2019版高考数学一轮复习课时分层作业: 二十三 3.5.2简单的三角恒等变换 Word版含解析
2019年高考数学一轮复习 第3单元 三角函数、解三角形 第21讲 二倍角公式与简单的三角恒等变换 理
,
sin������sin������
=
-
1 15
,
所以 tan αtan
β=csoins
������sin ������ ������cos ������
=-14.
课前双基巩固
4.[教材改编] 已知 sin θ=35,θ 为第二象限角,则 sin 2θ 的值
为
.
[答案] -2245
[解析] ∵sin θ=35,θ 为第二象限角,
1 + sin6 + 1-sin6 + 2 (1 + sin6)(1-sin6)= 2 + 2cos6= 2 + 2(2cos23-1)= 4cos23
=-2cos 3.
(2)f(x)=1-sin2(x+α)+cos(x+α)sin(x+α)=1-1-cos
2(������ 2
+������)+12sin
5
教学参考
■ [2017-2016]其他省份类似高考真题
1.[2017·山东卷] 已知 cos x=3,则 cos
4
2x= ( )
A.-1
B.1
4
4
C.-18
D.18
[答案] D [解析] 由二倍角公式得 cos 2x=2cos2x-1=2×196-1=18,故选 D.
教学参考
2.[2016·浙江卷] 已知 2cos2x+sin
课前双基巩固
知识聚焦
1.二倍角的正弦、余弦、正切公式
(1)公式 S2α:sin 2α= 2sin αcos α
.
(2)公式 C2α:cos 2α=
cos2α-sin2α
(浙江版)2019年高考数学一轮复习 专题4.3 简单的三角恒等变换(练).doc
(浙江版)2019年高考数学一轮复习 专题4.3 简单的三角恒等变换(练)1.【2018江西(宜春中学、丰城中学、樟树中学、高安二中、丰城九中、新余一中)六校上学期第五次联考】已知2παπ<<, 7sin22cos αα=,则11sin 2πα⎛⎫-= ⎪⎝⎭__________. 【答案】43-【解析】∵7sin22cos αα=,∴14sin cos 2cos ααα=,由于2παπ<<,∴1sin 7α=, 243cos 1sin αα=--=-,由诱导公式得: 1143sin cos 2απα⎛⎫-==- ⎪⎝⎭,故答案为437-. 2.【浙江省杭州二中】已知02πα<<,02πβ-<<,3cos()5αβ-=,且3tan 4α=,则cos α=________,sin β=_______.【答案】45,725-以()()()33447sin sin sin cos cos sin 555525βααβααβααβ=--=---=⨯-⨯=-⎡⎤⎣⎦,所以答案应填:45,725-. 3.【浙江高三模拟】已知3cos()45πα+=,322ππα≤<,则cos2α=________. 【答案】2425-.4.【2018湖北,部分重点中学7月联考】已知,2sin cos 5R ααα∈-=,则sin α= ,tan 4πα⎛⎫- ⎪⎝⎭= .【答案】【解析】由同角三角函数基本定理得解得,5cos α=-, tan 2α∴=-, tan tan 4tan 341tan tan4παπαπα-⎛⎫∴-== ⎪⎝⎭+.5.【2017浙江省上学期高考模拟】已知函数()sin sin()6f x x x π=+.(1)求()f x 的最小正周期; (2)当[0,]2x π∈时,求()f x 的取值范围.【答案】(1)π;(2)13[0,]24+. 【解析】∴函数()f x的取值范围为1[0,24+. B 能力提升训练1. 若R ∈βα、且)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 【答案】A.故选A .2.对于函数1)12(sin )12(cos )(22-++-=ππx x x f ,下列选项正确的是( )A .()x f 在⎪⎭⎫⎝⎛2,4ππ内是递增的 B .()x f 的图像关于原点对称 C .()x f 的最小正周期为2π D .()x f 的最大值为1 【答案】B【解析】1)12(sin )12(cos )(22-++-=ππx x x f 1cos(2)1cos(2)66122x x ππ+--+=+-11[cos(2)cos(2)]sin2sin sin226662x x x xπππ=--+==,所以B正确.3. 已知π4cos sin365αα⎛⎫-+=⎪⎝⎭,且⎪⎭⎫⎝⎛∈3,0πα,则⎪⎭⎫⎝⎛+πα125sin的是()A.235- B.235C.1027D.1527【答案】C所以3cos65πα⎛⎫+=⎪⎝⎭,5sin sin sin cos cos sin12646464ππππππαπααα⎛⎫⎛⎫⎛⎫⎛⎫+=++=+++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭423272525210=⨯+⨯=.4.【2018安徽蚌埠市第二中学7月】已知1sin54πα⎛⎫-=⎪⎝⎭,则3cos25πα⎛⎫+=⎪⎝⎭( ) A.78- B.78C.18D.18-【答案】A【解析】根据二倍角公式,27cos212sin558ππαα⎛⎫⎛⎫-=--=⎪ ⎪⎝⎭⎝⎭,即27cos258πα⎛⎫-=⎪⎝⎭,所以327cos2cos2558ππαπα⎡⎤⎛⎫⎛⎫+=--=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故选择A.5.【2017浙江台州4月调研】已知,若对任意的,不等式恒成立,则实数的取值范围是()A. B. C.D.【答案】AC 思维扩展训练1.已知3,22πβπ⎛⎫∈⎪⎝⎭,满足()tan 2tan 0αββ+-=,则tan α的最小值是( ) A .24 B .24- C .32 D 32【答案】B 【解析】由已知得tan tan 2tan 01tan tan αββαβ+-=-,得2tan tan 12tan βαβ=+112tan tan ββ=+,∵3(,2)2πβπ∈,∴tan 0β<,11(2tan )2(2tan )22tan tan ββββ-+-≥-⋅-=12tan tan ββ=,即2tan 2β=-时等号成立,所以12tan 22tan ββ+≤-2tan 222α≥=--.选B . 2.已知33)6cos(-=-πx ,则=-+)3cos(cos πx x . 【答案】-1【解析】注意观察求知角x 和3π-x 已知角6π-x 的关系可发现求知角均能用已知角和特殊角6π表示出来,再用和差角公式展开即可求得结果. =-+)3cos(cos πx x ]6)6cos[(]6)6cos[(ππππ--++-x x6cos)6cos(2ππ-=x123)33(2-=⨯-⨯=故答案为:-1.3.已知442cos sin ,(0,)32πααα-=∈,则2cos(2)3πα+=.【答案】1526--4.已知212cos1cossin=-ααα,()21tan=-βα,则_______tan=β.【答案】31【解析】因为212cos1cossin=-ααα,所以2sin cos1,tan12sin2αα=∴α=α.又因为()21tan=-βα,所以1112tan tan[()]1312-β=α-α-β==+.5. 在平面直角坐标系中,已知向量.(1)若,求向量与的夹角;(2)当,求的最大值.【答案】(1);(2).(1)因为,,,,所以.(2)因为,所以,又所以,因,所以,所以,从而.。
【精品】2019版高考数学一轮复习课时规范练三角恒等变换理北师大版
课时规范练22 三角恒等变换基础巩固组1.函数f(x)=(sin x+cos x)(cos x-sin x)的最小正周期是()A. B.π C. D.2π2.已知sin,则cos=()A. B. C. D.3.(2018云南民族中学一模)已知tan α=2,则的值是()A. B.- C. D.4.(2018四川成都七中模拟)已知sin,则cos=()A.-B.-C.D.5.已知f(x)=sin2x+sin x cos x,则f(x)的最小正周期和一个递增区间分别为()A.π,[0,π]B.2π,C.π,D.2π,6.(2018黑龙江高考仿真(三))已知sin+sin α=-,则cos=()A.-B.-C.D.7.(2018全国第一次大联考)已知sin,则sin-cos的值为.8.设f(x)=+sin x+a2sin的最大值为+3,则实数a=.9.设α为锐角,若cos,则sin的值为.10.(2018湖北百所重点校联考)设α∈,满足sin α+cos α=.(1)求cos的值;(2)求cos的值.综合提升组11.已知函数f(x)=sin(ωx+φ)+1的图像的相邻两对称轴之间的距离为π,且在x=时取得最大值2,若f(α)=,且<α<,则sin的值为()A. B.- C. D.-12.已知α∈,cos-sin α=,则sin的值是()A.-B.-C.D.-13.(2018湖南长郡中学一模,17改编)已知函数f(x)=2sin x cos2+cos x sin φ-sin x(0<φ<π)在x=π处取最小值.则φ的值为.14.(2018安徽合肥二模)已知a=(sin x,cos x),b=(cos x,-cos x),函数f(x)=a·b+.(1)求函数y=f(x)图像的对称轴方程;(2)若方程f(x)=在(0,π)上的解为x1,x2,求cos(x1-x2)的值.创新应用组15.已知m=,若sin 2(α+γ)=3sin 2β,则m=()A.-1B.C.D.216.函数y=sin α+cos α-4sin αcos α+1,且=k,<α≤,(1)把y表示成k的函数f(k);(2)求f(k)的最大值.参考答案课时规范练22 三角恒等变换1.B f(x)= 2sin×2cos=2sin,故最小正周期T==π,故选B.2.A由题意sin=,∴cos=cos 2=1-2sin2=1-2×=.故选A.3.D∵tan α=2,∴======.4.B由题意sin=sin=-sin,所以sin=-,由于cos=cos=-cos=-cos=2sin2-1=2×-1=-,故选B.5.C由f(x)=sin2x+sin x cos x=+sin 2x=+-=+sin,则T==π.又2kπ-≤2x-≤2kπ+(k∈Z),∴kπ-≤x≤kπ+(k∈Z)为函数的递增区间.故选C.6.D∵sin+sin α=sincos α+cossin α+sin α=-,∴sin α+cos α=-,即sin α+cos α=-.∴sin=-.故cos=cos=-sin=.7. sin-cos=sin-cos 2=-sin+cos 2=-sin+1-2sin2=-+1-=.8.±f(x)=+sin x+a2sin=cos x+sin x+a2sin=sin+a2sin=(+a2)sin.依题意有+a2=+3,则a=±.9. ∵α为锐角,cos=,∴sin=,∴sin=2sincos=,cos=2cos2-1=,∴sin=sin=sin-cos=.10.解 (1)∵sin α+cos α=,∴sin=.∵α∈,∴α+∈,∴cos=.(2)由(1)可得cos=2cos2-1=2×-1=.∵α∈,∴2α+∈,∴sin=.∴cos=cos=coscos+sinsin=.11.D由题意,T=2π,即T==2π,即ω=1.又当x=时,f(x)取得最大值,即+φ=+2kπ,k∈Z,即φ=+2kπ,k∈Z.∵0<φ≤,∴φ=,∴f(x)=sin+1.∵f(α)=sin+1=,可得sin=.∵<α<,可得<α+<π,∴cos=-.∴sin=2sin·cos=2××=-.故选D.12.B由cos-sin α=,可得cos α-sin α=,cos α-sin α=,cos=.∵α∈,∴α+∈,sin=,sin=sin=sin-cos==-,故选B.13. f(x)=2sin x·+cos x sin φ-sin x=sin x+sin x cos φ+cos x sin φ-sin x=sin x cos φ+cos x sin φ=sin(x+φ).因为函数f(x)在x=π处取最小值,所以sin(π+φ)=-1,由诱导公式知sin φ=1,因为0<φ<π,所以φ=.14.解 (1)f(x)=a·b+=(sin x,cos x)·(cos x,-cos x)+=sin x·cos x-cos2x+=sin 2x-cos 2x=sin.令2x-=kπ+,得x=+π(k∈Z),即y=f(x)的对称轴方程为x=+π(k∈Z).(2)由条件知sin=sin=>0,且0<x1<<x2<,易知(x1,f(x1))与(x2,f(x2))关于x=对称,则x1+x2=,∴cos(x1-x2)=cos=cos=cos=sin=.15.D∵sin 2(α+γ)=3sin 2β,∴sin[(α+γ+β)-(β-α-γ)]=3sin[(α+γ+β)-(α+γ-β)],∴sin(α+γ+β)cos(β-α-γ)-cos(α+γ+β)sin(β-α-γ)=3sin(α+γ+β)cos(α+γ-β)-3cos(α+γ+β)sin(α+γ-β),即-2sin(α+γ+β)cos(α+γ-β)=-4cos(α+γ+β)sin(α+γ-β),∴tan(α+γ+β)=tan(α+γ-β),故m==2,故选D.16.解 (1)∵k====2sin αcos α,∴(sin α+cos α)2=1+2sin αcos α=1+k.∵<α≤,∴sin α+cos α>0.∴sin α+cos α=.∴y=-2k+1.由于k=2sin αcos α=sin 2α,<α≤,∴0≤k<1.∴f(k)=-2k+1(0≤k<1).(2)设=t,则k=t2-1,1≤t<.∴y=t-(2t2-2)+1,即y=-2t2+t+3(1≤t<).∵关于t的二次函数在区间[1,)内是减少的,∴t=1时,y取最大值2.。
2019版高考数学一轮复习 第一部分 基础与考点过关 第三章 三角函数、三角恒等变换及解三角形
第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数1. (必修4P 10习题9改编)小明从家步行到学校需要15 min ,则这段时间内钟表的分针走过的角度是________.答案:-90°解析:利用定义得分针是顺时针走的,形成的角是负角.又周角为360°,所以360°60×15=90°,即分针走过的角度是-90°.2. (必修4P 10习题4改编)若角θ的终边与角4π5的终边相同,则在[0,2π)内终边与角θ2的终边相同的角的集合为__________________.(用列举法表示) 答案:⎩⎨⎧⎭⎬⎫2π5,7π5解析:由题意θ=4π5+2k π(k∈Z ),∴ θ2=2π5+k π(k∈Z ).由0≤θ2<2π,即0≤2π5+k π<2π知-25≤k<85,k ∈Z .∴ k =0或1.故在[0,2π)内终边与角θ2的终边相同的角的集合为⎩⎨⎧⎭⎬⎫2π5,7π5. 3. (必修4P 9例3改编)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为__________.答案:6解析:设扇形的半径为R ,则12R 2α=2,∴ 12R 2×4=2.而R 2=1,∴ R =1,∴ 扇形的周长为2R +α·R=2+4=6.4. 已知角θ的终边经过点P(8,m +1),且sin θ=35,则m =________.答案:5解析:sin θ=m +182+(m +1)2=35,解得m =5. 5. 函数y =lg(2cos x -1)的定义域为____________.答案:⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ) 解析:∵ 2cos x -1>0,∴ cos x >12.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴ x ∈⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ).1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z ). (3) 弧度制① 1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π rad ;180°=π rad ;1°=π180 rad ;1 rad =180π度.④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2.2. 任意角的三角函数(1) 任意角的三角函数的定义设P(x ,y)是角α终边上任意一点,且|PO|=r(r >0),则有sin α=y r ,cos α=xr,tan α=yx,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦. (3) 特殊角的三角函数值45°π42222160°π33212390°π21 0 /120°2π332-12- 3续表角αα弧度数sin αcos αtan α135°3π422-22-1150°5π612-32-33180°π0 -1 0270°3π2-1 0 /3.设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过点P作PM垂直x轴于点M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM,MP,AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记], 1象限角及终边相同的角), 1) (1) 已知α=-2 017°,则与角α终边相同的最小正角为________,最大负角为________.(2) (必修4P 10习题12改编)已知角α是第三象限角,试判断:① π-α是第几象限角?② α2是第几象限角?③ 2α的终边在什么位置?(1) 答案:143° -217° 解析:α可以写成-6×360°+143°的形式,则与α终边相同的角可以写成k·360°+143°(k∈Z )的形式.当k =0时,可得与角α终边相同的最小正角为143°,当k =-1时,可得最大负角为-217°.(2) 解:①∵ α是第三象限角,∴ 2k π+π<α<2k π+3π2,k ∈Z .∴ -2k π-π2<π-α<-2k π,k ∈Z .∴ π-α是第四象限角.② ∵ k π+π2<α2<k π+3π4,k ∈Z ,∴ α2是第二或第四象限角.③ ∵ 4k π+2π<2α<4k π+3π,k ∈Z ,∴ 2α的终边在第一或第二象限或y 轴非负半轴上. 变式训练(必修4P 10习题5改编)终边在直线y =3x 上的角的集合可表示为____________.答案:⎩⎨⎧⎭⎬⎫x|x =k π+π3,k ∈Z 解析:直线y =3x 经过第一象限、第三象限,直线的倾斜角为π3,则终边在该直线上的角的集合为{x|x =k π+π3,k ∈Z }., 2 三角函数的定义), 2) (1) 点P 是始边与x 轴的正半轴重合、顶点在原点的角θ的终边上的一点,若|OP|=2,θ=60°,则点P 的坐标是__________;(2) (2017·泰州模拟)已知角α的终边过点P(-8m ,-6sin 30°),且cos α=-45,则m 的值为________.答案:(1) (1,3) (2) 12解析:(1) 设点P 的坐标为(x ,y),由三角函数的定义,得sin 60°=y2,cos 60°=x2,所以x =2cos 60°=1,y =2sin 60°=3,故点P 的坐标为(1,3). (2) ∵ r=64m 2+9,∴ cos α=-8m 64m 2+9=-45,∴ m >0,∴ 4m 264m 2+9=125,即m =12.变式训练(2017·无锡期末)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α=________.答案:-32解析:由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时sin α·tan α=-32. 当y =-32时,sin α=-32,tan α=3,此时sin α·tan α=-32., 3 三角函数的符号及判定), 3) 点A(sin 2 017°,cos(-2 017°))位于第________象限. 答案:三 解析:因为2 017°=5×360°+217°是第三象限角,所以sin 2 017°<0.又-2 017°=-6×360°+143°是第二象限角,所以cos(-2 017°)<0,所以点A(sin 2 017°,cos(-2 017°))位于第三象限.变式训练下列判断正确的是________.(填序号)① sin 300°>0;② cos(-305°)<0;③ tan ⎝ ⎛⎭⎪⎫-223π>0;④ sin 10<0. 答案:④解析:300°=360°-60°,则300°是第四象限角; -305°=-360°+55°,则-305°是第一象限角; -223π=-8π+23π,则-223π是第二象限角; 因为3π<10<72π,所以10是第三象限角.故sin 300°<0,cos(-305°)>0,tan ⎝ ⎛⎭⎪⎫-223<0,sin 10<0,④正确., 4 弧长公式与扇形面积公式), 4) 扇形AOB 的周长为8 cm.(1) 若这个扇形的面积为3 cm 2,求圆心角的大小;(2) 求这个扇形的面积取得最大值时圆心角的大小和弦长AB. 解:设扇形AOB 的半径为r cm ,弧长为l cm ,圆心角为α,(1) 由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴ α=l r =23或6.(2) ∵ 2r+l =8,∴ S 扇=12lr =14l ·2r ≤14·⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4(cm 2), 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值,∴ r =2,∴ 弦长AB =2×2sin 1=4sin 1(cm). 备选变式(教师专享)已知扇形的周长是 4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是________;扇形的圆心角所对的弦长为________cm.答案: 2 2sin 1解析:设此扇形的半径为r cm ,弧长为l cm ,则2r +l =4,面积S =12rl =12r(4-2r)=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2 cm.从而α=l r =21=2.扇形的圆心角所对的弦长为2sin 1 cm.1. 若tan(α+45°)<0,则sin α,cos α,sin 2α,cos 2α中一定为负数的是__________.答案:cos 2α解析:∵ tan(α+45°)<0,∴ k ·180°-135°<α<k ·180°-45°,∴ k ·360°-270°<2α<k ·360°-90°,∴ cos 2α<0.2. (2017·苏州期末)已知角θ的终边经过点P(4,m),且sin θ=35,则m =________.答案:3解析:sin θ=m 16+m 2=35,解得m =3. 3. 若α=k·360°+θ,β=m·360°-θ(k ,m ∈Z ),则下列关于角α与β的终边的位置关系的说法正确的是________.(填序号)① 重合;② 关于原点对称;③ 关于x 轴对称;④ 关于y 轴对称. 答案:③解析:显然角α与角θ的终边相同,角β与角-θ的终边相同,而θ与-θ的终边关于x 轴对称,故说法正确的是③.4. 已知一扇形的圆心角为α (α>0),扇形所在圆的半径为R.(1) 若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2) 若扇形的周长是一定值C cm(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓,又α=90°=π2,R =10,则l =π2×10=5π(cm),S 弓=S 扇-S 三角形=12×5π×10-12×102=25π-50 (cm 2).(2) 扇形周长C =2R +l =(2R +αR)cm ,∴ R =C2+αcm ,∴ S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216cm 2.1. 给出下列命题:① 第二象限角大于第一象限角;② 三角形的内角是第一象限角或第二象限角;③ 不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④ 若sin α=sin β,则α与β的终边相同; ⑤ 若cos θ<0,则θ是第二或第三象限的角. 其中正确的命题是________.(填序号) 答案:③解析:由于第一象限角370°大于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;正弦值相等,但角的终边不一定相同,故④错;当θ=π时,cos θ=-1<0,θ既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.答案:-35解析:取终边上一点(a ,2a )(a≠0),根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.3. (2017·扬州一中月考改编)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos α=________.答案:12解析:∵ r=1,∴ cos α=x r =12.4. (2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.答案:(-2,3]解析:∵ cos α≤0,sin α>0,∴ 角α的终边落在第二象限或y 轴的正半轴上. ∴ ⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴ -2<a≤3.1. (1) 要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解有关三角函数的不等式(组)的一般步骤 (1) 用边界值定出角的终边位置. (2) 根据不等式(组)定出角的范围. (3) 求交集,找单位圆中公共的部分. (4) 写出角的表达式.第2课时 同角三角函数的基本关系式与 诱导公式(对应学生用书(文)、(理)51~52页)1. 已知sin α=14,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=__________. 答案:-1515解析:由sin α=14,α∈⎝ ⎛⎭⎪⎫π2,π,得cos α=-154, 则tan α=sin αcos α=-1515.2. (必修4P 20练习2改编)sin(-585°)的值为__________.答案:22解析:sin(-585°)=-sin 585°=-sin(360°+225°)=-sin 225°=-sin(180°+45°)=sin 45°=22.3. (2017·苏北四市摸底)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos α的值为________.答案:15解析:∵ sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴ cos α=15. 4. (必修4P 23习题11改编)已知tan α=2,则2sin α-cos αsin α+cos α=__________.答案:1解析:因为tan α=2,所以2sin α-cos αsin α+cos α=2tan α-1tan α+1=2×2-12+1=1.5. (必修4P 21例4改编)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=__________.答案:119解析:∵ sin ⎝ ⎛⎭⎪⎫π6-α=13,∴ sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=13,∴ cos ⎝ ⎛⎭⎪⎫π3+α=13.∴ cos 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝⎛⎭⎪⎫π+α-π6 =1-sin 2⎝ ⎛⎭⎪⎫π6-α=1-19=89.∴ cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=13+89=119.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1.(2) 商数关系:tan_α=sin αcos α.2. 诱导公式k ·2±α(k∈Z )与α的三角函数关系的记忆规律:奇变偶不变,符号看象限., 1 同角三角函数的基本关系式), 1) (必修4P 23习题20改编)已知-π2<x<0,sin x +cos x =15.(1) 求sin 2x -cos 2x 的值;(2) 求tan x2sin x +cos x的值.解:由sin x +cos x =15,得1+2sin xcos x =125,则2sin xcos x =-2425.∵ -π2<x<0,∴ sin x<0,cos x>0,即sin x -cos x<0.则sin x -cos x =-sin 2x -2sin xcos x +cos 2x =-1+2425=-75.(1) sin 2x -cos 2x =(sin x +cos x)(sin x -cos x)=15×⎝ ⎛⎭⎪⎫-75=-725. (2) 由⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,得⎩⎪⎨⎪⎧sin x =-35,cos x =45,则tan x =-34.即tan x 2sin x +cos x =-34-65+45=158. 变式训练(2017·盐城模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.答案:32解析:∵ 5π4<α<3π2,∴ cos α<0,sin α<0,且cos α>sin α,∴ cos α-sinα>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴ cos α-sin α=32. , 2) (必修4P 23习题12(2)改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=[(1+sin α)2cos 2α-(1-sin α)2cos 2α]·[(1+cos α)2sin 2α-(1-cos α)2sin 2α]=(1+sin α|cos α|-1-sin α|cos α|)·(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)若α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 答案:0解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|.因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0., 2 诱导公式及其运用), 3) 已知sin ⎝ ⎛⎭⎪⎫x +π6=13,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为__________.答案:59解析:由诱导公式得sin ⎝ ⎛⎭⎪⎫x -5π6=-sin ⎝ ⎛⎭⎪⎫x +π6=-13,sin 2⎝ ⎛⎭⎪⎫π3-x =cos 2⎝⎛⎭⎪⎫x +π6=89,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x =89-13=59.变式训练已知cos ⎝ ⎛⎭⎪⎫π6-θ=a(|a|≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=__________.答案:0解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ= -cos ⎝ ⎛⎭⎪⎫π6-θ=-a. sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,∴ cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0., 3 同角三角函数的基本关系与诱导公式的综合应用), 4) (1) 设tan(5π+α)=m ,求sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值;(2) 在△ABC 中,若sin(2π-A)=-2sin(π-B),3cos A =-2cos(π-B),求△ABC 的三个内角.解:(1) 由tan(5π+α)=m ,得tan α=m ,∴ sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1.(2) 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =±22. (ⅰ) 当cos A =22时,cos B =32. 又∵ A,B 是三角形的内角,∴ A =π4,B =π6,∴ C =π-(A +B)=7π12.(ⅱ) 当cos A =-22时,cos B =-32. 又∵ A,B 是三角形的内角,∴ A =3π4,B =5π6,不合题意.综上知,A =π4,B=π6,C =7π12.变式训练 (1) (2017·江西联考)已知tan(π-α)=-23,且α∈⎝⎛⎭⎪⎫-π,-π2,求cos (-α)+3sin (π+α)cos (π-α)+9sin α的值;(2) 在△ABC 中,若sin(3π-A)=2sin(π-B),cos ⎝ ⎛⎭⎪⎫3π2-A =2cos(π-B).试判断三角形的形状.解:(1) 由已知得tan α=23,cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-3×23-1+9×23=-15.(2) 由题设条件,得sin A =2sin B ,-sin A =-2cos B , ∴ sin B =cos B ,∴ tan B =1.∵ B ∈(0,π),∴ B =π4,∴ sin A =2×22=1. 又A∈(0,π),∴ A =π2,∴C =π4.∴ △ABC 是等腰直角三角形.1. 已知cos 31°=a ,则sin 239°·tan 149°的值是________.答案:1-a 2解析:sin 239°·tan 149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan 31°)=sin 31°=1-a 2.2. 已知α为锐角,且tan(π-α)+3=0,则sin α的值是________.答案:31010解析:(解法1)由tan(π-α)+3=0,得tan α=3,即sin αcos α=3,sin α=3cos α,所以sin 2α=9(1-sin 2α),10sin 2α=9,sin 2α=910.因为α为锐角,所以sin α=31010.(解法2)因为α为锐角,且tan(π-α)+3=0,所以-tan α+3=0即tan α=3.在如图所示的直角三角形中,令∠A=α,BC =3,则AC =1,所以AB =32+12=10,故sin α=310=31010.3. (2017·南通调研)已知sin θ+cos θ=43,θ∈⎝⎛⎭⎪⎫0,π4,则sin θ-cos θ=________.答案:-23解析:∵ sin θ+cos θ=43,∴ 2sin θcos θ=79,∴ (sin θ-cos θ)2=1-2sin θcos θ=29,∴ sin θ-cos θ=23或-23.∵θ∈⎝⎛⎭⎪⎫0,π4,∴ sin θ<cos θ,∴ sin θ-cos θ=-23.4. 已知sin 2θ+4cos θ+1=2,则(cos θ+3)(sin θ+1)的值为__________.答案:4解析:因为sin 2θ+4cos θ+1=2,所以sin 2θ+4=2cos θ+2,即cos 2θ+2cos θ-3=0,解得cos θ=1或cos θ=-3(舍去).由cos θ=1得sin θ=0,故(cos θ+3)(sin θ+1)=4.1. 已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2 +α,则sin αcos α=__________. 答案:-25解析:因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 2. 已知cos(-80°)=k ,那么tan 100°=__________.答案:-1-k2k解析:因为cos(-80°)=cos 80°=k ,所以sin 80°=1-cos 280°=1-k 2.所以tan 100°=-tan 80°=-sin 80°cos 80°=-1-k2k.3. (2017·盐城调研)若3sin α+cos α=0,则1cos 2α+2sin αcos α=________.答案:103解析:∵ 3sin α+cos α=0,且cos α≠0,∴ tan α=-13,∴1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝ ⎛⎭⎪⎫-1321-23=103. 4. (2017·南京、盐城模拟)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝ ⎛⎭⎪⎫5π12+α. 因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12, 所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π的形式;② 转化为锐角.3. 同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,如已知一个角的某一三角函数值,求这个角的其他三角函数值时,要特别注意平方关系的使用.4. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:① 弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如asin x +bcos xcsin x +dcos x,asin 2x +bsin xcos x +ccos 2x 等类型可进行弦化切.② 和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.③ 注意变角技巧:如32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α等. ④ 巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=…5. 在△ABC 中常用到以下结论: sin(A +B)=sin(π-C)=sin C , cos(A +B)=cos(π-C)=-cos C , tan(A +B)=tan(π-C)=-tan C ,sin ⎝ ⎛⎭⎪⎫A 2+B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2, cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.[备课札记]第3课时 三角函数的图象和性质(对应学生用书(文)、(理)53~55页)1. (2017·南京期初)若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3的值是________.答案:12解析:由题意,得2πω=π,所以ω=2,f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6.因此f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+π6=sin 5π6=12.2. 将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数y =g(x)的图象,则g(x)=____________.答案:2sin ⎝⎛⎭⎪⎫2x -π3 解析:将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数g(x)=2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3的图象.本题主要考查三角函数的图象变换(平移变换).3. 已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b],则b -a 的值是__________.答案:3解析:因为x∈⎣⎢⎡⎦⎥⎤π3,π,所以cos x ∈⎣⎢⎡⎦⎥⎤-1,12,所以y =2cos x 的值域为[-2,1],所以b -a =3.4. 函数f(x)=sin ⎝⎛⎭⎪⎫2x -π3的单调递增区间为________.答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ) 解析:由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ). 5. (必修4P 45习题9改编)电流强度I(A)随时间t(s)变化的函数I =Asin(ωt +φ)⎝⎛⎭⎪⎫A>0,ω>0,0<φ<π2的部分图象如图所示,则当t =1100 s 时,电流强度是__________A.答案:-5解析:由图象知A =10,T 2=4300-1300=1100,∴ ω=2πT=100π.∴ I =10sin(100πt+φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点,∴ 100π×1300+φ=π2.∴ φ=π6.∴ I =10sin(100πt +π6),当t =1100s 时,I =-5 A.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,那么称y =f(x)为周期函数;函数y =Asin(ωx+φ)和y =Acos(ωx +φ)的周期均为T =2π|ω|;函数y =Atan(ωx +φ)的周期为T =π|ω|.2. 三角函数的图象和性质在确定正弦函数y =sin x 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数呢?4. 函数 y =Asin(ωx +φ)的特征若函数y =Asin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记], 1 “五点法”与“变换法”作图), 1) (必修4P 40练习7改编)已知函数f(x)=2sin(ωx +π3)(ω>0)的周期为π.(1) 用“五点法”作出它在长度为一个周期的闭区间上的图象;(2) 说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.解:∵ T=π,∴ 2πω=π,即ω=2.∴ f(x)=2sin ⎝⎛⎭⎪⎫2x +π3. (1) 令X =2x +π3,则y =2sin ⎝⎛⎭⎪⎫2x +π3=2sin X. 列表如下: x -π6 π12 π3 7π12 5π6X 0 π2 π 3π22π y =sin X 0 1 0 -1 0y =2sin ⎝⎛⎭⎪⎫2x +π3 0 2 0 -2 0(2) (解法1)把y =sin x 的图象上所有点向左平移π3个单位,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝⎛⎭⎪⎫x +π3的图象上所有点的横坐标变为原来的12(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. (解法2)将y =sin x 的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 备选变式(教师专享)已知f(x)=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象;(3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ ω=2.∵ f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32.又-π2<φ<0,∴ φ=-π3. (2) 由(1)得f(x)=cos ⎝⎛⎭⎪⎫2x -π3,列表如下:(3)∵ cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴ 2k π-π4<2x -π3<2k π+π4,∴ 2k π+π12<2x<2k π+7π12, ∴ k π+π24<x<k π+7π24,k ∈Z ,∴ x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫k π+π24<x<k π+7π24,k ∈Z .,2 三角函数的性质)●典型示例2已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1) 求f(x)的最小正周期和单调递增区间;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(3) 求f(x)图象的一条对称轴和一个对称中心,使得它们到y 轴的距离分别最小. 【思维导图】【规范解答】解:(1) 函数f(x)的最小正周期为T =2π2=π. 令-π2+2k π≤2x +π4≤π2+2k π(k∈Z ),解得-3π8+k π≤x ≤π8+k π(k∈Z ),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4.由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.(3) 令2x +π4=π2+k π(k∈Z ),解得x =π8+k π2(k∈Z ),所以当k =0时,直线x =π8是所有对称轴中最靠近y 轴的.令2x +π4=k π(k∈Z ),解得x =-π8+k π2(k∈Z ),所以当k =0时,⎝ ⎛⎭⎪⎫-π8,1是所有对称中心中最靠近y 轴的, 所以所求的对称轴为直线x =π8,对称中心为⎝ ⎛⎭⎪⎫-π8,1. 【精要点评】 对于三角函数f(x)=Asin(ωx +φ)的性质(定义域、单调性、对称性、最值或值域等)问题,通常用换元的方法,令t =ωx +φ,将其转化为函数y =Asin t ,再进行其性质的研究.●总结归纳解有关三角函数性质的问题,通常需先将函数转化为f(x)=Asin(ωx +φ)的形式,再用研究复合函数的单调性、值域的方法利用正弦函数的图象和性质来处理.若ω<0,还需先利用诱导公式转化为f(x)=Asin(ωx +φ)(ω>0)的形式,再将ωx +φ看成整体,利用正弦函数y =sin x 的性质进行求解.●题组练透1. 将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,若所得的图象过点⎝ ⎛⎭⎪⎫π6,32,则φ的最小值为__________.答案:π6解析:易知y =sin 2(x +φ),即y =sin(2x +2φ).∵ 图象过点⎝⎛⎭⎪⎫π6,32,∴ sin ⎝ ⎛⎭⎪⎫π3+2φ=32,∴ π3+2φ=π3+2k π或π3+2φ=2π3+2k π,k ∈Z ,即φ=k π或φ=π6+k π,k ∈Z .∵ φ>0,∴ φ的最小值为π6.K2. 设函数y =sin ⎝⎛⎭⎪⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为__________.答案:2解析:当x =π12时,令ωx +π3=π2,则正数ω=2.3. 函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 答案:-22解析:由已知x∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22. 4. 设函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π3⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f(-x)=-f(x).(1) 求函数f(x)的单调递增区间;(2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,试求y =f ⎝⎛⎭⎪⎫x -π6的最值,并写出取得最值时自变量x 的值.解:(1) 因为f(x)的最小正周期为π,所以T =2πω=π,解得ω=2.又f(-x)=-f(x),所以f(0)=0,所以sin ⎝⎛⎭⎪⎫φ+π3=0.又|φ|<π2,所以φ=-π3,所以ω=2,φ=-π3,所以f(x)=2sin 2x.则2x ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k∈Z ),解得函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,y =f ⎝ ⎛⎭⎪⎫x -π6=2sin 2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3. 当2x -π3=π2,即x =5π12时,f(x)取得最大值2;当2x -π3=-π3,即x =0时,f(x)取得最小值- 3., 3 根据图象和性质确定函数y =Asin(ωx +φ)的解析式), 3) 设函数f(x)=Asin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x∈R )的部分图象如图所示.(1) 求函数y =f(x)的解析式;(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,求f(x)的取值范围.解:(1) 由图象知,A =2. 又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f(x)=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=π2+2k π(k∈Z ),即φ=π6+2k π(k∈Z ). 又-π2<φ<π2,所以φ=π6.所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1,即f(x)∈[-3,2].变式训练已知函数f(x)=2sin ⎝⎛⎭⎪⎫ωx +φ-π6(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝ ⎛⎭⎪⎫π8的值; (2) 将函数y =f(x)的图象向右平移π6个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数y =g(x)的图象,求g(x)的解析式,并写出g(x)的单调递减区间.解:(1) ∵ f(x)为偶函数,∴ φ-π6=k π+π2,k ∈Z ,解得φ=2π3+k π,k ∈Z .∵ 0<φ<π,∴ φ=2π3.由题意得2πω=2×π2,解得ω=2.故f(x)=2cos 2x ,f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象,再将所得图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图象,所以g(x)=f(x 4-π6)=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎝ ⎛⎭⎪⎫x 2-π3. 当2k π≤x 2-π3≤2k π+π(k∈Z ),即4k π+2π3≤x ≤4k π+8π3(k∈Z )时,g(x)单调递减.因此g(x)的单调递减区间为[4k π+2π3,4k π+8π3](k∈Z )., 4 三角函数的应用), 4) (必修4P 42例2改编)如图,一个水轮的半径为4 m ,水轮圆心O距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1) 将点P 距离水面的高度z(m)表示为时间t(s)的函数; (2) 点P 第一次到达最高点大约需要多少时间?解:(1) 建立如图所示的直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在t(s)内所转过的角为π6t.由题意可知水轮逆时针转动,得z =4sin ⎝ ⎛⎭⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求函数解析式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2) 令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝ ⎛⎭⎪⎫π6t -π6=1.令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 备选变式(教师专享)如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,且60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h.(1) 求h 与θ之间的函数解析式; (2) 设从OA 开始转动,经过t s 后到达OB ,求h 与t 之间的函数解析式,并求缆车到达最高点时用的最少时间是多少.解:(1) 以圆心O 为原点,建立如图所示的平面直角坐标系.则以Ox 为始边,OB 为终边的角为θ-π2,故点B 的坐标为⎝ ⎛⎭⎪⎫4.8cos ⎝ ⎛⎭⎪⎫θ-π2,4.8sin ⎝ ⎛⎭⎪⎫θ-π2, ∴ h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2) 点A 在圆上转动的角速度是π30rad/s ,故t s 转过的弧度数为π30t ,∴ h =5.6+4.8sin ⎝ ⎛⎭⎪⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4 m.由sin ⎝ ⎛⎭⎪⎫π30t -π2=1,得π30t -π2=π2,∴ t =30 s ,∴ 缆车到达最高点时,用的最少时间为30 s.1. 已知函数f(x)=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则φ的值为__________. 答案:-π12解析:f(x)=2sin(ωx +φ) 的最小正周期为π,则ω=2,所以f(x)=2sin(2x +φ),它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则sin ⎝⎛⎭⎪⎫φ-π6=-22⎝ ⎛⎭⎪⎫|φ|<π2,故φ=-π12. 2. 函数f(x)=2sin(ωx +φ)的部分图象如图所示.若A ,B 两点之间的距离AB =5,则ω的值为________.答案:π3解析:AB =5,|y A -y B |=4,则|x A -x B |=3=T 2,则T =6,则2πω=6,ω=π3.3. 将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π12个单位得到的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则φ=________.答案:π6解析:由题意得平移以后的函数为y =sin ⎝ ⎛⎭⎪⎫2x +π6+φ,因为图象关于点⎝ ⎛⎭⎪⎫π3,0对称,所以2×π3+π6+φ=k π(k∈Z ),解得φ=k π-5π6(k∈Z ).因为0<φ<π,所以φ=π6.4. 函数f(x)=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示. (1) 求φ及图中x 0的值;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.解:(1) 由图可知,f(0)=f(x 0)=32, 即cos φ=32,cos(πx 0+φ)=32. 又φ∈⎝⎛⎭⎪⎫0,π2,x 0>0,所以φ=π6,x 0=53.(2) 由(1)可知f(x)=cos ⎝⎛⎭⎪⎫πx +π6. 因为x∈⎣⎢⎡⎦⎥⎤-12,13,所以-π3≤πx +π6≤π2. 所以当πx +π6=0,即x =-16时,f(x)取得最大值1;当πx +π6=π2,即x =13时,f(x)取得最小值0.1. (2017·南师附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f(x)的图象,若函数f(x)的图象过原点,则φ=________.答案:3π4解析:将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f(x)=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f(x)的图象过原点,则f(0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z .又0<φ<π,则φ=3π4. 2. 若函数y =sin(ωx -φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是______.答案:2,π3解析:由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2.又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k∈Z ).而|φ|<π2,所以φ=π3.3. (2017·第三次全国大联考江苏卷)将函数f(x)=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P ⎝⎛⎭⎪⎫0,32,则φ的值为________.答案:5π6解析:由题意,可得sin θ=32.因为-π2<θ<π2,所以θ=π3.因为g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所以sin ⎝⎛⎭⎪⎫-2φ+π3=32.又因为0<φ<π,所以-2φ+π3∈⎝ ⎛⎭⎪⎫-5π3,π3,-2φ+π3=-4π3,φ=5π6. 4. 已知函数f(x)=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则(1) m =________;(2) 当f(x)在[a ,b]上至少含20个零点时,b -a 的最小值为________.答案:(1) 0 (2) 28π3解析:(1) f(x)= 3 sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x≤π2,所以π6≤2x +π6≤7π6.所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, f(x)max =2+m +1=3+m =3,∴ m =0.(2) 由(1)得f(x)=2sin ⎝⎛⎭⎪⎫2x +π6+1,周期T =2π2=π,在长为π的闭区间内有2个或3个零点.由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=0,得sin ⎝⎛⎭⎪⎫2x +π6=-12, 2x +π6=2k π+7π6,k ∈Z 或2x +π6=2k π+11π6,k ∈Z ,所以x =k π+π2或x =k π+5π6,k ∈Z .不妨设a =π2,则当b =9π+π2时,f(x)在区间[a ,b]上恰有19个零点,当b =9π+5π6时恰有20个零点,此时b -a 的最小值为9π+π3=28π3.1. 求三角函数的定义域实际上是解简单的三角函数不等式,常借助三角函数线或三角函数图象来求解.2. 求解三角函数的值域(最值)常见到以下几种类型: ① 形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求值域(最值);② 形如y =asin 2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③ 形如y =asin xcos x +b(sin x ±cos x)+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3. 对于形如y =Asin(ωx +φ)+k 函数的性质(定义域、值域、单调性、对称性、最值等),可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4. 求函数y =Asin(ωx +φ)(A >0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y =Asin(ωx +φ)(A >0,ω>0)的解析式一般不惟一,只有限定φ的取值范围,才能得出惟一解.5. 由y =sin x 的图象变换到y =Asin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.[备课札记]第4课时 两角和与差的正弦、余弦和 正切公式(对应学生用书(文)、(理)56~58页)1. 设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则cos ⎝ ⎛⎭⎪⎫α+π4=________.答案:210解析:∵ α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=35,∴ cos α=45.∴ cos ⎝⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210. 2. (必修4P 106练习4改编)sin 20°cos 10 °-cos 160°sin 10°=__________.答案:12解析:sin 20°·cos 10°-cos 160°·sin 10°=sin 20°·cos 10°+cos 20°·sin10°=sin 30°=12.3. (必修4P 109练习8改编)函数y =2sin x +6cos x 的值域是__________. 答案:[-22,22]解析:y =2sin x +6cos x =22sin ⎝ ⎛⎭⎪⎫x +π3∈[-22,22].4. (必修4P 118习题9改编)若α+β=π4,则(tan α+1)·(tan β+1)的值是________.答案:2解析:(tan α+1)(tan β+1)=tan αtan β+tan α+tan β+1=tan αtan β+tan(α+β)(1-tan αtan β)+1=tan αtan β+tan π4·(1-tan αtan β)+1=2.5. (必修4P 110例6改编)已知sin(α+β)=12,sin(α-β)=110,则tan αtan β的值为________.答案:32解析:(解法1)⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=110⇒⎩⎪⎨⎪⎧sin αcos β=310,cos αsin β=15,从而tan αtan β=sin αcos βcos αsin β=310×5=32.(解法2)设x =tan αtan β,∵ sin (α+β)sin (α-β)=5,∴ sin (α+β)cos αcos βsin (α-β)cos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1=5. ∴ x =32,即tan αtan β =32.1. 两角差的余弦公式推导过程设单位圆上两点P 1(cos α,sin α),P 2(cos β,sin β),则∠P 1OP 2=α-β(α>β).向量a =OP 1→=(cos α,sin α),b =OP 2→=(cos β,sin β), 则a·b =|a||b|cos(α-β)=cos(α-β),由向量数量积的坐标表示,可知a·b =cos αcos β+sin αsin β,因而cos(α-β)=cos αcos β+sin αsin β. 2. 公式之间的关系及导出过程3. 公式 cos(α-β)=cos_αcos_β+sin_αsin_β; cos(α+β)=cos_αcos_β-sin_αsin_β; sin(α-β)=sin_αcos_β-cos_αsin_β; sin(α+β)=sin_αcos_β+cos_αsin_β;tan(α-β)=tan α-tan β1+tan αtan β;tan(α+β)=tan α+tan β1-tan αtan β.4. asin α+bcos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b2,sin φ=b a 2+b2,tan φ=ba .φ的终边所在象限由a ,b 的符号来决定.5. 常用公式变形tan α+tan β=tan(α+β)(1-tan_αtan_β); tan α-tan β=tan(α-β)(1+tan_αtan_β);sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4; sin α-cos α=2sin ⎝⎛⎪⎫α-π4.[备课札记]。
2019版高考数学一轮复习 第一部分 基础与考点过关 第三章 三角函数、三角恒等变换及解三角形
第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数1. (必修4P 10习题9改编)小明从家步行到学校需要15 min ,则这段时间内钟表的分针走过的角度是________.答案:-90°解析:利用定义得分针是顺时针走的,形成的角是负角.又周角为360°,所以360°60×15=90°,即分针走过的角度是-90°.2. (必修4P 10习题4改编)若角θ的终边与角4π5的终边相同,则在[0,2π)内终边与角θ2的终边相同的角的集合为__________________.(用列举法表示) 答案:⎩⎨⎧⎭⎬⎫2π5,7π5解析:由题意θ=4π5+2k π(k∈Z ),∴ θ2=2π5+k π(k∈Z ).由0≤θ2<2π,即0≤2π5+k π<2π知-25≤k<85,k ∈Z .∴ k =0或1.故在[0,2π)内终边与角θ2的终边相同的角的集合为⎩⎨⎧⎭⎬⎫2π5,7π5. 3. (必修4P 9例3改编)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为__________.答案:6解析:设扇形的半径为R ,则12R 2α=2,∴ 12R 2×4=2.而R 2=1,∴ R =1,∴ 扇形的周长为2R +α·R=2+4=6.4. 已知角θ的终边经过点P(8,m +1),且sin θ=35,则m =________.答案:5解析:sin θ=m +182+(m +1)2=35,解得m =5. 5. 函数y =lg(2cos x -1)的定义域为____________.答案:⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ) 解析:∵ 2cos x -1>0,∴ cos x >12.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴ x ∈⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ).1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z ). (3) 弧度制① 1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π rad ;180°=π rad ;1°=π180 rad ;1 rad =180π度.④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2.2. 任意角的三角函数(1) 任意角的三角函数的定义设P(x ,y)是角α终边上任意一点,且|PO|=r(r >0),则有sin α=y r ,cos α=xr,tan α=yx,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦. (3) 特殊角的三角函数值45°π42222160°π33212390°π21 0 /120°2π332-12- 3续表角αα弧度数sin αcos αtan α135°3π422-22-1150°5π612-32-33180°π0 -1 0270°3π2-1 0 /3.设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过点P作PM垂直x轴于点M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM,MP,AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记], 1象限角及终边相同的角), 1) (1) 已知α=-2 017°,则与角α终边相同的最小正角为________,最大负角为________.(2) (必修4P 10习题12改编)已知角α是第三象限角,试判断:① π-α是第几象限角?② α2是第几象限角?③ 2α的终边在什么位置?(1) 答案:143° -217° 解析:α可以写成-6×360°+143°的形式,则与α终边相同的角可以写成k·360°+143°(k∈Z )的形式.当k =0时,可得与角α终边相同的最小正角为143°,当k =-1时,可得最大负角为-217°.(2) 解:①∵ α是第三象限角,∴ 2k π+π<α<2k π+3π2,k ∈Z .∴ -2k π-π2<π-α<-2k π,k ∈Z .∴ π-α是第四象限角.② ∵ k π+π2<α2<k π+3π4,k ∈Z ,∴ α2是第二或第四象限角.③ ∵ 4k π+2π<2α<4k π+3π,k ∈Z ,∴ 2α的终边在第一或第二象限或y 轴非负半轴上. 变式训练(必修4P 10习题5改编)终边在直线y =3x 上的角的集合可表示为____________.答案:⎩⎨⎧⎭⎬⎫x|x =k π+π3,k ∈Z 解析:直线y =3x 经过第一象限、第三象限,直线的倾斜角为π3,则终边在该直线上的角的集合为{x|x =k π+π3,k ∈Z }., 2 三角函数的定义), 2) (1) 点P 是始边与x 轴的正半轴重合、顶点在原点的角θ的终边上的一点,若|OP|=2,θ=60°,则点P 的坐标是__________;(2) (2017·泰州模拟)已知角α的终边过点P(-8m ,-6sin 30°),且cos α=-45,则m 的值为________.答案:(1) (1,3) (2) 12解析:(1) 设点P 的坐标为(x ,y),由三角函数的定义,得sin 60°=y2,cos 60°=x2,所以x =2cos 60°=1,y =2sin 60°=3,故点P 的坐标为(1,3). (2) ∵ r=64m 2+9,∴ cos α=-8m 64m 2+9=-45,∴ m >0,∴ 4m 264m 2+9=125,即m =12.变式训练(2017·无锡期末)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α=________.答案:-32解析:由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时sin α·tan α=-32. 当y =-32时,sin α=-32,tan α=3,此时sin α·tan α=-32., 3 三角函数的符号及判定), 3) 点A(sin 2 017°,cos(-2 017°))位于第________象限. 答案:三 解析:因为2 017°=5×360°+217°是第三象限角,所以sin 2 017°<0.又-2 017°=-6×360°+143°是第二象限角,所以cos(-2 017°)<0,所以点A(sin 2 017°,cos(-2 017°))位于第三象限.变式训练下列判断正确的是________.(填序号)① sin 300°>0;② cos(-305°)<0;③ tan ⎝ ⎛⎭⎪⎫-223π>0;④ sin 10<0. 答案:④解析:300°=360°-60°,则300°是第四象限角; -305°=-360°+55°,则-305°是第一象限角; -223π=-8π+23π,则-223π是第二象限角; 因为3π<10<72π,所以10是第三象限角.故sin 300°<0,cos(-305°)>0,tan ⎝ ⎛⎭⎪⎫-223<0,sin 10<0,④正确., 4 弧长公式与扇形面积公式), 4) 扇形AOB 的周长为8 cm.(1) 若这个扇形的面积为3 cm 2,求圆心角的大小;(2) 求这个扇形的面积取得最大值时圆心角的大小和弦长AB. 解:设扇形AOB 的半径为r cm ,弧长为l cm ,圆心角为α,(1) 由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴ α=l r =23或6.(2) ∵ 2r+l =8,∴ S 扇=12lr =14l ·2r ≤14·⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4(cm 2), 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值,∴ r =2,∴ 弦长AB =2×2sin 1=4sin 1(cm). 备选变式(教师专享)已知扇形的周长是 4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是________;扇形的圆心角所对的弦长为________cm.答案: 2 2sin 1解析:设此扇形的半径为r cm ,弧长为l cm ,则2r +l =4,面积S =12rl =12r(4-2r)=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2 cm.从而α=l r =21=2.扇形的圆心角所对的弦长为2sin 1 cm.1. 若tan(α+45°)<0,则sin α,cos α,sin 2α,cos 2α中一定为负数的是__________.答案:cos 2α解析:∵ tan(α+45°)<0,∴ k ·180°-135°<α<k ·180°-45°,∴ k ·360°-270°<2α<k ·360°-90°,∴ cos 2α<0.2. (2017·苏州期末)已知角θ的终边经过点P(4,m),且sin θ=35,则m =________.答案:3解析:sin θ=m 16+m 2=35,解得m =3. 3. 若α=k·360°+θ,β=m·360°-θ(k ,m ∈Z ),则下列关于角α与β的终边的位置关系的说法正确的是________.(填序号)① 重合;② 关于原点对称;③ 关于x 轴对称;④ 关于y 轴对称. 答案:③解析:显然角α与角θ的终边相同,角β与角-θ的终边相同,而θ与-θ的终边关于x 轴对称,故说法正确的是③.4. 已知一扇形的圆心角为α (α>0),扇形所在圆的半径为R.(1) 若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2) 若扇形的周长是一定值C cm(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓,又α=90°=π2,R =10,则l =π2×10=5π(cm),S 弓=S 扇-S 三角形=12×5π×10-12×102=25π-50 (cm 2).(2) 扇形周长C =2R +l =(2R +αR)cm ,∴ R =C2+αcm ,∴ S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216cm 2.1. 给出下列命题:① 第二象限角大于第一象限角;② 三角形的内角是第一象限角或第二象限角;③ 不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④ 若sin α=sin β,则α与β的终边相同; ⑤ 若cos θ<0,则θ是第二或第三象限的角. 其中正确的命题是________.(填序号) 答案:③解析:由于第一象限角370°大于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;正弦值相等,但角的终边不一定相同,故④错;当θ=π时,cos θ=-1<0,θ既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.答案:-35解析:取终边上一点(a ,2a )(a≠0),根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.3. (2017·扬州一中月考改编)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos α=________.答案:12解析:∵ r=1,∴ cos α=x r =12.4. (2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.答案:(-2,3]解析:∵ cos α≤0,sin α>0,∴ 角α的终边落在第二象限或y 轴的正半轴上. ∴ ⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴ -2<a≤3.1. (1) 要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解有关三角函数的不等式(组)的一般步骤 (1) 用边界值定出角的终边位置. (2) 根据不等式(组)定出角的范围. (3) 求交集,找单位圆中公共的部分. (4) 写出角的表达式.第2课时 同角三角函数的基本关系式与 诱导公式(对应学生用书(文)、(理)51~52页)1. 已知sin α=14,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=__________. 答案:-1515解析:由sin α=14,α∈⎝ ⎛⎭⎪⎫π2,π,得cos α=-154, 则tan α=sin αcos α=-1515.2. (必修4P 20练习2改编)sin(-585°)的值为__________.答案:22解析:sin(-585°)=-sin 585°=-sin(360°+225°)=-sin 225°=-sin(180°+45°)=sin 45°=22.3. (2017·苏北四市摸底)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos α的值为________.答案:15解析:∵ sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴ cos α=15. 4. (必修4P 23习题11改编)已知tan α=2,则2sin α-cos αsin α+cos α=__________.答案:1解析:因为tan α=2,所以2sin α-cos αsin α+cos α=2tan α-1tan α+1=2×2-12+1=1.5. (必修4P 21例4改编)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=__________.答案:119解析:∵ sin ⎝ ⎛⎭⎪⎫π6-α=13,∴ sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=13,∴ cos ⎝ ⎛⎭⎪⎫π3+α=13.∴ cos 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝⎛⎭⎪⎫π+α-π6 =1-sin 2⎝ ⎛⎭⎪⎫π6-α=1-19=89.∴ cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=13+89=119.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1.(2) 商数关系:tan_α=sin αcos α.2. 诱导公式k ·2±α(k∈Z )与α的三角函数关系的记忆规律:奇变偶不变,符号看象限., 1 同角三角函数的基本关系式), 1) (必修4P 23习题20改编)已知-π2<x<0,sin x +cos x =15.(1) 求sin 2x -cos 2x 的值;(2) 求tan x2sin x +cos x的值.解:由sin x +cos x =15,得1+2sin xcos x =125,则2sin xcos x =-2425.∵ -π2<x<0,∴ sin x<0,cos x>0,即sin x -cos x<0.则sin x -cos x =-sin 2x -2sin xcos x +cos 2x =-1+2425=-75.(1) sin 2x -cos 2x =(sin x +cos x)(sin x -cos x)=15×⎝ ⎛⎭⎪⎫-75=-725. (2) 由⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,得⎩⎪⎨⎪⎧sin x =-35,cos x =45,则tan x =-34.即tan x 2sin x +cos x =-34-65+45=158. 变式训练(2017·盐城模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.答案:32解析:∵ 5π4<α<3π2,∴ cos α<0,sin α<0,且cos α>sin α,∴ cos α-sinα>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴ cos α-sin α=32. , 2) (必修4P 23习题12(2)改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=[(1+sin α)2cos 2α-(1-sin α)2cos 2α]·[(1+cos α)2sin 2α-(1-cos α)2sin 2α]=(1+sin α|cos α|-1-sin α|cos α|)·(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)若α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 答案:0解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|.因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0., 2 诱导公式及其运用), 3) 已知sin ⎝ ⎛⎭⎪⎫x +π6=13,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为__________.答案:59解析:由诱导公式得sin ⎝ ⎛⎭⎪⎫x -5π6=-sin ⎝ ⎛⎭⎪⎫x +π6=-13,sin 2⎝ ⎛⎭⎪⎫π3-x =cos 2⎝⎛⎭⎪⎫x +π6=89,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x =89-13=59.变式训练已知cos ⎝ ⎛⎭⎪⎫π6-θ=a(|a|≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=__________.答案:0解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ= -cos ⎝ ⎛⎭⎪⎫π6-θ=-a. sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,∴ cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0., 3 同角三角函数的基本关系与诱导公式的综合应用), 4) (1) 设tan(5π+α)=m ,求sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值;(2) 在△ABC 中,若sin(2π-A)=-2sin(π-B),3cos A =-2cos(π-B),求△ABC 的三个内角.解:(1) 由tan(5π+α)=m ,得tan α=m ,∴ sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1.(2) 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =±22. (ⅰ) 当cos A =22时,cos B =32. 又∵ A,B 是三角形的内角,∴ A =π4,B =π6,∴ C =π-(A +B)=7π12.(ⅱ) 当cos A =-22时,cos B =-32. 又∵ A,B 是三角形的内角,∴ A =3π4,B =5π6,不合题意.综上知,A =π4,B=π6,C =7π12.变式训练 (1) (2017·江西联考)已知tan(π-α)=-23,且α∈⎝⎛⎭⎪⎫-π,-π2,求cos (-α)+3sin (π+α)cos (π-α)+9sin α的值;(2) 在△ABC 中,若sin(3π-A)=2sin(π-B),cos ⎝ ⎛⎭⎪⎫3π2-A =2cos(π-B).试判断三角形的形状.解:(1) 由已知得tan α=23,cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-3×23-1+9×23=-15.(2) 由题设条件,得sin A =2sin B ,-sin A =-2cos B , ∴ sin B =cos B ,∴ tan B =1.∵ B ∈(0,π),∴ B =π4,∴ sin A =2×22=1. 又A∈(0,π),∴ A =π2,∴C =π4.∴ △ABC 是等腰直角三角形.1. 已知cos 31°=a ,则sin 239°·tan 149°的值是________.答案:1-a 2解析:sin 239°·tan 149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan 31°)=sin 31°=1-a 2.2. 已知α为锐角,且tan(π-α)+3=0,则sin α的值是________.答案:31010解析:(解法1)由tan(π-α)+3=0,得tan α=3,即sin αcos α=3,sin α=3cos α,所以sin 2α=9(1-sin 2α),10sin 2α=9,sin 2α=910.因为α为锐角,所以sin α=31010.(解法2)因为α为锐角,且tan(π-α)+3=0,所以-tan α+3=0即tan α=3.在如图所示的直角三角形中,令∠A=α,BC =3,则AC =1,所以AB =32+12=10,故sin α=310=31010.3. (2017·南通调研)已知sin θ+cos θ=43,θ∈⎝⎛⎭⎪⎫0,π4,则sin θ-cos θ=________.答案:-23解析:∵ sin θ+cos θ=43,∴ 2sin θcos θ=79,∴ (sin θ-cos θ)2=1-2sin θcos θ=29,∴ sin θ-cos θ=23或-23.∵θ∈⎝⎛⎭⎪⎫0,π4,∴ sin θ<cos θ,∴ sin θ-cos θ=-23.4. 已知sin 2θ+4cos θ+1=2,则(cos θ+3)(sin θ+1)的值为__________.答案:4解析:因为sin 2θ+4cos θ+1=2,所以sin 2θ+4=2cos θ+2,即cos 2θ+2cos θ-3=0,解得cos θ=1或cos θ=-3(舍去).由cos θ=1得sin θ=0,故(cos θ+3)(sin θ+1)=4.1. 已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2 +α,则sin αcos α=__________. 答案:-25解析:因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 2. 已知cos(-80°)=k ,那么tan 100°=__________.答案:-1-k2k解析:因为cos(-80°)=cos 80°=k ,所以sin 80°=1-cos 280°=1-k 2.所以tan 100°=-tan 80°=-sin 80°cos 80°=-1-k2k.3. (2017·盐城调研)若3sin α+cos α=0,则1cos 2α+2sin αcos α=________.答案:103解析:∵ 3sin α+cos α=0,且cos α≠0,∴ tan α=-13,∴1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝ ⎛⎭⎪⎫-1321-23=103. 4. (2017·南京、盐城模拟)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝ ⎛⎭⎪⎫5π12+α. 因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12, 所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π的形式;② 转化为锐角.3. 同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,如已知一个角的某一三角函数值,求这个角的其他三角函数值时,要特别注意平方关系的使用.4. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:① 弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如asin x +bcos xcsin x +dcos x,asin 2x +bsin xcos x +ccos 2x 等类型可进行弦化切.② 和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.③ 注意变角技巧:如32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α等. ④ 巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=…5. 在△ABC 中常用到以下结论: sin(A +B)=sin(π-C)=sin C , cos(A +B)=cos(π-C)=-cos C , tan(A +B)=tan(π-C)=-tan C ,sin ⎝ ⎛⎭⎪⎫A 2+B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2, cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.[备课札记]第3课时 三角函数的图象和性质(对应学生用书(文)、(理)53~55页)1. (2017·南京期初)若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3的值是________.答案:12解析:由题意,得2πω=π,所以ω=2,f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6.因此f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+π6=sin 5π6=12.2. 将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数y =g(x)的图象,则g(x)=____________.答案:2sin ⎝⎛⎭⎪⎫2x -π3 解析:将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数g(x)=2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3的图象.本题主要考查三角函数的图象变换(平移变换).3. 已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b],则b -a 的值是__________.答案:3解析:因为x∈⎣⎢⎡⎦⎥⎤π3,π,所以cos x ∈⎣⎢⎡⎦⎥⎤-1,12,所以y =2cos x 的值域为[-2,1],所以b -a =3.4. 函数f(x)=sin ⎝⎛⎭⎪⎫2x -π3的单调递增区间为________.答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ) 解析:由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ). 5. (必修4P 45习题9改编)电流强度I(A)随时间t(s)变化的函数I =Asin(ωt +φ)⎝⎛⎭⎪⎫A>0,ω>0,0<φ<π2的部分图象如图所示,则当t =1100 s 时,电流强度是__________A.答案:-5解析:由图象知A =10,T 2=4300-1300=1100,∴ ω=2πT=100π.∴ I =10sin(100πt+φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点,∴ 100π×1300+φ=π2.∴ φ=π6.∴ I =10sin(100πt +π6),当t =1100s 时,I =-5 A.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,那么称y =f(x)为周期函数;函数y =Asin(ωx+φ)和y =Acos(ωx +φ)的周期均为T =2π|ω|;函数y =Atan(ωx +φ)的周期为T =π|ω|.2. 三角函数的图象和性质在确定正弦函数y =sin x 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数呢?4. 函数 y =Asin(ωx +φ)的特征若函数y =Asin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记], 1 “五点法”与“变换法”作图), 1) (必修4P 40练习7改编)已知函数f(x)=2sin(ωx +π3)(ω>0)的周期为π.(1) 用“五点法”作出它在长度为一个周期的闭区间上的图象;(2) 说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.解:∵ T=π,∴ 2πω=π,即ω=2.∴ f(x)=2sin ⎝⎛⎭⎪⎫2x +π3. (1) 令X =2x +π3,则y =2sin ⎝⎛⎭⎪⎫2x +π3=2sin X. 列表如下: x -π6 π12 π3 7π12 5π6X 0 π2 π 3π22π y =sin X 0 1 0 -1 0y =2sin ⎝⎛⎭⎪⎫2x +π3 0 2 0 -2 0(2) (解法1)把y =sin x 的图象上所有点向左平移π3个单位,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝⎛⎭⎪⎫x +π3的图象上所有点的横坐标变为原来的12(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. (解法2)将y =sin x 的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 备选变式(教师专享)已知f(x)=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象;(3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ ω=2.∵ f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32.又-π2<φ<0,∴ φ=-π3. (2) 由(1)得f(x)=cos ⎝⎛⎭⎪⎫2x -π3,列表如下:(3)∵ cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴ 2k π-π4<2x -π3<2k π+π4,∴ 2k π+π12<2x<2k π+7π12, ∴ k π+π24<x<k π+7π24,k ∈Z ,∴ x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫k π+π24<x<k π+7π24,k ∈Z .,2 三角函数的性质)●典型示例2已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1) 求f(x)的最小正周期和单调递增区间;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(3) 求f(x)图象的一条对称轴和一个对称中心,使得它们到y 轴的距离分别最小. 【思维导图】【规范解答】解:(1) 函数f(x)的最小正周期为T =2π2=π. 令-π2+2k π≤2x +π4≤π2+2k π(k∈Z ),解得-3π8+k π≤x ≤π8+k π(k∈Z ),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4.由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.(3) 令2x +π4=π2+k π(k∈Z ),解得x =π8+k π2(k∈Z ),所以当k =0时,直线x =π8是所有对称轴中最靠近y 轴的.令2x +π4=k π(k∈Z ),解得x =-π8+k π2(k∈Z ),所以当k =0时,⎝ ⎛⎭⎪⎫-π8,1是所有对称中心中最靠近y 轴的, 所以所求的对称轴为直线x =π8,对称中心为⎝ ⎛⎭⎪⎫-π8,1. 【精要点评】 对于三角函数f(x)=Asin(ωx +φ)的性质(定义域、单调性、对称性、最值或值域等)问题,通常用换元的方法,令t =ωx +φ,将其转化为函数y =Asin t ,再进行其性质的研究.●总结归纳解有关三角函数性质的问题,通常需先将函数转化为f(x)=Asin(ωx +φ)的形式,再用研究复合函数的单调性、值域的方法利用正弦函数的图象和性质来处理.若ω<0,还需先利用诱导公式转化为f(x)=Asin(ωx +φ)(ω>0)的形式,再将ωx +φ看成整体,利用正弦函数y =sin x 的性质进行求解.●题组练透1. 将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,若所得的图象过点⎝ ⎛⎭⎪⎫π6,32,则φ的最小值为__________.答案:π6解析:易知y =sin 2(x +φ),即y =sin(2x +2φ).∵ 图象过点⎝⎛⎭⎪⎫π6,32,∴ sin ⎝ ⎛⎭⎪⎫π3+2φ=32,∴ π3+2φ=π3+2k π或π3+2φ=2π3+2k π,k ∈Z ,即φ=k π或φ=π6+k π,k ∈Z .∵ φ>0,∴ φ的最小值为π6.K2. 设函数y =sin ⎝⎛⎭⎪⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为__________.答案:2解析:当x =π12时,令ωx +π3=π2,则正数ω=2.3. 函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 答案:-22解析:由已知x∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22. 4. 设函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π3⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f(-x)=-f(x).(1) 求函数f(x)的单调递增区间;(2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,试求y =f ⎝⎛⎭⎪⎫x -π6的最值,并写出取得最值时自变量x 的值.解:(1) 因为f(x)的最小正周期为π,所以T =2πω=π,解得ω=2.又f(-x)=-f(x),所以f(0)=0,所以sin ⎝⎛⎭⎪⎫φ+π3=0.又|φ|<π2,所以φ=-π3,所以ω=2,φ=-π3,所以f(x)=2sin 2x.则2x ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k∈Z ),解得函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,y =f ⎝ ⎛⎭⎪⎫x -π6=2sin 2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3. 当2x -π3=π2,即x =5π12时,f(x)取得最大值2;当2x -π3=-π3,即x =0时,f(x)取得最小值- 3., 3 根据图象和性质确定函数y =Asin(ωx +φ)的解析式), 3) 设函数f(x)=Asin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x∈R )的部分图象如图所示.(1) 求函数y =f(x)的解析式;(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,求f(x)的取值范围.解:(1) 由图象知,A =2. 又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f(x)=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=π2+2k π(k∈Z ),即φ=π6+2k π(k∈Z ). 又-π2<φ<π2,所以φ=π6.所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1,即f(x)∈[-3,2].变式训练已知函数f(x)=2sin ⎝⎛⎭⎪⎫ωx +φ-π6(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝ ⎛⎭⎪⎫π8的值; (2) 将函数y =f(x)的图象向右平移π6个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数y =g(x)的图象,求g(x)的解析式,并写出g(x)的单调递减区间.解:(1) ∵ f(x)为偶函数,∴ φ-π6=k π+π2,k ∈Z ,解得φ=2π3+k π,k ∈Z .∵ 0<φ<π,∴ φ=2π3.由题意得2πω=2×π2,解得ω=2.故f(x)=2cos 2x ,f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象,再将所得图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图象,所以g(x)=f(x 4-π6)=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎝ ⎛⎭⎪⎫x 2-π3. 当2k π≤x 2-π3≤2k π+π(k∈Z ),即4k π+2π3≤x ≤4k π+8π3(k∈Z )时,g(x)单调递减.因此g(x)的单调递减区间为[4k π+2π3,4k π+8π3](k∈Z )., 4 三角函数的应用), 4) (必修4P 42例2改编)如图,一个水轮的半径为4 m ,水轮圆心O距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1) 将点P 距离水面的高度z(m)表示为时间t(s)的函数; (2) 点P 第一次到达最高点大约需要多少时间?解:(1) 建立如图所示的直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在t(s)内所转过的角为π6t.由题意可知水轮逆时针转动,得z =4sin ⎝ ⎛⎭⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求函数解析式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2) 令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝ ⎛⎭⎪⎫π6t -π6=1.令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 备选变式(教师专享)如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,且60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h.(1) 求h 与θ之间的函数解析式; (2) 设从OA 开始转动,经过t s 后到达OB ,求h 与t 之间的函数解析式,并求缆车到达最高点时用的最少时间是多少.解:(1) 以圆心O 为原点,建立如图所示的平面直角坐标系.则以Ox 为始边,OB 为终边的角为θ-π2,故点B 的坐标为⎝ ⎛⎭⎪⎫4.8cos ⎝ ⎛⎭⎪⎫θ-π2,4.8sin ⎝ ⎛⎭⎪⎫θ-π2, ∴ h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2) 点A 在圆上转动的角速度是π30rad/s ,故t s 转过的弧度数为π30t ,∴ h =5.6+4.8sin ⎝ ⎛⎭⎪⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4 m.由sin ⎝ ⎛⎭⎪⎫π30t -π2=1,得π30t -π2=π2,∴ t =30 s ,∴ 缆车到达最高点时,用的最少时间为30 s.1. 已知函数f(x)=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则φ的值为__________. 答案:-π12解析:f(x)=2sin(ωx +φ) 的最小正周期为π,则ω=2,所以f(x)=2sin(2x +φ),它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则sin ⎝⎛⎭⎪⎫φ-π6=-22⎝ ⎛⎭⎪⎫|φ|<π2,故φ=-π12. 2. 函数f(x)=2sin(ωx +φ)的部分图象如图所示.若A ,B 两点之间的距离AB =5,则ω的值为________.答案:π3解析:AB =5,|y A -y B |=4,则|x A -x B |=3=T 2,则T =6,则2πω=6,ω=π3.3. 将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π12个单位得到的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则φ=________.答案:π6解析:由题意得平移以后的函数为y =sin ⎝ ⎛⎭⎪⎫2x +π6+φ,因为图象关于点⎝ ⎛⎭⎪⎫π3,0对称,所以2×π3+π6+φ=k π(k∈Z ),解得φ=k π-5π6(k∈Z ).因为0<φ<π,所以φ=π6.4. 函数f(x)=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示. (1) 求φ及图中x 0的值;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.解:(1) 由图可知,f(0)=f(x 0)=32, 即cos φ=32,cos(πx 0+φ)=32. 又φ∈⎝⎛⎭⎪⎫0,π2,x 0>0,所以φ=π6,x 0=53.(2) 由(1)可知f(x)=cos ⎝⎛⎭⎪⎫πx +π6. 因为x∈⎣⎢⎡⎦⎥⎤-12,13,所以-π3≤πx +π6≤π2. 所以当πx +π6=0,即x =-16时,f(x)取得最大值1;当πx +π6=π2,即x =13时,f(x)取得最小值0.1. (2017·南师附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f(x)的图象,若函数f(x)的图象过原点,则φ=________.答案:3π4解析:将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f(x)=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f(x)的图象过原点,则f(0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z .又0<φ<π,则φ=3π4. 2. 若函数y =sin(ωx -φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是______.答案:2,π3解析:由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2.又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k∈Z ).而|φ|<π2,所以φ=π3.3. (2017·第三次全国大联考江苏卷)将函数f(x)=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P ⎝⎛⎭⎪⎫0,32,则φ的值为________.答案:5π6解析:由题意,可得sin θ=32.因为-π2<θ<π2,所以θ=π3.因为g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所以sin ⎝⎛⎭⎪⎫-2φ+π3=32.又因为0<φ<π,所以-2φ+π3∈⎝ ⎛⎭⎪⎫-5π3,π3,-2φ+π3=-4π3,φ=5π6. 4. 已知函数f(x)=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则(1) m =________;(2) 当f(x)在[a ,b]上至少含20个零点时,b -a 的最小值为________.答案:(1) 0 (2) 28π3解析:(1) f(x)= 3 sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x≤π2,所以π6≤2x +π6≤7π6.所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, f(x)max =2+m +1=3+m =3,∴ m =0.(2) 由(1)得f(x)=2sin ⎝⎛⎭⎪⎫2x +π6+1,周期T =2π2=π,在长为π的闭区间内有2个或3个零点.由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=0,得sin ⎝⎛⎭⎪⎫2x +π6=-12, 2x +π6=2k π+7π6,k ∈Z 或2x +π6=2k π+11π6,k ∈Z ,所以x =k π+π2或x =k π+5π6,k ∈Z .不妨设a =π2,则当b =9π+π2时,f(x)在区间[a ,b]上恰有19个零点,当b =9π+5π6时恰有20个零点,此时b -a 的最小值为9π+π3=28π3.1. 求三角函数的定义域实际上是解简单的三角函数不等式,常借助三角函数线或三角函数图象来求解.2. 求解三角函数的值域(最值)常见到以下几种类型: ① 形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求值域(最值);② 形如y =asin 2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③ 形如y =asin xcos x +b(sin x ±cos x)+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3. 对于形如y =Asin(ωx +φ)+k 函数的性质(定义域、值域、单调性、对称性、最值等),可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4. 求函数y =Asin(ωx +φ)(A >0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y =Asin(ωx +φ)(A >0,ω>0)的解析式一般不惟一,只有限定φ的取值范围,才能得出惟一解.5. 由y =sin x 的图象变换到y =Asin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.[备课札记]第4课时 两角和与差的正弦、余弦和 正切公式(对应学生用书(文)、(理)56~58页)1. 设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则cos ⎝ ⎛⎭⎪⎫α+π4=________.答案:210解析:∵ α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=35,∴ cos α=45.∴ cos ⎝⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210. 2. (必修4P 106练习4改编)sin 20°cos 10 °-cos 160°sin 10°=__________.答案:12解析:sin 20°·cos 10°-cos 160°·sin 10°=sin 20°·cos 10°+cos 20°·sin10°=sin 30°=12.3. (必修4P 109练习8改编)函数y =2sin x +6cos x 的值域是__________. 答案:[-22,22]解析:y =2sin x +6cos x =22sin ⎝ ⎛⎭⎪⎫x +π3∈[-22,22].4. (必修4P 118习题9改编)若α+β=π4,则(tan α+1)·(tan β+1)的值是________.答案:2解析:(tan α+1)(tan β+1)=tan αtan β+tan α+tan β+1=tan αtan β+tan(α+β)(1-tan αtan β)+1=tan αtan β+tan π4·(1-tan αtan β)+1=2.5. (必修4P 110例6改编)已知sin(α+β)=12,sin(α-β)=110,则tan αtan β的值为________.答案:32解析:(解法1)⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=110⇒⎩⎪⎨⎪⎧sin αcos β=310,cos αsin β=15,从而tan αtan β=sin αcos βcos αsin β=310×5=32.(解法2)设x =tan αtan β,∵ sin (α+β)sin (α-β)=5,∴ sin (α+β)cos αcos βsin (α-β)cos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1=5. ∴ x =32,即tan αtan β =32.1. 两角差的余弦公式推导过程设单位圆上两点P 1(cos α,sin α),P 2(cos β,sin β),则∠P 1OP 2=α-β(α>β).向量a =OP 1→=(cos α,sin α),b =OP 2→=(cos β,sin β), 则a·b =|a||b|cos(α-β)=cos(α-β),由向量数量积的坐标表示,可知a·b =cos αcos β+sin αsin β,因而cos(α-β)=cos αcos β+sin αsin β. 2. 公式之间的关系及导出过程3. 公式 cos(α-β)=cos_αcos_β+sin_αsin_β; cos(α+β)=cos_αcos_β-sin_αsin_β; sin(α-β)=sin_αcos_β-cos_αsin_β; sin(α+β)=sin_αcos_β+cos_αsin_β;tan(α-β)=tan α-tan β1+tan αtan β;tan(α+β)=tan α+tan β1-tan αtan β.4. asin α+bcos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b2,sin φ=b a 2+b2,tan φ=ba .φ的终边所在象限由a ,b 的符号来决定.5. 常用公式变形tan α+tan β=tan(α+β)(1-tan_αtan_β); tan α-tan β=tan(α-β)(1+tan_αtan_β);sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4; sin α-cos α=2sin ⎝⎛⎪⎫α-π4.[备课札记]。
2019高三数学理北师大版一轮课时分层训练23 简单的三角恒等变换 Word版含解析
课时分层训练(二十三) 简单的三角恒等变换(对应学生用书第页)组基础达标一、选择题.函数=+的最小正周期为( )..π.π[=+=,==π.故选.].(·东北三省三校二联)函数()=+的值域为( ).[-] .[-,].[-] .[由于()=+=+-=+=∈[-],故选.].化简:° °(-°))=( )【导学号:】...[原式=° °( °-°))=°+° °)=° °)=,故选.].已知α=,=,则(α+β)等于( ).-.-.-.[由题意,可得α=-,则α=-,(α+β)=[α-(α-β)]=α-(α-β)+α(α-β))=-.].(·济南一模)公元前世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为,这一数值也可以表示为= °.若+=,则=( ) ....[由题意得=-=-°=°,则=°(°) °)=°× ° °)=° °)=,故选.]二、填空题.在平面直角坐标系中,角α与角β均以为始边,它们的终边关于轴对称.若α=,则(α-β)=.-[由题意知α+β=π+π(∈),∴β=π+π-α(∈),β=α,β=-α.又α=,∴(α-β)=αβ+αβ=-α+α=α-=×-=-.].已知(α+β)=,(α-β)=,则αβ的值为.[因为(α+β)=,所以αβ-αβ=.①因为(α-β)=,所以αβ+αβ=.②①+②得αβ=.②-①得αβ=.所以αβ=α β α β)=.].(·石家庄质检(二))在平面内将点()绕原点按逆时针方向旋转,得到点,则点的坐标为.【导学号:】[由题意得==,设射线与轴正半轴的夹角为θ,则易得θ==,θ==,则===-.===,所以点的坐标为.]三、解答题.已知α=-,β=,α∈,β∈,求(α+β)的值,并求出α+β的值.[解]由β=,β∈,得β=,β=.。
2019高中数学 课时分层作业28 简单的三角恒等变换 新人教A版必修4
课时分层作业(二十八) 简单的三角恒等变换(建议用时:40分钟)[学业达标练]一、选择题1.函数f (x )=cos 2⎝ ⎛⎭⎪⎫x +π4,x ∈R ,则f (x )( ) A .是奇函数 B .是偶函数C .既是奇函数,也是偶函数D .既不是奇函数,也不是偶函数 D [原式=12⎣⎢⎡⎦⎥⎤1+cos ⎝ ⎛⎭⎪⎫2x +π2 =12(1-sin 2x ) =12-12sin 2x , 此函数既不是奇函数也不是偶函数.]2.已知cos α1+sin α=3,则cos αsin α-1的值为( )A .33B .-33C . 3D .- 3B [∵cos α1+sin α·cos αsin α-1=cos 2αsin 2α-1=1-sin 2αsin 2α-1=-1 且cos α1+sin α=3,∴cos αsin α-1=-33.]3.在△ABC 中,若cos A =13,则sin 2B +C 2+cos 2A =( )【导学号:84352345】A .-19B .19C .-13D .13A [sin 2B +C2+cos 2A=1-cos B +C 2+2cos 2A -1=1+cos A 2+2cos 2A -1 =-19.]4.将函数y =f (x )sin x 的图象向右平移π4个单位后再作关于x 轴对称的曲线,得到函数y =1-2sin 2x 的图象,则f (x )的表达式是( )A .f (x )=cos xB .f (x )=2cos xC .f (x )=sin xD .f (x )=2sin xB [y =1-2sin 2x =cos 2x 的图象关于x 轴对称的曲线是y =-cos 2x ,向左平移π4得y =-cos ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π4=sin 2x =2sin x cos x ,∴f (x )=2cos x .]5.已知f (x )=2sin 2x +2sin x cos x ,则f (x )的最小正周期和一个单调减区间分别为( )【导学号:84352346】A .2π,⎣⎢⎡⎦⎥⎤3π8,7π8B .π,⎣⎢⎡⎦⎥⎤3π8,7π8C .2π,⎣⎢⎡⎦⎥⎤-π8,3π8D .π,⎣⎢⎡⎦⎥⎤-π8,3π8B [∵f (x )=1-cos 2x +sin 2x =1+2sin ⎝⎛⎭⎪⎫2x -π4, ∴f (x )的最小正周期T =2π2=π,由π2+2k π≤2x -π4≤3π2+2k π, 得f (x )的单调减区间为3π8+k π≤x ≤7π8+k π,k ∈Z , 当k =0时,得f (x )的一个单调减区间⎣⎢⎡⎦⎥⎤3π8,7π8,故选B.]二、填空题6.设5π<θ<6π,cos θ2=a ,则sin θ4的值等于________.-1-a 2 [由sin 2θ4=1-cosθ22,∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=-1-cosθ22=-1-a2.] 7.化简下列各式:(1)π4<α<π2,则1-sin 2α=________.(2)α为第三象限角,则1+cos 2αcos α-1-cos 2αsin α=________.【导学号:84352347】(1)sin α-cos α (2)0 [(1)∵α∈⎝ ⎛⎭⎪⎫π4,π2,∴sin α>cos α,∴1-sin 2α=1-2sin αcos α =sin 2α-2sin αcos α+cos 2α =α-cos α2=sin α-cos α.(2)∵α为第三象限角,∴cos α<0,sin α<0, ∴1+cos 2αcos α-1-cos 2αsin α=2cos 2αcos α-2sin 2αsin α=-2cos αcos α--2sin αsin α=0.]8.函数f (x )=cos 2x +4sin x 的值域是________.[-5,3] [f (x )=cos 2x +4sin x =1-2sin 2x +4sin x =-2(sin x -1)2+3. 当sin x =1时,f (x )取得最大值3, 当sin x =-1时,f (x )取得最小值-5, 所以函数f (x )的值域为[-5,3].] 三、解答题9.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x.【导学号:84352348】[证明] 法一:(由左推右)tan 3x 2-tan x2=sin 3x 2cos 3x 2-sinx2cosx 2=sin 3x 2cos x 2-cos 3x 2sinx 2cos 3x 2cosx 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cosx 2=sin xcos 3x 2cosx 2=2sin xcos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin xcos x +cos 2x.法二:(由右推左)2sin xcos x +cos 2x=2sin ⎝⎛⎭⎪⎫3x 2-x 2cos ⎝ ⎛⎭⎪⎫3x 2-x 2+cos ⎝ ⎛⎭⎪⎫3x 2+x 2=2⎝ ⎛⎭⎪⎫sin 3x 2cos x2-cos 3x 2sin x 22cos 3x 2cosx 2=sin 3x 2cos 3x 2-sinx2cosx 2=tan 3x 2-tan x 2.10.已知向量a =(cos θ-2sin θ,2),b =(sin θ,1). (1)若a ∥b ,求tan 2θ的值;(2)f (θ)=(a +b )·b ,θ∈⎣⎢⎡⎦⎥⎤0,π2,求f (θ)的值域.【导学号:84352349】[解] (1)∵a ∥b ,∴cos θ-2sin θ-2sin θ=0, ∴cos θ=4sin θ, ∴tan θ=14,∴tan 2θ=2tan θ1-tan 2θ=121516=815. (2)a +b =(cos θ-sin θ,3),∴f (θ)=(a +b )·b =sin θcos θ-sin 2θ+3=12sin 2θ-1-cos 2θ2+3=22sin ⎝⎛⎭⎪⎫2θ+π4+52,∵θ∈⎣⎢⎡⎦⎥⎤0,π2,∴⎝⎛⎭⎪⎫2θ+π4∈⎣⎢⎡⎦⎥⎤π4,5π4, ∴sin ⎝ ⎛⎭⎪⎫2θ+π4∈⎣⎢⎡⎦⎥⎤-22,1,∴2≤f (θ)≤5+22,∴f (θ)的值域为⎣⎢⎡⎦⎥⎤2,5+22.[冲A 挑战练]1.设a =12cos 7°+32sin 7°,b =2tan 19°1-tan 219°,c =1-cos 72°2,则有( ) A .b >a >c B .a >b >c C .a >c >bD .c >b >aA [∵a =sin 37°,b =tan 38°,c =sin 36°,∴b >a >c .]2.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且sin αcos α=cos β1-sin β,则( )A .2α+β=π2B .2α-β=π2C .α+2β=π2D .α-2β=π2B [由题意得sin α-sin αsin β=cos αcos β, sin α=cos(α-β),∴cos ⎝ ⎛⎭⎪⎫π2-α=cos(α-β). ∵π2-α∈⎝ ⎛⎭⎪⎫0,π2,α-β∈⎝ ⎛⎭⎪⎫-π2,π2,∴π2-α=α-β或π2-α+α-β=0(舍去), ∴2α-β=π2.]3.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值是( )A .1B .2C .3+1D .3+2B [f (x )=(1+3tan x )cos x=⎝⎛⎭⎪⎫1+3sin x cos x cos x =3sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π6.∵0≤x <π2,∴π6≤x +π6<2π3, ∴当x +π6=π2时,f (x )取到最大值2.]4.若θ是第二象限角,且25sin 2θ+sin θ-24=0,则cos θ2=________.【导学号:84352350】±35 [由25sin 2θ+sin θ-24=0, 又θ是第二象限角,得sin θ=2425或sin θ=-1(舍去).故cos θ=-1-sin 2θ=-725,由cos 2 θ2=1+cos θ2得cos 2 θ2=925.又θ2是第一、三象限角,所以cos θ2=±35.]5.如图324,在直角坐标系xOy 中,点P 是单位圆上的动点,过点P 作x 轴的垂线与射线y =3x (x ≥0)交于点Q ,与x 轴交于点M .记∠MOP =α,且α∈⎝ ⎛⎭⎪⎫-π2,π2.图324(1)若sin α=13,求cos ∠POQ ;(2)求△OPQ 面积的最大值.【导学号:84352351】[解] (1)由题意知∠QOM =π3,因为sin α=13, 且α∈⎝ ⎛⎭⎪⎫-π2,π2,所以cos α=223,所以cos ∠POQ =cos ⎝⎛⎭⎪⎫π3-α=cos π3cos α+sin π3sin α=22+36.(2)由三角函数定义,得P (cos α,sin α), 从而Q (cos α,3cos α),所以S △POQ =12|cos α||3cos α-sin α|=12|3cos 2α-sin αcos α| =12⎪⎪⎪⎪⎪⎪32+3cos 2α2-12sin 2α =12⎪⎪⎪⎪⎪⎪32+sin ⎝ ⎛⎭⎪⎫π3-2α ≤12⎪⎪⎪⎪⎪⎪32+1=34+12. 因为α∈⎝ ⎛⎭⎪⎫-π2,π2,所以当α=-π12时,等号成立,所以△OPQ面积的最大值为34+12.。
2019年高考数学一轮课时分层训练23简单的三角恒等变换理
课时分层训练(二十三) 简单的三角恒等变换(对应学生用书第242页)A 组 基础达标一、选择题1.函数y =3sin 2x +cos 2x 的最小正周期为( )A.π2B .2π3C .πD .2πC [y =3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,T =2π2=π. 故选C.]2.(2018·东北三省三校二联)函数f (x )=sin x +cos ⎝⎛⎭⎪⎫x +π6的值域为( )A .[-2,2]B .[-3,3]C .[-1,1]D .⎣⎢⎡⎦⎥⎤-32,32 C [由于f (x )=sin x +cos ⎝⎛⎭⎪⎫x +π6=sin x +cos x cos π6-sin x sin π6=12sin x +32cos x =sin ⎝⎛⎭⎪⎫x +π3∈[-1,1],故选C.]3.化简:cos 40°cos 25°1-sin 40°=( )【导学号:79140128】A .1B . 3 C. 2D .2C [原式=cos 220°-sin 220°cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos 25°=2cos 25°cos 25°=2,故选C.]4.已知sin 2α=35⎝ ⎛⎭⎪⎫π2<2α<π,tan ()α-β=12,则tan(α+β)等于( ) A .-2 B .-1 C .-211D .211A [由题意,可得cos 2α=-45,则tan 2α=-34,tan(α+β)=tan[2α-(α-β)]=tan 2α-tan(α-β)1+tan 2αtan(α-β)=-2.]5.(2018·济南一模)公元前6世纪,古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,发现了黄金分割约为0.618,这一数值也可以表示为m =2sin 18°.若m 2+n =4,则m n2cos 227°-1=( ) A .8 B .4 C .2D .1C [由题意得n =4-m 2=4-4sin 218°=4cos 218°,则m n2cos 227°-1=2sin 18°4cos 218°cos 54°=2sin 18°×2cos 18°cos 54°=2sin 36°sin 36°=2,故选C.]二、填空题6.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=________.-79 [由题意知α+β=π+2k π(k ∈Z ), ∴β=π+2k π-α(k ∈Z ), sin β=sin α,cos β=-cos α. 又sin α=13,∴cos(α-β)=cos αcos β+sin αsin β =-cos 2α+sin 2α=2sin 2α-1 =2×19-1=-79.]7.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.13 [因为cos(α+β)=16, 所以cos αcos β-sin αsin β=16. ①因为cos(α-β)=13,所以cos αcos β+sin αsin β=13. ②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.]8.(2018·石家庄质检(二))在平面内将点A (2,1)绕原点按逆时针方向旋转3π4,得到点B ,则点B 的坐标为________.【导学号:79140129】⎝ ⎛⎭⎪⎫-322,22 [由题意得|OB |=|OA |=5,设射线OA 与x 轴正半轴的夹角为θ,则易得sin θ=15=55,cos θ=25=255,则x B =5cos ⎝ ⎛⎭⎪⎫θ+3π4=5⎣⎢⎡⎦⎥⎤255×⎝ ⎛⎭⎪⎫-22-55×22=-322. y B =5sin ⎝⎛⎭⎪⎫θ+3π4=5⎣⎢⎡⎦⎥⎤55×⎝ ⎛⎭⎪⎫-22+255×22=22,所以点B 的坐标为⎝ ⎛⎭⎪⎫-322,22.]三、解答题9.已知tan α=-13,cos β=55,α∈⎝ ⎛⎭⎪⎫π2,π,β∈⎝ ⎛⎭⎪⎫0,π2,求tan(α+β)的值,并求出α+β的值. [解] 由cos β=55,β∈⎝⎛⎭⎪⎫0,π2,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.∵α∈⎝⎛⎭⎪⎫π2,π,β∈⎝⎛⎭⎪⎫0,π2,∴π2<α+β<3π2, ∴α+β=5π4.10.(2018·合肥调研)已知函数f (x )=sin x +cos x .(1)当f (x )=2时,求sin ⎝⎛⎭⎪⎫2x +π3的值; (2)若g (x )=f (2x ),求函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域.[解] (1)依题意,sin x +cos x =2⇒(sin x +cos x )2=2⇒sin 2x =1, ∴cos 2x =0,∴sin ⎝ ⎛⎭⎪⎫2x +π3=sin 2x cos π3+cos 2x sin π3=12.(2)g (x )=f (2x )=sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,∴sin ⎝ ⎛⎭⎪⎫2x +π4∈⎣⎢⎡⎦⎥⎤-22,1. ∴函数g (x )在⎣⎢⎡⎦⎥⎤0,π2上的值域为[-1,2].B 组 能力提升11.(2018·南宁、钦州第二次适应性考试)若α∈⎝ ⎛⎭⎪⎫π2,π,则3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin 2α的值为( ) A.118 B .-118C.1718D .-1718D [由3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,得3(cos 2α-sin 2α)=22(cos α-sin α),又α∈⎝ ⎛⎭⎪⎫π2,π,得cos α-sin α≠0,所以cos α+sin α=26,两边平方可得1+sin 2α=118,则sin 2α=-1718,故选D.]12.(2018·银川质检)关于函数f (x )=2cos 2x2+3sin x (x ∈[0,π]),下列结论正确的是( )A .有最大值3,最小值-1B .有最大值2,最小值-2C .有最大值3,最小值0D .有最大值2,最小值0C [由题意得f (x )=2cos 2x 2+3sin x =cos x +1+3sin x =2sin ⎝⎛⎭⎪⎫x +π6+1,因为0≤x ≤π,所以π6≤x +π6≤7π6,-12≤sin ⎝ ⎛⎭⎪⎫x +π6≤1,0≤2sin ⎝ ⎛⎭⎪⎫x +π6+1≤3.所以f (x )的最大值为3,最小值为0,故选C.]13.已知0<θ<π,tan ⎝⎛⎭⎪⎫θ+π4=17,那么sin θ+cos θ=________.-15 [由tan ⎝ ⎛⎭⎪⎫θ+π4=tan θ+11-tan θ=17,解得tan θ=-34,即sin θcos θ=-34,∴cos θ=-43sin θ,∴sin 2θ+cos 2θ=sin 2θ+169sin 2θ=259sin 2θ=1. ∵0<θ<π,∴sin θ=35,∴c os θ=-45,∴sin θ+cos θ=-15.]14.(2017·广东湛江一模)已知函数f (x )=A cos ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)图像相邻两条对称轴的距离为π2,且f (0)=1.(1)求函数f (x )的解析式;(2)设α、β∈⎝⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫α-π3=-1013,f ⎝ ⎛⎭⎪⎫β+π6=65,求tan(2α-2β)的值.【导学号:79140130】[解] (1)∵函数f (x )=A cos ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)图像相邻两条对称轴的距离为π2,∴T 2=πω=π2,∴ω=2, 又f (0)=1,∴12A =1,∴A =2,∴f (x )=2cos ⎝ ⎛⎭⎪⎫2x -π3. (2)∵α∈⎝⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫α-π3 =2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π3-π3=2cos(2α-π)=-2cos 2α=-1013, ∴cos 2α=513,sin 2α=1-cos 22α=1213,则tan 2α=sin 2αcos 2α=125.∵β∈⎝ ⎛⎭⎪⎫0,π4,f ⎝ ⎛⎭⎪⎫β+π6=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫β+π6-π3=2cos 2β=65, ∴cos 2β=35,∴sin 2β=1-cos 22β=45,则tan 2β=sin 2βcos 2β=43.∴tan(2α-2β)=tan 2α-tan 2β1+tan 2α·tan 2β=125-431+125×43=1663.。
近年届高考数学一轮复习课时训练(二十二)简单的三角恒等变换理(普通高中)(2021学年)
2019届高考数学一轮复习课时跟踪检测(二十二)简单的三角恒等变换理(普通高中)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019届高考数学一轮复习课时跟踪检测(二十二)简单的三角恒等变换理(普通高中))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019届高考数学一轮复习课时跟踪检测(二十二)简单的三角恒等变换理(普通高中)的全部内容。
课时跟踪检测(二十二) 简单的三角恒等变换(一)普通高中适用作业A级——基础小题练熟练快1.(2016·全国卷Ⅲ)若tan θ=-错误!,则cos 2θ=( )A.-错误!ﻩ B.-错误!C。
\f(1,5)ﻩD。
\f(4,5)解析:选D ∵cos 2θ=错误!=错误!,又∵tanθ=-13,∴cos 2θ=错误!=错误!。
2.化简:\f(cos 40°,cos 25°\r(1-sin 40°))=( )A.1 ﻩB.3C。
错误!ﻩD.2解析:选C 原式=错误!=错误!=错误!=错误!,故选C。
3.函数f(x)=2sin2错误!-错误!cos 2x的最大值为()A.2 B.3C.2+错误!ﻩD.2-错误!解析:选B f(x)=1-cos 2错误!-错误!cos 2x=sin 2x-错误!cos 2x+1=2sin错误! +1,可得f(x)的最大值是3。
4.已知sin错误!=cos错误!,则cos 2α=( )A.1 B.-1C。
错误!ﻩ D.0解析:选D ∵sin错误!=cos错误!,∴错误!cosα-错误!sinα=错误!cos α-错误!sin α,即错误!sin α=-错误!cos α,∴tan α=\f(sinα,cos α)=-1,∴cos 2α=cos2α-sin2α=cos2α-sin2αsin2α+cos2α=\f(1-tan2α,tan2α+1)=0。
2019版高考数学一轮复习第三章三角函数与解三角形第6讲简单的三角恒等变换课时作业理
第6讲 简单的三角恒等变换1.若sin α2=33,则cos α=( )A .-23B .-13 C.13 D.232.(2016年山东)函数f (x )=(3sin x +cos x )(3cos x -sin x )的最小正周期是( )A.π2 B .π C.3π2D .2π 3.(2017年广东广州一模)已知函数f (x )=sin(ωx +φ)+cos(ωx +φ)(ω>0,0<φ<π)是奇函数,直线y =2与函数f (x )的图象的两个相邻交点的横坐标之差的绝对值为π2,则( )A .f (x )在⎝⎛⎭⎪⎫0,π4上单调递减B .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递减C .f (x )在⎝⎛⎭⎪⎫0,π4上单调递增D .f (x )在⎝ ⎛⎭⎪⎫π8,3π8上单调递增4.(2017年河北石家庄一模)函数f (x )=A sin(ωx +φ)(A >0,ω>0)的部分图象如图X361,则f ⎝ ⎛⎭⎪⎫11π24的值为( )图X361A .-62 B .-32 C .-22D .-1 5.若将函数y =tan ⎝⎛⎭⎪⎫ωx +π4(ω>0)的图象向右平移π6个单位长度后,与函数y =tan ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则ω的最小值为( ) A.16 B.14 C.13 D.126.(2016年山西四校联考)已知函数f (x )=cos ⎝⎛⎭⎪⎫ωx +φ-π2⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图X362,则y =f ⎝⎛⎭⎪⎫x +π6取得最小值时x 的取值集合为( )图X362A.⎩⎨⎧⎭⎬⎫x |x =k π-π6,k ∈ZB.⎩⎨⎧⎭⎬⎫x |x =k π-π3,k ∈ZC.⎩⎨⎧⎭⎬⎫x |x =2k π-π6,k ∈Z D.⎩⎨⎧⎭⎬⎫x |x =2k π-π3,k ∈Z7.已知α∈R ,sin α+2cos α=102,则tan 2α=( ) A.43 B.34 C .-34 D .-438.(2012年大纲)当函数y =sin x -3cos x (0≤x <2π)取最大值时,x =________.9.(2016年江西九江模拟)化简sin 235°-12cos10°cos80°=________.10.若函数y =cos 2x +3sin 2x +a 在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点,则实数a 的取值范围为____________.11.(2014年四川)已知函数f (x )=sin ⎝⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值.12.(2017年浙江)已知函数f (x )=sin 2x -cos 2x -2 3 sin x cos x (x ∈R ).(1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间.第6讲 简单的三角恒等变换1.C2.B 解析:f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6×2cos ⎝ ⎛⎭⎪⎫x +π6=2sin ⎝⎛⎭⎪⎫2x +π3,故最小正周期T =2π2=π.故选B.3.D 解析:f (x )=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,因为函数为奇函数且0<φ<π,所以φ+π4=π,即φ=3π4.所以f (x )=-2sin ωx .又2πω=π2,所以ω=4,f (x )=-2sin 4x ,其一个单调递增区间为⎝ ⎛⎭⎪⎫π8,3π8.4.D 解析:由题图可得A =2,最小正周期T =4⎝ ⎛⎭⎪⎫7π12-π3=π,则ω=2πT =2.又f ⎝ ⎛⎭⎪⎫7π12=2sin ⎝ ⎛⎭⎪⎫7π6+φ=-2,解得φ=-5π3+2k π(k ∈Z ).即k =1,φ=π3.则f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3.则f ⎝ ⎛⎭⎪⎫11π24=2sin ⎝ ⎛⎭⎪⎫11π12+π3=2sin 5π4=-1.故选D.5.D 解析:函数y =tan ⎝⎛⎭⎪⎫ωx +π4的图象向右平移π6个单位后得到函数y =tan ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -π6+π4=tan ⎝ ⎛⎭⎪⎫ωx -ωπ6+π4的图象.又因为y =tan ⎝ ⎛⎭⎪⎫ωx +π6,依题意可得-ωπ6+π4=π6+k π,k ∈Z ,∴ω=12-6k ,()k ∈Z .由ω>0,得ω的最小值为12.6.B 解析:依题意,得T =2πω=4⎝ ⎛⎭⎪⎫7π12-π3=π,ω=2,f ⎝ ⎛⎭⎪⎫π3=cos ⎝⎛⎭⎪⎫φ+π6=1.又|φ|<π2,因此φ=-π6.所以f (x )=cos ⎝ ⎛⎭⎪⎫2x -2π3.当f ⎝ ⎛⎭⎪⎫x +π6=cos ⎝⎛⎭⎪⎫2x -π3取得最小值时,2x -π3=2k π-π,k ∈Z ,即x =k π-π3,k ∈Z .故选B.7.C 解析:∵sin α+2cos α=102, ∴sin 2α+4sin αcos α+4cos 2α=52.化简,得4sin 2α=-3cos 2α.∴tan 2α=sin 2αcos 2α=-34.故选C.8.5π6 解析:y =sin x -3cos x =2sin ⎝⎛⎭⎪⎫x -π3,由0≤x <2π⇔-π3≤x -π3<5π3,可知-2≤2sin ⎝⎛⎭⎪⎫x -π3≤2.当且仅当x -π3=π2,即x =5π6时,函数取得最大值.9.-1 解析:sin 235°-12cos10°cos80°=1-cos70°2-12cos10°sin10°=-12cos70°12sin20°=-1.10.(-2,-1] 解析:由题意可知,y =2sin ⎝ ⎛⎭⎪⎫2x +π6+a ,该函数在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的零点,即y =-a ,y =2sin ⎝ ⎛⎭⎪⎫2x +π6的图象在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的交点.结合函数的图象D104可知1≤-a <2,所以-2<a ≤-1.图D10411.解:(1)-π2+2k π≤3x +π4≤π2+2k π⇒-π4+23k π≤x ≤π12+23k π(k ∈Z ).(2)由已知,有sin ⎝ ⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α, 即sin α+cos α=45(cos α-sin α)(cos α-sin α)(sin α+cos α).若sin α+cos α=0,则cos α-sin α=- 2. 若sin α+cos α≠0,则1=45(cos α-sin α)2⇒cos α-sin α=-52.综上所述,cos α-sin α的值为-2或-52. 12.解:(1)f ⎝⎛⎭⎪⎫2π3=⎝ ⎛⎭⎪⎫322-⎝ ⎛⎭⎪⎫-122-2 3×32×⎝ ⎛⎭⎪⎫-12=2.(2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x ,得f (x )=-cos 2x -3sin 2x =-2sin ⎝⎛⎭⎪⎫2x +π6. 所以f (x )的最小正周期是π.由正弦函数的性质,得π2+2k π≤2x +π6≤3π2+2k π,k ∈Z .解得π6+k π≤x ≤2π3+k π,k ∈Z .所以f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π,k ∈Z .。
2019版高考数学一轮复习训练: 基础与考点过关 第三章 三角函数、三角恒等变换及解三角形
第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数1. (必修4P 10习题9改编)小明从家步行到学校需要15 min ,则这段时间内钟表的分针走过的角度是________.答案:-90°解析:利用定义得分针是顺时针走的,形成的角是负角.又周角为360°,所以360°60×15=90°,即分针走过的角度是-90°.2. (必修4P 10习题4改编)若角θ的终边与角4π5的终边相同,则在[0,2π)内终边与角θ2的终边相同的角的集合为__________________.(用列举法表示) 答案:⎩⎨⎧⎭⎬⎫2π5,7π5解析:由题意θ=4π5+2k π(k∈Z ),∴ θ2=2π5+k π(k∈Z ).由0≤θ2<2π,即0≤2π5+k π<2π知-25≤k<85,k ∈Z .∴ k =0或1.故在[0,2π)内终边与角θ2的终边相同的角的集合为⎩⎨⎧⎭⎬⎫2π5,7π5. 3. (必修4P 9例3改编)已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为__________.答案:6解析:设扇形的半径为R ,则12R 2α=2,∴ 12R 2×4=2.而R 2=1,∴ R =1,∴ 扇形的周长为2R +α·R=2+4=6.4. 已知角θ的终边经过点P(8,m +1),且sin θ=35,则m =________.答案:5解析:sin θ=m +182+(m +1)2=35,解得m =5. 5. 函数y =lg(2cos x -1)的定义域为____________.答案:⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ) 解析:∵ 2cos x -1>0,∴ cos x >12.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴ x ∈⎝⎛⎭⎪⎫2k π-π3,2k π+π3(k∈Z ).1. 任意角(1) 角的概念的推广① 按旋转方向不同分为正角、负角、零角. ② 按终边位置不同分为象限角和轴线角. (2) 终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z ). (3) 弧度制① 1弧度的角:长度等于半径长的弧所对的圆心角叫做1弧度的角.② 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|α|=lr,l 是以角α作为圆心角时所对圆弧的长,r 为半径.③ 弧度与角度的换算:360°=2π rad ;180°=π rad ;1°=π180 rad ;1 rad =180π度.④ 弧长公式:l =|α|r .扇形面积公式:S 扇形=12lr =12|α|r 2.2. 任意角的三角函数(1) 任意角的三角函数的定义设P(x ,y)是角α终边上任意一点,且|PO|=r(r >0),则有sin α=y r ,cos α=xr,tan α=yx,它们都是以角为自变量,以比值为函数值的函数.(2) 三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦. (3) 特殊角的三角函数值45°π42222160°π33212390°π21 0 /120°2π332-12- 3续表角αα弧度数sin αcos αtan α135°3π422-22-1150°5π612-32-33180°π0 -1 0270°3π2-1 0 /3.设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过点P作PM垂直x轴于点M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cos_α,sin_α),其中cos α=OM,sin α=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其反向延长线相交于点T,则tan α=AT.我们把有向线段OM,MP,AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记], 1象限角及终边相同的角), 1) (1) 已知α=-2 017°,则与角α终边相同的最小正角为________,最大负角为________.(2) (必修4P 10习题12改编)已知角α是第三象限角,试判断:① π-α是第几象限角?② α2是第几象限角?③ 2α的终边在什么位置?(1) 答案:143° -217° 解析:α可以写成-6×360°+143°的形式,则与α终边相同的角可以写成k·360°+143°(k∈Z )的形式.当k =0时,可得与角α终边相同的最小正角为143°,当k =-1时,可得最大负角为-217°.(2) 解:①∵ α是第三象限角,∴ 2k π+π<α<2k π+3π2,k ∈Z .∴ -2k π-π2<π-α<-2k π,k ∈Z .∴ π-α是第四象限角.② ∵ k π+π2<α2<k π+3π4,k ∈Z ,∴ α2是第二或第四象限角.③ ∵ 4k π+2π<2α<4k π+3π,k ∈Z ,∴ 2α的终边在第一或第二象限或y 轴非负半轴上. 变式训练(必修4P 10习题5改编)终边在直线y =3x 上的角的集合可表示为____________.答案:⎩⎨⎧⎭⎬⎫x|x =k π+π3,k ∈Z 解析:直线y =3x 经过第一象限、第三象限,直线的倾斜角为π3,则终边在该直线上的角的集合为{x|x =k π+π3,k ∈Z }., 2 三角函数的定义), 2) (1) 点P 是始边与x 轴的正半轴重合、顶点在原点的角θ的终边上的一点,若|OP|=2,θ=60°,则点P 的坐标是__________;(2) (2017·泰州模拟)已知角α的终边过点P(-8m ,-6sin 30°),且cos α=-45,则m 的值为________.答案:(1) (1,3) (2) 12解析:(1) 设点P 的坐标为(x ,y),由三角函数的定义,得sin 60°=y2,cos 60°=x2,所以x =2cos 60°=1,y =2sin 60°=3,故点P 的坐标为(1,3). (2) ∵ r=64m 2+9,∴ cos α=-8m 64m 2+9=-45,∴ m >0,∴ 4m 264m 2+9=125,即m =12.变式训练(2017·无锡期末)已知角α的终边与单位圆的交点为P ⎝ ⎛⎭⎪⎫-12,y ,则sin α·tan α=________.答案:-32解析:由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3,此时sin α·tan α=-32. 当y =-32时,sin α=-32,tan α=3,此时sin α·tan α=-32., 3 三角函数的符号及判定), 3) 点A(sin 2 017°,cos(-2 017°))位于第________象限. 答案:三 解析:因为2 017°=5×360°+217°是第三象限角,所以sin 2 017°<0.又-2 017°=-6×360°+143°是第二象限角,所以cos(-2 017°)<0,所以点A(sin 2 017°,cos(-2 017°))位于第三象限.变式训练下列判断正确的是________.(填序号)① sin 300°>0;② cos(-305°)<0;③ tan ⎝ ⎛⎭⎪⎫-223π>0;④ sin 10<0. 答案:④解析:300°=360°-60°,则300°是第四象限角; -305°=-360°+55°,则-305°是第一象限角; -223π=-8π+23π,则-223π是第二象限角; 因为3π<10<72π,所以10是第三象限角.故sin 300°<0,cos(-305°)>0,tan ⎝ ⎛⎭⎪⎫-223<0,sin 10<0,④正确., 4 弧长公式与扇形面积公式), 4) 扇形AOB 的周长为8 cm.(1) 若这个扇形的面积为3 cm 2,求圆心角的大小;(2) 求这个扇形的面积取得最大值时圆心角的大小和弦长AB. 解:设扇形AOB 的半径为r cm ,弧长为l cm ,圆心角为α,(1) 由题意可得⎩⎪⎨⎪⎧2r +l =8,12lr =3,解得⎩⎪⎨⎪⎧r =3,l =2或⎩⎪⎨⎪⎧r =1,l =6,∴ α=l r =23或6.(2) ∵ 2r+l =8,∴ S 扇=12lr =14l ·2r ≤14·⎝ ⎛⎭⎪⎫l +2r 22=14×⎝ ⎛⎭⎪⎫822=4(cm 2), 当且仅当2r =l ,即α=lr=2时,扇形面积取得最大值,∴ r =2,∴ 弦长AB =2×2sin 1=4sin 1(cm). 备选变式(教师专享)已知扇形的周长是 4 cm ,则扇形面积最大时,扇形的圆心角的弧度数是________;扇形的圆心角所对的弦长为________cm.答案: 2 2sin 1解析:设此扇形的半径为r cm ,弧长为l cm ,则2r +l =4,面积S =12rl =12r(4-2r)=-r 2+2r =-(r -1)2+1,故当r =1时S 最大,这时l =4-2r =2 cm.从而α=l r =21=2.扇形的圆心角所对的弦长为2sin 1 cm.1. 若tan(α+45°)<0,则sin α,cos α,sin 2α,cos 2α中一定为负数的是__________.答案:cos 2α解析:∵ tan(α+45°)<0,∴ k ·180°-135°<α<k ·180°-45°,∴ k ·360°-270°<2α<k ·360°-90°,∴ cos 2α<0.2. (2017·苏州期末)已知角θ的终边经过点P(4,m),且sin θ=35,则m =________.答案:3解析:sin θ=m 16+m 2=35,解得m =3. 3. 若α=k·360°+θ,β=m·360°-θ(k ,m ∈Z ),则下列关于角α与β的终边的位置关系的说法正确的是________.(填序号)① 重合;② 关于原点对称;③ 关于x 轴对称;④ 关于y 轴对称. 答案:③解析:显然角α与角θ的终边相同,角β与角-θ的终边相同,而θ与-θ的终边关于x 轴对称,故说法正确的是③.4. 已知一扇形的圆心角为α (α>0),扇形所在圆的半径为R.(1) 若α=90°,R =10 cm ,求扇形的弧长及该弧所在的弓形的面积;(2) 若扇形的周长是一定值C cm(C>0),当α为多少弧度时,该扇形有最大面积?解:(1) 设弧长为l ,弓形面积为S 弓,又α=90°=π2,R =10,则l =π2×10=5π(cm),S 弓=S 扇-S 三角形=12×5π×10-12×102=25π-50 (cm 2).(2) 扇形周长C =2R +l =(2R +αR)cm ,∴ R =C2+αcm ,∴ S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2=C 2α2·14+4α+α2=C 22·14+α+4α≤C 216. 当且仅当α2=4,即α=2时,扇形面积有最大值C 216cm 2.1. 给出下列命题:① 第二象限角大于第一象限角;② 三角形的内角是第一象限角或第二象限角;③ 不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关;④ 若sin α=sin β,则α与β的终边相同; ⑤ 若cos θ<0,则θ是第二或第三象限的角. 其中正确的命题是________.(填序号) 答案:③解析:由于第一象限角370°大于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;正弦值相等,但角的终边不一定相同,故④错;当θ=π时,cos θ=-1<0,θ既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.2. 已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=________.答案:-35解析:取终边上一点(a ,2a )(a≠0),根据任意角的三角函数定义,可得cos θ=±55,故cos 2θ=2cos 2θ-1=-35.3. (2017·扬州一中月考改编)已知角α的终边与单位圆x 2+y 2=1交于点P ⎝ ⎛⎭⎪⎫12,y 0,则cos α=________.答案:12解析:∵ r=1,∴ cos α=x r =12.4. (2017·苏北四市期末)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是________.答案:(-2,3]解析:∵ cos α≤0,sin α>0,∴ 角α的终边落在第二象限或y 轴的正半轴上. ∴ ⎩⎪⎨⎪⎧3a -9≤0,a +2>0,∴ -2<a≤3.1. (1) 要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再根据条件解方程或不等式.(2) 已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求相关问题.若直线的倾斜角为特殊角,也可直接写出角.2. 已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解α的三角函数值.3. 弧度制下的扇形的弧长与面积公式,比角度制下的扇形的弧长与面积公式要简洁得多,用起来也方便得多.因此,我们要熟练地掌握弧度制下扇形的弧长与面积公式.4. 利用单位圆解有关三角函数的不等式(组)的一般步骤 (1) 用边界值定出角的终边位置. (2) 根据不等式(组)定出角的范围. (3) 求交集,找单位圆中公共的部分. (4) 写出角的表达式.第2课时 同角三角函数的基本关系式与 诱导公式(对应学生用书(文)、(理)51~52页)1. 已知sin α=14,且α∈⎝ ⎛⎭⎪⎫π2,π,则tan α=__________. 答案:-1515解析:由sin α=14,α∈⎝ ⎛⎭⎪⎫π2,π,得cos α=-154, 则tan α=sin αcos α=-1515.2. (必修4P 20练习2改编)sin(-585°)的值为__________.答案:22解析:sin(-585°)=-sin 585°=-sin(360°+225°)=-sin 225°=-sin(180°+45°)=sin 45°=22.3. (2017·苏北四市摸底)已知sin ⎝ ⎛⎭⎪⎫5π2+α=15,则cos α的值为________.答案:15解析:∵ sin ⎝ ⎛⎭⎪⎫5π2+α=sin ⎝ ⎛⎭⎪⎫π2+α=cos α,∴ cos α=15. 4. (必修4P 23习题11改编)已知tan α=2,则2sin α-cos αsin α+cos α=__________.答案:1解析:因为tan α=2,所以2sin α-cos αsin α+cos α=2tan α-1tan α+1=2×2-12+1=1.5. (必修4P 21例4改编)若sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=__________.答案:119解析:∵ sin ⎝ ⎛⎭⎪⎫π6-α=13,∴ sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=13,∴ cos ⎝ ⎛⎭⎪⎫π3+α=13.∴ cos 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝ ⎛⎭⎪⎫5π6+α=1-sin 2⎝⎛⎭⎪⎫π+α-π6 =1-sin 2⎝ ⎛⎭⎪⎫π6-α=1-19=89.∴ cos ⎝ ⎛⎭⎪⎫π3+α+cos 2⎝ ⎛⎭⎪⎫5π6+α=13+89=119.1. 同角三角函数的基本关系(1) 平方关系:sin 2α+cos 2α=1.(2) 商数关系:tan_α=sin αcos α.2. 诱导公式k ·2±α(k∈Z )与α的三角函数关系的记忆规律:奇变偶不变,符号看象限., 1 同角三角函数的基本关系式), 1) (必修4P 23习题20改编)已知-π2<x<0,sin x +cos x =15.(1) 求sin 2x -cos 2x 的值;(2) 求tan x2sin x +cos x的值.解:由sin x +cos x =15,得1+2sin xcos x =125,则2sin xcos x =-2425.∵ -π2<x<0,∴ sin x<0,cos x>0,即sin x -cos x<0.则sin x -cos x =-sin 2x -2sin xcos x +cos 2x =-1+2425=-75.(1) sin 2x -cos 2x =(sin x +cos x)(sin x -cos x)=15×⎝ ⎛⎭⎪⎫-75=-725. (2) 由⎩⎪⎨⎪⎧sin x +cos x =15,sin x -cos x =-75,得⎩⎪⎨⎪⎧sin x =-35,cos x =45,则tan x =-34.即tan x 2sin x +cos x =-34-65+45=158. 变式训练(2017·盐城模拟)已知sin αcos α=18,且5π4<α<3π2,则cos α-sin α的值为________.答案:32解析:∵ 5π4<α<3π2,∴ cos α<0,sin α<0,且cos α>sin α,∴ cos α-sinα>0.又(cos α-sin α)2=1-2sin αcos α=1-2×18=34,∴ cos α-sin α=32. , 2) (必修4P 23习题12(2)改编)化简: (1+sin α1-sin α-1-sin α1+sin α)·(1+cos α1-cos α-1-cos α1+cos α).解:原式=[(1+sin α)2cos 2α-(1-sin α)2cos 2α]·[(1+cos α)2sin 2α-(1-cos α)2sin 2α]=(1+sin α|cos α|-1-sin α|cos α|)·(1+cos α|sin α|-1-cos α|sin α|)=2sin α|cos α|·2cos α|sin α|=⎩⎪⎨⎪⎧4,α在第一、三象限时,-4,α在第二、四象限时. 备选变式(教师专享)若α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 答案:0解析:原式=cos αsin 2α+cos 2αcos 2α+sin αsin 2α+cos 2αsin 2α=cos α1|cos α|+sin α1|sin α|.因为α是第二象限角,所以sin α>0,cos α<0,所以cos α1|cos α|+sin α1|sin α|=-1+1=0,即原式等于0., 2 诱导公式及其运用), 3) 已知sin ⎝ ⎛⎭⎪⎫x +π6=13,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x 的值为__________.答案:59解析:由诱导公式得sin ⎝ ⎛⎭⎪⎫x -5π6=-sin ⎝ ⎛⎭⎪⎫x +π6=-13,sin 2⎝ ⎛⎭⎪⎫π3-x =cos 2⎝⎛⎭⎪⎫x +π6=89,则sin ⎝ ⎛⎭⎪⎫x -5π6+sin 2⎝ ⎛⎭⎪⎫π3-x =89-13=59.变式训练已知cos ⎝ ⎛⎭⎪⎫π6-θ=a(|a|≤1),则cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=__________.答案:0解析:由题意知,cos ⎝ ⎛⎭⎪⎫5π6+θ=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π6-θ= -cos ⎝ ⎛⎭⎪⎫π6-θ=-a. sin ⎝ ⎛⎭⎪⎫2π3-θ=sin ⎣⎢⎡⎦⎥⎤π2+⎝ ⎛⎭⎪⎫π6-θ=cos ⎝ ⎛⎭⎪⎫π6-θ=a ,∴ cos ⎝ ⎛⎭⎪⎫5π6+θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=0., 3 同角三角函数的基本关系与诱导公式的综合应用), 4) (1) 设tan(5π+α)=m ,求sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)的值;(2) 在△ABC 中,若sin(2π-A)=-2sin(π-B),3cos A =-2cos(π-B),求△ABC 的三个内角.解:(1) 由tan(5π+α)=m ,得tan α=m ,∴ sin (α-3π)+cos (π-α)sin (-α)-cos (π+α)=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1.(2) 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =±22. (ⅰ) 当cos A =22时,cos B =32. 又∵ A,B 是三角形的内角,∴ A =π4,B =π6,∴ C =π-(A +B)=7π12.(ⅱ) 当cos A =-22时,cos B =-32. 又∵ A,B 是三角形的内角,∴ A =3π4,B =5π6,不合题意.综上知,A =π4,B=π6,C =7π12.变式训练 (1) (2017·江西联考)已知tan(π-α)=-23,且α∈⎝⎛⎭⎪⎫-π,-π2,求cos (-α)+3sin (π+α)cos (π-α)+9sin α的值;(2) 在△ABC 中,若sin(3π-A)=2sin(π-B),cos ⎝ ⎛⎭⎪⎫3π2-A =2cos(π-B).试判断三角形的形状.解:(1) 由已知得tan α=23,cos (-α)+3sin (π+α)cos (π-α)+9sin α=cos α-3sin α-cos α+9sin α=1-3tan α-1+9tan α=1-3×23-1+9×23=-15.(2) 由题设条件,得sin A =2sin B ,-sin A =-2cos B , ∴ sin B =cos B ,∴ tan B =1.∵ B ∈(0,π),∴ B =π4,∴ sin A =2×22=1. 又A∈(0,π),∴ A =π2,∴C =π4.∴ △ABC 是等腰直角三角形.1. 已知cos 31°=a ,则sin 239°·tan 149°的值是________.答案:1-a 2解析:sin 239°·tan 149°=sin(270°-31°)·tan(180°-31°)=(-cos31°)·(-tan 31°)=sin 31°=1-a 2.2. 已知α为锐角,且tan(π-α)+3=0,则sin α的值是________.答案:31010解析:(解法1)由tan(π-α)+3=0,得tan α=3,即sin αcos α=3,sin α=3cos α,所以sin 2α=9(1-sin 2α),10sin 2α=9,sin 2α=910.因为α为锐角,所以sin α=31010.(解法2)因为α为锐角,且tan(π-α)+3=0,所以-tan α+3=0即tan α=3.在如图所示的直角三角形中,令∠A=α,BC =3,则AC =1,所以AB =32+12=10,故sin α=310=31010.3. (2017·南通调研)已知sin θ+cos θ=43,θ∈⎝⎛⎭⎪⎫0,π4,则sin θ-cos θ=________.答案:-23解析:∵ sin θ+cos θ=43,∴ 2sin θcos θ=79,∴ (sin θ-cos θ)2=1-2sin θcos θ=29,∴ sin θ-cos θ=23或-23.∵θ∈⎝⎛⎭⎪⎫0,π4,∴ sin θ<cos θ,∴ sin θ-cos θ=-23.4. 已知sin 2θ+4cos θ+1=2,则(cos θ+3)(sin θ+1)的值为__________.答案:4解析:因为sin 2θ+4cos θ+1=2,所以sin 2θ+4=2cos θ+2,即cos 2θ+2cos θ-3=0,解得cos θ=1或cos θ=-3(舍去).由cos θ=1得sin θ=0,故(cos θ+3)(sin θ+1)=4.1. 已知sin(3π-α)=-2sin ⎝ ⎛⎭⎪⎫π2 +α,则sin αcos α=__________. 答案:-25解析:因为sin(3π-α)=sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,所以sin α=-2cos α,所以tan α=-2,所以sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=-25. 2. 已知cos(-80°)=k ,那么tan 100°=__________.答案:-1-k2k解析:因为cos(-80°)=cos 80°=k ,所以sin 80°=1-cos 280°=1-k 2.所以tan 100°=-tan 80°=-sin 80°cos 80°=-1-k2k.3. (2017·盐城调研)若3sin α+cos α=0,则1cos 2α+2sin αcos α=________.答案:103解析:∵ 3sin α+cos α=0,且cos α≠0,∴ tan α=-13,∴1cos 2α+2sin αcos α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+⎝ ⎛⎭⎪⎫-1321-23=103. 4. (2017·南京、盐城模拟)已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α=________.答案:-223解析:因为⎝ ⎛⎭⎪⎫5π12+α+⎝ ⎛⎭⎪⎫π12-α=π2,所以cos ⎝ ⎛⎭⎪⎫π12-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-α=sin ⎝ ⎛⎭⎪⎫5π12+α. 因为-π<α<-π2,所以-7π12<α+5π12<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以-π2<α+5π12<-π12, 所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-1-⎝ ⎛⎭⎪⎫132=-223.1. 利用平方关系解决问题时,要注意开方运算结果的符号,需要根据角α的范围进行确定.2. 应熟练应用诱导公式.诱导公式的应用原则是:负化正、大化小、化到锐角为终了.诱导公式的应用是求任意角的三角函数值,其一般步骤:① 负角变正角,再写成2k π+α(k∈Z ),0≤α<2π的形式;② 转化为锐角.3. 同角三角函数基本关系可用于统一函数;诱导公式主要用于统一角,其主要作用是进行三角函数的求值、化简和证明,如已知一个角的某一三角函数值,求这个角的其他三角函数值时,要特别注意平方关系的使用.4. 三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:① 弦切互化法:主要利用公式tan x =sin x cos x 进行切化弦或弦化切,如asin x +bcos xcsin x +dcos x,asin 2x +bsin xcos x +ccos 2x 等类型可进行弦化切.② 和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.③ 注意变角技巧:如32π+α为π+⎝ ⎛⎭⎪⎫π2+α或2π-⎝ ⎛⎭⎪⎫π2-α等. ④ 巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ⎝ ⎛⎭⎪⎫1+1tan 2θ=tan π4=…5. 在△ABC 中常用到以下结论: sin(A +B)=sin(π-C)=sin C , cos(A +B)=cos(π-C)=-cos C , tan(A +B)=tan(π-C)=-tan C ,sin ⎝ ⎛⎭⎪⎫A 2+B 2=sin ⎝ ⎛⎭⎪⎫π2-C 2=cos C 2, cos ⎝ ⎛⎭⎪⎫A 2+B 2=cos ⎝ ⎛⎭⎪⎫π2-C 2=sin C 2.[备课札记]第3课时 三角函数的图象和性质(对应学生用书(文)、(理)53~55页)1. (2017·南京期初)若函数f(x)=sin ⎝ ⎛⎭⎪⎫ωx +π6(ω>0)的最小正周期为π,则f ⎝ ⎛⎭⎪⎫π3的值是________.答案:12解析:由题意,得2πω=π,所以ω=2,f(x)=sin ⎝ ⎛⎭⎪⎫2x +π6.因此f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫2π3+π6=sin 5π6=12.2. 将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数y =g(x)的图象,则g(x)=____________.答案:2sin ⎝⎛⎭⎪⎫2x -π3 解析:将函数f(x)=2sin 2x 的图象上每一点向右平移π6个单位,得到函数g(x)=2sin2⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3的图象.本题主要考查三角函数的图象变换(平移变换).3. 已知函数y =2cos x 的定义域为⎣⎢⎡⎦⎥⎤π3,π,值域为[a ,b],则b -a 的值是__________.答案:3解析:因为x∈⎣⎢⎡⎦⎥⎤π3,π,所以cos x ∈⎣⎢⎡⎦⎥⎤-1,12,所以y =2cos x 的值域为[-2,1],所以b -a =3.4. 函数f(x)=sin ⎝⎛⎭⎪⎫2x -π3的单调递增区间为________.答案:⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ) 解析:由2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .故所求函数的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12(k∈Z ). 5. (必修4P 45习题9改编)电流强度I(A)随时间t(s)变化的函数I =Asin(ωt +φ)⎝⎛⎭⎪⎫A>0,ω>0,0<φ<π2的部分图象如图所示,则当t =1100 s 时,电流强度是__________A.答案:-5解析:由图象知A =10,T 2=4300-1300=1100,∴ ω=2πT=100π.∴ I =10sin(100πt+φ).⎝ ⎛⎭⎪⎫1300,10为五点中的第二个点,∴ 100π×1300+φ=π2.∴ φ=π6.∴ I =10sin(100πt +π6),当t =1100s 时,I =-5 A.1. 周期函数的定义周期函数的概念:对于函数y =f(x),如果存在一个非零的常数T ,使得当x 取定义域内的每一个值时,f(x +T)=f(x)都成立,那么称y =f(x)为周期函数;函数y =Asin(ωx+φ)和y =Acos(ωx +φ)的周期均为T =2π|ω|;函数y =Atan(ωx +φ)的周期为T =π|ω|.2. 三角函数的图象和性质在确定正弦函数y =sin x 在[0,2π]上的图象形状时,起关键作用的五个点是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数呢?4. 函数 y =Asin(ωx +φ)的特征若函数y =Asin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.[备课札记], 1 “五点法”与“变换法”作图), 1) (必修4P 40练习7改编)已知函数f(x)=2sin(ωx +π3)(ω>0)的周期为π.(1) 用“五点法”作出它在长度为一个周期的闭区间上的图象;(2) 说明函数f(x)的图象可由y =sin x 的图象经过怎样的变换而得到.解:∵ T=π,∴ 2πω=π,即ω=2.∴ f(x)=2sin ⎝⎛⎭⎪⎫2x +π3. (1) 令X =2x +π3,则y =2sin ⎝⎛⎭⎪⎫2x +π3=2sin X. 列表如下: x -π6 π12 π3 7π12 5π6X 0 π2 π 3π22π y =sin X 0 1 0 -1 0y =2sin ⎝⎛⎭⎪⎫2x +π3 0 2 0 -2 0(2) (解法1)把y =sin x 的图象上所有点向左平移π3个单位,得到y =sin ⎝⎛⎭⎪⎫x +π3的图象;再把y =sin ⎝⎛⎭⎪⎫x +π3的图象上所有点的横坐标变为原来的12(纵坐标不变),得到y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象;最后把y =sin ⎝⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标变为原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. (解法2)将y =sin x 的图象上每一点的横坐标x 变为原来的12,纵坐标不变,得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位,得到y =sin 2⎝⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎪⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标变为原来的2倍,得到y =2sin ⎝⎛⎭⎪⎫2x +π3的图象. 备选变式(教师专享)已知f(x)=cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<0的最小正周期为π,且f ⎝ ⎛⎭⎪⎫π4=32. (1) 求ω和φ的值;(2) 在给定坐标系中作出函数f(x)在[0,π]上的图象;(3) 若f(x)>22,求x 的取值范围.解:(1) 周期T =2πω=π,∴ ω=2.∵ f ⎝ ⎛⎭⎪⎫π4=cos ⎝ ⎛⎭⎪⎫2×π4+φ=cos ⎝ ⎛⎭⎪⎫π2+φ=-sin φ=32.又-π2<φ<0,∴ φ=-π3. (2) 由(1)得f(x)=cos ⎝⎛⎭⎪⎫2x -π3,列表如下:(3)∵ cos ⎝ ⎛⎭⎪⎫2x -π3>22,∴ 2k π-π4<2x -π3<2k π+π4,∴ 2k π+π12<2x<2k π+7π12, ∴ k π+π24<x<k π+7π24,k ∈Z ,∴ x 的取值范围是⎩⎨⎧x ⎪⎪⎪⎭⎬⎫k π+π24<x<k π+7π24,k ∈Z .,2 三角函数的性质)●典型示例2已知函数f(x)=2sin ⎝⎛⎭⎪⎫2x +π4+1. (1) 求f(x)的最小正周期和单调递增区间;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值;(3) 求f(x)图象的一条对称轴和一个对称中心,使得它们到y 轴的距离分别最小. 【思维导图】【规范解答】解:(1) 函数f(x)的最小正周期为T =2π2=π. 令-π2+2k π≤2x +π4≤π2+2k π(k∈Z ),解得-3π8+k π≤x ≤π8+k π(k∈Z ),所以函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤-3π8+k π,π8+k π(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4.由正弦函数y =sin x 在⎣⎢⎡⎦⎥⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在⎣⎢⎡⎦⎥⎤0,π2上的最大值为2+1,最小值为0.(3) 令2x +π4=π2+k π(k∈Z ),解得x =π8+k π2(k∈Z ),所以当k =0时,直线x =π8是所有对称轴中最靠近y 轴的.令2x +π4=k π(k∈Z ),解得x =-π8+k π2(k∈Z ),所以当k =0时,⎝ ⎛⎭⎪⎫-π8,1是所有对称中心中最靠近y 轴的, 所以所求的对称轴为直线x =π8,对称中心为⎝ ⎛⎭⎪⎫-π8,1. 【精要点评】 对于三角函数f(x)=Asin(ωx +φ)的性质(定义域、单调性、对称性、最值或值域等)问题,通常用换元的方法,令t =ωx +φ,将其转化为函数y =Asin t ,再进行其性质的研究.●总结归纳解有关三角函数性质的问题,通常需先将函数转化为f(x)=Asin(ωx +φ)的形式,再用研究复合函数的单调性、值域的方法利用正弦函数的图象和性质来处理.若ω<0,还需先利用诱导公式转化为f(x)=Asin(ωx +φ)(ω>0)的形式,再将ωx +φ看成整体,利用正弦函数y =sin x 的性质进行求解.●题组练透1. 将函数y =sin 2x 的图象向左平移φ(φ>0)个单位,若所得的图象过点⎝ ⎛⎭⎪⎫π6,32,则φ的最小值为__________.答案:π6解析:易知y =sin 2(x +φ),即y =sin(2x +2φ).∵ 图象过点⎝⎛⎭⎪⎫π6,32,∴ sin ⎝ ⎛⎭⎪⎫π3+2φ=32,∴ π3+2φ=π3+2k π或π3+2φ=2π3+2k π,k ∈Z ,即φ=k π或φ=π6+k π,k ∈Z .∵ φ>0,∴ φ的最小值为π6.K2. 设函数y =sin ⎝⎛⎭⎪⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为__________.答案:2解析:当x =π12时,令ωx +π3=π2,则正数ω=2.3. 函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为________. 答案:-22解析:由已知x∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f(x)=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22. 4. 设函数f(x)=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π3⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且满足f(-x)=-f(x).(1) 求函数f(x)的单调递增区间;(2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,试求y =f ⎝⎛⎭⎪⎫x -π6的最值,并写出取得最值时自变量x 的值.解:(1) 因为f(x)的最小正周期为π,所以T =2πω=π,解得ω=2.又f(-x)=-f(x),所以f(0)=0,所以sin ⎝⎛⎭⎪⎫φ+π3=0.又|φ|<π2,所以φ=-π3,所以ω=2,φ=-π3,所以f(x)=2sin 2x.则2x ∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k∈Z ),解得函数f(x)的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k∈Z ). (2) 当x∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,y =f ⎝ ⎛⎭⎪⎫x -π6=2sin 2⎝⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫2x -π3. 当2x -π3=π2,即x =5π12时,f(x)取得最大值2;当2x -π3=-π3,即x =0时,f(x)取得最小值- 3., 3 根据图象和性质确定函数y =Asin(ωx +φ)的解析式), 3) 设函数f(x)=Asin(ωx +φ)(A >0,ω>0,-π2<φ<π2,x∈R )的部分图象如图所示.(1) 求函数y =f(x)的解析式;(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,求f(x)的取值范围.解:(1) 由图象知,A =2. 又T 4=5π6-π3=π2,ω>0,所以T =2π=2πω,得ω=1.所以f(x)=2sin(x +φ),将点⎝ ⎛⎭⎪⎫π3,2代入,得π3+φ=π2+2k π(k∈Z ),即φ=π6+2k π(k∈Z ). 又-π2<φ<π2,所以φ=π6.所以f(x)=2sin ⎝⎛⎭⎪⎫x +π6.(2) 当x∈⎣⎢⎡⎦⎥⎤-π2,π2时,x +π6∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-32,1,即f(x)∈[-3,2].变式训练已知函数f(x)=2sin ⎝⎛⎭⎪⎫ωx +φ-π6(0<φ<π,ω>0)为偶函数,且函数y =f(x)图象的两相邻对称轴间的距离为π2.(1) 求f ⎝ ⎛⎭⎪⎫π8的值; (2) 将函数y =f(x)的图象向右平移π6个单位后,再将得到的图象上各点的横坐标变为原来的4倍,纵坐标不变,得到函数y =g(x)的图象,求g(x)的解析式,并写出g(x)的单调递减区间.解:(1) ∵ f(x)为偶函数,∴ φ-π6=k π+π2,k ∈Z ,解得φ=2π3+k π,k ∈Z .∵ 0<φ<π,∴ φ=2π3.由题意得2πω=2×π2,解得ω=2.故f(x)=2cos 2x ,f ⎝ ⎛⎭⎪⎫π8=2cos π4= 2. (2) 将f(x)的图象向右平移π6个单位后,得到f ⎝⎛⎭⎪⎫x -π6的图象,再将所得图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到f ⎝ ⎛⎭⎪⎫x 4-π6的图象,所以g(x)=f(x 4-π6)=2cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 4-π6=2cos ⎝ ⎛⎭⎪⎫x 2-π3. 当2k π≤x 2-π3≤2k π+π(k∈Z ),即4k π+2π3≤x ≤4k π+8π3(k∈Z )时,g(x)单调递减.因此g(x)的单调递减区间为[4k π+2π3,4k π+8π3](k∈Z )., 4 三角函数的应用), 4) (必修4P 42例2改编)如图,一个水轮的半径为4 m ,水轮圆心O距离水面2 m ,已知水轮每分钟转动5圈,如果当水轮上点P 从水中浮现时(图中点P 0)开始计算时间.(1) 将点P 距离水面的高度z(m)表示为时间t(s)的函数; (2) 点P 第一次到达最高点大约需要多少时间?解:(1) 建立如图所示的直角坐标系,设角φ⎝ ⎛⎭⎪⎫-π2<φ<0是以Ox 为始边,OP 0为终边的角.OP 每秒钟内所转过的角为5×2π60=π6.则OP 在t(s)内所转过的角为π6t.由题意可知水轮逆时针转动,得z =4sin ⎝ ⎛⎭⎪⎫π6t +φ+2. 当t =0时,z =0,得sin φ=-12,即φ=-π6.故所求函数解析式为z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2.(2) 令z =4sin ⎝ ⎛⎭⎪⎫π6t -π6+2=6,得sin ⎝ ⎛⎭⎪⎫π6t -π6=1.令π6t -π6=π2,得t =4, 故点P 第一次到达最高点大约需要4 s. 备选变式(教师专享)如图为一个缆车示意图,该缆车半径为4.8 m ,圆上最低点与地面距离为0.8 m ,且60 s 转动一圈,图中OA 与地面垂直,以OA 为始边,逆时针转动θ角到OB ,设B 点与地面间的距离为h.(1) 求h 与θ之间的函数解析式; (2) 设从OA 开始转动,经过t s 后到达OB ,求h 与t 之间的函数解析式,并求缆车到达最高点时用的最少时间是多少.解:(1) 以圆心O 为原点,建立如图所示的平面直角坐标系.则以Ox 为始边,OB 为终边的角为θ-π2,故点B 的坐标为⎝ ⎛⎭⎪⎫4.8cos ⎝ ⎛⎭⎪⎫θ-π2,4.8sin ⎝ ⎛⎭⎪⎫θ-π2, ∴ h =5.6+4.8sin ⎝⎛⎭⎪⎫θ-π2. (2) 点A 在圆上转动的角速度是π30rad/s ,故t s 转过的弧度数为π30t ,∴ h =5.6+4.8sin ⎝ ⎛⎭⎪⎫π30t -π2,t ∈[0,+∞).到达最高点时,h =10.4 m.由sin ⎝ ⎛⎭⎪⎫π30t -π2=1,得π30t -π2=π2,∴ t =30 s ,∴ 缆车到达最高点时,用的最少时间为30 s.1. 已知函数f(x)=2sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则φ的值为__________. 答案:-π12解析:f(x)=2sin(ωx +φ) 的最小正周期为π,则ω=2,所以f(x)=2sin(2x +φ),它的图象过点⎝ ⎛⎭⎪⎫-π12,-2,则sin ⎝⎛⎭⎪⎫φ-π6=-22⎝ ⎛⎭⎪⎫|φ|<π2,故φ=-π12. 2. 函数f(x)=2sin(ωx +φ)的部分图象如图所示.若A ,B 两点之间的距离AB =5,则ω的值为________.答案:π3解析:AB =5,|y A -y B |=4,则|x A -x B |=3=T 2,则T =6,则2πω=6,ω=π3.3. 将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π12个单位得到的图象关于点⎝ ⎛⎭⎪⎫π3,0对称,则φ=________.答案:π6解析:由题意得平移以后的函数为y =sin ⎝ ⎛⎭⎪⎫2x +π6+φ,因为图象关于点⎝ ⎛⎭⎪⎫π3,0对称,所以2×π3+π6+φ=k π(k∈Z ),解得φ=k π-5π6(k∈Z ).因为0<φ<π,所以φ=π6.4. 函数f(x)=cos(πx +φ)⎝⎛⎭⎪⎫0<φ<π2的部分图象如图所示. (1) 求φ及图中x 0的值;(2) 求f(x)在区间⎣⎢⎡⎦⎥⎤-12,13上的最大值和最小值.解:(1) 由图可知,f(0)=f(x 0)=32, 即cos φ=32,cos(πx 0+φ)=32. 又φ∈⎝⎛⎭⎪⎫0,π2,x 0>0,所以φ=π6,x 0=53.(2) 由(1)可知f(x)=cos ⎝⎛⎭⎪⎫πx +π6. 因为x∈⎣⎢⎡⎦⎥⎤-12,13,所以-π3≤πx +π6≤π2. 所以当πx +π6=0,即x =-16时,f(x)取得最大值1;当πx +π6=π2,即x =13时,f(x)取得最小值0.1. (2017·南师附中、淮阴中学、海门中学、天一中学四校联考)将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数y =f(x)的图象,若函数f(x)的图象过原点,则φ=________.答案:3π4解析:将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位后,得到函数f(x)=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π8+φ=sin ⎝ ⎛⎭⎪⎫2x +π4+φ的图象,若函数f(x)的图象过原点,则f(0)=sin ⎝ ⎛⎭⎪⎫π4+φ=0,π4+φ=k π,k ∈Z ,φ=k π-π4,k ∈Z .又0<φ<π,则φ=3π4. 2. 若函数y =sin(ωx -φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是______.答案:2,π3解析:由题图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2.又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k∈Z ),即φ=π3-k π(k∈Z ).而|φ|<π2,所以φ=π3.3. (2017·第三次全国大联考江苏卷)将函数f(x)=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P ⎝⎛⎭⎪⎫0,32,则φ的值为________.答案:5π6解析:由题意,可得sin θ=32.因为-π2<θ<π2,所以θ=π3.因为g(x)=sin ⎝ ⎛⎭⎪⎫2x -2φ+π3,所以sin ⎝⎛⎭⎪⎫-2φ+π3=32.又因为0<φ<π,所以-2φ+π3∈⎝ ⎛⎭⎪⎫-5π3,π3,-2φ+π3=-4π3,φ=5π6. 4. 已知函数f(x)=3sin 2x +2cos 2x +m 在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为3,则(1) m =________;(2) 当f(x)在[a ,b]上至少含20个零点时,b -a 的最小值为________.答案:(1) 0 (2) 28π3解析:(1) f(x)= 3 sin 2x +2cos 2x +m =3sin 2x +1+cos 2x +m =2sin ⎝ ⎛⎭⎪⎫2x +π6+m +1.因为0≤x≤π2,所以π6≤2x +π6≤7π6.所以-12≤sin ⎝⎛⎭⎪⎫2x +π6≤1, f(x)max =2+m +1=3+m =3,∴ m =0.(2) 由(1)得f(x)=2sin ⎝⎛⎭⎪⎫2x +π6+1,周期T =2π2=π,在长为π的闭区间内有2个或3个零点.由2sin ⎝ ⎛⎭⎪⎫2x +π6+1=0,得sin ⎝⎛⎭⎪⎫2x +π6=-12, 2x +π6=2k π+7π6,k ∈Z 或2x +π6=2k π+11π6,k ∈Z ,所以x =k π+π2或x =k π+5π6,k ∈Z .不妨设a =π2,则当b =9π+π2时,f(x)在区间[a ,b]上恰有19个零点,当b =9π+5π6时恰有20个零点,此时b -a 的最小值为9π+π3=28π3.1. 求三角函数的定义域实际上是解简单的三角函数不等式,常借助三角函数线或三角函数图象来求解.2. 求解三角函数的值域(最值)常见到以下几种类型: ① 形如y =asin x +bcos x +c 的三角函数化为y =Asin(ωx +φ)+k 的形式,再求值域(最值);② 形如y =asin 2x +bsin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③ 形如y =asin xcos x +b(sin x ±cos x)+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).3. 对于形如y =Asin(ωx +φ)+k 函数的性质(定义域、值域、单调性、对称性、最值等),可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质.4. 求函数y =Asin(ωx +φ)(A >0,ω>0)的解析式,常用的解题方法是待定系数法,由最高(低)点的纵坐标确定A ,由周期确定ω,由适合解析式的点的坐标来确定φ,但由条件求得y =Asin(ωx +φ)(A >0,ω>0)的解析式一般不惟一,只有限定φ的取值范围,才能得出惟一解.5. 由y =sin x 的图象变换到y =Asin(ωx +φ)的图象,两种变换的区别:先相位变换再周期变换(伸缩变换),平移的量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移的量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值.[备课札记]第4课时 两角和与差的正弦、余弦和 正切公式(对应学生用书(文)、(理)56~58页)1. 设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则cos ⎝ ⎛⎭⎪⎫α+π4=________.答案:210解析:∵ α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=35,∴ cos α=45.∴ cos ⎝⎛⎭⎪⎫α+π4=cos αcos π4-sin αsin π4=45×22-35×22=210. 2. (必修4P 106练习4改编)sin 20°cos 10 °-cos 160°sin 10°=__________.答案:12解析:sin 20°·cos 10°-cos 160°·sin 10°=sin 20°·cos 10°+cos 20°·sin10°=sin 30°=12.3. (必修4P 109练习8改编)函数y =2sin x +6cos x 的值域是__________. 答案:[-22,22]解析:y =2sin x +6cos x =22sin ⎝ ⎛⎭⎪⎫x +π3∈[-22,22].4. (必修4P 118习题9改编)若α+β=π4,则(tan α+1)·(tan β+1)的值是________.答案:2解析:(tan α+1)(tan β+1)=tan αtan β+tan α+tan β+1=tan αtan β+tan(α+β)(1-tan αtan β)+1=tan αtan β+tan π4·(1-tan αtan β)+1=2.5. (必修4P 110例6改编)已知sin(α+β)=12,sin(α-β)=110,则tan αtan β的值为________.答案:32解析:(解法1)⎩⎪⎨⎪⎧sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=110⇒⎩⎪⎨⎪⎧sin αcos β=310,cos αsin β=15,从而tan αtan β=sin αcos βcos αsin β=310×5=32.(解法2)设x =tan αtan β,∵ sin (α+β)sin (α-β)=5,∴ sin (α+β)cos αcos βsin (α-β)cos αcos β=tan α+tan βtan α-tan β=tan αtan β+1tan αtan β-1=x +1x -1=5. ∴ x =32,即tan αtan β =32.1. 两角差的余弦公式推导过程设单位圆上两点P 1(cos α,sin α),P 2(cos β,sin β),则∠P 1OP 2=α-β(α>β).向量a =OP 1→=(cos α,sin α),b =OP 2→=(cos β,sin β), 则a·b =|a||b|cos(α-β)=cos(α-β),由向量数量积的坐标表示,可知a·b =cos αcos β+sin αsin β,因而cos(α-β)=cos αcos β+sin αsin β. 2. 公式之间的关系及导出过程3. 公式 cos(α-β)=cos_αcos_β+sin_αsin_β; cos(α+β)=cos_αcos_β-sin_αsin_β; sin(α-β)=sin_αcos_β-cos_αsin_β; sin(α+β)=sin_αcos_β+cos_αsin_β;tan(α-β)=tan α-tan β1+tan αtan β;tan(α+β)=tan α+tan β1-tan αtan β.4. asin α+bcos α=a 2+b 2sin(α+φ),其中cos φ=a a 2+b2,sin φ=b a 2+b2,tan φ=ba .φ的终边所在象限由a ,b 的符号来决定.5. 常用公式变形tan α+tan β=tan(α+β)(1-tan_αtan_β); tan α-tan β=tan(α-β)(1+tan_αtan_β);sin α+cos α=2sin ⎝⎛⎭⎪⎫α+π4; sin α-cos α=2sin ⎝⎛⎪⎫α-π4.[备课札记]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温馨提示:
此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层作业二十三
简单的三角恒等变换
一、选择题(每小题5分,共35分)
1.化简:= ( )
A.sin2α
B.tan2α
C.sin2
D.tan2
【解析】选D.原式==tan2.
2.(2018·沈阳模拟)化简= ( )
A.1
B.
C.
D.2
【解析】选C.原式=
===.
【一题多解】本题还可以采用如下解法:
选C.原式=
===.
3.(2016·浙江高考)设函数f(x)=sin2x+bsinx+c,则f(x)的最小正周期
( )
A.与b有关,且与c有关
B.与b有关,但与c无关
C.与b无关,且与c无关
D.与b无关,但与c有关
【解题指南】先利用倍角公式进行化简,再求最小正周期.
【解析】选B.f(x)=sin2x+bsinx+c=+bsinx+c=-+bsinx+c+,
其中当b=0时,f(x)=-+c+,此时周期为π;当b≠0时,周期为2π,而c 不影响周期.
4.已知锐角α,β满足sinα-cosα=,tanα+tanβ+·tanαtanβ=,则α,β的大小关系是( )
A.α<<β
B.β<<α
C.<α<β
D.<β<α
【解析】选B.因为α是锐角且sin α-cos α=>0,
所以sin α>cos α,即tan α>1,故α>,
又因为tan α+tan β=(1-tan αtan β),
所以tan(α+β)==,
故α+β=,
所以α=-β>,故β<,所以β<<α.
5.计算:= ()
A. B.- C. D.-
【解析】选D.原式=-·=·tan=-.
6.(2018·大连模拟)已知f(x)=sin2x+sinxcosx,则f(x)的最小正周期和一个单调递增区间分别为 ( )
A.π,[0,π]
B.2π,
C.π,
D.2π,
【解析】选C.因为f(x)=sin2x+sin x·cos x=+sin 2x
=sin+.
所以函数的最小正周期为T==π,
由-+2kπ≤2x-≤+2kπ,k∈Z得
-+kπ≤x≤+kπ(k∈Z).
取k=0得-≤x≤,
故是f(x)的一个单调递增区间.
7.(2018·烟台模拟)已知函数f(x)=sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)
为偶函数,且函数y=f(x)的图象的两相邻对称轴的距离为,则f=
A.B.C.D.
【解析】选A.因为f(x)=2sin为偶函数,
所以φ-=kπ+,k∈Z,
又0<φ<π,所以φ=.
又因为f(x)图象的两相邻对称轴间的距离为,
所以T=π,故ω=2.
所以f(x)=2sin=2sin
=2cos 2x.
故f=2cos =.
二、填空题(每小题5分,共15分)
8.(2017·全国卷Ⅱ)函数f(x)=2cosx+sinx的最大值为__________.
【解析】根据辅助角公式,可以得到f(x)=2cos x+sin x=sin(x+φ),由于sin(x+φ)的最大值为1,故f(x)的最大值为.
答案:
9.已知f(x)=2tanx-,则f=________.
【解析】因为
f(x)=2tanx-=2tanx+2·=+==,所以
f===8.
答案:8
10.计算:cos20°cos40°cos60°cos80°=________.
【解析】原式=cos 20°cos 40°cos 80°
=·
=.
答案:
【变式备选】计算:cos·cos·cos=________.
【解析】原式=-cos coscos
==-.
答案:-
1.(5分)已知f(x)=,当α∈时,式子f(sin2α)-f(-sin2α)可化简为 ( )
A.2sinα
B.-2cosα
C.-2sinα
D.2cosα
【解析】选 D.f(sin 2α)-f(-sin 2α)=-=
-=|sin α-cos α|-|sin α+cos α|.
由于α∈时,sin α<cos α<0,所以原式=cos α-sin α+sin α+ cos α =2cos α.
【误区警示】解答本题容易忽视根据α∈,判断sinα-cosα和
sinα+cosα的符号,导致解题错误.
2.(5分)函数f(x)=sin(2x+θ)+cos(2x+θ)的图象关于点对称,则f(x)的单调递增区间为( )
A.,k∈Z
B.,k∈Z
C.,k∈Z
D.,k∈Z
【解析】选C.因为f(x)=2sin的图象关于点对称,所以
2×+θ+=kπ(k∈Z),故θ=kπ-(k∈Z),又因为|θ|<,
所以θ=,即f(x)=2sin,由-+2kπ≤2x+≤+2kπ(k∈Z),得-+kπ
≤x≤-+kπ,故函数f(x)的增区间为(k∈Z).
3.(5分)已知13sinα+5cosβ=9,13cosα+5sinβ=15,那么sin(α+β)的值为________.
【解析】将两等式的两边分别平方再相加得
169+130sin(α+β)+25=306,所以sin(α+β)=.
答案:
4.(12分)已知函数f(x)=sin2x+a·cos2x(a∈R).
(1)若f=2,求a的值.
(2)若f(x)在上单调递减,求f(x)的最大值.
【解析】(1)因为f=sin +a·
cos =2,
所以+a·=2.
故得:a=1.
(2)由题意:f(x)=sin(2x+θ),其中tan θ=,
所以函数的周期T=π,且-=,
所以当x=时,函数f(x)取得最大值,
即f(x)max=f=sin=,
所以sin=1,所以θ=+2kπ,k∈Z.
所以tan θ==,所以a=3.
故得f(x)=2sin.因此f(x)的最大值为2.
5.(13分)(2018·青岛模拟)如图,在等腰直角△OPQ中,∠POQ=90°,OP=2,点M在线段PQ上.若点N在线段MQ上,且∠MON=30°,问:当∠POM取何值时,△OMN的面积最小?并求出面积的最小值.
【解析】设∠POM=α,0°≤α≤60°,
在△OMP中,由正弦定理,得=,
所以OM=,
同理ON=.
故S△OMN=·OM·ON·sin∠MON
=×
=
=
=
=
=
=.
因为0°≤α≤60°,所以30°≤2α+30°≤150°,
所以当α=30°时,sin(2α+30°)取得最大值为1,此时△OMN的面积取到最小值,即∠POM=30°时,△OMN的面积的最小值为8-4.
关闭Word文档返回原板块。