第二章 化学反应的基本原理
普通化学第二章 化学反应的基本原理
12
熵的性质
熵是状态函数,具有加和性。
根据上述讨论并比较物质的标准熵值,可以得出下面 一些规律:
(1) 对于同一种物质:
Sg > Sl > Ss
(2) 同一物质在相同的聚集状态时,其熵值随温度
的升高而增大。
例因如素。1.NH4Cl(s) → NH4+(aq) + Cl-(aq)
rHm = 14.7 kJ·mol-1
2.Ag2O(s) →
2Ag(s) +
1 2
O2(g)
rHm=31.05 kJ·mol-1
2. 混乱度、熵和微观态数
(1) 混乱度 许多自发过程有混乱度增加的趋势。
盐在水中溶解 气体的扩散 系统有趋向于最大混乱度的倾向,
ΔrSm (298.15 K) = 167.6 J.mol-1·K-1
根据分压定律可求得空气中CO2的分压
p(CO 2 ) p (CO 2 ) 101.325 kPa 0.030% 30 Pa
根据公式,在110℃ 即383 K时
rGm(383 K)= rGm(383 K) + RT ln{p(CO2)/pθ } = [82.24 383×0.1676] kJ.mol-1
S高温>S低温
(3) 对于不同种物质:
S复杂分子 > S简单分子
(4) 对于混合物和纯净物: S混合物 > S纯物质
13
2.1 化学反应的方向和吉布斯函数
利用这些简单规律,可得出一条定性判 断过程熵变的有用规律:
对于物理或化学变化而论,几乎没有例 外,一个导致气体分子数增加的过程或
2化学反应基本原理
(2.6)
吉布斯等温方程是化学上最重要和最有用的方 程之一。
2.1.2 反应自发性的判断
最小自由能原理 对于恒温、恒压、不做非体积功的一般反应,其 自发性的判断标准为: G <0 自发过程,过程能向正方向进行 G =0 平衡状态 G >0 非自发过程,过程能向逆方向进行
自 由 能 的 变 化
熵的定义
玻尔兹曼公式 S = k lnW (2.1)
玻尔兹曼常数 k=R/NA=1.3810-23JK-1
熵的热力学定义(对恒温可逆过程)
qr S T (2.5)
熵的定义
自然界中另一类自发进行的过程
一瓶氨气在室内的扩散。
往一杯水中滴入几滴墨水。
过程能自发地向着混乱程度增加的方向进行。
体 系 倾 向 于 混 乱 度 的 增 加
H、S、T对反应自发性的影响
反应实例 H S G=H-TS 反应的自发性 - + - 任一T 自发 任一T 非自发 T 有利自发 T 有利自发
H2(g) + Cl2(g) = 2HCl(g)
CO(g) = C(s) + ½O2(g)
+ -
+
T +- T +-
CaCO3(s)=CaO(s) +CO2(g) + + N2(g) + 3H2(g) = 2NH3(g) - -
Hy(298.15K)=-153.9kJmol-1
反应的焓变
但有些反应或过程却是向吸热方向进行的。
H2O(s)=H2O(l)
101.325kPa, 273.15K: H>0 CaCO3(s)=CaO(s)+CO2(g) 101.325kPa, 1183K: H>0
熵的定义
无机化学各章节第2章 化学反应的基本原理知识点
第二章 化学反应的基本原理知识点一、基本概念:体系和环境;状态和状态函数;过程和途径;热与功;相;化学计量数与反应进度;焓;熵;吉布斯自由能。
① 状态函数的特征:状态一定值一定,途殊回归变化等,周而复始变化零。
② 热和功(非状态函数)符号:体系吸热 Q 为+ 体系放热 Q 为— 体系做功 W 为— 环境做功 W 为+ 体积功 : W=-P 外·ΔV ③ 化学计量数与反应进度:N 2 (g) + 3 H 2 (g) = 2 NH 3 (g)化学计量数 ν(N 2)= -1 ν(H 2) =-3 ν(NH 3) = 2 反应进度1mol :表示1mol N 2与3mol H 2作用生成2mol NH 312N 2 (g) + 32H 2 (g) = NH 3 (g) 化学计量数:ν(N 2)=-12 ν(H 2)=-32 ν(NH 3) = 1反应进度1mol :表示12mol N 2与32mol H 2作用生成1mol NH 3④ 熵:S(g)>S(l)>S(s) ; S (复杂)> S(简单) ; 气体:S(高温) > S (低温); S(低压) > S (高压); 固~液相溶,S 增大; 晶体析出,S 减小;气~液相溶,S 减小; 固体吸附气体,S 减小; 气体等温膨胀,S 增大 二、盖斯定律总反应的反应热等于各分反应的反应热之和。
若反应①+反应②→反应③,则()()()312r mr m r m H H H θθθ∆=∆+∆若反应①×2—反应②→反应③,则()()()3212r mr m r m H H H θθθ∆=∆-∆三、热力学第一定律:U Q W ∆=+ 四、化学反应的方向(298.15)()r m B f m BH k H B θθν∆=∆∑(298.15)()r m B m BS k S B θθν∆=∑(298.15)()r m B f m BG k G B θθν∆=∆∑(注:指定单质通常为稳定单质的()0f m H B θ∆=,()0f m G B θ∆=()()()()T (298k)T 298r m r m r m r m r m G T H T S T H S K θθθθθ∆=∆-∆≈∆-∆ 反应在标准状态下进行:若()0r mG T θ∆<,则反应正向自发进行;若()0r m G T θ∆=,则反应处于平衡状态;若()0r m G T θ∆>,则反应逆向自发进行。
大学化学 03 化学反应基本原理
)
3. 道尔顿Dalton分压定律
Dalton分压定律可以帮助解决 系统中混合气体的各气体组份之间的压力关系
(1)p = ∑pi 混合气体的总压力等于各组分气体 分压力之和 (2)pi = p∙xi 混合气体中某组分气体分压等于混 合气体的总压力与该组分气体的摩 尔分数之乘积 (3)φi = pi / p 混合气体中个组分气体的体积分数 在数值上等于分压比
John Dalton 1766-1844,英国
)2.1.3 反应的标准摩尔吉布斯函数变的计算及应用
1. 298.15K时反应的标准摩尔吉布斯函数变的计算
(1)利用物质的ΔfGmθ(298.15K) 的数据求算 物质的标准摩尔生成吉布斯函数: 定义:在标准状态下由指定单质生成单位物质的量的纯 物质时反应的吉布斯函数变,称为该物质的标准摩尔生 成吉布斯函数 符号:ΔfGmθ(B,S,T) 单位: kJ· mol-1 规定:a. 指定单质的标准摩尔生成吉布斯函数为零 b. 水合氢离子标准摩尔生成吉布斯函数为零 在标准状态,反应的标准摩尔吉布斯函数变:
B
pB n B ( ) p
纯固态和纯液态物质不必写入反应商式中
r Gm (T ) r Gm (T ) RT ln Q
)
对于一般化学反应式
aA(g) bB(g) gG(g) dD( g )
热力学等温方程式可表示为: Δr Gm(T) = Δr Gm (T ) RT ln
4 4
△ rHm = 9.76kJ· mol-1
吸热,自发
显然,化学反应的焓变仅是影响反应方 向的一个因素,但不能作为判据使用。
还需引入其他的函数
) 1. 反应的熵变(entropy changes)
化学反应的基本原理
化学反应的基本原理化学反应是指物质之间发生化学变化的过程。
化学反应的基本原理是基于原子和分子之间的相互作用以及能量变化。
本文将介绍化学反应的基本原理,包括反应物、生成物、化学键的形成与断裂、能量变化和化学反应速率等方面。
一、反应物和生成物在化学反应中,参与反应的物质被称为反应物,而反应过程中产生的新物质被称为生成物。
反应物通过化学反应发生化学变化,生成物的形成使整个系统发生了变化。
例如,当氢气(H2)和氧气(O2)发生反应时,生成的产物是水(H2O)。
二、化学键的形成与断裂化学反应中,分子中的化学键会发生形成和断裂的过程。
化学键是原子之间通过电子共享或电子转移所形成的。
1. 共价键的形成和断裂共价键是指两个原子通过共享一个或多个电子对而连接在一起的化学键。
当原子之间形成共价键时,它们会共享电子,使得原子能量变低,稳定度提高。
而当共价键断裂时,原子之间的共享电子会重新分配,形成新的物质。
2. 离子键的形成和断裂离子键是由金属和非金属元素之间的电子转移而形成的化学键。
当金属元素失去电子形成阳离子,非金属元素获得这些电子形成阴离子,阳离子和阴离子之间通过静电作用相互吸引形成离子键。
断裂离子键是指离子之间电荷重新分布的过程。
三、能量变化在化学反应中,能量的转化是不可避免的。
常见的能量变化包括放热反应和吸热反应。
1. 放热反应放热反应是指在反应过程中释放热量的化学反应。
此类反应的产物的总能量低于反应物的总能量,反应过程中释放的能量以热量的形式排放。
2. 吸热反应吸热反应是指在反应过程中吸收热量的化学反应。
此类反应的产物的总能量高于反应物的总能量,反应过程中吸收外界的能量。
四、化学反应速率化学反应速率是指反应物转化为产物的速度。
它受到几个因素的影响,包括反应物浓度、温度、催化剂和反应物之间的碰撞频率等。
1. 反应物浓度反应物浓度越高,其分子之间的碰撞频率越高,反应速率也就越快。
2. 温度温度升高会增加反应物分子的平均动能,使它们运动更加剧烈,碰撞的能量也增加,从而增加反应速率。
化学反应的基本原理
化学反应的基本原理化学反应是指物质之间发生化学变化的过程。
这种变化是由化学原理驱动的,下面我们来探讨化学反应的基本原理。
一、质量守恒定律质量守恒定律是化学反应的基本原理之一。
它指出,在任何化学反应中,反应物的质量与生成物的质量之和保持不变。
换句话说,化学反应前后物质的总质量始终保持恒定。
例如,当将氧气与氢气混合并点燃时,发生以下反应:2H2 + O2 → 2H2O根据质量守恒定律,氧气与氢气的质量之和等于水的质量,即反应前后物质的总质量保持不变。
二、能量守恒定律能量守恒定律是化学反应的另一个基本原理。
它表明在化学反应中,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。
在化学反应中,反应物和生成物的能量可能有所不同。
有些化学反应会吸收能量,被称为吸热反应;而有些反应会释放能量,被称为放热反应。
例如,燃烧是一种放热反应,当将木材放入火中时,木材与氧气反应产生热量和二氧化碳:C6H12O6 + 6O2 → 6CO2 + 6H2O + 热能反应中的化学能转化为热能,释放出来。
三、化学键的形成和断裂化学反应的基本原理还涉及化学键的形成和断裂。
在化学反应中,化学键可以形成或断裂,这导致原子重新排列,并形成新的化学物质。
化学键是原子之间的力,它们通过电子的共享或转移来连接原子。
化学反应中,原子间键的形成或断裂需要吸收或释放能量。
例如,当氯气(Cl2)与钠金属(Na)反应时,氯气中的氯原子接收钠金属中的电子,形成氯化钠(NaCl):Cl2 + 2Na → 2NaCl在反应中,氯气中的氯原子与钠金属中的钠原子发生电子转移,形成了化学键。
这种化学键的形成和断裂是化学反应进行的基础。
四、速率与反应机理化学反应的速率是指单位时间内反应物消耗的量或生成物产生的量。
速率与反应机理密切相关,反应机理描述了反应过程中分子之间的相互作用和转化。
反应机理涉及反应的中间过程和过渡态,它们由反应物转化为产物的中间步骤。
反应速率取决于各个步骤的速率常数和反应物的浓度。
普通化学第二章-化学反应基本原理
ΔrGθm, 298K = ΔrHθm, 298K - TΔrSθm, 298K
= 178.32 – 298.15 ×160.59 ×10-3 =130.44 kJ·mol-1 注意:带入数据计算时单位要统一。
(2) ΔrGθm, 1273 的计算
ΔrGθm, 1273K = ΔrHθm, 298K - TΔrSθm, 298K
= 178.32 kJ·mol-1
ΔrSθm = [Sθm(CaO)+ Sθm(CO2)] -[Sθm(CaCO3)] = (39.75 + 213.64)- 92.9
= 160.59 J· mol-1 · K-1
从计算结果来看,反应的ΔrHθm (298.15K)为 正值,是吸热反应,不利于反应自发进行;但反应 的ΔrSθm (298.15K)为正值,表明反应过程中系 统的混乱度增大,熵值增大,这又有利于反应自发 进行。因此,该反应的自发性究竟如何?还需进一 步探讨。
( 2 ) 利用 ΔrHθm和 ΔrSθm计算
ΔrHθm = Σ{ΔfHθm (生成物)}
- Σ{ΔfHθm(反应物)}
ΔrSθm = Σ{Sθm(生成物)}
- Σ{Sθm(反应物)}
ΔrGθm = ΔrHθm - TΔrSθm
2、其它温度时反应的ΔrGθm的计算 热力学研究表明,ΔrGθm随温度而变,因 此,不能用298.15K时的ΔrGθm来作为其它温 度时的ΔrGθm ,但是: ΔrHθm ,T ≈ ΔrHθm , 298K ΔrSθm ,T ≈ ΔrSθm , 298K 所以,其它温度时的可由下式近似求得: ΔrGθm , T ≈ ΔrHθm , 298K - T ΔrHθm , 298K
2.1.2 反应自发性的判断
大学化学:第二章 化学反应的基本原理
§2-1 §2-2 §2-3 §2-4
熵与熵变 吉布斯函数变 反应限度与化学平衡 化学反应速率
§2-1 熵与熵变
一、过程的可逆与不可逆性一、过程的可逆与不可逆性 从自然界中观察到的过二程、(变熵化与)都熵是增不加可原逆理的。 ➢热由高温物体传给低温三物、体熵,值直及至熵温变差的为计零算; ➢气体从高压扩散到低压,直至压差为零; ➢正电荷从高电位迁移到低电位,直至电位差为零; ➢不同种组分的相互混合、扩散(推动力?);
▪ 对于化学反应,反应物质是可逆的,且变化在无 限接平衡状态下进行时,为热力学可逆过程。
▪ 可逆过程的逆过程发生后,体系及环境都得以复 原,不留下任何变化的痕迹(包括物质的和能量的)。
二、熵与熵增加原理
1、熵与熵变 对于简单、熟悉的过程,可用诸如ΔT、 Δ p、 ΔE
等作为自发过程方向与限度的判据(推动力); 对于复杂的物理化学过程,用什么函数来判断? 已知很多放热反应是自发的,那么放热则自发?
放热并非一定自发
二、熵与熵增加原理
1、熵与熵变
S qr 定温可逆过程: S qr
T
T
对定温的任意过程: S q 不可逆 (2-1-1)
T 可逆
封闭系统的定温过程中,系统的熵变不可能小于
过程的热温商。
即封闭系统的定温可逆过程中,熵变等值于过程 热温商,不可逆中,系统的熵变大于过的热温商;
S是一个状态函数(广度性质),但宏观抽象。
生的熵变。食物(蛋白质、淀粉等)的熵小于排泄 物的熵。
“新陈代谢的最基本内容是:有机体成功地使自 身放出他活着时不得不产生的全部熵。”
3
三、熵值及熵变的计算
1、物质的规定熵与标准摩尔熵 ➢由热三律指出:规定,纯物质完美晶体,S0K=0 ➢物质的标准摩尔熵:Sθm(B,T)为单位物质的量的纯 物质标准条件下的规定熵。单位“J·K-1·mol-1”。
化学反应的基本原理
化学反应的基本原理
化学反应是指物质发生化学变化的过程。
化学反应的基本原理是根据物质的组成和反应条件,原子之间进行重新排列以形成新的化学键,从而产生新的物质。
化学反应中,原子、分子或离子之间的化学键被破坏或形成,从而导致了物质性质的改变。
化学反应遵循一定的反应原理,包括能量守恒原理、物质守恒原理和化学键重新组合原理。
根据能量守恒原理,化学反应过程中总能量的和保持不变,即反应前后总能量相等。
根据物质守恒原理,化学反应中反应物的质量和反应产物的质量之和保持不变,即反应前后物质的总质量不变。
根据化学键重新组合原理,化学反应中原子之间的化学键被破坏或形成,使得原子重新组合成新的分子和离子。
化学反应的基本原理还涉及到反应速率、反应平衡以及反应热力学等方面。
反应速率描述了反应物转化成产物的速度,受到反应物浓度、温度、压力和催化剂等因素的影响。
反应平衡是指在一定条件下,反应物转化为产物和产物转化为反应物的速率相等,达到动态平衡。
反应热力学研究反应过程中的能量变化,包括焓变、熵变和自由能变化等。
综上所述,化学反应的基本原理是根据能量守恒原理、物质守恒原理和化学键重新组合原理,通过重新排列原子、分子和离子之间的化学键,形成新的化学物质,并受到反应速率、反应平衡和反应热力学等因素的调节。
化学反应的基本原理
第二章化学反应的基本原理一、判断题(正确请画“√”,错误的画“×”)1.当温度接近0K时,所有的放热反应可以认为都是自发进行的反应。
2.△S >0的反应,必定是自发反应。
3.对于一个反应如果△H>△G,则该反应必定是熵增的反应。
4.△Gθ值大,平衡常数Kθ值就愈大。
5.平衡常数K值越大,则反应速度越快。
6.对于△H<0的反应,提高温度速度常数k值减小。
7.对于△Hθ>0的可逆反应,提高温度平衡常数Kθ值增大。
8.的△θm(298.15K)>0,空气中的N2和O2在常温常压下稳定共存。
但在高温常压时能发生反应,说明该反应是△Hθ>0, △Sθ>0的反应。
9.反应(g) = C(s)+1/2O2 (g)的△G>0,正向非自发,加入催化剂后降低了活化能,则反应正向进行。
10.在一个封闭系统中进行的可逆反应达到平衡后,若平衡条件体积和温度不变,则系统中各组分的浓度或分压不变。
11.一定温度下,对于△υ0的可逆反应,达平衡后改变系统中某组分的浓度或分压,平衡不移动。
12.一定温度下,对于△υg≠0的可逆反应,达到平衡后,加入惰性气体,保持总压力不变,平衡不发生移动。
13.某可逆反应在一定条件下,转化率α值增大,则在该条件下平衡常数K值也一定增大。
14.对于一个复杂反应,当总反应的标准摩尔吉布斯函数变为:△Gθ总=△Gθ1+△Gθ2则该反应的平衡常数Kθ总θ1θ215.单质的△θm(298.15K)值一定为零。
16. 反应级数取决于反应方程式中反应物的计量系数。
17. 自发进行的反应,一定具有较小的活化能。
18. 基元反应是指一步完成的简单反应。
19. 其它条件固定时,活化能小的反应,其反应速度快。
20. 化学平衡是指系统中正逆反应活化能相等的状态。
21. 反应的活化能越高,则该反应的平衡常数就越小。
22.平衡常数Kθ值小于1,则△Gθ>0。
23.反应: 22(g)2(g) D23(g),在一定条件下达成平衡,在该平衡系统中加入惰性气体,体积保持不变,则平衡向正反应方向移动。
普通化学:第二章 化学反应
6 热力学能
热力学能(thermodynamic energy) U: 系统内所有微 观粒子的全部能量之和,也称内能(internal energy)。 U是状态函数,符号U(T,V)表示,它的绝对值无法测 定,只能求出它的变化值。
U2 U1 U
热力学能变化量只与始态、终态有关,与变化 的途径无关。
3 状态和状态函数
状态:系统所处的状况,是各种宏观性质的综合表现。
例如:压力P、体积V、温度T、物质的量n、组成xB, 以及热力学能U、焓H、熵S和吉布斯函数G等物理量
是常见的用来描述系统状态的宏观性质。
状态由一些物理量来确定,如气体的状态由P、V、T、n 等来 确定。
决定体系状态的物理量称为 状态函数。 P、V、T、n 等均是状 态函数。
= [ 2 ×(-1118)+ (-393.5)] –[ 3 ×(-824.2) + (-110.5)]
= -46.4 (kJ/mol) <0,放热反应
吸热还是放热?
(查表附录5)
化学反应的焓变计算 rHmθ=i fHmθ (生成物) i fHmθ (反应物)
例:已知1mol辛烷燃烧放热-5512.4kJ/mol,计算辛烷 的标准摩尔生成焓。
3 热化学方程式
反应进度:
nB
nB (t) nB (0)
B
B
单位是mol
ξ:反应进度, mol ; νB:B的化学计量数,规定:反应物的化学计量 数为负,而产物的化学计量数为正;
nB: B的物质的量,mol; B:包含在反应中的分子、原子或离子。
3 热化学方程式
反应进度: nB nB (t) nB (0)
B
B
单位是mol
化学反应的基本原理
化学反应的基本原理化学反应是指物质之间的相互作用,导致化学键的形成、断裂和重新组合的过程。
化学反应是化学变化的基本表现,它依赖于几个基本原理,包括能量守恒定律、质量守恒定律和化学反应速率等。
本文将深入探讨化学反应的基本原理及其应用。
一、能量守恒定律能量守恒定律指的是在化学反应中,能量的总量保持不变。
根据热力学第一定律,能量既不能被创造,也不能被消灭,只能在不同形式之间进行转化。
化学反应中,反应物的化学键断裂需要吸收能量,而生成物的化学键形成会释放能量。
反应物和生成物之间的能量差称为反应焓变,可以用来预测反应过程中能量的转化。
以燃烧反应为例,当燃料与氧气发生反应时,化学键断裂需要吸收能量,而新的化学键形成会释放能量。
反应前后的总能量保持不变,符合能量守恒定律。
这个原理在工业和生活中有广泛的应用,例如发电厂中的燃煤、燃气和核能等。
二、质量守恒定律质量守恒定律指的是化学反应中原子的数目保持不变。
化学反应只是原子重新组合的过程,原子并不会被创建或销毁。
无论是反应物还是生成物,在化学反应前后的总原子数是相等的。
以水的电解反应为例,当通过电解水时,水分子分解为氢和氧气。
反应前后,氢和氧气的总原子数保持不变,符合质量守恒定律。
这个原理也可以应用于化学合成、分解和置换等各种反应中。
三、化学反应速率化学反应速率指的是反应物转化为生成物的速度。
速率受多种因素影响,包括温度、浓度、压力和催化剂等。
其中温度是影响反应速率最显著的因素之一。
根据活化能理论,温度升高会增加反应物的动能,增加反应物分子的碰撞频率和能量,从而加快反应速率。
催化剂是能够改变反应速率的物质,通过提供一个新的反应路径,降低了反应的活化能。
化学反应速率的准确预测和控制对于工业生产和环境保护有重要意义。
例如,催化剂的应用可以促进化学反应,提高生产效率和产品纯度。
结论化学反应的基本原理包括能量守恒定律、质量守恒定律和化学反应速率等。
根据这些原理,可以预测和控制化学反应的过程和结果。
化学反应的基本原理
化学反应的基本原理化学反应是化学领域中至关重要的概念,它涉及物质之间发生的转变和变化。
了解化学反应的基本原理对于理解化学现象、加深对化学知识的掌握以及应用化学于实际生活中都非常重要。
本文将介绍化学反应的基本原理,包括反应物、生成物、摩尔比和化学方程式等。
1. 反应物和生成物在化学反应中,反应物是指参与反应的起始物质,生成物则是指在反应中形成的新物质。
例如,在氧化铁的制备过程中,铁(Fe)和氧气(O2)是反应物,而生成的氧化铁(Fe2O3)是生成物。
反应物和生成物的种类可以各不相同,取决于具体的化学反应类型。
2. 摩尔比和化学方程式化学反应的发生需要满足一定的摩尔比。
摩尔比是指反应物之间在化学反应中的相对数量关系。
化学方程式是用化学符号和化学式表示化学反应的方法。
例如,用化学方程式表示氢气与氧气的反应为:2H2 + O2 -> 2H2O其中,2H2表示2个氢气分子,O2表示1个氧气分子,2H2O表示2个水分子。
方程式中的系数代表反应物和生成物的摩尔比,通过这个比例关系,可以推断出反应物的化学量和生成物的化学量。
3. 反应类型化学反应可以分为多种类型,包括酸碱反应、氧化还原反应、置换反应等。
不同类型的反应具有不同的特点和条件。
例如,在酸碱反应中,酸和碱发生中和反应,生成盐和水。
在氧化还原反应中,电子的转移导致物质的氧化和还原。
在置换反应中,原子或离子的位置发生交换。
了解不同类型的反应有助于预测反应的产物和了解化学反应的机理。
4. 反应速率和能量变化化学反应的速率是指单位时间内物质转化的量。
反应速率受到多种因素的影响,包括温度、浓度、催化剂和表面积等。
高温、高浓度、适当的催化剂和较大的表面积通常会加快反应速率。
反应过程中还伴随着能量的变化,包括放热反应和吸热反应。
放热反应释放能量,而吸热反应则吸收能量。
5. 化学平衡在化学反应中,反应物和生成物之间可能达到一种动态平衡,即化学反应同时进行正反两个方向,但反应物和生成物的浓度保持一定的稳定状态。
化学反应的基本原理
第2章化学反应的基本原理(Fundamentals of Chemical Reactions)化学是研究物质的组成、结构、性质及其变化规律的科学。
在研究化学反应时,人们主要关心化学反应的方向、限度、速率以及化学反应中所伴随发生的能量变化,本章通过对化学热力学、动力学基础知识的学习,要求掌握化学热力学的基本概念、基本原理,能够正确判断化学反应进行的方向、进行的程度以及改变化学反应速率的方法。
2.1化学反应中的能量关系任何化学反应的发生总是伴随着形式多样的能量变化,如:酸碱中和要放出热量,氯化铵溶于水要吸收热量等。
2.1.1热力学基本概念(1)体系与环境在研究化学反应的能量变化关系时,为了研究的方便,常常把研究的对象与周围部分区分开来讨论。
在化学上把所研究的对象称为体系(system),而把体系之外的、与体系密切相关的部分称为环境(surrounding)。
例如:研究在溶液中的反应,则溶液就是我们研究的体系,而盛溶液的容器以及溶液上方的空气等都是环境。
根据体系与环境之间物质和能量的交换情况不同,可以把体系分为以下三类:敞开体系(open system):体系与环境之间,既有物质交换,又有能量交换。
封闭体系(close system):体系与环境之间,没有物质交换,只有能量交换。
孤立体系(isolated system):体系与环境之间,既没有物质交换,也没有能量交换。
例如:一个盛水的广口瓶,则为一个敞开体系,因为瓶子内外既有能量的交换,又有物质的交换(瓶中水的蒸发和瓶外空气的溶解);如在此瓶上盖上瓶塞,则此时瓶内外只有能量的交换而无物质的交换,这时成为一个封闭体系;如将上述瓶子换为带盖的杜瓦瓶(绝热),由于瓶内外既无物质的交换,又无能量的交换,则构成一个孤立体系。
体系与环境之间可以有确定的界面,也可以是假想存在的界面。
体系与环境因研究的对象改变亦可以发生改变。
(2)过程和途径体系的状态发生变化时,状态变化的经过称为过程(process)。
无机化学及分析化学无机及分析化学复习精选全文
c(B)
c
b
cθ=1mol·l-1
对气相反应 a A(g) +Bb( g) =dD( g) +eE( g)
K
P(D) d P
P(E
)
P
e
Pθ=100Kpa
P(
A)
P
a
P(B)
P
b
用相对平衡浓度和相对平衡分压来表示的
平衡常数称为标准平衡常数。
4
多重平衡规则
若一个化学反应式是若干相关化学反应式的代数和,在相 同温度下,该反应的平衡常数就等于其相应的平衡常数的 积(或商)。
HCl
NaCl 甲基橙 ------
NaHCO3 NaHCO3
V2
pH=3.9
CO2 CO2
NaOH
NaHCO3 Na2CO3 NaOH + Na2CO3 NaHCO3 + Na2CO3
16
3-24
有一Na3PO4 试样,其中含有Na2HPO4, 称取0.9947g,以酚酞为指示剂,用0.2881 mol·L-1HCl 溶液滴定至终点,用去 17.56ml。
29
原电池
2.原电池组成
负极(Zn片)反应:
Zn(s)
2e + Zn2+(aq) 发生氧化反应
正极(Cu)反应:
Cu2+(aq) + 2e
Cu(s) 发生还原反应
电池反应:原电池中发生的氧化还原反应
电池反应=负极反应 + 正极反应
如
Zn(s) + Cu2+(aq)
Zn2+(aq) + Cu(s)
30
条件:
A.指示剂用量 B.溶液酸度 C.注意事项 充分振摇,干扰离子事先去除
大学化学:第二章 化学反应的基本原理
m
θ ∆r H θ (T ) � (T ) ≈ ∑ν B ∆ f H �
B
向、程度和速率)
§2-1 化学反应的方向和吉布斯函数 §2-2 化学反应进行的程度和化学平衡 §2-3 化学反应速率 §2-4 环境化学和绿色化学
2
2.1 化学反应的方向和吉布斯函数变
汤姆逊-贝洛特规则: 最低能量原理:自发的化学反 应趋向于使系统放出最多的能 量。即:反应总是向放热(或 焓减小)的方向进行。 汤姆逊
贝洛特
C(s) + O2(g) = CO2(g)
θ ∆r H m (298.15 K ) = −393.5kJ ⋅ mol −1
θ (298.15 K ) = −55.84kJ ⋅ mol −1 H+(aq) + OH-(aq) = H2O(l) ∆ r H m
1. 自发过程(反应)
水的流向 热的传递
气体的混合
自然界的一切变化都具有方向性,化学反应也是有方向性的
3
1. 自发反应(过程)
Zn(s) + Cu2+ (aq) = Zn2+ (aq) + Cu(s)
铁在潮湿空气中生锈
置换反应
这种在给定条件下能自动进行(不需要外加功)的 反应(或过程)叫做自发反应(或自发过程)。
第二章化学反应的基本原理
第二章 化学反应的基本原理重要概念1.自发反应:在给定的条件下能自动进行的反应或过程叫做自发反应或自发过程。
自发过程都是热力学的不可逆过程。
2.系统倾向于取得最低的势能。
3.反应的焓变是判断一个反应能否自发进行的重要依据但是不是唯一的依据。
4.过程能自发地向着混乱程度增加的方向进行。
5.熵是系统内物质微观粒子的混乱度(或无序度)的量度。
Ω=kln S ,式中Ω为热力学概率或者称混乱度,k 为波尔兹曼常数。
6.熵的公式表明:熵是系统混乱度的量度,系统的微观状态数越多,热律学概率越大,系统越混流乱,熵就越大。
7.热力学第二定律:在隔离系统中发生的自发反应必伴随着熵的增加,或隔离系统的熵总是趋向于极大值,这就是自发过程热力学的准则,称为熵增加原理。
8.热力学第三定律:在绝对零度时,一切纯物质的完美晶体的熵值都等于零。
表达式为S (0K )=kln1=0;9.依此为基础,若知道某一物质从绝对零度到指定温度下的一些热力学数据如热容等,就可以求出此温度时的熵值,称为这一物质的规定熵。
10.单位物质的量的纯物质在标准状态下的规定熵叫做该物质的标准摩尔熵。
11.规定处于标准状态下水合氢离子的标准熵值为零。
12.(1)对于同一物质而言,气态时的熵大于液态时的,液态时的熵又大于固态时的熵。
(2)同一物质在相同的聚集态时,其熵值随温度的升高而增大;(3)在温度和聚集态相同时,分子或晶体结构较复杂的物质熵值大于分子或晶体结构较为简单的物质的熵值。
(4)混合物或溶液的熵值往往比相应的纯净物的熵值大。
13.对于物理或者化学变化而言,几乎没有例外,一个导致气体分子数增加的过程或反应总伴随着熵值的增大。
14.注意,虽然物质的标准熵随温度的升高而增大,但是只要是没有引起物质聚集状态的改变,其值通常相差不大,可以认为反应的熵变基本不随温度而变,这一点和焓变很类似。
15.自由能:把焓和熵并在一起的热力学函数。
16.吉布斯函数:m r m r m r S T H G TS H G ∆-∆=∆-=或者写成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 用标准熵计算 熵是状态函数,反应或过程的熵变 r S,只跟始态和终态有关, 而与变化的途径无关。反应的标准摩尔熵变 rSm (或简写为 Sө) ,其计算及注意点与 r Hm 的相似,对应于反应式 r Sm =
S (B)
B m
B
(2.5)
应当指出,虽然物质的标准熵随温度的升高而增大,但只要温 度升高没有引起物质聚集状态的改变时,则可忽略温度的影响, 近似认为反应的熵变基本不随温度而变。即 r Sm ( T ) ≈ r Sm 298.15 K ) (
熵的性质:熵是状态函数,具有加和性
根据上述讨论并比较物质的标准熵值,可以得出下面一些规律: (1) 对于同一种物质: Sg > Sl > Ss
(2) 同一物质在相同的聚集状态时,其熵值随温度的升高而 增大。 S高温>S低温 (3) 对于不同种物质: S复杂分子 > S简单分子
(4) 对于混合物和纯净物: S混合物 > S纯物质
因此标准摩尔熵变 r Sm (T ) 随温度的变化较小,在计算中将其近似看作一个常
量,即
r Sm (T ) ≈ r Sm (298.15K)
例1:计算石灰石(CaCO3)热分解反应的△rHmθ (298.15K)和 △rSmθ(298.15K),并初步分析该反应的自发性。 解: CaCO3(s)) △fHm/kJ.mol-1 -1206.92 Sm/J.mol-1.K-1 92.9 CaO(s)) + CO2(g) -635.09 39.75 -393.50 213.64
用符号 Sm 表示,其单位为 J mol1 K 1 。
对于水合离子, 因溶液中同时存在正、 负离子, 规定处于标准状态下水合 H
的标准熵值为零,通常把温度选定为 298.15K,即 Sm (H , aq,298.15K) =0。
思考:指定单质在298.15 K的标准熵值是零吗?
进行限度 Δh=0 Δp=0 ΔE=0 Δp=O ΔT=0
以上的物理现象容易
判断! 根据什么来判断化学反应 的方向或者说反应能否自发进 行呢?
希望通过热力学函数的有关计算而不必依靠实验, 即可知反应能否自发进行和反应进行的限度。
自然界中一些自发进行的物理过程中,如物体下落等,都伴有 能量的变化,系统的势能降低或损失了。这表明一个系统的势能有 自发变小的倾向,或者说系统倾向于取得最低的能量状态。
反应自发
例2:
H2O(l)
H2O(s)
273.15K时,正反应的 ΔH<0,放热,有利于自发过程; ΔS<0,混乱度降低,不利于自发过程。 反应自发
对化学反应方向的定性判断 ① △rHmθ<0, △rSmθ>0,反应正向进行; ② △rHmθ>0, △rSmθ<0,反应不能正向进行; ③ △rHmθ>0, △rSmθ>0或△rHmθ<0, △rSmθ<0
任何指定单质(注意磷为白磷) f Gm = 0 并规定Δf Gm(H+,aq) = 0
反应的标准摩尔吉布斯函数变以 rGm ,计算公式为: r (298.15 K) = B f (B, 298.15 K) B Gm, Gm
例 2.3 求 298.15K,标准状态下反应 Cl 2 (g) 2HBr (g) === Br2 (l) 2HCl(g)
反应的焓变能否作为反应方向的判据?
1 (1) C(g) O 2 (g) CO 2 (g ) , r H m = 110.5 kJ mol1 2 该反应在任何温度下均可正向进行。
(2) HCl(g ) NH 3 (g) NH 4Cl(s) , r H m = 176.9 kJ mol1
由于 S 是状态函数,系统的状态一定时,熵就有确定的值,其改变量只取决 于系统的始态和终态,而与它们是否可逆或不可逆途径来实现始态到终态的转 变是无关的。过程中的热量变化是和途径有关的量,热力学上可以证明,在等 温过程中,系统的熵变等于沿着可逆途径转移给系统的热量除以绝对温度。
S = q可逆 T
(2.2)
2.1.2 混乱度与熵 1. 混乱度
系统混乱的程度称为混乱度。显然,气体的混乱度比液体大,而液体的混 乱度比固体大。
大量的研究表明:在孤立系统中,自发过程总是朝着系统混乱度增大的方 向进行,而混乱度减少的过程是不可能自发进行的;当混乱度达到最大时,系 统就达到平衡状态,这就是自发过程的限度。
混合前
自发变化的方向
平衡条件Байду номын сангаас判据法名称
熵值增大, ΔS > 0
熵值最大, ΔS = 0 熵增加原理
吉布斯自由能值减小, ΔG < 0
吉布斯自由能值最小, ΔG = 0 最小自由能原理
3、自由能变的计算 (1) 用标准摩尔生成自由能计算 298.15K 时反应的标准摩尔吉布斯自由能变的计算 在标准状态时,由指定单质生成单位物质的量的纯物质 时反应的吉布斯函数变,叫做该物质的标准摩尔生成吉布斯 函数: f Gm,常用单位为 kJ. mol-1 。
在绝对零度时,一切纯物质的完美晶体的熵值都等于零。 S (0 K) = k ln 1 = 0
当一物质的理想晶体热力学温度从零升高到T 时, 系统熵的增加即为系统在 温度T 时的熵, 并定义此时的熵( S )与系统内物质的量( n )之比为该物质在温度 T 时的摩尔熵,用 Sm 表示。标准状态下物质的摩尔熵称为该物质的标准摩尔熵,
时,如何判断反应的方向?
判断反应能否自 发进行,必须综 合考虑ΔH和ΔS
2.1.3 吉布斯自由能(G)与化学反应自发性的判据
1、吉布斯自由能(简称自由能) 1876年,美国化学家吉布斯(Gibbs)首先提出一 个把焓和熵归并在一起的热力学函数—G (现称 吉布斯自由能或吉布斯函数),并定义: G = H – TS 对于等温过程: ΔG = ΔH – TΔS 或写成: Δr Gm = Δr Hm – TΔr Sm
2.1 化学反应的方向和吉布斯函数
2.1.1 自发过程
在给定条件下不需要外界做功、一经引发就能自 动进行的反应或过程叫自发反应或自发过程。
自发过程与非自发过程是一个互逆的过程;自发过程和非自发过程都是可 以进行的,区别就在于自发过程可以自动进行,而非自发过程则需要借助外力 才能进行,在条件变化时,自发过程与非自发过程可以发生转化。
ΔH(298.15K)=Σ{ΔfH (298.15K)}生成物 -Σ{ΔfH(298.15K)}反应物 =178.33kJ· -1 mol ΔS(298.15K)=Σ{S(298.15K)}生成物 - Σ{S(298.15K)}反应物 =160.5J· -1· -1 mol K
ΔH>0,吸热,不利于自发过程; ΔS>0,混乱度增加,有利于自发过程。
r S m = vB S m (生成物) vB S m (反应物)
= 2S m (CO, g) [2S m (C, s) S m (O 2 , g )]
= 2 197.6 (2 5.7) 205.0 = 178.8 ( J mol 1 K 1 )
例 2.2 计算 298K、100 kPa 下, 2C(s) O 2 (g ) === 2CO(g) 的 r S m 。
解:查附录 3 得各物质的标准摩尔熵
2C(s) O 2 (g ) === 2CO(g)
S m / J mol 1 K 1
5.7
205.0
197.6
该反应在常温下正向进行,但在高温下则逆向进行。
(3) CaCO3 (s) CaO(s) CO 2 (g) , r H m = 178.3 kJ mol1
常温下不反应,但高温(T >1110K)时反应正向进行。 1 (4) N 2 (g) O 2 (g ) N 2O(g) , r H m =81.2 kJ mol1 2 该反应在任何温度下均不能正向进行。
在等温、等压过程中,由于 qr = H ,所以熵变等于焓变除以绝对温度。 S = H T (2.3)
在相变过程中,熵变等于相变焓除以相变温度。
S = 相变 H T
(2.4)
例 2.1 在 373K, kPa 时, 2O(l) 100 H H 2O(g) 的相变热为 44.0 kJ mol1 , 求此过程的摩尔熵变。 解:由式(2.4)有: q相变 44.0 1000(J mol1 ) = =118 J mol1 K 1 S = 373(K ) T
吉布斯:美国物理 学家、化学家 (1839~1903),1958 年入选美国名人纪 念馆。
((2.6)
吉布斯等温方程
2、化学反应进行方向的判据 在等温、等压下,一个封闭系统所能做的最大非体积功 (wmax ) 等于其吉布斯自由能的减少 (- ΔG ) 。 -ΔG = wmax
wmax > 0,ΔG < 0,自发过程,过程能向正方向进行
S隔离 0 S隔离 0 自发过程 平衡过程
(2.1)
这就是隔离系统的熵判据。
系统内物质微观粒子的混乱度与物质的聚集状态和温度等 有关。在绝对零度时,理想晶体内分子的各种运动都将停止, 物质微观粒子处于完全整齐有序的状态。人们根据一系列低 温实验事实和推测,总结出一个经验定律—— 热力学第三定律
第二章 化学反应的基本原理
学习要求
(1)了解化学反应中的熵变(rSm)及吉布斯函数变(rGm)在 一般条件下的意义。初步掌握化学反应的标准吉布斯函数变 (rGm)的近似计算,能应用(rGm)或(rGm)判断反应进行的 方向; (2)理解标准平衡常数(Kθ)的意义及其与(rGm)的关系, 并初步掌握有关计算。理解浓度、压力和温度对化学平衡的 影响; (3)了解浓度、温度与反应速率的定量关系。了解元反应和 反应级数的概念。能利用阿仑尼乌斯公式进行初步计算。能 用活化能和活化分子的概念,说明浓度、温度、催化剂对化 学反应速率的影响。