ;第五场:C ;且如果参加了双打比赛,就不能参加后面的单打比赛;不参加双打比赛的运动员需要参加后面的单打比赛.现我们派张继科、王皓、马龙出场,则有多少不同的方法排定他们的出场顺序?【解析】 ⑴将4种不同的蔬菜品种看作4个不同的元素,则本题即为从4个不同元素中任取3个元素的排列问题,所以不同的种植方法共有34A 43224=⨯⨯=种⑵因为前两局是单打,所以从参赛的4名运动员中取2名运动员去打单打比赛,最后两个人打双打比赛就可以了,所以不同的出场顺序共有24A 4312=⨯=种 【追问】由比赛规则和比赛顺序我们可以知道三个人分别打了一场单打比赛,所以有33A 6=种出场顺序;又因为第三场的双打有2种情况,它唯一决定了第四场的情况,所以,一共有332A 12⨯=种出场顺序.提高班学案1【拓1】有5本不同的书,从中选3本送给3名同学,每人各1本,共有多少种不同的送法? 【解析】 从5本不同的书中选出3本分别送给3名同学的一种选法,对应于从5个元素中取出3个元素的一个排列,因此,不同送法的种数是35A 54360=⨯⨯=种尖子班学案1【拓2】在2012的韩国足球联赛中共有15支球队参加,每队都要与其余各队在主、客场分别比赛1次,共要进行多少场比赛?【解析】 由于任何两队间进行1次主场比赛与1次客场比赛,所以一场比赛相当于从15个不同元素中任取2个元素的一个排列.因此总共进行的比赛场次是215A 1514210=⨯=目标班学案1【拓3】从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有____种.(用数字作答)【解析】 36文娱委员有3种选法,则安排学习委员、体育委员有24A 12=种方法.由分步乘法计数原理,共有31236⨯=种选法.【铺垫】用12345,,,,这五个数字:⑴可以组成多少个数字允许重复的五位数?⑵可以组成多少个数字不允许重复的五位数? ⑶可以组成多少个数字不允许重复的三位数?【解析】 ⑴由于数字允许重复,故每个位置的数字都有5种选法.因此所求五位数共有553125=个;⑵由于数字不允许重复,故每个位置的数字全排就可以了.因此所求五位数共有55A 120=个;⑶由于数字不允许重复,故每个位置的数字从5个数字中选出3个全排就可以了.因此所求 三位数共有35A 60=个.【例4】数字问题用0,1,2,3,4,5这六个数字:⑴可以组成多少个数字允许重复的六位数? ⑵可以组成多少个数字不允许重复的六位数? ⑶可以组成多少个数字允许重复的五位数? ⑷可以组成多少个数字不允许重复的五位数?【解析】 ⑴先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字允许重复,故其它位置的数字都有6种选法.因此所求六位数共有55638880⨯=个.⑵先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字不允许重复,故其它位置的数字全排就可以了. 因此所求六位数共有555A 600=个.⑶先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字允许重复,故其它位 置的数字都有6种选法.因此所求五位数共有4566480⨯=个.⑷先选首位数字,由于0不能作首位数字,因此有5种选法;由于数字不允许重复,故其它位置的数字从剩余的5个数字中选出4个全排就可以了.因此所求五位数共有455A 600=个.提高班学案2 【拓1】用01234,,,,五个数字:⑴可组成多少个无重复数字的五位数?⑵可组成多少个无重复数字的五位奇数?【解析】 ⑴ 方法一:考虑特殊位置“万位”,从1234,,,中任选一个填入万位,共有4种填法,其余四个位置,4个数字全排列为44A ,故共有444A 96⋅=个.方法二:考虑特殊元素“0”,先排0,从个、十、百、千位中任选一个位置将0填入,有14A 种填法,然后将其余4个数字在剩余4个位置上全排列为44A 种,故共有1444A A 96⋅=个;⑵ 考虑特殊位置个位和万位,先填个位,从13,中选一个填入个位有12A 种填法,然后从剩余3个非0数中选一个填入万位,有13A 种填法,包含0在内还有3个数在中间三个位置上全排列,排列数为33A ,故共有113233A A A 36⋅⋅=个.尖子班学案2【拓2】 用0,1,2,3,4,5这六个数字,⑴可以组成多少个数字不允许重复的五位数的偶数?⑵可以组成多少个数字不允许重复且能被5整除的五位数?【解析】 ⑴分两类:个位是0时,有5432120⨯⨯⨯=个;个位是2或4时,由于万位不能为0,所以万位有4种选法;千位有4种选法;百位有3种选法;十位有2种选法,故共有24432192⨯⨯⨯⨯=个,所以可组成的五位偶数有120192312+=个⑵分两类:个位是0时,有5432120⨯⨯⨯=个;个位是5时,由于万位不能为0,所以 万位有4种选法;千位有4种选法;百位有3种选法;十位有2种选法,故共有443296⨯⨯⨯=个,所以组成能被5整除的五位数有12096216+=个目标班学案2【拓3】 用0,1,2,3,4,5这六个数字,⑴组成没有重复数字的五位数中十位数字大于百位数字的有多少个? ⑵组成没有重复数字的五位数,由小到大排列,21350是第多少个数?【解析】 ⑴由题意可知,组成没有重复数字的五位数共有600个,又∵排成的五位数中十位大于百位的和十位小于百位的数字一样多.∴共有16003002⨯=个⑵ 万位是1的五位数有45A 120=个;万位是2且千位为0的五位数有34A 24=个;万位是2且千位为1百位为0的五位数有23A 6=个;万位是2且千位为1百位为3十位为0或4的五位数有122A 4⨯=个.因此,在21350的前面共有154个数,所以21350是第155个数1.组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m个元素的一个组合.【教师备案】2000年8月,华研国际搭上《电视大国民》举办储备新人的“宇宙2000实力美少女争霸战”,上千名爱唱歌的小女生站上舞台,接着淘汰,最后脱颖而出了三位音域不一、个性迥异的新秀——任家萱()S 、田馥甄()H 和陈嘉桦()E .后来将这三个人组成了一个组合叫SHE ,在每场演唱会上,她们都会边唱边跳,但是无论她们在台上怎么站,这个组合都叫做SHE ,不会叫HES 或者ESH .所以组合与顺序没有关系.【挑战五分钟】写出:⑴从4个元素a b c d ,,,中任取2个元素的所有组合;⑵从5个元素a b c d e ,,,,中任取3个元素且包含e 的所有组合.【解析】 ⑴先画一个示意图知识点睛3.3组合dcbabdc d由此即可写出所有的组合:ab ac ad bc bd cd ,,,,,⑵从组合的直观意义可以看出是从⑴中的每个组合加一个e 就可以了,所以共有:abe ace ade bce bde cde ,,,,,2.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m 表示.3.组合数公式:(1)(2)(1)C !!()!m n n n n n m m m n m ---+==-,*m n ∈N ,,并且m n ≤. 【教师备案】)个元素的计数问题,它们的差别是:排列考虑元素顺序,组合不考虑元素顺序.前面我们已经学习了如何计算排列数,下面,我们看一看能否通过排列数计算组合数. 先看一个简单情况:从3个元素a b c ,,中任取2个元素的组合有ab ac bc ,,3种情况,再对每一种组合的2个元素进行排列,这样,就可以得到从3个元素中取2个元素的所有排列(如图).从上面的分析可以看出,“从3个不同的元素中选出2个元素进行排列”这件事,可以分两步进行:第一步:从3个不同元素中取出2个元素,一共有23C 种取法; 第二步:把取出的2个元素进行排列,一共有22A 种排法.根据乘法原理,我们得到“从3个不同的元素中选出2个元素进行排列”一共有2232C A ⋅种排法,即222332A C A =⋅.由此我们可以得出:223322A 32C A 2!⨯==.一般地,考虑C m n 与A mn 的关系:把“从n 个不同的元素中选出m ()m n ≤个元素进行排列”这件事,分两步进行:第一步:从n 个不同元素中取出m 个元素,一共有C m n 种取法; 第二步:把取出的m 个元素进行排列,一共有A m m 种排法.根据乘法原理,我们得到“从n 个不同的元素中选出m ()m n ≤个元素进行排列”一共有C A m m n m ⋅种排法,即A =C A m m mn n m⋅,由此我们可以得出:()()()121A C =A !mm n nm mn n n n m m ---+=,因为()!A !m n n n m =-,所以上面的组合数公式还可以写成:()!C !!m n n m n m =-4.组合数的两个性质:性质1:C C m n m -=;性质2:1C C C m m m -=+.(规定0C 1n =)【教师备案】在讲组合数的两个性质的时候我们可以利用组合数公式,来验证这两个性质;我们也可以从下面的2个小题进行讲解:性质1:计算“从10个人中选出6人参加比赛”与“从10个人中选出4人不参加比赛”的方法数.【解析】每次选出6人相当于剩下4人,所以,选出6人参加比赛和选出4人不参加比赛的方法数是一样的.即641010C C =性质2:从10名战士和1名班长这11人中选出5人参加比武,一共有多少种方案?【解析】一方面,从11人中选出5人参加比武,一共有511C 种方案.另一方面,选出的5人可以分为两类:第一类:含有班长,一共有410C 种方案;第二类:不含班长,一共有510C 种方案. 依据加法原理,一共有451010C +C 种方案.由此,我们得到545111010C C +C =. 【教师备案】老师在讲组合时,建议先讲组合问题,什么是组合,让学生从直观上理解组合,多举几个小例子,具体例子见上边组合问题中的教师备案,然后让学生写组合,这时就可以让学生做【挑战五分钟】了.学生会写所有的组合之后,那组合数又是多少呢?同样也不可能每次做题时都把所有的组合写出来,然后数一下,这时,我们就需要组合数的公式了,所以老师就可以给学生讲解组合数公式,讲完组合数之后,要让学生熟练的运用组合数公式,这时,就可以做例5.学生理解组合并知道组合数如何计算后,就要从直观理解组合,具体见例6.【例5】 计算组合数⑴计算:43107C C ,;239999C C +.⑵解方程:32111C 24C x x +=.【解析】 ⑴41010987C 2104321⨯⨯⨯==⨯⨯⨯,37765C 35321⨯⨯==⨯⨯,23399991001009998C C C 161700321⨯⨯+===⨯⨯ ⑵原方程可化为!(1)!11243!(3)!2!(1)!x x x x +⨯=⨯-- 整理得211105500x x --= 解得10x =或511x =-(不合题意舍去).经检验10x =是原方程的根.(应强调解组合数方程要验根)【备选】学生刚接触组合,所以对组合数的计算也还不是很熟悉,要求学生加强训练,老师可以从下面的题中挑选几个让学生练练. 计算下列各题:⑴25C =_____,⑵47C =____,⑶58C =____,⑷29C =____,⑸510C =____, ⑹315C =____,⑺235C =____,⑻4850C =____,⑼98100C =_____,⑽4399C C -=____, ⑾32109C C -=____,⑿32545C 4C +=_____,⒀4288C 2C -=____,⒁12344444C C C C +++=_____,⒂1148C C =_____,⒃1299C C =_____,⒄812712C C =_____,⒅7312512122C C C =_____,⒆37107C C 10!=_____,⒇54101053994C C C C -=-____ 【解析】 ⑴25C 10=;⑵47C 35=;⑶58C 56=;⑷29C 36=;⑸510C 252=;⑹315C 455=;⑺235C 595=;⑻4850C 1225=;⑼98100C 4950=;⑽4399C C 42-=;⑾32109C C 84-=;⑿32545C 4C 74+=; ⒀4288C 2C 14-=;⒁12344444C C C C 15+++=;⒂1148C C 32=;⒃1299C C 324=;⒄812712C 5C 8=;⒅7312512122C C 15840C =;⒆37107C C 110!30240=;⒇54101053994C C 19C C -=- 经典精讲【铺垫】李代沫在中国好声音的文化测试中,需从5个试题中任意选答3题,问:⑴有几种不同的选题方法?⑵若有一道题是必答题,有几种不同的选题方法?【解析】 ⑴所求不同的选题方法数,就是从5个不同元素里取出3个元素的组合数,即35C 10=种⑵因为已有一道题必选,所以只要在另外4道题中选2道,不同的选题方法有24C 6=种【例6】从直观上理解组合⑴现有10名学而思高中数学教师,其中男教师6名,女教师4名 ①现要从中选2名去参加非诚勿扰,有多少种不同的选法?②现要从中选出男、女教师各2名去参加,有多少种不同的选法?【追问】假定这一期只有学而思派出去的两位男老师,台上24个女士(其中包括学而思派出去的两个女老师),那么学而思的两位男老师去相亲,最终都成功且相亲对象不是学而思女老师的情况有多少种.⑵甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有____种.(用数字作答)【解析】 ⑴①从10名教师中选2名去参加非诚勿扰的选法数,就是从10个不同元素中取出2个元素的组合数,即210C 45=种 ②从6名男教师中选2名的选法有26C 种,从4名女教师中选2名的选法有24C ,根据分步乘 法计数原理,因此共有不同的选法2264C C 90=种 【追问】2221462⨯=. ⑵96甲选2门有24C 6=种选法,乙、丙各有34C 4=种选法,由分步乘法计数原理可知,共有64496⨯⨯=种选法.解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:①捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.②插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.【教师备案】排列组合的一些典型题型在本讲只讲捆绑法和插空法,其它的方法我们放到同步再去讲解,所以老师可以先以【铺垫】为例,讲解捆绑和插空,然后让学生做例7,例7⑴是直接就可以看出捆绑和插空的,例7⑵从表面上看不出来是捆绑还是插空,但是仔细分析一下题就知道是插空.【铺垫】2名女生、4名男生排成一排,问:⑴2名女生相邻的不同排法共有多少种?⑵2名女生不相邻的不同排法共有多少种?【解析】 ⑴因为2名女生必须相邻,所以可以将2名女生看成1个元素,与4名男生共5个元素排成一 3.4排列组合的一些典型题型经典精讲知识点睛11排,不同的排法有55A 种.又因为2名相邻的女生有22A 种排法,因此不同的排法种数是5252A A 1202240=⨯=⑵2名女生不相邻的排列可分2步完成: 第一步:将4名男生排成一排,有44A 种排法;第二步:排2名女生,由于2名女生不相邻,于是可以在每2名男生之间及两端共5个位置中选出2个排2名女生,有25A 种排法.根据分步计数原理,不同的排法种数是4245A A 2420480=⨯=【例7】 捆绑、插空⑴求不同的排法种数:①6男2女排成一排,2女相邻; ②6男2女排成一排,2女不能相邻; ③4男4女排成一排,同性別者相邻; ④4男4女排成一排,同性別者不能相邻.⑵一排有九个座位,将六个人依次坐好,若每个空位两边都坐有人,共有多少种不同的坐法?【解析】 ⑴①是“相邻”问题,用捆绑法解决:27A A 10080=.②是 “不相邻”问题,可以用插空法直接求解.6男先排,再在7个空位中排2女,即用插空法解决:6267A A 30240=.③是“相邻”问题,应先捆绑后排位:442442A A A 1152=.④是 “不相邻”问题,可以用插空法直接求解: 441442A A A 1152=.【点评】对于④很多学生会写成4445A A ,但是这种写法是错误的,因为当排完男生(或女生)之后,从5个空选4个空的时候有可能两个端点都选,这样中间就会有男生(或女生)相邻了 ⑵九个座位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66A 种不同的坐法,再将三个空座位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C 中不同的“插入”方法.根据乘法原理共有6365A C 7200=种不同的坐法.提高班学案3【拓1】分别求出符合下列要求的不同排法的种数①6人排成一排,甲、乙必须相邻; ②6人排成一排,甲、乙不相邻.【解析】 ①将甲乙“捆绑”成“一个元素”与其他4人一起作全排列共有2525A A 240=种排法②甲乙不相邻,第一步除甲乙外的其余4人先排好;第二步,甲、乙选择已排好的4人的左、右及之间的空挡插位,共有4245A A 480=.尖子班学案3【拓2】4男3女排成一排,在下列条件下分别有多少种不同的排法⑴甲、乙、丙三人一定相邻 ⑵甲、乙、丙三人不能相邻【解析】 ⑴把甲、乙、丙看成一个整体,有33A 种排法;把其余的四个人和甲、乙、丙看成的整体全排,有55A 种排法,共有3535A A 720=种排法⑵把除去甲、乙、丙的四个人全排,有44A 种排法;因为甲、乙、丙不相邻,所以采用插空法,有35A 种排法,共有4345A A 1440=种排法。

排列组合讲义汇编

排列组合讲义汇编

排列组合讲义排列组合方法篇一、两个原理及区别二、排列数公式 三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用!n n ++⋅=m n +-)1(n m ++ n m ⨯⨯=r 002412n n n n C C C -+=+++=.解决排列组合一般思路常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略1. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法4432. 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略1.把6名实习生分配到7个车间实习,共有多少种不同的分法2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为3、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略1. 8人围桌而坐,共有多少种坐法?A B C D E AE H G F2. 6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略1. 8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法八.排列组合混合问题先选后排策略1.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排一般地,元素分成多排的排列问题,可归结为一排考虑,再解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策2.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务, 每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种九.小集团问题先整体后局部策略1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个?2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?一班二班三班四班六班七班2. 10个相同的球装5个盒中,每盒至少1个,有多少装法?3. 100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略1.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和偶数,不同的取法有多少种?2.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略1. 6本不同的书平均分成3堆,每堆2本共有多少分法?小集团排列问题中,先整体后局部,再结合其它策略进将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n n A (n 为均分的组数)避免重复计数。

排列组合讲义

排列组合讲义

排列组合·概率与统计·二项式定理一、抽样(知道以预防基础知识考查) 1、简单随机抽样 ①抽签法 ②随机数法2、系统抽样(总体差异不明显)i .编号;ii.确定分段间隔k ,对编号分段;iii.在第一段用简单随机抽样确定第一个个体编号m ; vi.按照m+k 、m+2k 、m+3k 等获取样本。

3、分层抽样(总体差异明显)i.总体按一定标准分层(数量不一定相等); ii .确定样本大小和总体个数比值k ;iii .按各层数量和比值计算各层要抽取的样本数量; vi .用简单随机抽样或系统抽样抽取个体组成样本。

二、排列组合 (一)、排列组合基本问题 1、组合: (m>n ) 组合是m 个物件拿出n 个的方法种数 2、排列:(m>n ) 排列是m 个物件拿出n 个来排列的方法种数⇒3、所以 并且m>n*4、并且:设集合M 有1n +个元素,其中一个元素是A 。

从M 中选1r +个元素11()r n C ++可以分情况选取①在除去A 元素的n 个元素中直接选取r+1个元素1()r n C +,则此时结果包括所有没有A 元素的选法;②在除去A 元素的n 个元素中选取r 个元素()rn C ,和A 元素一起构成r+1个元素,则此时结果包括所有含有A 元素的选法。

*(二)、排队、选人、染色、隔板、走路 1、排队Eg1:(捆绑)五人排队,甲乙相邻,有几种排法? (2424A A )Eg2:六人排队,甲不排头,乙不排尾,有几种排法?(504) 解:①直接法:甲在尾时有5A 甲不在尾时有4A②间接法:6AEg3(插空):四男三女排队,女不相邻,有几种排法?(4A ) 2、选人Eg4:七人选三人,甲乙至少有一人选中,有几种选法? 解: ①直接法:5C②间接法:3375C C -3、染色Eg5:田字格用四种颜色染色,相邻不同色(对角不相邻),有几种染法? 解: 染色数分类:(1)、用两色:2242C A (2 )、用三色:C(3 )、用四色:*Eg6:四棱锥P-ABCD 用五种颜色染色,一棱两端点不同色,有几种染法?(420) 解:①染色数分类:(1)、用三色:(2)、用四色:(3)、用五色:②对点色讨论:先染三角形PAB,有种。

排列组合专题讲义

排列组合专题讲义
例 9、 4 名学生分 6 本相同的书,每人至少 1 本,有多少种不同分法?
变式一 有 10 个三好学生名额,分配到 6 个班,每班至少 1 个名额,共有多少种不同的分 配方案?
变式二 20 个相同的球分给 3 个人,允许有人可以不取,但必须分完,有多少种分法?
6
思维的发掘
能力的飞跃
高中数学讲义
十 分组分配问题
课后作业
1、7 名师生站成一排照相留念,其中老师 1 人,男生 4 人,女生 2 人,在下列情况下,各 有不同站法多少种? (1)两名女生必须相邻而站; (2)4 名男生互不相邻; (3)若 4 名男生身高都不等,按从高到低的顺序站; (4)老师不站中间,女生不站两端. 2、2 位男生和 3 位女生共 5 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两 位女生相邻,则不同排法的种数是___。
6 、上午 4 节课,一个教师要上 3 个班级的课,每个班 1 节课,都安排在上午,若不能 3 节连上,这个教师的课有_ __种不同的排法.
7、从 5 名学生中任选 4 名分别参加数学、物理、化学、生物四科竞赛,且每科竞赛只有 1 人参加,若甲不参加生物竞赛,则不同的选择方案共有__ _种.
8、 某条道路一排共 10 盏路灯,为节约用电,晚上只打开其中的 3 盏灯.若要求任何连 续三盏路灯中至少一盏是亮的且首尾两盏灯均不打开.则这样的亮灯方法有_ __种.
5
高中数学讲义
变式五 某校开设 A 类选修课 3 门,B 类选择课 4 门,一位同学从中共选 3 门.若要求两类 课程中各至少选一门,则不同的选法共有 A. 30 种 B. 35 种 C. 42 种 D. 48 种
变式六 在某种信息传输过程中,用 4 个数字的一个排列(数字允许重复)表示一个信息, 不同排列表示不同信息,若所用数字只有 0 和 1,则与信息 0110 至多有两个对应位置上的 数字相同的信息个数为 A.10 B.11 C.12 D.15

高中数学排列组合模型讲义

高中数学排列组合模型讲义

高中数学排列组合模型讲义定义:从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列。

记作:Km HY2.构成:{⎧⎪⎨⎪⎩原始的元素:n 个取出的元素:m 个【元素】 【位置】m 个元素按照一定的顺序排列【分步】 本质:【顺序】从n 个不同的元素中取出的m 个元素进行排列时顺序是固定的 【集合】有限集合K={}n a a a ......,21{},,|),......,,(.....21j i x x k x x x x K K K K j i i m m ≠≠∈=**=(1)(2)......(1)m mn k n n n n m A =*--*-+=【元素个数】⎪⎩⎪⎨⎧=⊇≥=n A card BA mn mB card )()(【数】m 个不同的元素【个数】从n 个不同的元素中取出m(n m ≤)个元素的所有不同元素的个数,叫做从n 个不同元素中取出m 个元素的排列数【K 集合中的两个元素】1.相邻 2.不相邻3.在特定的位置 4.不在特定的位置 【三个元素】1.相邻 2.不相邻3.在特定的位置4.不在特定的位置【四个元素】从a,b,c,d 四个元素中取出三个元素的排列共有34A 个,abc 是其中一个排列 【m 个元素】1.取出的m 个元素可以重复 2.取出的m 个元素不可以重复 【位置与元素】1.特定的元素排在特定的位置 2.特定的元素不排在特定的位置 3.分类【元素的个数】{【有限】有穷数列【无限】无穷数列【顺序】{组合数列【m 】{时,全排列时,选排列n m n m =<4.条件1.【定义】从n 个不同的元素中取出m(n m ≤)个元素,按照一定的顺序排成一列2.【位置】元素相同,位置也相同,则是同一个排列;元素完全不同,或元素不完全相同,或元素相同,位置不同都不是同一个排列 5.性质【个数】)!(!m n n A mn -=【m=n 】!n A nn =11--=m n m n nA A排列模型一、 直线排列:元素不完全相同的直线排列⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⊃⊃⎢⎣⎡⊃⎢⎣⎡+-+-⊃→置特定元素必不在特定位特定元素必在特定位置元素顺序不固定元素顺序固定必不相邻模型)!元素顺序不固定()!元素顺序固定(必相邻模型排列数不重复排列m m m m n m m n m !11 模型个人,每个人至少一件映射个数为排列数为重复排列k n m ⊃→→ 元素不完全相同的直线排列走楼梯法排列数⊃→!!!!!321k m m m m n二、 环状排列⎢⎢⎢⎢⎢⎣⎡⎢⎢⎢⎣⎡⊃→长方形排列正多边形排列项圈排列排列数为无编号直线排列有编号 直线排列一、 不同元素的排列问题 (一) 不重复排列 1、 必相邻模型:站法?必须站在一起,有几种名女生站成一排,女生名男生和例、有)数为(元素进行排列,总排列对个元素顺序不固定个元素排列元素看成一个元素,解析:用捆绑法把)元素顺序不固定:()、()总排列数为(个元素顺序一定个元素排列一个元素,然后对元素捆绑在一起,看成解析:把)元素顺序固定:(、元素必相邻的排列数:个不同元素中,34!!11!!12!11!1)1(m m n m m m n m m m n m m n m m n m m n m m n +-∴+-+-+-∴+-+-2、 不相邻模型:有几种站法?女生和女生都不相邻,不相邻,有几种站法?名女生站成一排,女生名男生和例、有方法并按顺序排列,共有种个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序不固定:)、(顺序固定,即有个元素,个空来放个空,从中取出个元素全排列,则有解析:对元素顺序固定:、数:个元素必不相邻的排列个不同元素中,45121)1(m m m n m n m m m m n m n m m n +--+--3、特定元素必在特定位置站法?在两端,有几种不同的必须站中间,乙必须站个人站成一排,其中甲例、排列。

排列组合讲义(新)

排列组合讲义(新)

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用!n n ++⋅==!!(m n m n -⋅(2)m n C +m n C n m ++ n m ⨯⨯=r 002412n n n n C C C -+=+++=.解决排列组合一般思路1.审题要清2.分步还是分类3.排列还是组合常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略1. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法2. 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 443五.重排问题求幂策略1.把6名实习生分配到7个车间实习,共有多少种不同的分法2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为3、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略1. 8人围桌而坐,共有多少种坐法?A B C D E AE H G F2. 6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略1. 8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法前 排后 排八.排列组合混合问题先选后排策略1.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.2.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务, 每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?九.小集团问题先整体后局部策略1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个?2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?一班二班三班四班六班七班2. 10个相同的球装5个盒中,每盒至少1个,有多少装法?3. 100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略1.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和偶数,不同的取法有多少种?2.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略1. 6本不同的书平均分成3堆,每堆2本共有多少分法?2、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?3、 10名学生分成3组,其中一组4人, 另两组3人,但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两小集团排列问题中,先整体后局部,再结合其它策略进行处理。

排列组合讲义

排列组合讲义

排列、组合问题技巧方法一、不相邻问题——插空法插空法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法。

即先排好没有限制条件的元素,然后将有限制条件的元素按要求插入排好元素的空档之中即可。

例1、学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生中间,且老师互不相邻,共有多少种不同的坐法?例2、7人站成一排照相,要求甲,乙,丙三人不相邻,分别有多少种站法?例3、马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?1、某会议室第一排共有8个座位,现有3人就座,若要求每人左右均有空位,那么不同的坐法种数为()A.12B.16 C.24 D.322、七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是A.1440 B.3600C.4820 D.48003、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场。

则节目的出场顺序有多少种?二、相邻问题——捆绑法捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题。

即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法?例2、A、B、C、D、E五人并排站成一排,如果A、B必须相邻且B在A的右边,那么不同的排法种数有()A.60种B.48种C.36种D.24种1、(崇文·理·题7)2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为()A.36B.42C.48D.602.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有种.捆绑插空法1、某人射击8枪命中了4枪,4枪命中恰好有3枪连在一起的情形不同种数有多少个?2、A 、B 、C 、D 、E ,5人站成一排照相,A 、B 必须相邻,但A 、B 都不与C 相邻,则不同的站法有多少种?3(2011石景山一模理6).某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求剩余的4个车位连在一起,则不同的停放方法的种数为( ) A .16 B .18 C .24 D .32三、特殊元素 “优先安排法”对于特殊元素的排列组合问题,一般应先考虑特殊元素,再考虑其他元素例1、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有( ) A.24 B.30 C.40 D.60例2、1名老师和4名获奖同学排成一排照像留念,若老师不在两端,则有不同的排法有________种.1、(丰台·理科·题5)从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是( )A .36B .48C .52D .544、(2011门头沟一模理7).一天有语文、数学、英语、物理、化学、生物、体育七节课,体育不在第一节上,数学不在第六、七节上,这天课表的不同排法种数为(A )7575A A -(B )2545A A(C )115565A A A(D )61156455A A A A +3、(崇文二模理)用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为(A )120 (B )72 (C )48 (D )36四.选排问题——先取后排法从几类元素中取出符合题意的几个元素,再安排到一定位置上,可用先取后排法.例1、四个不同的球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法共有________种例2、9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同分组法?1、4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?2、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球共有多少种不同的装法?3、5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种4.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有种.4、一个班有6名战士,其中正,副班长个一名,现从中选四人完成四种不同的任务,每人完成一种任务,且正,副班长有且只有1人参加,则不同的选法有多少种五、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序,可用缩小倍数的方法.【例1】A、B、C、D、E五个人并排站成一排,如果B必须站A的右边(A、B可不相邻),那么不同的排法种数有()A.24种B.60种C.90种D.120种【例2】7人排对,其中甲、乙、丙三人顺序一定,有多少种不同的排法?1、某天课程表安排语文,数学,英语,历史,地理,政治各一节。

高中数学排列组合讲义

高中数学排列组合讲义

高中数学排列组合一.基础知识1.分类计数原理:完成一件事情有n 类方法,在第一类办法里有m 1种不同的方法,在第二类办法里有m 2种不同的方法......在第n 类办法中有m n 种不同的方法,那么完成这件事情共有N=m m m n +++...21种不同的方法。

2.分步计数原理:做一件事,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法......做第n 步有m n 种不同的方法,那么完成这件事情共有N=m m m n ...21⨯⨯种不同的方法。

3.(1)排列:一般地,从n 个不同的元素中取出m (n m ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。

(2)排列数:一般地,从n 个不同元素中取出m 个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列数,用符号A mn 表示(3))1...(2)(1(+---=m n n n n A mn )若m=n ,得123)...2)(1(!••--==n n n n A nn ,左边表示n 个不同元素全部取出的排列数,称为全排列数。

右边表示正整数1到n 的连乘积,称为n 的阶乘。

4.(1)组合:一般地,从n 个不同元素中取出m (n m ≤)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。

(2)组合数:一般地,从n 个不同元素中取出m (n m ≤)个元素的所有不同组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号C mn 表示 (3)组合数公式)!(!!m n m n AA C m mm n mn -==(4)常用性质:①C C mn n mn -= ②C C C m n mn mn 11-++=5.相邻问题(捆绑问题)n 个元素排列,其中的m 个元素要求相邻,把这m 个元素看成1个元素与其他n-m 个元素排列,在考虑这m 个元素自身的顺序即可,其结果是!)!1(m m n +- 6.相离问题(插空问题)n 个元素排列,其中的m 个元素要求彼此互不相邻,先排其余的n-m 个元素,这n-m 个元素的每相邻的两个元素之间都有一个空,再加上两端,共有n-m+1个空,从这n-m+1个空中选m 个空去排要求彼此互不相邻的m 个元素就可以了,其结果是A mm n m n 1)!(+--7.定位问题:(1)单定位:n 个元素排列,某个元素要求排在某个指定的位置上,等价于没有这个元素和没有这个位置,其结果是(n-1)!(2)复定位:n 个元素排列,k 个元素要求排在m 个指定的位置上,先从这m 个位置中选出k 个位置去排这k 个元素,再排其余n-k 个元素即可,其结果是)!(k n Ak m-8.平均分组问题:把n 个元素平均分成m 组,每组k (k=mn)个元素,共有不同的分法AC C C mmkkn kk n kn ...2--种9.)(......*222111)(N b C baC baC baC a C b a n n n n rrn r n n n n n nn n∈++++++=---+这个公式叫做二项式定理。

排列组合(讲义部分)

排列组合(讲义部分)

1、排列组合定义:题干当中给出两组或两组以上的对象或信息,在答案中需要考生对排列组合结果进行判断。

历年国考“排列组合”题量解题原则:1、最大信息优先2、确定信息优先3、顺藤摸瓜解题方法:一、带入排除法1.甲、乙、丙、丁是四位天资极高的艺才家,他们分别是舞蹈家、画家、歌唱家和作家,尚不能确定其中每个人所从事的专业领域,已知:(1)有一天晚上,甲和丙出席了歌唱家的首次演出。

(2)画家曾为乙和作家两个人画过肖像。

(3)作家正准备写一本甲的传记,他所写的丁传记是畅销书。

(4)甲从来没有见过丙。

下面哪一选项正确地描述了每个人的身份?()A.甲是歌唱家,乙是作家,丙是画家,丁是舞蹈家B.甲是舞蹈家,乙是歌唱家,丙是作家,丁是画家排列组合(讲义部分)C.甲是画家,乙是作家,丙是歌唱家,丁是作家D.甲是作家,乙是画家,丙是舞蹈家,丁是歌唱家2.李老师、王老师、张老师在同一所大学教语文、数学和外语,按规定每人只担任其中一门课。

而且①李老师上课全部用汉语。

②外语老师是该校一个学生的舅舅。

③张老师是女教师,她的女儿考大学之前,经常向数学老师请教。

请判定他们各自上的课程是:A.李老师上语文,王老师上外语,张老师上数学B.王老师上语文,李老师上外语,张老师上数学C.张老师上语文,王老师上外语,李老师上数学D.王老师上语文,张老师上外语,李老师上数学解题方法:二、列表法3.小红、小兰和小慧三姐妹,分别住在丰台区、通州区、朝阳区。

小红与住在通州的姐妹年龄不一样大,小慧比住在朝阳区的姐妹年龄小,而住在通州的姐妹比小兰年龄大。

那么按照年龄从大到小,这三姐妹的排序是()。

A.小红、小慧、小兰B.小红、小兰、小慧C.小兰、小慧、小红D.小慧、小红、小兰4.某办公室有三位工作人员:刘明、庄嫣和文虎。

他们三人中,一人是博士,一人是硕士,还有一人是本科毕业生。

已知博士比刘明大两岁;庄嫣与本科毕业生同岁,但是月份稍大;本科毕业生的年龄最小。

高中数学第四册排列组合讲义.

高中数学第四册排列组合讲义.

A B P Q • • • •高中數學第四冊排列組合講義1.A , B 兩隊比籃球賽,每局不得成和局,規定A 隊勝三局為贏;A 隊勝三場前B 勝二局算B 隊贏,試問此比賽之所有可能情形有 種?又其中A , B 輸贏如何?2.有A , B , C , D , …等身高不等的8人排成一橫列,欲使任一較矮者不夾排在二較高者之間之排法共有 種?3.五種不同的顏色塗右圖,相鄰著異色,共有 種不同的塗法。

4.))()((v u z y x g f e d c b a +++++++++的展開式中共有 項。

5.540之正因數共有 個,其一切正因數和為 ,乘積為 。

6.x | 36000,(x , 63)=3,25| x 之自然數x 共有 個。

7.不同的渡船3艘,每艘可載5人,今有7人同時過渡,有 種安全的渡法。

8.如右圖,從A 到B 之走法中,不許走←方向的走法共有 種。

9.下列各街巷,從A 走到B 之捷徑走法各有幾?10. 如右圖自A 到B ,但限定只能走↑→↓三種方向,而且道路不重複走。

試問以下情形各有幾種走法? (1)由A 到B 有 種走法。

(2)由A 不經過P 到B 有 種走法。

(3)由A 不經過Q 到B 有 種走法。

(4)由A 不經過P 且不經過Q 到B 有 種走法。

(5)由A 經過P 但不經過Q 到B 有 種走法。

11. 考慮正五邊形及其所有對角線所成的圖形,此圖形中各線段圍成之各種三角形相似者列為一類,共有m 類,全等者列為一類,共有n 類,求m= 及n= 。

總共有 個三角形。

12. 在平面上任意畫不完全重合之n 個相異圓至多有 個交點。

13. 排容原理:1到100之自然數中,是2或3或5的倍數共有 個。

14. 千元鈔2張,五百元鈔3張,百元鈔4張,每次至少取一張,(1)共有 種取法。

(2)可以配出 種不同的款項。

15. 今有五個不同的門,甲、乙兩人由不同的門進入,不同的門出來,(1)自己可由相同的門進出有 種方法。

组合数学讲义 1章 排列组合

组合数学讲义 1章 排列组合

第1章组合数学基础1、排列组合的基本计数问题(研、本)2、计算多项式系数(研、本)3、排列组合算法(研)1.1 绪论(一)背景起源:数学游戏幻方问题:给定自然数1,2,…,n2,将其排列成n阶方阵,要求每行、每列和每条对角线上n个数字之和都相等。

这样的n阶方阵称为n阶幻方。

每一行(或列、或对角线)之和称为幻方的和。

例:图1.1.1为3阶幻方,其幻和等于15。

(1)存在性问题:即n阶幻方是否存在?(2)计数问题:如果存在,对某个确定的n,这样的幻方有多少种?(3)构造问题:即枚举问题,亦即如何构造n阶幻方。

图1.1.1 3阶幻方奇数阶幻方的生成方法:一坐上行正中央,依次斜填切莫忘,上边出格往下填,右边出格往左填,右上有数往下填,右上出格往下填。

例:将2,4,6,8,10,12,14,16,18填入下列幻方:例1.1.1 (拉丁方)36名军官问题:有1,2,3,4,5,6共六个团队,从每个团队中分别选出具有A 、B 、C 、D 、E 、F 六种军衔的军官各一名,共36名军官。

问能否把这些军官排成6×6的方阵,使每行及每列的6名军官均来自不同的团队且具有不同军衔?本问题的答案是否定的。

反例:A1 B2 C3 D4 E5 F6 A1 B2 C3 D4 E5 F6 B2 C3 D4 E5 F6 A1 B3 C4 D5 E6 F1 A2 C3 D4 E5 F6 A1 B2 C5 D6 E1 F2 A3 B4 D4 E5 F6 A1 B2 C3 D2 E3 F4 A5 B6 C1 E5 F6 A1 B2 C3 D4 E4 F5 A6 B1 C2 D3 F6 A1 B2 C3 D4 E5 F6例1.1.2 (计数——图形染色)用3种颜色红(r )、黄(y )、蓝(b )涂染平面正方形的四个顶点,若某种染色方案在正方形旋转某个角度后,与另一个方案重合,则认为这两个方案是相同的。

例如,对图1.1.2的涂染方案(a),当正方形逆时针旋转o 90时就变为方案(b),因此,在正方形可旋转的前提下,这两种方案实质上是一种方案。

排列组合-简单难度-讲义

排列组合-简单难度-讲义

排列组合知识讲解一、排列1.排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)2.排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.3.排列数公式:A (1)(2)(1)mn n n n n m =---+,m n +∈N ,,并且m n ≤. 4.全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. 5.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.二、组合1.组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.2.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.3.组合数公式:(1)(2)(1)!C !!()!mnn n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:①C C m n m n n-=; ②11C C C m m m n n n -+=+.(规定0C 1n =)三、排列组合一些常用方法1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.四、实际问题的解题策略1.排列与组合应用题三种解决途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 注意:求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏;③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.典型例题一.选择题(共20小题)1.(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故选:D.2.(2018•天心区校级模拟)某地精准扶贫正在进行验收,验收组要对一自然村庄8户贫困户进行验收.验收方案对入户顺序作如下规定:甲贫困户须是第一户验收,乙贫困户不能是末尾一户验收,丙贫困户须放在末尾两户验收,则验收组入户方案共有()A.1320种B.5040种C.1440种D.1520种【解答】解:由题意可知:丙贫困户须放在末尾验收,则验收方法有:种,丙贫困户须放在末尾倒数第二户验收,验收方法有:种,则验收组入户方案共有:+=1320(种),故选:A.3.(2018•凯里市校级二模)2017年11月30日至12月2日,来自北京、上海、西安、郑州、青岛及凯里等七所联盟学校(“全国理工联盟”)及凯里当地高中学校教师代表齐聚凯里某校举行联盟教研活动,在数学同课异构活动中,7名数学教师各上一节公开课,教师甲不能上第三节课,教师乙不能上第六节课,则7名教师上课的不同排法有()种A.5040 B.4800 C.3720 D.4920【解答】解:根据题意,分2种情况讨论:①,若教师甲上第六节课,将剩余的6名教师全排列,安排在其他6节课的位置,有A66=720种排法,②,若教师甲上不上第六节课,由于甲不能上第三节课,则甲有5种安排方法,教师乙不能上第六节课,则以有5种安排方法,将剩余的5名教师全排列,安排在其他5节课的位置,有A55=120种排法,则此时有5×5×120=3000种安排方法,则7名教师上课的不同排法有720+3000=3720种;故选:C.4.(2018•邵阳三模)现有大小和颜色相同且标号分别为1,2,3,4,5,6的六个小球,将六个小球放到甲、乙两个盒子里,要求标号为1,3的小球必须在同一个盒子,且每个盒子中至少有两个小球,则不同的方法有()A.15 B.18 C.20 D.22【解答】解:根据题意,分2步情况分析:①,将6个小球分成2组,若1、3单独一组,有1种情况,若1、3与其他1个小球1组,有C41=4种情况,若1、3与其他2个小球1组,有C42=6种情况,则有1+4+6=11种分组方法;②,将分好的2组全排列,对应甲乙两个小盒,有A22=2种情况,则有2×11=22种不同的放法;故选:D.5.(2018•延安模拟)设集合A={﹣1,0,1},B={(x,y)|x∈A,y∈A},则B 中所含元素的个数为()A.3 B.6 C.9 D.12【解答】解:∵集合A={﹣1,0,1},B={(x,y)|x∈A,y∈A},∴B中x有3种取法,y有3种取法,则B中所含元素的个数为:3×3=9.故选:C.6.(2018•山西一模)某天的值日工作由4名同学负责,且其中1人负责清理讲台,另1人负责扫地,其余2人负责拖地,则不同的分工共有()A.6种 B.12种C.18种D.24种【解答】解:根据题意,分3步分析:①,在4人中选出1人负责清理讲台,有C41=4种情况,②,在剩下的3人中选出1人负责扫地,有C31=3种情况,③,剩下的2人负责拖地,有1种情况,则有4×3=12种不同的分工;故选:B.7.(2018•西安二模)由2,3,4,5,6这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有()A.36个B.24个C.18个D.6个【解答】解:根据题意,要求三位数中各位数字之和为偶数,则分2种情况讨论:①,三位数的三个数字都为偶数,将2、4、6三个数字全排列,有A33=6种情况,即有6个符合条件的三位数,②,三位数的三个数字中有2个奇数,1个偶数,在3个偶数中任选1个,与3、5一起组成三位数,有3×A33=18种情况,即有18个符合条件的三位数,则一共有6+18=24个符合条件的三位数,故选:B.8.(2018春•薛城区校级期末)某班级要从四名男生、两名女生中选派四人参加某次社区服务,则所选的四人中至少有一名女生的选法为()A.14 B.8 C.6 D.4【解答】解:根据题意,分2种情况讨论:①、所选的四人中有1名女生,则有3名男生,有C43C21=8种情况,②、所选的四人中有2名女生,则有2名男生,有C42C22=6种情况,则所选的四人中至少有一名女生的选法有8+6=14种;故选:A.9.(2017秋•东安区校级期末)=()A.B.C.D.【解答】解:===.故选:D.10.(2018春•抚顺期末)某班准备从甲、乙、丙等6人中选出4人在班会上发言介绍学习经验,要求甲、乙、丙三人中至少有两人参加,那么不同的发言顺序有()A.18种B.12种C.432种D.288种【解答】解:根据题意,6人中除甲乙丙之外的3人为a、b、c,分2步进行分析:①,先在6人中选出4人,要求甲、乙、丙三人中至少有两人参加,若甲、乙、丙三人都参加,在a、b、c三人中任选1人,有3种情况,若甲、乙、丙三人有2人参加,在a、b、c三人中任选1人,有C31C31=9种情况,则有3+9=12种选法;②,将选出的4人全排列,安排4人的顺序,有A44=24种顺序,则不同的发言顺序有12×24=288种;故选:D.11.(2017秋•东安区校级期末)十字路口来往的车辆,如果不允许回头,则行车路线共有()A.24种B.16种C.12种D.10种【解答】解:根据题意,起点为4种可能性,终点为3种可能性,因此,行车路线共有C41×C31=12种,故选:C.12.(2018春•南昌期末)将编号为1,2,3,4的四个小球放入A,B,C三个盒子中,若每个盒子至少放一个球,且1号球和2号球不能放在同一个盒子,则不同的放法种数为()A.30 B.24 C.48 D.72【解答】解:根据题意,分2步进行分析:①,将4只小球分成3组,其中1、2号球不能分到同一组,有C42﹣1=5种分组方法,②,将分好的3组全排列,放进A,B,C三个盒子中,有A33=6种情况,则一共有5×6=30种不同的放法;故选:A.13.(2018春•罗庄区期中)按ABO血型系统学说,每个人的血型为A,B,O,AB型四种之一,依血型遗传学,当且仅当父母中至少有一人的血型是AB型时,子女的血型一定不是O型,若某人的血型的O型,则父母血型的所有可能情况有()A.12 种B.6 种C.9 种D.10 种【解答】解:由题意,他的父母的血液类型都是A、B、O三种之一,该人的血型的O型,故每人的血液类型有三种可能则其父母血型的所有可能情况有3×3=9种;故选:C.14.(2018春•碑林区校级期中)4名学生选修3门不同的课程,每个学生只能选修其中的一门,则不同的选修方法有()A.4种 B.24种C.64种D.81种【解答】解:根据题意,4名学生选修3门不同的课程,且每个学生只能选修其中的一门,每人都有3种选法,则四人一共有3×3×3×3=81种选法;故选:D.15.(2018春•大武口区校级期中)甲、乙等5人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有()A.24种B.48种C.72种D.120种【解答】解:根据题意,分2步进行分析:①,由于甲和乙必须相邻,将甲乙看成一个整体,考虑其顺序,有A22=2种情况,②,将这个整体与其他3人全排列,有A44=24种情况,则甲和乙必须相邻的排法有2×24=48种;故选:B.16.(2018春•小店区校级期中)5个节目,若甲、乙、丙三个节目按给定顺序出现不同的排法有()A.120种B.80种C.48种D.20种【解答】解:根据题意,设5个节目中除甲、乙、丙之外的2个节目为a,b;分2步进行分析:①,将甲乙丙三个节目按给定顺序排好,②,排好后有4个空位,将a安排到空位中,有4种情况,排好后有5个空位,将b安排到空位中,有5种情况,则不同的排法有4×5=20种;故选:D.17.(2018春•龙岩期中)某天某校的校园卫生清扫轮到高二(5)班,该班劳动委员把班级同学分为5个劳动小组,该校共有A、B、C、D四个区域要清扫,其中A、B、C三个区域各安排一个小组,D区域安排2个小组,则不同的安排方法共有()A.240种B.150种C.120种D.60种【解答】解:根据题意,分2步分析:①,先在5个劳动小组中任选2个,安排到D区域,有C52=10种选法,②,将剩下的3个小组全排列,安排到A、B、C三个区域,有A33=6种情况,则有10×6=60种不同的安排方法,故选:D.18.(2018春•历下区校级期中)把5个不同小球放入4个分别标有1~4号的盒子中,则不许有空盒子的放法共有()A.240种B.320种C.360种D.480种【解答】解:根据题意,分2步进行分析:①,先将5个小球分成4组,有C52=10种分组方法,②,将分好的4组全排列,对应放到4个盒子中,有A44=24种放法;则则不许有空盒子的放法共有10×24=240种;故选:A.19.(2018春•禅城区校级期中)7名旅客分别从3个不同的景区中选择一处游览,不同选法种数是()A.73B.37C.D.【解答】解:∵共7名旅客,每人从3个风景点中选择一处游览,∴每人都有3种选择,∴不同的选法共有37.故选:B.20.(2018春•滨城区校级月考)方程C=C的解集是()A.{1,3,5,7}B.{1,3,5}C.{3,5}D.{1,3}【解答】解:∵方程C=C,∴x2﹣x=5x﹣5①或(x2﹣x)+(5x﹣5)=16②,解①得x=1或x=5(不合题意,舍去),解②得x=3或x=﹣7(不合题意,舍去);∴该方程的解集是{1,3}.故选:D.二.填空题(共1小题)21.(2018•静安区一模)从5名志愿者中选出3名,分别从事布置、迎宾策划三项不同的工作,每人承担一项工作,则不同的选派方案有60种(用数值作答).【解答】解:根据题意,从5名志愿者中选出3名,分别从事三项不同的工作,则有A53=60种不同的选派方案;故答案为:60.三.解答题(共2小题)22.(2015•概率统计模拟)0~9共10个数字,可组成多少个无重复数字的:(1)四位数;(2)五位偶数;(3)五位奇数;(4)大于或等于30000的五位数;(5)在无重复数字的五位数中,50124从大到小排第几;(6)五位数中大于23014小于43987的数的个数.【解答】解:(1)先选1个数字排在首位,其它任意排,故有A91A93=4536种,(2)当0在末位时,有A94=3024,当0不在末位时,从2,4,6,8,选一个放在末位,故有A41A81A83=10572种,故五位偶数共有3024+10572=13596种,(3)从1,3,5,7,9选一个放在末位,故有A51A81A83=13440种(4)大于或等于30000的五位数,首位从3,4,5,6,7,8,9任选一个,其它的任意排,故有A71A94.=21168种,(5)比50000大的数,故A51A94=15120个,比50000大50124小的有,前四位为5,0,1,2,最后一位为3,只有50123,故在无重复数字的五位数中,50124从大到小排第15120﹣1=15119个,(6)五位数中大于23014小于43987的数的个数,首位为3为均可以,故有A94=3024个,首位为4时,第二位是0,1,2时有A31A84.=5040个,第二位是3时,有A83﹣1=336﹣1=335个,首位为2时,第二位是3,4,5,6,7,8,9时,有A71A84﹣1=11760﹣1=11759个,故有3024+5040+335+11759=20158个23.(2015•概率统计模拟)7个人排成一排.(1)甲在左端,乙不在右端的排列有多少个?(2)甲不在左端,乙不在右端的排列有多少个?(3)甲在两端,乙不在中间的排列有多少个?(4)甲不在左端,乙不在右端,丙不在中间的排列有多少个?(5)甲、乙都不在两端的排列有多少个?【解答】解:(1)甲在左端,乙不在右端,先排最右端,其余的任意排,故有A51A55=600个,(2)甲不在左端,乙不在右端的排列有,由题意知可以先做出7个人所有的排列.共有A77种结果,减去甲在左端和乙在右端的排列,这样就重复减掉了甲在左端且乙在右端的排列,最后需要加上这个结果,共有A77﹣2A66+A55=3720个,(3)甲在两端,乙不在中间的排列,先排甲两端,再排中间,其余的任意排,故有A21A51A55=1200个,(4)由(2)可知,甲不在左端,乙不在右端的排列有3720个,再排除丙在中间的有3720﹣A55﹣C41C41A44=3126个,(5)先排两端,其它的任意排,故有A52A55=2400个.。

排列组合讲义

排列组合讲义

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。

○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m m nn n A A n m-=-; (3)11n n nn n n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 m n C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C .1.分类计数原理(加法原理) 12n N m m m =+++2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m m n n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++*()n N ∈ (2)1k n k kk n T C a b -+= (3)∑=nr r nC=n2(4)13502412n nnnnnnC C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

排列组合综合讲义

排列组合综合讲义

排列组合综合讲义1.基本计数原理 ⑴加法原理分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++ 种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯ 种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素)排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+ ,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==- ,,m n +∈N ,并且m n ≤.组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =)⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法:元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法. 4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置; ③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有: ①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面. ⑦对于一些排列数与组合数的问题,需要构造模型.习题练习加法原理【例1】 高二年级一班有女生18人,男生38人,从中选取一名学生作代表,参加学校组织的调查团,问选取代表的方法有几种.【例2】 若a 、b 是正整数,且6≤a b ,则以(),a b 为坐标的点共有多少个? 【例3】 用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648【例4】 用数字12345,,,,组成的无重复数字的四位偶数的个数为( ) A .8 B .24 C .48 D .120【例5】 用012345,,,,,这6个数字,可以组成____个大于3000,小于5421的数字不重复的四位数.乘法原理【例6】 公园有4个门,从一个门进,一个门出,共有_____种不同的走法. 【例7】 将3个不同的小球放入4个盒子中,则不同放法种数有_______.【例8】 如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安排方法共有 种.【例9】 高二年级一班有女生18人,男生38人,从中选取一名男生和一名女生作代表,参加学校组织的调查团,问选取代表的方法有几种.【例10】 六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果?【例11】 六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种? 【例12】 用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例13】 从集合{12311} ,,,,中任选两个元素作为椭圆方程22221x y m n+=中的m 和n ,则能组成落在矩形区域{()|||11B x y x =<,,且||9}y <内的椭圆个数为( ) A .43 B .72 C .86 D .90【例14】 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为2y x =-,值域为{19}--,的“同族函数”共有( )A .7个B .8个C .9个D .10个 【例15】 某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位和个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0,并且千位、百位上都能取0.这样设计出来的密码共有( ) A .90个 B .99个 C .100个 D .112个【例16】 从集合{4321012345}----,,,,,,,,,中,选出5个数组成子集,使得这5个数中的任何两个数之和不等于1,则取出这样的子集的个数为( )A .10B .32C .110D .220【例17】 若x 、y 是整数,且6≤x ,7≤y ,则以(),x y 为坐标的不同的点共有多少个? 【例18】 用0,1,2,3,4,5这6个数字:⑴可以组成______________个数字不重复的三位数.⑵可以组成______________个数字允许重复的三位数. 【例19】 六名同学报名参加三项体育比赛,共有多少种不同的报名结果? 【例20】 将3名教师分配到2所中学任教,每所中学至少一名教师,则不同的分配方案共有( )种. A .5 B .6 C .7 D .8基本计数原理的综合应用【例21】 用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是_________.(用数字作答)【例22】 若自然数n 使得作竖式加法(1)(2)n n n ++++均不产生进位现象.则称n 为“可++不产生进位现象;23不是“可连数”,连数”.例如:32是“可连数”,因32334++产生进位现象.那么,小于1000的“可连数”的个数为()因232425A.27B.36C.39D.48【例23】由正方体的8个顶点可确定多少个不同的平面?【例24】如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种.(以数字作答)【例25】如图,一环形花坛分成A B C D,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【例26】某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有种.(以数字作答)【例27】分母是385的最简真分数一共有多少个?并求它们的和.【例28】某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答)【例29】用0,1,2,3,4,5这6个数字,可以组成_______个大于3000,小于5421的数字不重复的四位数.【例30】 某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“0000⨯⨯⨯⨯⨯⨯⨯”到“9999⨯⨯⨯⨯⨯⨯⨯”共10000个号码.公司规定:凡卡号的后四位带有数字“4”或“7”的一律作为“优惠卡”,则这组号码中“优惠卡”的个数为( ) A .2000 B .4096 C .5904 D .8320【例31】 同室4人各写1张贺年卡,先集中起来,然后每人从中各拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有( )A .6B .9种C .11种D .23种【例32】 某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个节目插入原节目单中,那么不同的插法种数为( ) A .504 B .210 C .336 D .120【例33】 某班学生参加植树节活动,苗圃中有甲、乙、丙3种不同的树苗,从中取出5棵分别种植在排成一排的5个树坑内,同种树苗不能相邻,且第一个树坑和第5个树坑只能种甲种树苗的种法共( ) A .15种 B .12种 C .9种 D .6种【例34】 如图所示,画中的一朵花,有五片花瓣.现有四种不同颜色的画笔可供选择,规定每片花瓣都要涂色,且只涂一种颜色.若涂完的花中颜色相同的花瓣恰有三片,则不同涂法种数为 (用数字作答).【例35】 用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为( )A .324B .328C .360D .648【例36】 用红、黄、蓝三种颜色之一去涂图中标号为129,,,⋅⋅⋅的9个小正方形(如图),使得任意相邻(有公共边的)小正方形所涂颜色都不相同,且“3、5、7”号数字涂相同的颜色,则符合条件的所有涂法共有( )种.A .72B .108C .144D .192【例37】 足球比赛的计分规则是:胜一场得3分,平一场得1分,负一场得0分,那么一个队打14场共得19分的情况有( )A .3种B .4种C .5种D .6种987654321排列数组合数的简单计算【例38】 对于满足13n ≥的正整数n ,()()()56...12n n n ---=( )A .712A n -B .75A n -C .85A n -D .125A n -【例39】 计算37Α=______.【例40】 计算310A ,66A ;【例41】 计算27C =______,57C =_______. 【例42】 计算310C ,68C ;【例43】 计算37A ,410A ,37C ,4850C ,231919C C +.【例44】 已知4321140n n +=ΑΑ,求n 的值. 【例45】 解不等式2886x x A A -<【例46】 证明:98789878A 9A 8A A -+=. 【例47】 解方程322A 100A x x =. 【例48】 解不等式288A 6A x x -<. 【例49】 解方程:32111C 24C x x += 【例50】 解不等式:188C 3C m m ->. 【例51】 设[]x 表示不超过x 的最大整数(如[2]2=,514⎡⎤=⎢⎥⎣⎦),对于给定的n *∈N ,定义[][](1)(1)C (1)(1)x nn n n x x x x x --+=--+ ,[)1x ∈+∞,,则当332x ⎡⎫∈⎪⎢⎣⎭,时,函数8C x的值域是( )A .16,283⎡⎤⎢⎥⎣⎦B .16,563⎡⎫⎪⎢⎣⎭C .284,3⎛⎫ ⎪⎝⎭ [)28,56D .16284,,2833⎛⎤⎛⎤⎥⎥⎝⎦⎝⎦【例52】 组合数C r n ()1n r n r >∈Z ≥,、恒等于( ) A .111C 1r n r n --++ B .()()1111C r n n r --++ C .11C r n nr -- D .11C r n n r-- 【例53】 已知12222C :C :C 3:5:5m m m n n n +++++=,求m 、n 的值.排列数组合数公式的应用【例54】 已知32212020212221C C C C C n n n n ---+<<-,求21C n的值. 【例55】 若2622020C C ,()n n n ++=∈N ,则n =_______【例56】 若11C C C 345m m m n n n -+=∶∶∶∶,则n m -= 【例57】 证明:1C (1)C C k k k n n n n k k +=++【例58】 证明:110011C C 11nn i i n n i i i n ++===++∑∑. 【例59】 求证:11211A A (1)A m m m n n n m -----=+- .【例60】 证明:102nk n n k kC n -==⋅∑.【例61】 证明:1230123()2n n n n n n n n n n C C C nC C C C ++++=+++ .【例62】 求证:1121C C C C C n n n n n n n n n m n m ++++++++++= ; 【例63】 计算:239999C C +,012945613C C C C ++++【例64】 证明:011220C C C C C C C C C k k k k k m n m n m n m n n m --+++++= .(其中min{}≤,k m n ) 【例65】 解方程12253333C C C 4x x x x x x x --++++=++Α【例66】 确定函数3A x 的单调区间.【例67】 规定A (1)(1)m x x x x m =--+ ,其中x ∈R ,m 为正整数,且0A 1x =,这是排列数A m n (,n m 是正整数,且m n ≤)的一种推广. ⑴求315A -的值;⑵排列数的两个性质:①11A A m m n n n --=,②11A A A m m m n n n m -++=(其中,m n 是正整数).是否都能推广到A m x (x ∈R ,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由.排队问题【例68】 三个女生和五个男生排成一排⑴ 如果女生必须全排在一起,可有多少种不同的排法? ⑵ 如果女生必须全分开,可有多少种不同的排法? ⑶ 如果两端都不能排女生,可有多少种不同的排法? 【例69】6个人站成一排: ⑴其中甲、乙两人必须相邻有多少种不同的排法? ⑵其中甲、乙两人不相邻有多少种不同的排法? ⑶其中甲、乙两人不站排头和排尾有多少种不同的排法?⑷其中甲不站排头,且乙不站排尾有多少种不同的排法?【例70】 7名同学排队照相.⑴ 若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵ 若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶ 若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷ 若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例71】6个队员排成一排, ⑴共有多少种不同的排法?⑵若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例72】 ABCDE 五个字母排成一排,若ABC 的位置关系必须按A 在前、B 居中、C在后的原则,共有_______种排法(用数字作答).【例73】 用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有_ __个(用数字作答).【例74】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【例75】 12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A .2283C AB .2686C AC .2286C AD .2285C A【例76】 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种 B .960种 C .720种 D .480种【例77】 在数字123,,与符号+-,五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .18D .24【例78】 计划展出10幅不同的画,其中1幅水彩、4幅油画、5幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.【例79】 6人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例80】 一条长椅上有7个座位,4人坐,要求3个空位中,有2个空位相邻,另一个空位与2个相邻位不相邻,共有几种坐法?【例81】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A .360 B .288 C .216 D .96【例82】 古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相邻,则这样的排列方法有 种(结果用数值表示).【例83】 在1234567,,,,,,的任一排列1234567,,,,,,a a a a a a a 中,使相邻两数都互质的排列方式共有( )种.A .288B .576C .864D .1152【例84】 从集合{}P Q R S ,,,与{}0123456789,,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母Q 和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例85】 从集合{}O P Q R S ,,,,与{0123456789},,,,,,,,,中各任取2个元素排成一排(字母和数字均不能重复).每排中字母O Q ,和数字0至多只能出现一个的不同排法种数是_________.(用数字作答)【例86】6个人坐在一排10个座位上,问 ⑴ 空位不相邻的坐法有多少种?⑵ 4个空位只有3个相邻的坐法有多少种?⑶ 4个空位至多有2个相邻的坐法有多少种?【例87】3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A .360B .288C .216D .96【例88】 12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有( )A .2283C AB .2686C A C .2286C AD .2285C A【例89】 两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______. 【例90】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有( )A .36种B .108种C .216种D .432种数字问题【例91】 给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑵可能组成多少个四位奇数?⑶可能组成多少个四位偶数?⑷可能组成多少个自然数?【例92】 用0到9这10个数字,可组成多少个没有重复数字的四位偶数?【例93】 在1,3,5,7,9中任取3个数字,在0,2,4,6,8中任取两个数字,可组成多少个不同的五位偶数.【例94】 用12345,,,,排成一个数字不重复的五位数12345a a a a a ,,,,,满足1223344a a a a a a a a <><>,,,的五位数有多少个? 【例95】 用0129 ,,,,这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2,则这样的四位数共有多少个?【例96】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例97】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法数一共有 种.432;【例98】 有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有..中间行的两张卡片上的数字之和为5,则不同的排法共有( )A .1344种B .1248种C .1056种D .960种【例99】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有____种(用数字作答).【例100】 用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是__________(用数字作答).【例101】 用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .48个B .36个C .24个D .18个【例102】 从1238910,,,,,这6个数中,取出两个,使其和为偶数,则共可得到 个这样的不同偶数?【例103】 求无重复数字的六位数中,能被3整除的数有______个.【例104】 用数字0123456,,,,,,组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有 个(用数学作答).【例105】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例106】 从012345,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为( )A .300B .216C .180D .162【例107】 从1到9的九个数字中取三个偶数四个奇数,试问:(1)、能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个? ⑵、上述七位数中三个偶数排在一起的有几个?(3)、⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?⑷、⑴其中任意两偶数都不相邻的七位数有几个?【例108】 用0到9这九个数字.可组成多少个没有重复数字的四位偶数?【例109】 有4张分别标有数字1234,,,的红色卡片和4张分别标有数字1234,,,的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有______种(用数字作答).【例110】 在由数字12345,,,,组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )个A .56个B .57个C .58个D .60个【例111】 由0,1,2,3,4这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列{}n a ,则19a =_____.A .2014B .2034C .1432D .1430【例112】 从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程20ax bx c ++=,其中有实数根的有几个?【例113】 从{}32101234,,,,,,,---中任选三个不同元素作为二次函数2y ax bx c =++的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?分堆问题【例114】 6本不同的书,按照以下要求处理,各有几种分法?⑴ 一堆一本,一堆两本,一堆三本;⑵ 甲得一本,乙得两本,丙得三本;⑶ 一人得一本,一人得二本,一人得三本;⑷ 平均分给甲、乙、丙三人;⑸ 平均分成三堆.【例115】 有6本不同的书⑴甲、乙、丙3人每人2本,有多少种不同的分法?⑵分成3堆,每堆2本,有多少种不同的分堆方法?⑶分成3堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法? ⑷分给甲、乙、丙3人,一人1本,一人2本,一人3本,有多少不同的分配方法?⑸分给甲1本、乙1本、丙4本,有多少种不同的分配方法?⑹分成3堆,有2堆各一本,另一堆4本,有多少种不同的分堆方法?⑺摆在3层书架上,每层2本,有多少种不同的摆法?【例116】七个人参加义务劳动,按下列方法分组有多少种不同的分法?⑴选出5个人再分成两组,一组2人,另一组3人;⑵选出6个人,分成两组,每组都是3人;⑶选出2人一组、3人一组,轮流挖土、运土.【例117】将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有种(用数字作答).【例118】把一同排6张座位编号为123456,,,,,的电影票全部分给4个人,每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A.168B.96C.72D.144【例119】现有3辆公交车、3 位司机和3位售票员,每辆车上需配1位司机和1位售票员,问车辆、司机、售票员搭配方案一共有多少种?【例120】3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有()A.90种B.180种C.270种D.540种【例121】将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为()A.540 B.300 C.180 D.150【例122】某校安排5个班到4个工厂进行社会实践,每个班去一个工厂,每个工厂至少安排一个班,不同的安排方法共有种.(用数字作答)染色问题【例123】如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法有()A.30种B.27种C.24种D.21种的方格中,要求每行、每列都没有重复数字,右面是一【例124】将123,,填入33种填法,则不同的填写方法共有____________.【例125】 将1,2,3填入33 的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种【例126】 用红、黄、蓝、绿四种颜色给图中的A 、B 、C 、D 四个小方格涂色(允许只用其中几种),使邻区(有公共边的小格)不同色,则不同的涂色方式种数为( ).A .24B .36C .72D .84【例127】 将2个a 和2个b 共4个字母填在如图所示的16个小方格内,每个小方格内至多填1个字母,若使相同字母既不同行也不同列,则不同的填法共有__________种(用数字作答).【例128】 如图所示A 、B 、C 、D 、E 为5个区域,现备有5种颜色为5个区域涂色,涂色要求:每相邻两个区域不同色,每个区域只涂一色,共有多少种不同的涂色方法?321321321DC BA【例129】 如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有种(用数字作答).【例130】 如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).错位排列【例131】 编号为1,2,3,4,5的五人入座编号也为1,2,3,4,5的五个座位,至多有2人对号的坐法有______种.【例132】 7个人到7个地方去旅游,甲不去A 地,乙不去B 地,问:共有多少种旅游方案?【例133】 7个人到7个地方去旅游,甲不去A 地,乙不去B 地,丙不去C 地,问:共有多少种旅游方案?【例134】 7个人到7个地方去旅游,甲不去A 地,乙不去B 地,丙不去C 地,丁不去D 地,问:共有多少种旅游方案?直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例135】 从5名外语系大学生中选派4名同学参加广州亚运会翻译、交通、礼仪三项义工活动,要求翻译有2人参加,交通和礼仪各有1人参加,则不同的选派方法共有 .【例136】 北京《财富》全球论坛期间,某高校有14名志愿者参加接待工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为A .124414128C C CB .124414128C A A C .12441412833C C C A D .12443141283C C C A 【例137】 在平面直角坐标系中,x 轴正半轴上有5个点,y 轴正半轴有3个点,将xE DCB A____________________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合方法篇一、两个原理及区别二、排列数公式三、组合数公式四、排列数与组合数的关系五、二项式定理公式:六、排列组合应用排列组合解法特殊元素优先排; 合理分类与分步; 先选后排解混合; 正难则反用转化; 相邻问题来捆绑; 间隔插空处理法; 定序需要用除法; 分排问题直接法; 集团问题先整体; 有的问题选模型。

○1排列数公式 m n A=)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=. ○2排列恒等式 (1)11m m n n A nA--=;(2)11m m m n n nAA mA-+=+.○3会推以下恒等式 (1)1(1)mm nnA n m A -=-+; (2)1m mnn n A A n m-=-; (3)11nn n nn n nA A A ++=-; (4)1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.○1组合数公式 mn C =m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). ○2组合数的两个性质 (1)m n C =m n n C - ; (2)m n C +1-m n C =m n C 1+. 注:规定10=n C . 1.分类计数原理(加法原理) 12n N m m m =+++ 2.分步计数原理(乘法原理) 12n N m m m =⨯⨯⨯m mn n A m C =⋅!. (1)0111()......n n n k n k k n n n n n n a b C a C a b C a b C b --+=+++ *()n N ∈ (2)1k n k k k n T C a b -+= (3)∑=nr rnC=n2(4)13502412n n n n n n n C C C C C C -+++=+++=.解决排列组合一般思路: 1.审题要清2.分步还是分类3.排列还是组合4.牢记右侧方法常见题型归类及决策:一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 位置分析法和元素分析法2、有7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略1. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.乙甲丁丙2.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。

三.不相邻问题插空策略1.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为四.定序问题倍缩空位插入策略1. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法2. 10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两定序问题可以用倍缩法(元素),还可转化为占位插(位置) C 14A 34C 13位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.五.重排问题求幂策略1.把6名实习生分配到7个车间实习,共有多少种不同的分法2.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为3、某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法六.环排问题线排策略1. 8人围桌而坐,共有多少种坐法?H FD C AA B C D E AB E GH G F2. 6颗颜色不同的钻石,可穿成几种钻石圈七.多排问题直排策略1. 8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法前 排后 排八.排列组合混合问题先选后排策略1.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.2.一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务, 每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 种允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1mn A n一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研解决排列组合混合问题,先选后排是最基本的指导思想.此法与相邻元素捆绑策略相似吗?九.小集团问题先整体后局部策略1.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹在1,5两个奇数之间,这样的五位数有多少个?2.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为3. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有 种 十.元素相同问题隔板策略1.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?一班二班三班四班五班六班七班2. 10个相同的球装5个盒中,每盒至少1个,有多少装法?3. 100x y z w +++=求这个方程组的自然数解的组数十一.正难则反总体淘汰策略1.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和偶数,不同的取法有多少种?2.我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略1. 6本不同的书平均分成3堆,每堆2本共有多少分法?2、将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?3、 10名学生分成3组,其中一组4人, 另两组3人,但正副班长不能分在同一组,有多少种不同的分组方法3.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两小集团排列问题中,先整体后局部,再结合其它策略进行处理。

将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为11m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以nn A (n 为均分的组数)避免重复计数。

十三. 合理分类与分步策略1.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2 人唱歌2人伴舞的节目,有多少选派方法2.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有3. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法.十四.构造模型策略1. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不 能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有 多少种?2.某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十五.实际操作穷举策略1.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法?5343号盒 4号盒 5号盒2.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?3.给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有 种54321解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。

分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。

一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决 对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果十六. 分解与合成策略1. 30030能被多少个不同的偶数整除2.正方体的8个顶点可连成多少对异面直线十七.化归策略 1. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?2.某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?BA十八.数字排序问题查字典策略1.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数? 2.用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 十九.树图策略 1. 3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______ 10=N2.分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)的不同坐法有多少种? 分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案 ,每个比较复杂的问题都要用到这种解题策略 处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题数字排序问题可用查字典法,查字典的法应从高位向低位查,依次求出其符合要求的个数,根据分类计数原理求出其总数。

对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果二十.复杂分类问题表格策略1.有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好的效果.二十一:住店法策略解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.1.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .小结排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。

相关文档
最新文档