华工经济数学平时作业答案

合集下载

2018华工经济数学平时作业问题详解

2018华工经济数学平时作业问题详解

《经济数学》作业题第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?(C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin limx kxx →=?( B )A .0B .kC .1kD .∞4.计算2lim(1)x x x →∞+=?( C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

(A )A .1,12a b ==- B .3,12a b ==C .1,22a b ==D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =x 为产量(假定等于需求量),P 为价格,则边际成本为?(B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰(D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰?(D )A .2πB .4πC .8πD .16π10.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?(B ) A .-8 B .-7 C .-6 D .-512.行列式y x x y x x y y x yyx+++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫ ⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

华南理工大学2018平时作业_ 《经济数学》答案

华南理工大学2018平时作业_ 《经济数学》答案

《经济数学》作业题第一部分 单项选择题1.某产品每日的产量是 x 件,产品的总售价是12 x 270x 1100 元,每一件的成本为 (3013 x ) 元,则每天的利润为多少?(A )A .16 x 2 40x 1100 元 B . 16 x 230x 1100 元 C . 56 x 240x 1100 元 D . 56 x 230x 1100 元2.已知 f (x ) 的定义域是[0,1] ,求 f (x a ) + f (x a ) , 0 a 1的定义域是? 2(C )A .[a ,1 a ]B .[a ,1 a ]C .[a ,1 a ]D .[a ,1 a ]3.计算 limsinkx?(B )x 0xA . 0B . kC .1kD .14.计算 lim(12)x?(C )xxA . eB .1eC . e 2D .1e 22b , x 2ax5.求 a , b 的取值,使得函数 f (x )1, x 2 在 x 2 处连续。

(A )3, x 21bxA . a,b 12B . a3,b 12C . a1,b 22D . a3,b 2236.试求 yx 2 + x 在 x 1 的导数值为(B )A .32 B . 52C . 12D . 127.设某产品的总成本函数为: C (x ) 400 3x12 x 2,需求函数 P100x ,其中x 为产量(假定等于需求量), P 为价格,则边际成本为?(B )A . 3B.3x C.3x2D. 3 12x28.试计算(x 22x 4)e x dx?(D )A. (x2 4x 8)e xB. (x2 4x 8)e x cC .(x24x8)e xD. (x 2 4x 8)e x c9.计算01x21x2dx ?(D)A.2B.4C.8D.1610.计算x11x 12?(A )x1x 222A.x1x2B.x1x2C.x2x1D. 2x2x1121411.计算行列式D0121=?(B )10130131A.-8B.-7C.-6D.-5312.行列式y xx y =?(B )x x y yxy y xA . 2(x 3 y 3) B . 2(x 3 y 3 ) C . 2(x 3 y 3 ) D . 2(x 3 y3 )x 1 x 2x 3 0x 2x 3 0 有非零解,则 =?(C )13.齐次线性方程组 x 1x x x12 3A.-1B .0C .1D .20 019 76 , B 36,求 AB =?(D )14.设A9 0530 57 6104110A .60 84101114B.628010 4111C.608410 4111D.628 441 2 32 2 1 ,求 A 1 =?(D )15.设 A3 431 323 5A .322 1 111 3235B .3221 1113235C .3221111 3235D .3221 1116.向指定的目标连续射击四枪,用 A i 表示“第 i 次射中目标”,试用 A i 表示前两枪都射中目标,后两枪都没有射中目标。

经济数学2020年秋华南理工网络教育平时作业答案(供参考)

经济数学2020年秋华南理工网络教育平时作业答案(供参考)

2017年秋《经济数学》平时作业第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?( A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?(C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin limx kxx→=?( B )A .0B .kC .1kD .∞4.计算2lim(1)x x x→∞+=?( C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

( A )A .1,12a b ==- B .3,12a b == C .1,22a b == D .3,22a b ==6.试求32y x =+x 在1x =的导数值为( B ) A .32 B .52 C .12 D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为?( B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++ 9.计算10x =⎰( D )A .2π B .4π C .8πD .16π10.计算11221212x x x x ++=++( A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?( B )A .-8B .-7C .-6D .-512.行列式yx x y x x y y x yyx+++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?( D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪⎪-⎝⎭ B .132********-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭ 16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

2020《经济数学》华南理工大学平时作业

2020《经济数学》华南理工大学平时作业
10.设矩阵 ,求 .
解:依题意可解得
所以|AB| = -5
11.设 , ,求矩阵 的多项式 .
解:将矩阵A代入可得答案f(A)= - + =
12. 设 ,求逆矩阵 .
解:依题意可解得
13.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.
解:由题目可得甲、乙摸到不同颜色球的概率P= 。
解:依题意可得
5.求不定积分
解:依题意可得
=
6.设 ,求b.
解:依题意可得

进一步可化为
7.求不定积分 .
解: =
8.设函数 在 连续,试确定 的值.
解:x趋于4的f(x)极限是8,所以a=8.
9.求抛物线 与直线 所围成的平面图形的面积.
解:首先将两个曲线联立得到y的两个取值y1=-2,y2=4
X1=2,x2=8 =-12+30=18
《经济数学》
作业题
一、
1.某厂生产某产品,每批生产 台得费用为 ,得到的收入为 ,求利润.
解:依题意可知,利润=收入-费用,设利润为Q(x),则有
2.求 .
知,原式可化为:
因为 x趋于-1时,x+1趋等于0,所以x2+(a-2)x+1趋等于0,解得a=4。
4.设 ,其中 为可导函数,求 .
二、
14.某煤矿每班产煤量 (千吨)与每班的作业人数 的函数关系是 ( ),求生产条件不变的情况下,每班多少人时产煤量最高?
解: ,令 ,于是
得 ,

由于 ,所以,每班24人产煤量最高。
即 .
15.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量 ,且分布列分别为:

《经济数学》作业题(答案)最新最全面(完整版)

《经济数学》作业题(答案)最新最全面(完整版)

《经济数学》作业题第一部分单项选择题1 x2 21.某产品每日的产量是 x 件,产品的总售价是 70x 1100 元,每一件的成本为 (30 1x) 元,则每天的利润为多少?( 3 A )A . 1 x 26 1 2B . x 6 5 2C . x 6D . 5 x 261100 元40x 1100 元30x 40 x 1100 元1100 元30x 1 22.已知 f ( x) 的定义域是 ( C )[0,1] ,求 ( x a) + a) ,0 a 的定义域是?f f ( x A . [ a,1 a] B . [ a,1 a] C .[ a,1 a] D . [ a,1 a]sin kx x3.计算 lim ( B )x 0A .0 B .k C . 1kD .2 x) x 4.计算 lim(1 x( C )A . eB . 1e C . e 21D .2e2axb, x 3, x 2在x 2 处连续。

( A ) 5.求 a, b 的取值,使得函数 f ( x)1,bx 2 x 21, b 2 A . a 1 3, b 2 B . a 1 1, b 2 3C . a2 D .a ,b 2 23 x 2+ x 在 x 6.试求 1 的导数值为(B )y 3 2 5 2 1 2 A . B .C . 1 2D .12x ,需求函数 100 ,其中 xx7.设某产品的总成本函数为: C(x) 400 3 xP 2 为产量(假定等于需求量) ,P 为价格,则边际成本为?( A .3 B ) B .3 x 2x C . 3 12D . 3x2x4) e dx ? (D)8.试计算( x 2 xA.( x28)e x4 xB.( x28)e x4x c2xC.( x 4x 8)eD.( x2x8)e4x c122( D )9.计算x 1 x dxA.2B.4C.8D.16x1 x211x1x222( A )10.计算A.x1x2B.x1x2C.x2x1D.2x2x1121112134113111.计算行列式D=?( B )A.-8B.-7C.-6D.-5y x x x y12.行列式=?( B )x y yxx y yA.2( x3y3)33B.2(x y )C.2( x33y )32(x 3y )D.x1 x1 x1x2x2x2x3x3x30 有非零解,则=?(C)13.齐次线性方程组A.-1B.0C.1D.2001 09976535763614.设A ,B ,求AB =?(D)104 60 110 84A.104 62 111 80B.104 60 111 84C.104 62 111 84D.1 2 32 2 431 3A 1=?( 15.设 ,求 D ) A1 32 5 2 13 2 1 A .3 1 1 3 2 5 2 1 32 1 B .31 13 2 5 2 1 3 2 1 C .3 1 13 2 5 2 13 2 1D .3 116.向指定的目标连续射击四枪,用 A i 表示“第 i 次射中目标”,试用 A i 表示前 两枪都射中目标,后两枪都没有射中目标。

华南理工大学-2018平时作业:《经济数学》答案

华南理工大学-2018平时作业:《经济数学》答案

华南理工大学-2018平时作业:《经济数学》答案《经济数学》作业题第一部分单项选择题1.某产品每日的产量是x件,产品的总售价是12x2+ 70x+1100 元,每一件的成本为(30 +13x) 元,则每天的利润为多少?(A )A.16x2+ 40x+1100 元B.16x2+ 30x+1100 元C.56x2+ 40x+1100 元D.56x2+ 30x+1100 元2.已知f(x)的定义域是[0,1],求f(x+a) + f (x - a),0< a <1的定义域是?2(C )A.[-a,1-a]B.[a,1+a]C.[a,1-a]D.[-a,1+a]3.计算lim sin kx=?(B )x→0x A.0 B.kC.1 kD.∞14.计算 lim(1+ 2)x= ?(C )x →∞xA . eB .1eC . e 2D .1e 2⎧2+ b , x < 2⎪ax 5.求 a , b 的取值,使得函数 f (x ) = ⎨ 1, x = 2 在 x = 2 处连续。

(A )⎪ + 3, x > 21⎩bx A . a = ,b = -12B . a = 3,b = 12C . a = 1,b = 22D . a = 3,b = 2236.试求 y = x 2 + x 在 x = 1 的导数值为(B )A .32 B . 52C . 12D . - 127.设某产品的总成本函数为: C (x ) = 400 + 3x +12 x 2 ,需求函数 P = 100x ,其中x 为产量(假定等于需求量), P 为价格,则边际成本为?(B )A . 3B . 3 + xC . 3 + x 2D . 3 +12 x28.试计算⎰(x2-2x+4)e x dx=?(D )A.(x2- 4x- 8)e xB.(x2- 4x- 8)e x+cC.(x2-4x+8)e xD.(x2- 4x+ 8)e x+c9.计算⎰01x21-x2d x =?(D)A.2B.4C.8D.1610.计算x1+1x1+2=?(A )x+1x +222A.x1-x2B.x1+x2C.x2-x1D.2x2-x1121411.计算行列式D=0-121=?(B )10130131A.-8B.-7C.-6D.-5312.行列式 yx x + y =?(B )x x + y yx + yy xA . 2(x 3 + y 3 )B . -2(x 3 + y 3 )C . 2(x 3 - y 3 )D . -2(x 3 - y 3 )⎧ x 1 + x 2 + x 3 =⎪ +x 2 + x 3 = 0 有非零解,则 =?(C ) 13.齐次线性方程组 ⎨x 1⎪x + x + x = 0⎩1 2 3A .-1B .0C .1D .2⎛ 0 0⎫⎛1 9 7 6⎫ , B = 3 6 ⎪,求 AB =?(D ) 14.设 A = ⎪ ⎪9 0 ⎪5 3 ⎪⎝ 05⎭ ⎪7 6 ⎪⎝ ⎭ ⎛104 110 ⎫A . 60 84 ⎪⎝ ⎭ ⎛104111⎫B . 62 80 ⎪⎝ ⎭ ⎛104 111⎫C . 60 84 ⎪⎝ ⎭ ⎛104 111⎫D . 62 84 ⎪⎝ ⎭4⎛ 123⎫2 2 1 ⎪ ,求 A -1=?(D ) 15.设 A = ⎪ 3 4⎪⎝ 3⎭⎛ 1 3 2 ⎫ 3 5 ⎪A . - -3 ⎪ 2 2 ⎪ 1 1 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪ B . - 3 ⎪22 ⎪ 11 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪ C . -3 ⎪22 ⎪11 ⎪⎝ -1⎭ ⎛ 1 3 -2 ⎫ 3 5 ⎪D .- -3 ⎪ 2 2⎪ 1 1 ⎪⎝ -1⎭16.向指定的目标连续射击四枪,用 A i 表示“第 i 次射中目标”,试用 A i 表示前两枪都射中目标,后两枪都没有射中目标。

华南理工大学经济数学作业答案

华南理工大学经济数学作业答案

华南理工大学经济数学作业答案Modified by JACK on the afternoon of December 26, 2020《经济数学》作业题及其解答第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少( A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是(C )A.[,1]a a--B.[,1]a a+ C.[,1]a a-D.[,1]a a-+3.计算0sinlim xkx x→=( B )A.0B.kC.1 kD.∞4.计算2lim(1)xx x→∞+=( C )A.eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

(A )A .1,12a b ==-B .3,12a b ==C .1,22a b ==D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为(B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰ DA .2π B .4π C .8π D .16π 10.计算11221212x x x x ++=++(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==( B )A.-8 B.-7 C.-6 D.-512.行列式y x x yx x y yx y y x+++=(B )A.332()x y+B.332()x y-+C.332()x y-D.332()x y--13.齐次线性方程组123123123x x xx x xx x xλλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=(C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=67356300B ,求AB =( D )A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭15.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =( D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭ B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭ D .132********-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

《经济数学》作业答案

《经济数学》作业答案

《经济数学》 作业题及其解答一、计算题1、某厂生产某产品,每批生产x 台得费用为()5200C x x =+,得到的收入为2()100.01R x x x =-,求利润.解:当边际收益=边际成本时,企业的利润最大化边际成本=C=(x+1)-C(x)=5 即R (x)=10-0.01x2=5时,利润最大,此时,x=500平方根=22个单位利润是5x-0.01x ²-200.2、求201lim x x →.解:0x →=0lim →x 1231223++x x x (=0lim →x 12313++x =233、设213lim 21xx ax x →-++=+,求常数a . 解:有题目中的信息可知,分子一定可以分出(x-1)这个因式,不然的话分母在x 趋于-1的时候是0,那么这个极限值就是正无穷的,但是这个题目的极限确实个一个正整数2,所以分子一定是含了一样的因式,分母分子抵消了, 那么也就是说分子可以分解为(x+1)(x+3)因为最后的结果是(-1-p )=2所以p=-3,那么也就是说(x+1)(x+3)=x^2+ax+3 所以a=44、设()(ln )f x y f x e =⋅,其中()f x 为可导函数,求y '. 解:y '=)('.).(ln ).(ln '1)()(x f e x f e x f xx f x f +5、求不定积分21dx x⎰.解:21dx x ⎰=(-1/x)+c6、设1ln 1bxdx =⎰,求b.解:eb b b b b b b b x xd x x b===-=----⎰1ln 0ln )1(0ln )(ln ln 17、求不定积分⎰+dx ex11. 解:c e dx exx++-=+-⎰)1ln(118.设2()21f x x x =-+,1101A ⎛⎫= ⎪⎝⎭,求矩阵A 的多项式()f A .解:将矩 阵A 代入可得答案f(A)= 751512-- -21533-⎛⎫ ⎪-⎝⎭+10301⎛⎫ ⎪⎝⎭=0000⎛⎫⎪⎝⎭9、求抛物线22y x =与直线4y x =-所围成的平面图形的面积. 解:首先将两个曲线联立得到y 的两个取值yl=-2,y2=4X1=2,x2=8183012)42y 422=+-=++⎰-dy y ( 10、设矩阵263113111,112011011A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .解:AB = 81121236101--|AB| = -511.设1213A ⎛⎫= ⎪⎝⎭,1012B ⎛⎫= ⎪⎝⎭,求AB 与BA .解:(I-A)B= 54255390----12.设101111211A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,求逆矩阵1-A .解:(|)P A B =1/3, (|)P B A =1/2 (|)P A B =()()31()11P A P AB P B -=-13、甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率. 解:1.要是甲先抽到红球,则乙的概率是P=6÷(6+3)=2/32.要是甲先抽到白球,则是P=7÷(2+7)=7/9二、 应用题14、某煤矿每班产煤量y (千吨)与每班的作业人数x 的函数关系是)123(252x x y -=(360≤≤x ),求生产条件不变的情况下,每班多少人时产煤量最高?解:某厂每月生产x 吨产品的总成本为4011731)(23++-=x x x x C (万元),每月销售这些产品时的总收入为3100)(x x x R -=(万元),求利润最大时的产量及最大利润值.解:利润函数为L()=R()-C()=-1/315、甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且解:E(X1)=0*0.4+1*0.3+2*0.2+3*0.1=1 E(X2)=0*0.3+1*0.5+2*0.2+3*0=0.9因为E(X1)>E(X2)所以甲工人的技术较好。

华南理工大学2018平时作业:《经济数学》答案

华南理工大学2018平时作业:《经济数学》答案

《经济数学》作业题第一部分单项选择题1.某产品每日的产量是x件,产品的总售价是12x2 70x1100 元,每一件的成本为 (30 13x) 元,则每天的利润为多少(A )A.16x2 40x1100 元B.16x2 30x1100 元C.56x2 40x1100 元D.56x2 30x1100 元2.已知f(x)的定义域是[0,1],求f(x a) + f (x a),0 a 1的定义域是2(C )A.[a,1a]B.[a,1a]C.[a,1a]D.[a,1a]3.计算 lim sin kx(B )x0x A.0 B.kC.1 kD.14.计算 lim(1 2)x (C ) x xA . eB . 1eC . e 2D . 1e 22b , x 2ax 5.求 a , b 的取值,使得函数 f (x ) 1, x 2 在 x 2 处连续。

(A )3, x 21bxA . a ,b 12B . a 3,b 1 2C . a1,b 2 2D . a 3,b 2 236.试求 y x 2 + x 在 x 1 的导数值为(B )A . 32B . 52C . 12D . 127.设某产品的总成本函数为: C (x ) 400 3x 12 x 2 ,需求函数 P100x ,其中x 为产量(假定等于需求量), P 为价格,则边际成本为(B )A . 3B . 3 xC . 3 x 2D. 3 12x28.试计算(x22x 4)e x dx (D )A. (x2 4x 8)e xB. (x2 4x 8)e x cC.(x24x 8)e xD. (x2 4x 8)e x c9.计算01 x21x2d x (D)A.2B.4C.8D.1610.计算x11x12(A )x1x 2A.x1x2B.x1x2C.x2x1D. 2x2x1121411.计算行列式D0121=(B )10130131A.-8B.-7C.-6D.-5312.行列式 yx x y =(B ) xx y yx yy x A . 2(x 3 y 3 )B . 2(x 3y 3)C . 2(x 3 y 3)D . 2(x 3 y 3)x 1 x 2 x 3 0x 2 x 3 0 有非零解,则 =(C )13.齐次线性方程组 x 1x xx0 1 2 3A.-1B .0C .1D .20 019 7 6, B 3 6,求 AB =(D ) 14.设 A9 0 5 37 6104110A .60 84104111B .62 80104 111C .60 84104111D.628441 2 32 2 1,求 A 1 =(D ) 15.设 A3 431 3 23 5 A . 3 221 111 3 235 B .3 2 2111 1 3 235C . 3 221 111 3 23 5 D .3 2 21 1116.向指定的目标连续射击四枪,用 A i 表示“第 i 次射中目标”,试用 A i 表示前两枪都射中目标,后两枪都没有射中目标。

2018华工经济数学平时作业问题详解

2018华工经济数学平时作业问题详解

实用文档《经济数学》作业题及其解答第一部分单项选择题12元,每一件的成.某产品每日的产量是件,产品的总售价是11100x??70xx21本为元,则每天的利润为多少?(A ))x?(30312元A.110040xx??612元B.110030xx??652元C.1100xx??40652元D.1100xx??30612.已知的定义域是,求+ ,(C)的定义域是??a0?))f(xa[0,1]x?f(xa)?f(2A.]aa,1?[?B.]a,1?[a C.]a,1?[a D.]?a[?a,1sinkx?(B .计算)3?lim x0?x A.0B.k1C.k D.?2x??( C )?.计算4lim(1)x??x实用文档A.e1B.e2 C.e1 D.2e2?2xax??b,????2x?(x)?1,?????f)(在处连续。

A 5.求的取值,使得函数b,a2x???2?bx?3,???x?1,b??1a?.A231a?,?b.B212??,ba C.232?,ba?.D23xy?x B6+.试求)在的导数值为(1x?23.A25.B21C.21 D.?211002?P,需求函数7.设某产品的总成本函数为:,其中xxx3??(x)400?C2x 为产量(假定等于需求量),为价格,则边际成本为?(B )P A.3B.x?32x?3 C.1x3?.D2x2???e?2(x?x4)dx 8().试计算D实用文档2x.A ex4?(x8)?2x B.c8)ex??4x?(2x C.ex?(x8)?42x D.ce??4x?(x8) 122??.计算9 D?dx1?xx0?A.2?B.4?C.8?D.16x?1x?211??(A 10).计算?x1x?222x?x.A21x?x.B21x?x C.122x?x D.1241210?121?D=11?(.计算行列式)B 31101310-8 .A-7 B.-6 C.-5 D.实用文档yxx?y xyyx?=?(B .行列式12)yy?xx33.A)xy?2(33.B)x?y?2(33C.)?y2(x33 D.)?y?2(x?x?x?x?0?321???0??x?xx=13.齐次线性方程组?(C )有非零解,则?321?x?x?x?0?123A.-1B.0C.1D.200????636719???????B,求=?(D )14.设,?AAB????355090??????67??104110??A.??6084??104111??B.??6280??104111?? C.??6084??104111??D.??6284??实用文档123?????1,求=15.设?(D )A122A?????343??123????53?? A.3????22??11?1??13?2????35??.B ?3?22???1?11??1?23????53??.C3??2?2??11?1??31?2????53??D.3???2?2??11?1??AA表示前,试用表示“第次射中目标”16.向指定的目标连续射击四枪,用i ii 两枪都射中目标,后两枪都没有射中目标。

最新华南理工大学《经济数学》作业答案

最新华南理工大学《经济数学》作业答案

《经济数学》作业题及其解答第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A ) A .214011006x x ++元 B .213011006x x ++元 C .254011006x x ++元 D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?( C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin lim x kx x→=?( B ) A .0B .kC .1kD .∞4.计算2lim(1)x x x→∞+=?( C ) A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

( A )A .1,12a b ==- B .3,12a b == C .1,22a b == D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为?( B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰( D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰? DA .2πB .4πC .8πD .16π10.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?(B )A .-8B .-7C .-6D .-512.行列式y xx y x x yy x y y x +++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=67356300B ,求AB =?( D ) A .1041106084⎛⎫ ⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =?( D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭ B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭ D .132********-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

2017华南理工大学《经济数学》作业题参考答案.doc

2017华南理工大学《经济数学》作业题参考答案.doc

网络教育《经济数学》作业题第一部分 单项选择题1.某产品每日的产量是 x 件,产品的总售价是1x 270x 1100 元,每一件的成2本为 (301 x) 元,则每天的利润为多少?( A )3A . 1x 2 40x 1100 元6B . 1 x 2 30 x 1100 元6C . 5 x 240x 1100 元6D . 5x 2 30x 1100 元62.已知 f ( x) 的定义域是 [0,1] ,求 f ( x a) + f ( x a) , 0 a1的定义域是?( C ) 2A . [ a,1 a]B . [ a,1 a]C . [ a,1 a]D . [ a,1 a]3.计算 limsin kx?( B )x 0xA . 0B . kC . 1kD .4.计算 lim(12)x ?( C )xxA . eB .1eC . e 2D .12e.求的取值,使得函数ax 2 b, x22 处连续。

(A )a, b f ( x) 1, x2 在 x5bx 3, x 2A . a1,b 12B . a3 ,b 12 C . a1,b 22D . a3, b 2236.试求 y x 2 + x 在 x 1 的导数值为( B )A .32B .52C .121D .27.设某产品的总成本函数为: C (x)400 3x1x 2,需求函数 P100,其中 x2x为产量(假定等于需求量) , P 为价格,则边际成本为?( B )A . 3B . 3 xC . 3 x 2D . 3 1x28.试计算( x22x 4) e x dx ? (D )A.( x2 4x 8)e xB.( x2 4x 8)e x cC.( x2 4x 8)e xD.( x2 4x 8)e x c.计算 1 2 2 ?( D)x 1 dx9 xA.2B.4C.8D.1610.计算x1 1 x1 2?(A )x2 1 x2 2A.x1 x2B.x1 x2C.x2 x1D.2x2 x11 2 1 40 1 2 111.计算行列式D=?( B)1 0 1 30 1 3 1A.-8B.-7C.-6D.-5y x x y12.行列式 xx y y =?(B ) x yyxA . 2( x 3 y 3 )B . 2( x 3y 3 )C . 2( x 3 y 3 )D . 2( x 3y 3 )x 1 x 2 x 3 013.齐次线性方程组 x 1x 2 x 3 0有非零解,则 =?(C )x 1 x 2 x 3A .-1B .0C .1D .20 014.设1 9 7 6 , 3 6 ?( )A9 0 5B3 ,求 AB=D0 57 6104 110 A .6084104 111 B .6280104 111 C .6084104 111 D .62841 2 315.设A 2 2 1 ,求A1=?(D)3 4 31 3 2A.335 2 2 1 1 1 1 3 2B.335 2 2 1 1 1 1 3 2C.33 52 21 1 11 3 2D.335 2 2 1 1 116.向指定的目标连续射击四枪,用A i表示“第i次射中目标”,试用 A i表示前两枪都射中目标,后两枪都没有射中目标。

2017年华工经济数学平时作业答案解析

2017年华工经济数学平时作业答案解析

《经济数学》作业题第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?(C ) A .[,1]a a -- B .[,1]a a + C .[,1]a a - D .[,1]a a -+3.计算0sin limx kxx →=?( B )A .0B .kC .1kD .∞4.计算2lim(1)x x x→∞+=?( C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

(A )A .1,12a b ==- B .3,12a b ==C .1,22a b ==D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =,其中x 为产量(假定等于需求量),P 为价格,则边际成本为?(B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰(D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰?(D )A .2πB .4πC .8πD .16π10.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?(B )A .-8B .-7C .-6D .-512.行列式y x x y x x y y x yyx+++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫ ⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

经济学原理·平时作业2020春华南理工大学网络教育答案

经济学原理·平时作业2020春华南理工大学网络教育答案

1. 观看纪录片《大自然在说话》,影片中有哪些话触动你?人与自然是什么关系?人类要进行生产活动,需要哪些经济资源?答:触动我的话:“大自然不需要人类而人类却需要大自然。

”“都将回到我的怀抱地球上所有的生物都将离开我”人与自然的关系:人依赖于自然,又能动地作用于自然,既是自然的一部分,又是自然演化发展的新因素、新力量。

在人与自然的关系中,人类一步步由被动变为主动,如今成为改造自然的主体。

但是,人们改造自然的行为越来越多的违背自然规律,对自然资源的消耗已经超过自然的承载能力。

人类在利用自然获取生存的同时,也在破坏自然的美好,为了满足自己的私欲,不断地伤害着大自然,就将导致人与自然关系的失衡,造成人与自然的不和谐。

大自然就像妈妈一样无私而慷慨地哺育我们。

我们习惯了索取,但是我们忘了大自然是有限的,总有一天她会无法承担给我们满足人类最基本需求的资源。

我们对大自然的无止境的贪婪已经激怒了她,她要给我们颜色瞧瞧。

那我们的下场只有是灭亡。

如果人类不及时改变发展模式,实现人与自然的和谐发展,长此下去,地球也有可能成为不再适合人类居住的星球。

需要的经济资源:物质资源人类社会经济活动用以依托的客观存在物。

物质资源是人类社会生存和发展的基础,其万千形态、特征和用途,源自何方与去向何处,用于生产或用于消费都不改变这一根本属性,因为“人们首先必须吃、喝、住、穿,然后才能从事政治、科学、艺术、宗教等等”,而“人并没有创造物质本身,甚至创造物质的这种或那种能力”,只能立足于最初由自然界所提供的物质资源。

能量资源“能源是一个包括所有燃料、流水、阳光和风的术语,人类用适当的转换手段便可让它为自己提供所需能量”,能量是以物质为载体,因而能量资源可被理解为用以驱动人类社会经济活动的载能物质。

信息资源“信息本身不是物质,不具有能量,但信息的传输却依靠物质、能量……信息蕴涵于信号之中,信息依靠信号而传输”,信息是以信号为载体,因而信息资源可被理解为用以指引人类社会经济活动的载信物质或载信能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《经济数学》作业题第一部分 单项选择题1.某产品每日的产量是x 件,产品的总售价是217011002x x ++元,每一件的成本为1(30)3x +元,则每天的利润为多少?(A )A .214011006x x ++元B .213011006x x ++元C .254011006x x ++元D .253011006x x ++元2.已知()f x 的定义域是[0,1],求()f x a ++ ()f x a -,102a <<的定义域是?(C )A .[,1]a a --B .[,1]a a +C .[,1]a a -D .[,1]a a -+3.计算0sin limx kxx →=?( B )A .0B .kC .1kD .∞4.计算2lim(1)x x x →∞+=?( C )A .eB .1eC .2eD .21e5.求,a b 的取值,使得函数2,2()1,23,2ax b x f x x bx x ⎧+ <⎪= =⎨⎪+ >⎩在2x =处连续。

(A )A .1,12a b ==- B .3,12a b ==C .1,22a b ==D .3,22a b ==6.试求32y x =+x 在1x =的导数值为(B )A .32B .52C .12D .12-7.设某产品的总成本函数为:21()40032C x x x =++,需求函数P =x 为产量(假定等于需求量),P 为价格,则边际成本为?(B )A .3B .3x +C .23x +D .132x +8.试计算2(24)?x x x e dx -+=⎰(D )A .2(48)x x x e --B .2(48)x x x e c --+C .2(48)x x x e -+D .2(48)x x x e c -++9.计算10x =⎰?(D )A .2πB .4πC .8πD .16π10.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -11.计算行列式1214012110130131D -==?(B ) A .-8 B .-7 C .-6 D .-512.行列式y x x y x x y y x yyx+++=?( B )A .332()x y +B .332()x y -+C .332()x y -D .332()x y --13.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .214.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫ ⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭15.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D ) A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭16.向指定的目标连续射击四枪,用i A 表示“第i 次射中目标”,试用i A 表示前两枪都射中目标,后两枪都没有射中目标。

(A )A .1234A A A AB .12341A A A A -C .1234A A A A +++D .12341A A A A -17.一批产品由8件正品和2件次品组成,从中任取3件,这三件产品中恰有一件次品的概率为(C )A .35B.815C.7 15D.2 518.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是(D)A.16 125B.17 125C.108 125D.109 12519.市场供应的热水瓶中,甲厂的产品占50%,乙厂的产品占30%,丙厂的产品占20%,甲厂产品的合格率为90%,乙厂产品的合格率为85%,丙厂产品的合格率为80%,从市场上任意买一个热水瓶,则买到合格品的概率为(D)A.0.725B.0.5C.0.825D.0.86520.设连续型随机变量X的密度函数为2,01()0,Ax xp xelse⎧≤≤=⎨⎩,则A的值为:(C)A.1B.2C.3D.1第二部分计算题1.某厂生产某产品,每批生产x台得费用为()5200C x x=+,得到的收入为2()100.01R x x x =-,求利润. 解:利润=收入-费用Q (x )=R(x)-C(x)=5x-0.01x^2-2002.求201lim x x →.解:原式=0limx→23=0x →0lim x →3/2=3/23. 设213lim 21xx ax x →-++=+,求常数a .有题目中的信息可知,分子一定可以分出(x-1)这个因式,不然的话分母在x 趋于-1的时候是0,那么这个极限值就是正无穷的,但是这个题目的极限确实个一个正整数2,所以分子一定是含了一样的因式,分母分子抵消了, 那么也就是说分子可以分解为(x+1)(x+3)因为最后的结果是(-1-p )=2所以p=-3,那么也就是说(x+1)(x+3)=x^2+ax+3 所以a=44. 若2cos y x =,求导数dydx .解:2cos y x = 2cos sin dy x x dx=-5. 设()(ln )f x y f x e =⋅,其中()f x 为可导函数,求y '.这个题目就是求复合函数的导数6. 求不定积分21dx x ⎰.=(-1/x)+c7. 求不定积分ln(1)x x dx +⎰.解:ln(1)x x dx +⎰=()dx x xx x x x dx x x x x ⎰⎰+-+-+=+-+121)1ln(2112)1ln(212222dx x x x x x dx x x xdx x x ⎰⎰⎰+-++-+=++-+=1112141)1ln(2112121)1ln(21222 C x x x x x dx x x x x x ++-+-+=+-+-+=⎰)1ln(212141)1ln(2111212141)1ln(2122228. 设1ln 1bxdx =⎰,求b.这个题目和上一个题目是一样的,分布积分啊9.求不定积分⎰+dx e x11.=ln(1)xc e --++10.设2()53f x x x =-+,矩阵2133A -⎛⎫= ⎪-⎝⎭,定义2()53f A A A E =-+,求()f A . 解:将矩 阵A 代入可得答案f(A)=751512-- -21533-⎛⎫ ⎪-⎝⎭+10301⎛⎫ ⎪⎝⎭=0000⎛⎫ ⎪⎝⎭11.设函数⎪⎩⎪⎨⎧=≠--=4, 4, 416)(2x a x x x x f 在),(+∞-∞连续,试确定a 的值.x 趋于4的f(x)极限是8 所以a=812.求抛物线22y x =与直线4y x =-所围成的平面图形的面积. 解:首先将两个曲线联立得到y 的两个取值y1=-2,y2=4X1=2,x2=8 242(4)2y dy y --++⎰=-12+30=1813.设矩阵263113111,112011011A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB .AB = 8112123611--|AB| = -514.设1201211402011431A ⎡⎤⎢⎥--⎢⎥=⎢⎥--⎢⎥⎣⎦,11210112B ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦,I 为单位矩阵,求()I A B -. (I-A)B= 5425539----15.设A ,B 为随机事件,()0.3P A =,()0.45P B =,()0.15P AB =,求:(|)P A B ;(|)P B A ;(|)P A B .解:(|)P A B =1/3, (|)P B A =1/2 (|)P A B =()()31()11P A P AB P B -=-16.甲、乙二人依次从装有7个白球,3个红球的袋中随机地摸1个球,求甲、乙摸到不同颜色球的概率.解:有题目可得(1-7/10*(6/9)-3/10*(2/9) )=42/9017.某厂每月生产x 吨产品的总成本为4011731)(23++-=x x x x C (万元),每月销售这些产品时的总收入为3100)(x x x R -=(万元),求利润最大时的产量及最大利润值.解:利润=收入-成本=100x-x^3-1/3x^3+7x^2-11x-40=-4/3x^3+7x^2+89x-40然后就是对x 求导,令导函数为零,求的x 值就是使得利润最大的产量。

8112123611-- 18.甲、乙两工人在一天的生产中,出现次品的数量分别为随机变量12,X X ,且解:仅从概率分布看,不好直接对哪位工人的生产技术更好一些作业评论,但由数学期望的概念,我们可以通过比较E (1X ),E (2X )的大小来对工人的生产技术作业评判,依题意可得 310()k k E X x p =∑k =00.410.32.023.=⨯+⨯+⨯+⨯= 320()k k k E X y p ==∑00.310.520.230=⨯+⨯+⨯+⨯= 由于12()()E X E X >,故由此判定工人乙的技术更好一些。

显然,一天中乙生产的次品数平均比甲少110。

相关文档
最新文档