分数巧算裂项拆分

合集下载

分数裂项法基本公式

分数裂项法基本公式

分数裂项法基本公式首先,我们先来看一个简单的例子:将分数1/2写为两个分数之和。

我们可以设想这个分数的分子是一个未知数x,然后用一个已知数k 来乘以这个未知数,得到kx。

我们希望kx能恰好等于分子1、因此,我们希望找到一个适当的k,使得kx=1显然,当k=2时,kx=2x。

此时,我们可以将分数1/2表示为1=2x。

进一步化简可以得到1=2x,即1/2=x。

根据这个例子,我们可以总结出分数裂项法的基本公式如下:设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx 恰好等于分子。

然后,我们可以根据这个公式来解决更复杂的分数拆分问题。

例如,我们要将分数3/4写为两个分数之和。

我们可以设想这个分数的分子为未知数x,然后用一个合适的已知数k乘以x,使得kx恰好等于分子3假设k=2,我们可以设立方程2x=3,进一步求解得到x=3/2因此,我们可以将分数3/4写为3/4=3/2根据这个思路,我们可以将分数3/4但写为两个分数之和的形式。

即3/4=3/2-3/4让我们再来看一个稍复杂一点的例子:将分数7/12写为三个分数之和。

我们可以设想这个分数的分子为未知数x,然后用一个合适的已知数k乘以x,使得kx恰好等于分子7假设k=3,我们可以设立方程3x=7,进一步求解得到x=7/3根据分数裂项法的基本公式,我们可以将分数7/12但写为三个分数之和的形式。

即7/12=7/3-7/4通过这个例子,我们可以发现分数裂项法可以将一个分数拆分为多个分数,从而方便我们进行计算和化简。

同时,分母也可以使用分数关系进行适当的拓展。

除了上述的简单例子,分数裂项法还可以应用于更复杂的分数拆分问题,例如拆分带有方根的分数、拆分带有分数指数的分数等。

这些问题的解决方法也遵循着分数裂项法的基本公式,即设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx恰好等于分子。

综上所述,分数裂项法是一种将一个分数表示为多个分数之和的方法,它的基本公式是设想分数的分子为未知数x,用一个合适的已知数k乘以x,使得kx恰好等于分子。

分数裂项法则

分数裂项法则

分数裂项法则分数裂项法则是数学中的一种常见方法,用于将一个分数拆分成多个分数的和。

它在代数运算和数学证明中经常被使用。

本文将介绍分数裂项法则的概念、应用和解题方法。

一、分数裂项法则的概念分数裂项法则是指将一个分数拆分成多个分数的和的方法。

通过将分子或分母进行合理的分解,可以将一个分数变换成多个分数的和,从而使问题更容易处理。

这种方法在分式的化简、方程的求解和数学证明中都有广泛的应用。

1. 分式的化简在化简分式时,我们常常需要将一个复杂的分式拆分成多个简单的分式。

通过分数裂项法则,我们可以将分子或分母进行合理的分解,得到多个简单的分式,从而简化计算过程。

2. 方程的求解在解方程时,有时需要对方程进行变形,使得方程的形式更加简单,从而便于求解。

分数裂项法则可以帮助我们将方程中的分式进行拆分,得到更容易处理的形式,进而解出方程。

3. 数学证明在数学证明中,分数裂项法则常常被用于将一个复杂的分数进行拆分,从而方便对其进行推导和证明。

通过分数裂项法则,我们可以将一个分数拆分成多个分数的和,进一步推导出所需的结论。

三、分数裂项法则的解题方法1. 分数裂项法则的基本原理是将分子或分母进行分解,使其变为多个分数的和。

2. 在拆分分子时,可以利用分子因式分解的方法,将分子分解成多个较简单的因式,然后将它们作为分数的分子。

3. 在拆分分母时,可以将分母分解成多个较简单的因式,然后将它们作为分数的分母。

4. 拆分后的分数可以进一步化简,消去公因式或进行合并,得到最简形式的分数。

四、例题解析以下是一个应用分数裂项法则解题的例子:将分数1/[(x+1)(x+2)]拆分成多个分数的和。

解:首先,我们可以将分母(x+1)(x+2)进行分解,得到x+1和x+2两个因式。

然后,将1拆分成两个分数的和,分别以x+1和x+2为分母,分子为适当的常数。

设拆分后的两个分数为A/(x+1)和B/(x+2)。

根据分数的相加原则,原分数1/[(x+1)(x+2)]可以表示为(A/(x+1))+(B/(x+2))的形式。

分数拆项与裂项

分数拆项与裂项

分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。

3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨 一、裂项综合 (一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

三、整数裂项(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+二、换元解数学题时,把某个式子看成一个整体,用另一个量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,将复杂的式子化繁为简. 三、循环小数化分数 1、循环小数化分数结论:0.9a =; 0.99ab =; 0.09910990ab =⨯=; 0.990abc =,…… 2、单位分数的拆分:例:110=112020+=()()11+=()()11+=()()11+=()()11+ 分析:分数单位的拆分,主要方法是: 从分母N 的约数中任意找出两个m 和n,有:11()()()()m n m n N N m n N m n N m n +==++++=11A B+ 本题10的约数有:1,10,2,5.。

小六数学第13讲:分数裂项与分拆(教师版)

小六数学第13讲:分数裂项与分拆(教师版)

第十三讲 分数裂项与分拆1. “裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

①对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- ②对于分母上为3个或4个自然数乘积形式的分数,我们有:1111[]()(2)2()()(2)n n k n k k n n k n k n k =-⨯+⨯+⨯+++ 1111[]()(2)(3)3()(2)()(2)(3)n n k n k n k k n n k n k n k n k n k =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ ③对于分子不是1的情况我们有:⎪⎭⎫ ⎝⎛+-=+k n n k n n k 11)(()11h h n n k k n n k ⎛⎫=- ⎪++⎝⎭()()()()()21122k n n k n k n n k n k n k =-+++++ ()()()()()()()()31123223k n n k n k n k n n k n k n k n k n k =-++++++++ ()()()()()11222hhn n k n k k n n k n k n k ⎡⎤=-⎢⎥+++++⎣⎦()()()()()()()()11233223h h n n k n k n k kn n k n k n k n k n k ⎡⎤=-⎢⎥++++++++⎣⎦ ()()()221111212122121n n n n n ⎛⎫=+- ⎪-+-+⎝⎭2. 裂差型裂项的三大关键特征:①分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

分数计算技巧之裂项法

分数计算技巧之裂项法

分数计算技巧之裂项法裂项法是一种常用的分数计算技巧,可以帮助我们快速而准确地计算复杂的分数。

当分数的分子或者分母都是多项式时,我们可以使用裂项法将分数分解为多个简单的分数,从而更容易计算。

裂项法的核心思想是分解多项式,通过对多项式进行因式分解,将分数分解为多个部分,每个部分都是简单的分数。

这样一来,我们就可以分别计算每个简单分数,最后再将它们合并在一起得到最终的结果。

下面以一个具体的例子来说明裂项法的具体步骤和运用。

假设我们需要计算以下分数的值:\[ \frac{3x^2 + 2x - 1}{x^3 + 4x^2 + 5x + 2} \]首先,我们需要对分子和分母进行因式分解,将它们分解为最简单的形式。

在这个例子中,我们可以将分子分解为(3x-1)(x+1),将分母分解为(x+1)(x+2)(x+1)。

现在,我们可以将原始的分数分解为三个简单的分数:\[ \frac{3x^2 + 2x - 1}{x^3 + 4x^2 + 5x + 2} = \frac{A}{x + 1} + \frac{B}{x + 1} + \frac{C}{x + 2} \]其中,A、B、C是待定系数,我们需要通过运算求得它们的值。

将等式两边通分,得到:\[3x^2+2x-1=A(x+2)(x+1)+B(x+1)(x+1)+C(x+1)(x+2)\]将上式两边进行展开,我们可以得到一个带有未知系数A、B和C的多项式。

然后,我们可以通过对多项式比较同类项的系数,来求得A、B 和C的值。

比较x的平方项的系数,我们可以得到:\[3=A+B+C\]比较x的一次项的系数,我们可以得到:\[2=A+2B+C\]比较常数项的系数\[-1=2A+B+2C\]现在,我们得到了一个三元一次方程组,我们可以通过求解这个方程组来得到A、B和C的值。

解方程组后,我们假设得到A的值为1,B的值为1,C的值为1、将这些值带回到原始的分数中,我们可以得到最终的结果:\[ \frac{3x^2 + 2x - 1}{x^3 + 4x^2 + 5x + 2} = \frac{1}{x + 1} + \frac{1}{x + 1} + \frac{1}{x + 2} \]通过裂项法,我们成功地将原始的分数分解为多个简单的分数,从而更容易计算。

分数巧算之裂项法

分数巧算之裂项法

例3、计算
33333 20 30 42 56 72
分析与解:这道题目和前面的例题非常相似,我们可结合前 面知识,将原式中的分数进行拆分,如:
3 3 1 ; 3 3 1 ; 3 3 1 ....... 20 20 30 30 42 42
将拆分后的数代入到原式中,题目就变成了前面已学的类型:
3 3 3 3 3 20 30 42 56 72 3 1 3 1 3 1 3 1 3 1
仔细观察这些分数的分母就会发现每个分母都可以 写成两个相邻数的乘积的形式: 6=2×3 , 12=3×4 , 20=4×5 ,…,2450=49×50。
原来可以 这样拆分啊
这样,上面算式中分数的分母也可以写成相邻两个自
然数乘积的形式。
1 1 1 ...... 1
6 12 20
2450
1 1 1 ....... 1
【举一反三】计算:
(1) 3 3 3 3 3 6 12 20 30 42
(2) 7 7 7 7 7 42 56 72 90 110
5 5 6
25 6
【举一反三】计算: (1) 8 8 8 8 8
23 24 24 25 25 26 26 27 27 28
(2) 2 2 2 2 2 3 4 45 56 67 78
例3、计算
1 1 1 ...... 1
6 12 20
2450
分析与解:上面这道题中的每个分数的分子都是1,但分母 并不是两个相邻自然数的乘积,该怎么办呢?按照常规做法, 我们应该先通分,再求和。
分数裂项巧求和
学习中这样一个有趣的现象: 如果分数的分子是自然数1,分母是相邻两个自然数
的乘积,那么这个分数可以写成两个分数差的形式。写 成的两个分数的分子是自然数1,分母分别是相邻的 两个自然数。(这种方法称为“裂项法” )

分数裂项法解分数计算

分数裂项法解分数计算

分数裂项法解分数计算
首先,我们来看一个例子:
计算分数1/5+2/7
传统的方法是先找到两个分数的公共分母,然后进行分子相加、分母相同的运算。

但是这种方法不直观,计算过程繁琐。

对于例子中的1/5+2/7,我们可以这样进行计算:
1/5=(1/6+1/30)
2/7=(1/7+1/14)
将两个分数进行分解,然后合并:
1/5+2/7=(1/6+1/30)+(1/7+1/14)
=1/6+1/30+1/7+1/14
现在,我们需要找到这四个分数的最小公倍数作为新的分母。

最小公倍数是60。

1/6=10/60
1/30=2/60
1/7=8/56
1/14=4/56
现在,我们可以将分数相加:
10/60+2/60+8/56+4/56=24/60+12/60+8/56+4/56
再进行分子相加,分母保持不变:
=(24+12+8+4)/60
=48/60
最后,我们可以将分数简化为最简形式:
48/60=4/5
所以,1/5+2/7=4/5
通过分数裂项法,我们将原本繁琐的计算简化为了几个简单的分数的
相加操作,极大地提高了计算效率。

除了分数求和之外,分数裂项法还可以应用于分数减法、分数乘法和
分数除法等计算中。

通过将分数进行合理的拆分,我们可以简化计算过程,更加直观地理解运算原理。

总而言之,分数裂项法是一种简化分数计算的方法,通过分解分数,
将问题转化为多个简单的分数的求和或相乘运算,从而提高计算效率和准
确性。

它在数学计算中具有重要的应用价值。

分数裂项简便计算04

分数裂项简便计算04

分数裂项简便计算04一、“裂差”型运算将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

【例 1】 111123234789+++⨯⨯⨯⨯⨯⨯ 【考点】分数裂项【难度】3星【题型】计算【解析】 首先分析出()()()()()()()()11111111211211n n n n n n n n n n n n ⎡⎤+--==-⎢⎥-⨯⨯+-⨯⨯+-⨯⨯+⎢⎥⎣⎦原式11111111121223233467787889⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 1112128935144⎛⎫=⨯- ⎪⨯⨯⎝⎭= 【巩固】 计算:1111232349899100+++⨯⨯⨯⨯⨯⨯【巩固】 计算:1111135246357202224++++⨯⨯⨯⨯⨯⨯⨯⨯【巩固】4444...... 135357939597959799 ++++⨯⨯⨯⨯⨯⨯⨯⨯【例 2】11111 123423453456678978910 +++⋅⋅⋅++⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯【考点】分数裂项【难度】3星【题型】计算【解析】原式1111111 31232342343457898910⎛⎫=⨯-+-++- ⎪⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⎝⎭11131238910⎛⎫=⨯-⎪⨯⨯⨯⨯⎝⎭1192160=【答案】119 2160【巩固】333...... 1234234517181920 +++⨯⨯⨯⨯⨯⨯⨯⨯⨯。

分数裂项法总结

分数裂项法总结

裂项法的注意事项
在使用裂项法时,需要注意以下几点:首先,要确保拆分 的分数是正确的,即拆分后的分数之差或商等于原分数; 其次,要注意运算的优先级,确保计算的准确性;最后, 要注意简化计算过程,尽可能减少计算的复杂度。
此外,对于一些特殊的分数,如分母为平方数或立方数的 分数,可以使用特定的裂项法进行计算,以简化计算过程 。
分数裂项法之立方差法
立方差法的概念
立方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个分数的立方差,可以简化计 算过程。
立方差法的应用
立方差法在数学和工程等领域中都有广泛的应用。例如,在解决几何问题时,立方差法可以帮助我们更好地理解和计 算立体图形的体积。
立方差法技巧
在使用立方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需要注意保持拆 分后的分数与原分数相等,以避免出现计算错误。
平方差法是一种将分数拆分成易于计算的形式的方法。通过将一个分数拆分成两个或多个 分数的平方差,可以简化计算过程。
平方差法的应用
平方差法在数学和物理等领域中都有广泛的应用。例如,在解决代数问题时,平方差法可 以帮助我们更好地理解和计算表达式的值。
平方差法的技巧
在使用平方差法时,需要注意选择合适的拆分方式,以使计算过程更加简便。同时,还需 要注意保持拆分后的分数与原分数相等,以避免出现计算错误。
分数裂项法在日常生活中的应用
在日常生活中,我们也会遇到许多涉及到分 数的问题,如时间、金钱等。通过运用分数 裂项法,我们可以更好地理解和处理这些问 题。
例如,在时间管理中,可以将一天的时间拆 分成小时、分钟等部分,以便更好地安排工 作和休息时间;在理财中,可以将一笔钱拆 分成不同的用途和投资方式,以便更好地实

简便运算——拆分、裂项、拆项

简便运算——拆分、裂项、拆项

分数的巧算——裂项前面我们介绍了运用定律和性质以及数字的特点进行巧算和简算的一些方法,下面再向同学们介绍怎样用拆分法(也叫裂项法、拆项法)进行分数的简便运算。

运用拆分法解题主要是使拆开后的一些分数互相抵消,达到简化运算的目的。

一般地,形如)1(1+⨯a a 可以拆成111+-a a ;形如)n (1+⨯a a 的分数可以拆成)11(1n a a n +-⨯形如b a b a ⨯+的分数可以拆成b 11+a ;等等。

同学们可以结合例题思考其中的规律。

王牌例题①形如)1(1+⨯a a 可以拆成111+-a a 100991431321211计算:⨯++⨯+⨯+⨯ 【思路导航】因为这个算式中的每个加数都可以分裂成两个数的差,如211211-=⨯,3121321-=⨯,4131431-=⨯,……,其中的部分分数可以相互抵消,这样计算就简便多了,1001991()4131()3121()211(-++-+-+-= 原式100199141313121211-++-+-+-= 1009910011=-=举一反三①403917616515411⨯++⨯+⨯+⨯ 、15141141311312112111111012⨯+⨯+⨯+⨯+⨯、42130120112161213+++++、72156********+++-、王牌例题②形如)n (1+⨯a a 的分数可以拆成)11(1n a a n +-⨯50481861641421计算:⨯++⨯+⨯+⨯ 【思路导航】因为4121422-=⨯,6141642-=⨯,8161862-=⨯,……,所以,将算式中的每一项先扩大2倍后,再分裂成两个数的差,求算式的和,最后把求得的和再乘21即可。

所以2150482862642422(⨯⨯++⨯+⨯+⨯= 原式21)501481()8161()6141()4121(⨯⎥⎦⎤⎢⎣⎡-++-+-+-= 21)50121(⨯-=215024⨯=256=举一反三②999719717515311⨯++⨯+⨯+⨯ 、10097110717414112⨯++⨯+⨯+⨯ 、3733113919515113⨯++⨯+⨯+⨯ 、20811301701281414++++、王牌例题③形如b a b a ⨯+的分数可以拆成b 11+a ;56154213301120912731计算:1-+-+-【思路导航】因为311311+=,41314343127+=⨯+=,51415454209+=⨯+=,615165653011+=⨯+=,716176764213+=⨯+=,817187875615+=⨯+=……所以)8171()7161()6151(5141()4131(311+-+++-+++-+=原式81717161615151414131311--++--++--+=87811=-=举一反三③301120912765211 1-+-+、561542133011209411 2+-+-、6599815499814399813299812119983⨯+⨯+⨯+⨯+⨯、6301162091276 4⨯-⨯+⨯、王牌例题④641321161814121计算:+++++【思路导航】解法一:这道题如果先通分再相加,就比较复杂;如果给原式先“借”来一个641,最后再“还”一个641,就可以通过口算得出结果。

分数裂项法

分数裂项法

分数裂项法是一种常用的计算分数的方法,通过将分数拆分为多个分数的和或差,使得计算变得简单和方便。

一般来说,分数裂项法适用于两个分数的分母不同的情况。

通过将两个分数的分母相乘,然后将分子分别乘以对方的分母,最后将结果相加即可得到乘积。

例如,计算分数乘法:2/3 ×4/5,可以将两个分数的分母相乘得到分母为15,然后将2/3的分子2乘以4/5的分母5,得到2×5=10,将4/5的分子4乘以2/3的分母3,得到4×3=12,将10和12相加得到乘积的分子为10+12=22,所以,2/3 ×4/5 = 22/15。

此外,还有分子裂项法,适用于两个分数的分子较大的情况。

通过将一个分数的分子分别乘以另一个分数的分子和分母,然后将结果相加得到乘积的分子。

例如,计算分数乘法:7/4 ×3/2,可以将7/4的分子7分别乘以3和2,得到7×3=21和7×2=14,然后将两个结果相加得到乘积的分子为21+14=35,所以,7/4 ×3/2 = 35/8。

另外,还有通分裂项法,通过将两个分数的分母相乘,然后将分子分别乘以对方的分母,最后将结果相加即可得到乘积。

这种方法适用于两个分数的分母不同的情况。

例如,计算分数乘法:1/3 ×3/4,可以将两个分数的分母相乘得到分母为12,然后将1/3的分子1乘以3/4的分母4得到1×4=4,将3/4的分子3乘以1/3的分母3得到3×3=9,然后将两个结果相加得到乘积的分子为4+9=13,所以,1/3 ×3/4 = 13/12。

此外,还有共用数裂项法,通过找出一个数来代表全部的数,使得计算变得简单和方便。

例如,计算分数加法:1/3 + 2/4 + 3/6。

可以找一个数来代表这三个分数,这个数为2072+2052+2062+2042+2083 =(2062x5)+10-10-20+21 =10310+1 =10311。

巧算分数计算题--裂项

巧算分数计算题--裂项

分数的巧算——裂项同学们!在这一讲中,我们继续来研究相关知识。

(一)阅读思考:1. 什么是拆分?拆分就是把一个分数写成几个分数的和或差的形式。

例如:16115110=+ 161213=- 学会了拆分,有时就可以不通分,也能较简便地解决上面的问题。

2. 观察思考161231213=⨯=- 1121341314=⨯=- 1201451415=⨯=- 1301561516=⨯=- 1421671617=⨯=- 21553351315=-⨯=- 42173371317=-⨯=- 当一个分数,分母是两个数的乘积,分子是这两个数的差时,就可以拆成这两个数分别作分母,1作分子的分数的差。

也就是d n n d n n dn d ⨯+=-+≠≠()1100(,) 例1. 计算:113135157119931995119951997⨯+⨯+⨯++⨯+⨯…二、拆分的方法1、【拆数加减】在分数加减法运算中,把一个分数拆成两个分数相减或相加,使隐含的数量关系明朗化,并抵消其中的一些分数,往往可大大地简化运算。

(1)拆成两个分数相减。

例如计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211(2)拆成两个分数相加。

例如例2. 求下面所有分数的和:11122212132333231314243444342414;,,;,,,,;,,,,,,;…; 1199121991198919911990199119911991199019911989199111991,,…,,,,,,…,。

三、尝试练习1. 计算:213235257279219971999219992001⨯+⨯+⨯+⨯++⨯+⨯…2. 计算:1111311315115171171911921⨯+⨯+⨯+⨯+⨯3. 计算:11988198911989199011990199111991199211992199311993⨯+⨯+⨯+⨯+⨯+4. 计算:343283703130+++5. 计算:4213012011216121+++++同学们!在上一讲中,我们一起研究了一些分数加减法中的巧算方法,在这一讲中,我们继续来研究相关知识。

分数拆分计算中裂项相消法例题讲解和公式总结

分数拆分计算中裂项相消法例题讲解和公式总结

分数拆分计算中裂项相消法例题讲解和公式总结今天G老师讲解分数计算中常用的一种思维方法:裂项抵消。

看下面这道例题,计算式中各项的和。

乍一看,计算式中含有的分数项非常多,倘若按照分数运算中的常规算法,分母先通分,分子相加减,最后约分化为最简分数。

估计考试时间结束,也不一定能算出答案。

所以,遇到项非常多的计算式时,不要紧张,先观察,看看有没有简便方法,找到思路后再下笔。

我们一起来分析这道题目,先看它的各项规律。

计算式中各个分式的分子都是1,分母为两个相邻自然数的乘积,2x3,3x4,4x5,5x6,6x7……49x50,分母乘数和被乘数从小到大依次连续,它们的差刚好是1,3-2=1,4-3=1,5-4=1……50-49=1。

那么,我们试着来分析计算式中的第一项:也就是说,第一项可以写成:以此类推,剩余的项也可写成类似的形式:这下,我们就可以开始计算了。

看到规律了吗?式子中-1/3,+1/3,-1/4,+1/4……这些是不是都可以抵消为0?最后,我们就存头留尾,算出结果了。

(千万要注意最后一个分数前的符号别丢了)看起来非常复杂的题目就这样被瓦解了。

在很多个分数的计算中,裂项抵消是重要的一种方法。

先将算式中的项进行拆分,拆成两个或多个数字单位的和或差,拆分后的项可以前后抵消。

裂项抵消分为“裂差”和“裂和”,“裂差”就是我们前边讲过的这种类型,分母为两个自然数的乘积,分子是分母乘式中乘数与被乘数的差。

那么,“裂和”呢?分母为两个自然数的乘积,分子是分母乘式中乘数与被乘数的和。

一起来看下面这道题。

是不是和前面的那道题非常像?分母和第一道题中的都一样,2x3,3x4,4x5,5x6……49x50,但是分子变了,不再都是1了。

但是,我们发现,5=2+37=3+49=4+511=5+6……99=49+50我们是不是也可以写成这样的形式?式中的第一项就可以写成:以此类推,各项都可以这样化简:原式就可以写成:(符号千万别搞错了!)式子中+1/3,-1/3,-1/4,+1/4……这些是不是都可以抵消为0?最后,我们就存头留尾,算出结果了。

六年级数学专题复习:分数的裂项

六年级数学专题复习:分数的裂项

分数的巧算:裂项知识点分析:特殊的分数加法试题,难以运用课本中固有的运算性质与定律进展巧算。

它们有其特殊的规律与性质,对于这些特殊试题,我们通常要用到以下两种方法:①引用公式法:有特殊的分数加法试题,有其固有的求和公式,计算时可以直接运用这些公式使计算简便。

②裂项法:先将算式中的一些分数按规律作适当拆分,使得拆分后的一些分数可以互相抵消,从而到达巧算的目的。

例题精讲例1:1091...431321211⨯++⨯+⨯+⨯ 分析:观察发现每一个分数的分母是两个相邻的自然数相乘,分子1就是它们的差,可以运用裂项公式:()an n a n n a +-=+11,先裂项,再求和。

解答:举一反三①〔1〕21201...871761651⨯++⨯+⨯+⨯〔2〕53494...1394954514⨯++⨯+⨯+⨯〔3〕47425...171251275725⨯++⨯+⨯+⨯109101110191...413131212111091...431321211=-=⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=⨯++⨯+⨯+⨯=原式注重:必须弄懂第一种裂项公式:()an n a n n a +-=+11例2:100981...861641421⨯++⨯+⨯+⨯分析:这里的每一个分数的分母虽然不是两个相邻的数,但这些自然数都相差2.如果想方法将分子都变成2,就可以利用例1中的公式计算了。

解答:方法一:将分子都扩大两倍,再将它们的和缩小两倍,结果不变。

方法二:直接运用另一个裂项公式()⎪⎭⎫ ⎝⎛+-⨯=+d n n d d n n 1111举一反三②〔1〕36331...1291961631⨯++⨯+⨯+⨯〔2〕36331...1291961631⨯++⨯+⨯+⨯〔3〕43371...191311371711⨯++⨯+⨯+⨯200492110049211001981 (8)1616141412121100982 (8)62642422=⨯=⨯⎪⎭⎫ ⎝⎛-++-+-+-=⨯⎪⎭⎫ ⎝⎛⨯++⨯+⨯+⨯=原式2004910049211001981...81616141412121100198121...816121614121412121=⨯=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⨯=⎪⎭⎫ ⎝⎛-⨯++⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯+⎪⎭⎫ ⎝⎛-⨯=原式例3:4213012011216121+++++〔第二届新起点杯数学竞赛试题〕分析:观察发现题目中的分母都是可以看作是两个连续自然数的积,且分子都是1,将分母加以变形,再利用裂项公式即可求出和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档