2019届高考数学二轮复习第二部分专项一第4练专题强化训练含答案解析
(浙江专用)高考数学二轮复习 专题四 立体几何 第1讲 空间几何体专题强化训练-人教版高三全册数学试
第1讲空间几何体专题强化训练1.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA1为底面矩形的一边,则这样的阳马的个数是( )A.4 B.8C.12 D.16解析:选D.如图,以AA1为底面矩形一边的四边形有AA1C1C、AA1B1B、AA1D1D、AA1E1E这4个,每一个面都有4个顶点,所以阳马的个数为16个.故选D.2.正方体ABCDA1B1C1D1中,E为棱BB1的中点(如图),用过点A,E,C1的平面截去该正方体的上半部分,则剩余几何体的正视图为( )解析:选C.过点A,E,C1的平面与棱DD1相交于点F,且F是棱DD1的中点,截去正方体的上半部分,剩余几何体的直观图如图所示,则其正视图应为选项C.3.某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3C .323cm 3D .403cm 3解析:选C.由三视图可知,该几何体是由一个正方体和一个正四棱锥构成的组合体.下面是棱长为2 cm 的正方体,体积V 1=2×2×2=8(cm 3);上面是底面边长为2 cm ,高为2 cm 的正四棱锥,体积V 2=13×2×2×2=83(cm 3),所以该几何体的体积V =V 1+V 2=323(cm 3).4.(2019·某某模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体最长的棱长等于( )A .34B .41C .5 2D .215解析:选C.由正视图、侧视图、俯视图的形状,可判断该几何体为三棱锥,形状如图,其中SC ⊥平面ABC ,AC ⊥AB ,所以最长的棱长为SB =5 2.5.(2019·某某十校联考)某几何体的三视图如图所示,则该几何体的体积是( )A .15π2B .8π C.17π2D .9π解析:选B.依题意,题中的几何体是由两个完全相同的圆柱各自用一个不平行于其轴的平面去截后所得的部分拼接而成的组合体(各自截后所得的部分也完全相同),其中一个截后所得的部分的底面半径为1,最短母线长为3、最长母线长为5,将这两个截后所得的部分拼接恰好形成一个底面半径为1,母线长为5+3=8的圆柱,因此题中的几何体的体积为π×12×8=8π,选B.6.如图,圆柱内有一个直三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形.如果三棱柱的体积为123,圆柱的底面直径与母线长相等,则圆柱的侧面积为( )A .12πB .14πC .16πD .18π解析:选C.设圆柱的底面半径为R ,则三棱柱的底面边长为3R ,由34(3R )2·2R =123,得R =2,S 圆柱侧=2πR ·2R =16π.故选C.7.(2019·某某市第一次模拟)某几何体的三视图如图所示(网格线中每个小正方形的边长为1),则该几何体的表面积为( )A .48B .54C .64D .60解析:选D.根据三视图还原直观图,如图所示,则该几何体的表面积S =6×3+12×6×4+2×12×3×5+12×6×5=60,故选D.8.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A.4πB.9π2C.6πD.32π3解析:选B.由题意可得若V 最大,则球与直三棱柱的部分面相切,若与三个侧面都相切,可求得球的半径为2,球的直径为4,超过直三棱柱的高,所以这个球放不进去,则球可与上下底面相切,此时球的半径R =32,该球的体积最大,V max =43πR 3=4π3×278=9π2.9.(2019·某某八校联考)某几何体是直三棱柱与圆锥的组合体,其直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为( )A.12B.24C.22 D.32解析:选C.依题意得,题中的直三棱柱的底面是等腰直角三角形,设其直角边长为a ,则斜边长为2a ,圆锥的底面半径为22a 、母线长为a ,因此其俯视图中椭圆的长轴长为2a 、短轴长为a ,其离心率e =1-(a2a)2=22,选C. 10.已知圆柱OO 1的底面半径为1,高为π,ABCD 是圆柱的一个轴截面.动点M 从点B 出发沿着圆柱的侧面到达点D ,其距离最短时在侧面留下的曲线Γ如图所示.现将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则y =f (θ)的图象大致为( )解析:选A.将圆柱的侧面沿轴截面ABCD 展平,则曲线Γ是展开图形(即矩形)的对角线,根据题意,将轴截面ABCD 绕着轴OO 1逆时针旋转θ(0<θ≤π)后,边B 1C 1与曲线Γ相交于点P ,设BP 的长度为f (θ),则f (θ)应当是一次函数的一段,故选A.11.(2019·某某省重点中学高三12月期末热身联考)某空间几何体的三视图如图所示,则该几何体的体积是________;表面积是________.解析:根据三视图可得,该几何体是长方体中的四棱锥C BB 1D 1D ,由三视图可得:AB =2,BC =2,BB 1=4,VC BB 1D 1D =23×12×2×2×4=163,S C BB 1D 1D =12×2×2+22×4+12×2×4+12×2×4+12×22×18=16+8 2.答案:16316+8 212.(2019·某某市余姚中学期中检测)某几何体的三视图如图所示(单位:cm),则该几何体的体积为________ cm 3,表面积为________cm 2.解析:由三视图可知:该几何体是由一个半球去掉14后得到的几何体.所以该几何体的体积=34×12×43×π×13=π2cm 3.表面积=34×12×4π×12+12×π×12+34×π×12=11π4 cm 2.答案:π211π413.(2019·某某省“五校联盟”质量检测)已知球O 的表面积为25π,长方体的八个顶点都在球O 的球面上,则这个长方体的表面积的最大值等于________.解析:设球的半径为R ,则4πR 2=25π,所以R =52,所以球的直径为2R =5,设长方体的长、宽、高分别为a 、b 、c ,则长方体的表面积S =2ab +2ac +2bc ≤a 2+b 2+a 2+c 2+b 2+c 2=2(a 2+b 2+c 2)=50.答案:5014.(2019·某某省高三考前质量检测)某几何体的三视图如图所示,当xy 取得最大值时,该几何体的体积是____________.解析:分析题意可知,该几何体为如图所示的四棱锥P ABCD ,CD =y2,AB=y ,AC =5,CP =7,BP =x ,所以BP 2=BC 2+CP 2,即x 2=25-y 2+7,x 2+y2=32≥2xy ,则xy ≤16,当且仅当x =y =4时,等号成立.此时该几何体的体积V =13×2+42×3×7=37.答案:3715.(2019·某某市高考数学二模)在正方体ABCD A 1B 1C 1D 1中,E 是AA 1的中点,则异面直线BE 与B 1D 1所成角的余弦值等于________,若正方体棱长为1,则四面体B EB 1D 1的体积为________.解析:取CC 1中点F ,连接D 1F ,B 1F ,则BE 綊D 1F , 所以∠B 1D 1F 为异面直线BE 与B 1D 1所成的角.设正方体棱长为1,则B 1D 1=2,B 1F =D 1F =1+14=52.所以cos ∠B 1D 1F =12B 1D 1D 1F =2252=105. V B EB 1D 1=V D 1BB 1E =13S △BB 1E ·A 1D 1=13×12×1×1×1=16.答案:1051616.已知棱长均为a 的正三棱柱ABC A 1B 1C 1的六个顶点都在半径为216的球面上,则a 的值为________.解析:设O 是球心,D 是等边三角形A 1B 1C 1的中心,则OA 1=216,因为正三棱柱ABC A 1B 1C 1的所有棱长均为a ,所以A 1D =32a ×23=33a ,OD =a 2,故A 1D 2+OD 2=⎝ ⎛⎭⎪⎫33a 2+⎝ ⎛⎭⎪⎫a 22=⎝ ⎛⎭⎪⎫2162,得712a 2=2136,即a 2=1,得a =1. 答案:117.(2019·瑞安四校联考)已知底面为正三角形的三棱柱内接于半径为1的球,则此三棱柱的体积的最大值为________.解析:如图,设球心为O ,三棱柱的上、下底面的中心分别为O 1,O 2,底面正三角形的边长为a ,则AO 1=23×32a =33a .由已知得O 1O 2⊥底面, 在Rt △OAO 1中,由勾股定理得OO 1=12-⎝ ⎛⎭⎪⎫33a 2=3·3-a 23,所以V 三棱柱=34a 2×2×3·3-a 23=3a 4-a62,令f (a )=3a 4-a 6(0<a <2), 则f ′(a )=12a 3-6a 5=-6a 3(a 2-2),令f ′(a )=0,解得a = 2.因为当a ∈(0,2)时,f ′(a )>0;当a ∈(2,2)时,f ′(a )<0,所以函数f (a )在(0,2)上单调递增,在(2,2)上单调递减. 所以f (a )在a =2处取得极大值.因为函数f (a )在区间(0,2)上有唯一的极值点,所以a =2也是最大值点.所以(V 三棱柱)max=3×4-82=1. 答案:118.如图,四棱锥P ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB =BC =12AD , ∠BAD =∠ABC =90°.(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为27,求四棱锥P ABCD 的体积.解:(1)证明:在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ⊄平面PAD ,AD ⊂平面PAD ,故BC ∥平面PAD .(2)取AD 的中点M ,连接PM ,CM .由AB =BC =12AD 及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD .因为CM ⊂底面ABCD ,所以PM ⊥CM .设BC =x ,则CM =x ,CD =2x ,PM =3x ,PC =PD =2x . 取CD 的中点N ,连接PN , 则PN ⊥CD ,所以PN =142x . 因为△PCD 的面积为27, 所以12×2x ×142x =27,解得x =-2(舍去)或x =2.于是AB =BC =2,AD =4,PM =2 3. 所以四棱锥P ABCD 的体积V =13×2×(2+4)2×23=4 3.19.如图,在△ABC 中,∠B =π2,AB =BC =2,P 为AB 边上一动点,PD ∥BC 交AC 于点D .现将△PDA 沿PD 翻折至△PDA ′,使平面PDA ′⊥平面PBCD .(1)当棱锥A ′PBCD 的体积最大时,求PA 的长;(2)若P 为AB 的中点,E 为A ′C 的中点,求证:A ′B ⊥DE . 解:(1)设PA =x ,则PA ′=x , 所以V A ′PBCD =13PA ′·S 底面PBCD =13x ⎝ ⎛⎭⎪⎫2-x 22.令f (x )=13x ⎝ ⎛⎭⎪⎫2-x 22=2x 3-x36(0<x <2),则f ′(x )=23-x22.当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎪⎫0,233233 ⎝ ⎛⎭⎪⎫233,2 f ′(x )0 f (x )单调递增极大值单调递减由上表易知,当PA =x =233时,V A ′PBCD 取最大值.(2)证明:取A ′B 的中点F ,连接EF ,FP . 由已知,得EF 綊12BC 綊PD .所以四边形EFPD 是平行四边形, 所以ED ∥FP .因为△A ′PB 为等腰直角三角形, 所以A ′B ⊥PF .所以A ′B ⊥DE .。
高三二轮复习选填满分“8+4+4”小题强化训练第4练(解析版)(新高考专用)
高三二轮复习选填满分“8+4+4”小题强化训练(4)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|320}A x x x =-+-≤,3{|log (2)1}B x x =+<,则A B = ()A.∅B.{1x x ≤或}2x ≥C.{}1x x <D.{}21x x -<<【答案】D【解析】()()22320,32120x x x x x x -+-≤-+=--≥,解得1x ≤或2x ≥,所以{|1A x x =≤或}2x ≥.由3log y x =在()0,∞+上递增,且()33log 21log 3x +<=,所以023,21x x <+<-<<,所以{}|21B x x =-<<,所以{}21A B x x ⋂=-<<,故选:D 2.若复数312iz =-(i 为虚数单位),则复数z 在复平面上对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】由题意可知:()()3112i 2i 21i 2i 2i 2i 2i 555z --=====--++-,所以复数z 在复平面上对应的点为21,55⎛⎫- ⎪⎝⎭.位于第四象限.故选:D.3.下列函数中,最小值为4的是()A.4y x x =+B.()4sin 0πsin y x x x=+<<C.e 4e x x y -=+D.y =【答案】C【解析】A 项,4y x x=+没有最值,故A 项错误;B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数,所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x x y -=+=+≥=,当且仅当4e e x x =,即e 2x =时,等号成立,所以函数e 4e x x y -=+的最小值为4,故C 项正确;D 项,y =≥,当且仅当==时,等号成立,所以函数y =+的最小值为,故D 项错误.故选:C.4.若函数()2f x +为偶函数,对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,则()A.()()212log 60log 0.2f f f ⎛⎫<< ⎪⎝⎭B.()()122log 0.20log 6f f f ⎛⎫<< ⎪⎝⎭C.()()122log 0.2log 60f f f ⎛⎫<< ⎪⎝⎭D.()()2120log 6log 0.2f f f ⎛⎫<< ⎪⎝⎭【答案】D【解析】由题意知函数()2f x +为偶函数,故函数()f x 关于直线=2x 对称,由对任意的[12,2,+)x x ∈∞,且12x x ≠,都有()()()12120x x f x f x ⎡⎤--<⎣⎦,可知函数()f x 在[2,+)x ∈∞时单调递减,而()()1220(4),log 0.52log f f f f ⎛⎫== ⎪⎝⎭,因为2252<log log 64<<,故()()2120(4)log 6log 0.2f f f f ⎛⎫=<< ⎪⎝⎭,故选:D5.已知某电子产品电池充满时的电量为3000毫安时,且在待机状态下有两种不同的耗电模式可供选择.模式A :电量呈线性衰减,每小时耗电300毫安时;模式B :电量呈指数衰减,即:从当前时刻算起,t 小时后的电量为当前电量的12t 倍.现使该电子产品处于满电量待机状态时开启A 模式,并在m 小时后切换为B 模式,若使其在待机10小时后有超过5%的电量,则m 的取值范围是()A.(5,6)B.(6,7)C.(7,8)D.(8,9)【答案】D【解析】由题意可设,模式A 的函数关系为:y =-300t +3000,模式B 的函数关系为:y =p ⋅12t ,其中p 为初始电量,在模式A 下使用m 小时,其电量为3000-300m ,在模式B 下使用10-m 小时,则可得到(3000-300m )⋅1210-m >3000⋅5%,可化为2m -10(10-m )>12,令x =10-m ,可得2-x ⋅x >12,即2x -1<x ,可结合图形得到1<x <2,即1<10-m <2,解得8<m <9,即m ∈(8,9),故答案选D.6.已知正项等比数列{}n a 满足2022202120202a a a =+,若215log a +是2log m a 和2log n a 的等差中项,则9n mmn+的最小值为()A.43B.138C.85D.3421【答案】A【解析】正项等比数列{}n a 满足2022202120202a a a =+,所以22q q =+,且0q >,解得2q =,又因为215log a +是2log m a 和2log n a 的等差中项,所以()212225log log log m n a a a +=+,得102222121log (2)log (2)m n a a +-=,即12m n +=,()9119191410101212123n m m n m n mn m n n m ⎛+⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当39n m ==时,等号成立.故选:A.7.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为()A.4π3B.π3C.32π3【答案】B【解析】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,当且仅当AC BC =时等号成立,又阳马11B ACC A -体积的最大值为43,所以2AB =,所以堑堵111ABC A B C -的外接球的半径R =所以外接球的体积343V r π==,故选:B8.已知ln 22ln a a =,ln 33ln b b =,ln 55ln c c =,且(),,0,e ∈a b c 则()A.c <a <b B.a <c <b C.b <a <c D.b <c <a【答案】A 【解析】由已知得ln 2ln 2a a =,ln 3ln 3b b=,ln ln 55c c =,令()()()ln 0e ,=∈x f x x x ,()21ln xf x x -'=,可得()f x 在()0e ,∈x 上单调递增,在()e ,+∈∞x 上单调递减,()()25lnln 5ln 23205210-=-=<f c f a ,且(),0,e ∈a c ,所以c a <,()()8lnln 2ln 390236-=-=<f a f b ,且(),0,e ∈a b ,所以a b <,所以c a b <<.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知()831f x x x ⎛⎫=- ⎪⎝⎭,则()A.()f x 的展开式中的常数项是56B.()f x 的展开式中的各项系数之和为0C.()f x 的展开式中的二项式系数最大值是70D.()f x 的展开式中不含4x 的项【答案】BC【解析】二项展开式通项公式为382441881()(1)rr rr r rr T C x C x x --+⎛⎫=-=- ⎪⎝⎭,2440r -=,6r =,常数项为6678(1)28T C =-=,A 错;2444r -=,=5r ,第6项是含4x 的项,D 错;令1x =得(1)0f =所有项系数和,B 正确;8n =,因此二项式系数的最大值为4870C =,C 正确.故选:BC.10.已知某物体作简谐运动,位移函数为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,则下列说法正确的是()A.该简谐运动的初相为6πB.函数()f t 在区间0,2π⎛⎫⎪⎝⎭上单调递增C.若[0,]2t π∈,则(),2[]1f t ∈D.若对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12()2f t t +=【答案】ACD【解析】因为()2sin()(0,)2f t t t πϕϕ=+><,且4()23f π=-,所以422sin 3πϕ⎛⎫-=+⎪⎝⎭,即432,32k k Z ππϕπ+=+∈,所以2,6k k Z πϕπ=+∈,因为2πϕ<,所以6π=ϕ所以()2sin 6f t t π⎛⎫=+⎪⎝⎭,所以对于A 选项,简谐运动的初相为6π,故正确;对于B 选项,函数()f t 在区间0,3π⎛⎫ ⎪⎝⎭上单调递增,,32ππ⎛⎫⎪⎝⎭上单调递减,故错误;对于C 选项,当0,2t π⎡⎤∈⎢⎥⎣⎦时,2,663t πππ⎡⎤+∈⎢⎥⎣⎦,所以sin sin sin 662t πππ⎛⎫≤+≤ ⎪⎝⎭,即1sin 126t π⎛⎫≤+≤ ⎪⎝⎭,所以(),2[]1f t ∈,故正确;对于D 选项,对于任意12,0t t >,12t t ≠,都有12()()f t f t =,则12,2t t k k Z ππ+=+∈,所以12()2f t t +=,故正确.故选:ACD11.已知正三棱锥S ABC -的底面边长为6,侧棱长为则下列说法中正确的有()A.侧棱SA 与底面ABC 所成的角为4πB.侧面SAB 与底面ABC 所成角的正切值为C.正三棱锥S ABC -外接球的表面积为64πD.正三棱锥S ABC -1【答案】BC【解析】若,E F 分别是,BC AB 的中点,连接,AE SE ,易知AES ∠为侧棱SA 与底面ABC 所成角,由题设,SE =,AE =,SA =,则1cos2AES ∠==,∴3AES π∠=,故A 错误;若O 是底面中心,易知:SO ⊥面ABC ,连接OF 、SF ,则侧面SAB 与底面ABC 所成角为SFO ∠,又6SO =,OF =,则tan SFO ∠=B 正确.若外接球的半径为R ,则R ==,解得4R =,∴正三棱锥S ABC -外接球的表面积为2464R ππ=,故C 正确.由题设易知:S ABC V -=,若内切球的半径为r ,则()3SABSACSBCABCr SSS S+++=,又SABSAC SBCSSS===ABCS=,则93)2r ==,故D 错误.故选:BC12.关于函数()sin xf x e x =+,(),x ππ∈-.下列说法正确的是()A.()f x 在()()0,0f 处的切线方程为210x y -+=B.()f x 有两个零点C.()f x 有两个极值点D.()f x 存在唯一极小值点0x ,且()010f x -<<【答案】ABD【解析】()sin xf x e x =+,()00sin 01f e =+=,()cos xf x e x '=+,()00cos02f e '=+=,切线方程为()120y x -=-,即210x y -+=,故A 正确;()sin x f x e x ''=-⎡⎤⎣⎦,当0x >时,()0sin 110x x f x e x e e ''=≥-->-=⎡⎤⎣⎦,当π0x -<≤时,sin 0x ≤,0x e >,∴()sin 0x f x e x ''=>⎡⎤⎣⎦-,∴(),x ππ∈-时,()0f x ''>⎡⎤⎣⎦,∴()cos xf x e x '=+单调递增,32430422f e e --⎛⎫'-=-<-< ⎪⎝⎭ππ,2002f e -⎛⎫'-=-> ⎪⎝⎭ππ,在(),ππ-内,()cos xf x e x '=+存在唯一的零点0x ,且03,42x ππ⎛⎫∈-- ⎪⎝⎭,且在()0,x x π∈-内,()0f x '<,()f x 单调递减;()0,x x π∈,()0f x '>,()f x 单调递增,∴0x 为极值点,且为极小值点.由()000cos 0x f x e x '=+=,∴()00000sin sin cos xf x e x x x =+=-,∵03,42x ππ⎛⎫∈-- ⎪⎝⎭,∴00001sin 0,1cos 0,sin cos x x x x -<<-<<<,∴001sin cos 0x x -<-<,∴()f x 有唯一的极值点,且为极小值点0x ,且()010f x -<<,故C 错误,D 正确;又∵()()ππ0,sin 0f ef e e ππππ--=>=+=>,结合函数()f x 的单调性可知∴()f x 有两个零点,故B 正确;故选:ABD.三、填空题:本题共4小题,每小题5分,多空题,第一空2分,第二空3分,共20分.13.已知随机变量ξ服从正态分布()2,N μσ,若函数()()1f x P x x ξ=≤≤+为偶函数,则μ=_______.【答案】C【解析】因为函数()f x 为偶函数,则()()f x f x -=,即()()11P x x P x x ξξ-≤≤-+=≤≤+,所以,1122x x μ-++==.故答案为:1214.为调查新冠疫苗的接种情况,需从5名志愿者中选取3人到3个社区进行走访调查,每个社区一人.若甲乙两人至少有一人入选,则不同的选派方法有_____________.【答案】54【解析】①若甲乙两人恰有一人入选,志愿者有12236C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有6636⨯=种选派方法;②若甲乙两人都入选,志愿者有21233C C =种选法,再分配到3个社区,有336A =种方案,故由分步乘法计数原理知,共有1863=⨯种选派方法综上,由分类加法计数原理知,共有361854+=种选派方法.故答案为:54.15.数列{}n a 的各项均为正数,其前n 项和n S 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭.则n a =__________.【答案】【解析】由1111112a S a a ⎛⎫==+ ⎪⎝⎭,得111a S ==.当n>1时,由112n n n S a a ⎛⎫=+ ⎪⎝⎭①1112n n n n S a a a -⎛⎫⇒+=+ ⎪⎝⎭1112n n nS a a -⎛⎫⇒=-+ ⎪⎝⎭.②①+②得11n n n S S a -+=.③又1n n n S S a --=,④③⨯④得2211n n S S --=.则{}2n S 成等差数列,2n S n =,n S =.于是,1n n n a S S -=-=当1n =时,也满足上式.综上,n a =.故答案为16.椭圆的光学性质,从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上.已知椭圆C :()2221024x y b b+=<<,1F ,2F 为其左、右焦点.M 是C 上的动点,点(N ,若1MN MF +的最大值为6.动直线l 为此椭圆C 的切线,右焦点2F 关于直线l 的对称点()11,P x y ,113424S x y =+-,则:(1)椭圆C 的离心率为___________;(2)S 的取值范围为___________.【答案】12[]7,47【解析】根据椭圆定义得:122MF MF a +=,所以12222MN MF MN MF a NF a +=-+≤+,因为1MN MF +的最大值为6,因为2a =,所以22NF =2=,解得1c =,所以离心率为12c a =.右焦点()21,0F 关于直线的对称点()11,P x y ,设切点为A ,由椭圆的光学性质可得:P ,A ,1F 三点共线,所以111224FP F A AP F A AF a =+=+==,即点()11,P x y 的轨迹是以()1,0-为圆心,半径为4的圆,圆心()1,0-到直线34240x y +-=275=,则圆上的点到直线34240x y +-=的距离最小值277455-=,最大值2747455+=,所以点()11,P x y 到直线34240x y +-=的距离为:1134245x y +-,所以113424S x y =+-表示点()11,P x y 到直线34240x y +-=的距离的5倍,则1174734245,555S x y ⎡⎤=+-∈⨯⨯⎢⎥⎣⎦,即[]7,47S ∈.故答案为:12,[]7,47.。
2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线
第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。
2019年高考数学(理科)二轮复习专题能力训练 含答案22
专题能力训练22坐标系与参数方程(选修4—4)能力突破训练1.在直角坐标系xOy中,已知曲线C的参数方程是(α为参数),若以O为极点,x轴的非负半轴为极轴,则曲线C的极坐标方程可写为.2.已知曲线C的参数方程为(t为参数),C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为.3.已知两曲线参数方程分别为C1:(0≤θ<π)和C2:(t∈R),它们的交点坐标为.4.若直线(t为参数)与圆(φ为参数)相切,则此直线的倾斜角α=.5.以直角坐标系的原点为极点,x轴的非负半轴为极轴,并在两种坐标系中取相同的长度单位.已知直线的极坐标方程为θ=(ρ∈R),它与曲线(α为参数)相交于两点A和B,则|AB|=.6.若直线l:(t为参数)与圆C:ρ=2cos θ相切,则k=.7.已知圆C1的参数方程为(φ为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,圆C2的极坐标方程为ρ=2cos.(1)圆C1的参数方程化为普通方程为,圆C2的极坐标方程化为直角坐标方程为;(2)圆C1,C2的公共弦长为.8.在极坐标系中,点到直线ρsin-=1的距离是.思维提升训练9.已知曲线C1的参数方程是(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,则C1与C2交点的直角坐标为.10.在直角坐标系xOy中,直线l的参数方程为-(t为参数).在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,圆C的方程为ρ=2sin θ.(1)圆C的直角坐标方程为;(2)设圆C与直线l交于点A,B,若点P的坐标为(2,),则|PA|+|PB|=.11.已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,直线l的参数方程为(t为参数).(1)直线l的普通方程与曲线C的直角坐标方程分别为;(2)设曲线C经过伸缩变换得到曲线C',设曲线C'上任意一点为M(x,y),则x+2y的最小值为.12.已知圆C的极坐标方程为ρ=2cos θ,直线l的参数方程为(t为参数),点A的极坐标为,设直线l与圆C交于点P,Q.(1)圆C的直角坐标方程为;(2)|AP|·|AQ|=.##专题能力训练22坐标系与参数方程(选修4—4)能力突破训练1.ρ=2sin θ解析依题意知,曲线C:x2+(y-1)2=1,即x2+y2-2y=0,所以(ρcos θ)2+(ρsin θ)2-2ρsin θ=0.化简得ρ=2sin θ.2.ρsin解析∵曲线C的参数方程为(t为参数),∴其普通方程为x2+y2=2.又∵点(1,1)在曲线C上,∴切线l的斜率k=-1.故l的方程为x+y-2=0,化为极坐标方程为ρcos θ+ρsin θ=2,即ρsin3解析消去参数θ得曲线方程C1为+y2=1(0≤y≤1),表示椭圆的一部分.消去参数t得曲线方程C2为y2=x,表示抛物线,可得两曲线有一个交点,联立两方程,解得故交点坐标为4或解析由题意得直线y=x tan α,圆:(x-4)2+y2=4.如图,sin α=,∴α=或5解析∵极坐标方程θ=(ρ∈R)对应的平面直角坐标方程为y=x,曲线(α为参数)的平面直角坐标方程为(x-1)2+(y-2)2=4,圆心(1,2),r=2,∴圆心到直线y=x的距离d=,|AB|=2-=2-6.-7.(1)x2+y2=1-=1(2)解析(1)由得x2+y2=1.又∵ρ=2cos=cos θ-sin θ,∴ρ2=ρcos θ-sin θ.∴x2+y2-x+y=0,即-=1.(2)由圆心距d=-=1<2,得两圆相交.由-得A(1,0),B--∴|AB|=8.1解析ρsin-=-=1,因为在极坐标系中ρcos θ=x,ρsin θ=y,所以直线可化为x-y+2=0.同理点可化为(,1),所以点到直线距离为d=-=1.思维提升训练9.(,1)解析由曲线C1的参数方程得y=x(x≥0),①曲线C2的极坐标方程为ρ=2,可得方程x2+y2=4,②由①②联立解得故C1与C2交点的直角坐标为(,1).10.(1)x2+(y-)2=3(2)2解析(1)由ρ=2sin θ,得x2+(y-)2=3,故圆C的直角坐标方程为x2+(y-)2=3.(2)将l的参数方程代入圆C的直角坐标方程,得-=3,即t2-2t+1=0.由于Δ>0,故可设t1,t2是上述方程的两实根.所以t1+t2=2故由上式及t的几何意义,得|PA|+|PB|=|t1|+|t2|=t1+t2=211.(1)y=x-2,x2+y2=1(2)-解析(1)由题意得直线l的普通方程为y-2=(x-1),圆C的直角坐标方程为x2+y2=1.(2)易得曲线C':+y2=1.令则x+2y=3cos θ+2sin θ=sin(θ+φ)其中,故x+2y的最小值为-12.(1)(x-1)2+y2=1(2)解析(1)由ρ=2cos θ,得ρ2=2ρcos θ.∵ρ2=x2+y2,ρcos θ=x,∴x2+y2=2x,即(x-1)2+y2=1.∴圆C的直角坐标方程为(x-1)2+y2=1.(2)由点A的极坐标,得点A的直角坐标为将代入(x-1)2+y2=1,消去x,y整理得t2--t-=0.设t1,t2为方程t2--t-=0的两个根,则t1t2=-,所以|AP|·|AQ|=|t1t2|=。
2019届高考数学二轮复习第二部分专项二专题四2第2讲专题强化训练Word版含解析
BC? 平面 BCD 且 BC⊥BD , 所以 BC ⊥平面 ABD .
因为 AD ? 平面 ABD,所以 BC⊥AD . 又因为 AB ⊥AD, BC∩AB= B, AB? 平面 ABC, BC? 平面 ABC,
所以 AD ⊥平面 ABC . 又因为 AC? 平面 ABC,
所以 AD ⊥AC.
11.如图所示,已知 AB⊥平面 ACD, DE⊥平面 ACD ,△ ACD 为 等边三角形, AD = DE= 2AB , F 为 CD 的中点.
依题意知 tan ∠CAD = AD= 6,
因为 AD =1,所以 DC = 6.
设 AB= x(x> 0),则 BD= x2+ 1, AB DC
易知 △ABD ∽△ DCB ,所以 AD = BD ,
x
6
即 1=
,解得 x= 2, x2+ 1
故 AB= 2, BD = 3, BC= 3.
由于 AB ⊥ 平面 ADC ,
解析: 因为 DA⊥ 平面 ABC,所以 DA⊥ BC,又 BC⊥ AC,DA ∩AC= A,
所以 BC⊥平面 ADC ,所以 BC⊥ AF.又 AF⊥ CD , BC∩CD = C,所以 AF⊥ 平面 DCB,所以
AF ⊥ EF,AF ⊥ DB.又 DB⊥ AE,AE∩AF =A,所以 DB⊥ 平面 AEF ,所以 DE 为三棱锥 D -AEF
DE ∩BE=E,于是 AC⊥ 平面 BDE .因为 AC? 平面 ABC,所以平面 ABC ⊥ 平面 BDE .又 AC?
平面 ACD,所以平面 ACD ⊥平面 BDE .故选 C. 4.已知 m,n 是两条不同的直线, α , β是两个不同的平面,给出四个命题: ①若 α∩ β= m,n? α , n⊥ m,则 α ⊥β ; ②若 m⊥ α, m⊥ β ,则 α∥ β; ③若 m⊥ α, n⊥β , m⊥ n,则 α⊥β;
2019届高三数学(理)二轮复习精品同步:第1部分 基础送分题:教师用书:题型专题(4) 不等式(通用版)
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
2020届高考数学(理)二轮复习专题强化训练:(一)函数与方程思想理+Word版含答案
专题强化训练(一)函数与方程思想一、选择题1.[2019·河南名校联考]在平面直角坐标系中,已知三点A (a,2),B (3,b ),C (2,3),O 为坐标原点,若向量OB →⊥AC →,则a 2+b 2的最小值为( )A.125B.185C .12D .18解析:由题意得OB →=(3,b ),AC →=(2-a,1), ∵OB →⊥AC →,∴OB → ·AC →=3(2-a )+b =0,∴b =3a -6,∴a 2+b 2=a 2+9(a -2)2=10a 2-36a +36=10⎝ ⎛⎭⎪⎫a -952+185,所以当a =95时,a 2+b 2取得的最小值,且最小值为185,故选B.答案:B2.[2019·安徽马鞍山一模]已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 5=( ) A.3132 B.3116 C.318D.314解析:易知q >0且q ≠1,且⎩⎪⎨⎪⎧a 1q 3=18,a 1(1-q 3)1-q -a 1=34,解得⎩⎪⎨⎪⎧a 1=1,q =12,所以S 5=a 1(1-q 5)1-q =1-1321-12=3116,故选B.答案:B3.[2019·山东滨州期中]若对于任意的x >0,不等式mx ≤x 2+2x +4恒成立,则实数m 的取值范围为( )A .(-∞,4]B .(-∞,6]C .[-2,6]D .[6,+∞)解析:∵x >0,∴mx ≤x 2+2x +4⇔m ≤x +4x +2对任意实数x >0恒成立.令f (x )=x +4x+2,则m ≤f (x )min ,因为f (x )=x +4x+2≥2x ·4x+2=6,当且仅当x =2时取等号,所以m ≤6,故选B.答案:B4.[2019·河北唐山一模]椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点为F 1,F 2,过F 2垂直于x 轴的直线交C 于A ,B 两点,若△AF 1B 为等边三角形,则椭圆C 的离心率为( )A.12B.32C.13D.33解析:由题意可得2c =32×2b 2a ,所以2ac =3(a 2-c 2),即3e 2+2e -3=0,由e∈(0,1),解得e =33,故选D. 答案:D5.[2019·宁夏银川一中二模]已知不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,则a 的取值范围是( )A .[1,+∞)B .[-1,4)C .[-1,+∞)D .[-1,6]解析:不等式xy ≤ax 2+2y 2对于x ∈[1,2],y ∈[2,3]恒成立,等价于a ≥y x-2⎝ ⎛⎭⎪⎫y x2对于x ∈[1,2],y ∈[2,3]恒成立.令t =yx∈[1,3],所以a ≥t -2t 2在[1,3]上恒成立,又y =-2t 2+t =-2⎝ ⎛⎭⎪⎫t -142+18,则当t =1时,y max =-1,所以a ≥-1,故选C.答案:C6.[2019·河南十所名校联考]已知S n 为等差数列{a n }的前n 项和,若a 3+a 6=25,S 5=40,则数列{a n }的公差d =( )A .4B .3C .2D .1解析:由a 3+a 6=25,S 5=40得⎩⎪⎨⎪⎧a 1+2d +a 1+5d =25,5a 1+5×42d =40,解得d =3,故选B.答案:B7.[2019·安徽合肥质检一]设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 1的直线分别交双曲线左、右两支于点M ,N ,连接MF 2,NF 2,若MF 2→·NF 2→=0,|MF 2→|=|NF 2→|,则双曲线C 的离心率为( )A. 2B. 3C. 5D. 6解析:由MF 2→·NF 2→=0,知MF 2→⊥NF 2→.又|MF 2→|=|NF 2→|,则|MF 2→|=|NF 2→|=22|MN →|,且∠F 1NF 2=45°.由双曲线的定义得⎩⎪⎨⎪⎧|MF 2→|-|MF 1→|=2a|NF 1→|-|NF 2→|=2a,两式相加,得|MF 2→|-|NF 2→|+|MN →|=4a ,即|MN →|=4a ,则|NF 2→|=22a ,所以|NF 1→|=2a +|NF 2→|=(2+22)a .在△NF 1F 2中,由余弦定理,得|F 1F 2→|2=|NF 1→|2+|NF 2→|2-2|NF 1→|·|NF 2→|cos ∠F 1NF 2,即4c 2=(22a )2+(2+22)2a 2-2×22a ×(2+22)a ×22,整理,得c 2=3a 2,所以e 2=3,即e =3,故选B. 答案:B8.[2019·河南期末联考]已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin ⎝⎛⎭⎪⎫β+π3=( ) A.33 B.63 C.36D.66解析:由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin(α-β)=3,即sin(α-β)=-12,因为-π2<α-β<π2,所以α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin ⎝ ⎛⎭⎪⎫β+π3=1,即sin ⎝ ⎛⎭⎪⎫β+π3=33,故选A.答案:A9.[2019·新疆昌吉月考]若关于x 的不等式1+a cos x ≥23sin ⎝ ⎛⎭⎪⎫π2+2x ,在R 上恒成立,则实数a 的最大值为( )A .-13B.13C.23D .1解析:1+a cos x ≥23sin ⎝ ⎛⎭⎪⎫π2+2x =23cos 2x =23(2cos 2x -1),令t =cos x ∈[-1,1],则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]上恒成立,令f (t )=4t 2-3at -5,t ∈[-1,1],则应满足条件为⎩⎪⎨⎪⎧f (-1)=4+3a -5≤0,f (1)=4-3a -5≤0,解得-13≤a ≤13,故选B.答案:B10.[2019·河南郑州质检二]函数f (x )是定义在[0,+∞)上的函数,f (0)=0,且在(0,+∞)上可导,f ′(x )为其导函数,若xf ′(x )+f (x )=e x(x -2)且f (3)=0,则不等式f (x )<0的解集为( )A .(0,2)B .(0,3)C .(2,3)D .(3,+∞)解析:令g (x )=xf (x ),则g ′(x )=xf ′(x )+f (x )=e x(x -2),可知当x ∈(0,2)时,g ′(x )<0,g (x )单调递减;当x ∈(2,+∞)时,g ′(x )>0,g (x )单调递增,又f (3)=0,f (0)=0,则g (3)=3f (3)=0,且g (0)=0,则不等式f (x )<0的解集就是xf (x )<0的解集,所以不等式的解集为{x |0<x <3},故选B.答案:B11.[2019·山东荷泽一模]已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,O为坐标原点,A 为椭圆上一点,且AF 1→·AF 2→=0,直线AF 2交y 轴于点M ,若|F 1F 2|=6|OM |,则该椭圆的离心率为( )A.13B.33C.58D.104解析:由题意,可知|F 1F 2|=2c ,则|OM |=c 3,则tan ∠MF 2C =13,又AF 1→·AF 2→=0,则∠F 1AF 2=90°,所以|AF 1||AF 2|=13,设|AF 1|=x ,则|AF 2|=3x ,所以2a =3x +x =4x,4c 2=(3x )2+x 2=10x 2,所以e =c a =104,故选D.答案:D12.[2019·山东泰安期末]定义在(0,+∞)上的函数f (x )满足x 2f ′(x )>1,f (2)=52,则关于x 的不等式f (x )<3-1x的解集为( ) A .(-∞,1) B .(-∞,2) C .(0,1)D .(0,2)解析:令g (x )=f (x )+1x (x >0),则g ′(x )=f ′(x )-1x 2=x 2f ′(x )-1x2>0,所以g (x )在(0,+∞)上单调递增.又f (2)=52,则g (2)=f (2)+12=3,所以f (x )<3-1x ⇔f (x )+1x<3⇔g (x )<g (2).又因为g (x )在(0,+∞)上单调递增,所以0<x <2,故选D.答案:D13.[2019·甘肃、青海、宁夏联考]设S n 为等差数列{a n }的前n 项和,若a 7=5,S 5=-55,则nS n 的最小值为( )A .-343B .-324C .-320D .-243解析:由题意,得⎩⎪⎨⎪⎧a 1+6d =5,5(a 1+2d )=-55,解得⎩⎪⎨⎪⎧a 1=-19,d =4,所以S n =-19n +n (n -1)2×4=2n 2-21n ,nS n =2n 3-21n 2,设f (x )=2x 3-21x 2(x >0),则f ′(x )=6x (x -7),当0<x <7时,f ′(x )<0,f (x )单调递减;当x >7时,f ′(x )>0,f (x )单调递增,所以nS n 的最小值为f (7)=-343,故选A.答案:A14.[2019·陕西咸阳二模]已知定义在R 上的函数f (x )的导函数为f ′(x ),对任意x∈(0,π),有f ′(x )sin x >f (x )cos x ,且f (x )+f (-x )=0,设a =2f ⎝ ⎛⎭⎪⎫π6,b =2f ⎝ ⎛⎭⎪⎫π4,c =-f ⎝ ⎛⎭⎪⎫-π2,则( ) A .a <b <c B .b <c <a C .a <c <bD .c <b <a解析:构造函数g (x )=f (x )sin x ,则g ′(x )=f ′(x )sin x -f (x )cos xsin 2x>0,x ∈(0,π),所以g (x )在(0,π)上单调递增.又f (x )+f (-x )=0,则f (x )为奇函数,从而g (x )为偶函数,所以g ⎝ ⎛⎭⎪⎫-π2=g ⎝ ⎛⎭⎪⎫π2.又因为0<π6<π4<π2<π,所以g ⎝ ⎛⎭⎪⎫π6<g ⎝ ⎛⎭⎪⎫π4<g ⎝ ⎛⎭⎪⎫π2,即f ⎝ ⎛⎭⎪⎫π6sinπ6<f ⎝ ⎛⎭⎪⎫π4sin π4<f ⎝ ⎛⎭⎪⎫π2sinπ2,即2f ⎝ ⎛⎭⎪⎫π6<2f ⎝ ⎛⎭⎪⎫π4<f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫-π2,故选A.答案:A15.[2019·河南十所名校联考]设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,O 为坐标原点,若双曲线及其渐近线上各存在一点Q ,P 使得四边形OPFQ 为矩形,则其离心率为( )A. 3 B .2 C. 5D. 6解析:依据题意作出如下图象,其中四边形OPFQ 为矩形,如图所示.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程为y =±bax ,所以直线OQ 的方程为y =ab x ,直线QF 的方程为y =-b a(x -c ), 联立直线OQ 与直线QF 的方程⎩⎪⎨⎪⎧y =a bx ,y =-b a (x -c ),解得⎩⎪⎨⎪⎧x =b 2c,y =abc ,所以点Q 的坐标为⎝ ⎛⎭⎪⎫b 2c ,ab c ,又点Q 在双曲线C : x 2a 2-y 2b 2=1(a >0,b >0)上, 所以⎝ ⎛⎭⎪⎫b 2c 2a2-⎝ ⎛⎭⎪⎫ab c 2b2=1,整理得c 2=3a 2,所以e =ca=c 2a 2=3,故选A. 答案:A 二、填空题16.[2019·湖南怀化一模]已知正方形ABCD 的边长为2,P 为平面ABCD 内一点,则(PA →+PB →)·(PC →+PD →)的最小值为________.解析:以A 为原点,AB ,AD 所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系因为正方形ABCD 的边长为2,所以A (0,0),B (2,0),C (2,2),D (0,2). 设P (x ,y ),则PA →=(-x ,-y ), PB →=(2-x ,-y ),PC →=(2-x,2-y ),PD →=(-x ,2-y ),所以PA →+PB →=(2-2x ,-2y ),PC →+PD →=(2-2x,4-2y ),所以(PA →+PB →)·(PC →+PD →)=(2-2x )2-2y (4-2y )=4(x -1)2+4y (y -2)=4(x -1)2+4(y -1)2-4≥-4,当且仅当x =y =1时,取等号,故(PA →+PB →)·(PC →+PD →)的最小值为-4.答案:-417.[2019·甘肃、青海、宁夏联考]过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴交于A ,B 两点,若|MA |=|MB |,则a =________.解析:设切点坐标为(t,2t 3+at +a ),y ′=6x 2+a ,则由题意得6t 2+a =2t 3+at +a t +1,整理得2t 3+3t 2=0,解得t =0或t =-32.因为|MA |=|MB |,所以两条切线的斜率互为相反数,故2a +6×⎝ ⎛⎭⎪⎫-322=0,解得a =-274.答案:-27418.[2019·湖北黄冈八模]已知F 1,F 2为双曲线C :x 22-y 2b2=1(b >0)的左、右焦点,点A为双曲线C 右支上一点,AF 1交左支于点B ,△AF 2B 是等腰直角三角形,∠AF 2B =π2,则双曲线C 的离心率为________.解析:设|AF 2|=x ,∵△AF 2B 为等腰直角三角形,∠AF 2B =π2,∴|BF 2|=x ,|AB |=2x ,∠F 2AB =π4,由双曲线的定义知|AF 1|-|AF 2|=22,|BF 2|-|BF 1|=22,∴|AF 1|=22+x ,|BF 1|=x -2 2.又|AF 1|=|AB |+|BF 1|,∴22+x =2x +x -22,解得x =4,∴|AF 1|=22+4,|AF 2|=4.在△AF 2F 1中,由余弦定理得4c 2=42+(4+22)2-2×(4+22)×4×22,解得c =6, ∴e =c a= 3. 答案: 319.[2019·安徽六校联考改编]已知抛物线y 2=2px (p >0)上一点(5,t )到焦点的距离为6,P 、Q 分别为抛物线与圆(x -6)2+y 2=1上的动点,则|PQ |的最小值为________.解析:由抛物线C :y 2=2px (p >0)焦点在x 轴上,准线方程x =-p2,则点(5,t )到焦点的距离为d =5+p2=6,则p =2,所以抛物线方程为y 2=4x .设P (x ,y ),由圆M :(x -6)2+y 2=1,知圆心为(6,1),半径为1,则|PM |=(x -6)2+y 2=(x -6)2+4x =(x -4)2+20,当x =4时,|PQ |取得最小值,最小值为20-1=25-1. 答案:25-120.[2019·广东深圳调研改编]若关于x 的不等式⎝ ⎛⎭⎪⎫1x λx ≤19有正整数解,则实数λ的最小值为________.解析:由⎝ ⎛⎭⎪⎫1x λx ≤19,得x λx ≥9,两边取对数得λ·ln x x ≥ln 9.因为x ∈N *,所以λ>0,所以ln xx≥ln 9λ.令f (x )=ln xx(x >0),则f ′(x )=1-ln xx 2,当x ∈(0,e)时,f ′(x )>0,f (x )单调递增;当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减.因为2<e<3,所以只考虑f (2)和f (3)的大小关系.因为f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (2)<f (3),所以只需f (3)=ln 96≥ln 9λ,即λ≥6,所以实数λ的最小值为6. 答案:6。
2019届高考数学二轮复习 第二部分专项二 专题二 1 第1讲 专题强化训练 Word版含解析
一、选择题1.(2018·南宁模拟)如图,函数f (x )=A sin(2x +φ)⎝⎛⎭⎫A >0,|φ|<π2的图象过点(0,3),则函数f (x )的解析式为( )A .f (x )=2sin ⎝⎛⎭⎫2x -π3 B .f (x )=2sin ⎝⎛⎭⎫2x +π3 C .f (x )=2sin ⎝⎛⎭⎫2x +π6 D .f (x )=2sin ⎝⎛⎭⎫2x -π6 解析:选B.由函数图象可知,A =2,又函数f (x )的图象过点(0,3),所以2sin φ=3,即sin φ=32,由于|φ|<π2,所以φ=π3,于是f (x )=2sin ⎝⎛⎭⎫2x +π3,故选B. 2.(2018·郑州质量检测(二))已知函数f (x )=3cos ⎝⎛⎭⎫2x -π2-cos 2x ,若要得到一个奇函数的图象,则可以将函数f (x )的图象( )A .向左平移π6个单位长度B .向右平移π6个单位长度C .向左平移π12个单位长度D .向右平移π12个单位长度解析:选C.f (x )=3cos ⎝⎛⎭⎫2x -π2-cos 2x =3cos ⎝⎛⎭⎫π2-2x -cos 2x =3sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12,所以将f (x )的图象向左平移π12个单位长度可得到奇函数y =2sin 2x 的图象.故选C.3.(2018·广州调研)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,则ω的取值范围为( )A.⎝⎛⎦⎤0,83 B.⎝⎛⎦⎤0,12 C.⎣⎡⎦⎤12,83D.⎣⎡⎦⎤38,2解析:选B.因为x ∈⎣⎡⎦⎤-π4,2π3,所以ωx +π6∈⎣⎡⎦⎤-π4ω+π6,2π3ω+π6,因为函数f (x )=sin ⎝⎛⎭⎫ωx +π6(ω>0)在区间⎣⎡⎦⎤-π4,2π3上单调递增,所以⎩⎪⎨⎪⎧-π4ω+π6≥2k π-π2,k ∈Z ,2π3ω+π6≤2k π+π2,k ∈Z .又ω>0,所以0<ω≤12,选B.4.(2018·石家庄质量检测(二))已知函数f (x )=2sin(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,已知点A (0,3),B ⎝⎛⎭⎫π6,0,若将它的图象向右平移π6个单位长度,得到函数g (x )的图象,则函数g (x )图象的一条对称轴方程为( )A .x =π12B .x =π4C .x =π3D .x =2π3解析:选A.因为f (0)=2sin φ=3,所以sin φ=32,又|φ|<π,所以φ=π3或2π3,又f ⎝⎛⎭⎫π6=2sin ⎝⎛⎭⎫πω6+φ=0,所以πω6+φ=k π(k ∈Z ),所以ω=⎝⎛⎭⎫k π-π3×6π=6k -2(k ∈Z ),或ω=⎝⎛⎭⎫k π-2π3×6π=6k -4(k ∈Z ),又ω>0,且T 4=2π4ω=π2ω>π6,所以ω<3,所以ω=2,φ=2π3,所以f (x )=2sin ⎝⎛⎭⎫2x +2π3,将其图象向右平移π6个单位长度,得到函数g (x )的图象,所以g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π6+2π3=2sin ⎝⎛⎭⎫2x +π3,g (x )图象的对称轴方程满足2x +π3=k π+π2(k ∈Z ),所以x =k π2+π12(k ∈Z ),故选A.5.(2018·惠州第二次调研)已知函数f (x )=A sin(2x +θ)(|θ|≤π2,A >0)的部分图象如图所示,且f (a )=f (b )=0,对不同的x 1,x 2∈[a ,b ],若f (x 1)=f (x 2),有f (x 1+x 2)=3,则( )A .f (x )在⎝⎛⎭⎫-5π12,π12上是减函数B .f (x )在⎝⎛⎭⎫-5π12,π12上是增函数 C .f (x )在⎝⎛⎭⎫π3,5π6上是减函数 D .f (x )在⎝⎛⎭⎫π3,5π6上是增函数解析:选B.由题图知A =2,设m ∈[a ,b ],且f (0)=f (m ),则f (0+m )=f (m )=f (0)=3,所以2sin θ=3,sin θ=32,又|θ|≤π2,所以θ=π3,所以f (x )=2sin ⎝⎛⎭⎫2x +π3,令-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,解得-5π12+k π≤x ≤π12+k π,k ∈Z ,此时f (x )单调递增.所以选项B正确.6.(2018·河北“五个一名校联盟”模拟)已知函数f (x )=1+2cos x cos(x +3φ)是偶函数,其中φ∈⎝⎛⎭⎫0,π2,则下列关于函数g (x )=cos(2x -φ)的正确描述是( ) A .g (x )在区间⎣⎡⎦⎤-π12,π3上的最小值为-1 B .g (x )的图象可由函数f (x )的图象向上平移2个单位长度,向右平移π3个单位长度得到C .g (x )的图象的一个对称中心是⎝⎛⎭⎫-π12,0 D .g (x )的一个单调递减区间是⎣⎡⎦⎤0,π2 解析:选C.因为函数f (x )=1+2cos x cos(x +3φ)是偶函数,y =1,y =2cos x 都是偶函数,所以y =cos(x +3φ)是偶函数,所以3φ=k π,k ∈Z ,所以φ=k π3,k ∈Z ,又0<φ<π2,所以φ=π3,所以g (x )=cos ⎝ ⎛⎭⎪⎫2x -π3.当-π12≤x ≤π3时,-π2≤2x -π3≤π3,cos ⎝ ⎛⎭⎪⎫2x -π3∈[0,1],故A 错误;f (x )=1+2cos x cos(x +π)=1-2cos 2x =-cos 2x ,显然B 错误;当x =-π12时,g (x )=cos ⎝ ⎛⎭⎪⎫-π2=0,故C 正确;当0≤x ≤π2时,-π3≤2x -π3≤2π3,g (x )=cos ⎝ ⎛⎭⎪⎫2x -π3有增有减,故D 错误.故选C.二、填空题7.(2018·辽宁五校联合体模拟)已知函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,A (a ,0),B (b ,0)是其图象上两点,若|a -b |的最小值是1,则f ⎝⎛⎭⎫16=________.解析:因为函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,所以cos φ=0(0<φ<π),所以φ=π2,所以f (x )=-4sin ωx ,又A (a ,0),B (b ,0)是其图象上两点,且|a -b |的最小值是1,所以函数f (x )的最小正周期为2,所以ω=π,所以f (x )=-4sin πx ,所以f ⎝⎛⎭⎫16=-4sin π6=-2.答案:-28.已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π2),f (0)=-f ⎝⎛⎭⎫π2,若将f (x )的图象向左平移π12个单位长度后所得函数的图象关于原点对称,则φ=________.解析:因为f (0)=-f ⎝ ⎛⎭⎪⎫π2,则sin φ=-sin ⎝ ⎛⎭⎪⎫π2ω+φ,所以ω=4k +2,k ∈Z ,将f (x )的图象向左平移π12个单位长度后所得函数y =sin ⎝ ⎛⎭⎪⎫ωx +ωπ12+φ的图象关于原点对称,则ωπ12+φ=k π,k ∈Z ,由ω>0,0<φ<π2得ω=10,φ=π6.答案:π69.已知函数f (x )=sin(2x +φ)+a cos(2x +φ)(0<φ<π)的最大值为2,且满足f (x )=f ⎝⎛⎭⎫π2-x ,则φ=________.解析:因为f (x )=f ⎝ ⎛⎭⎪⎫π2-x ,所以函数f (x )的图象关于直线x =π4对称,由函数的解析式可得a 2+1=2,即a 2=3.若a =3,则f (x )=sin(2x +φ)+3cos(2x +φ)=2sin ⎝⎛⎭⎪⎫2x +φ+π3,由函数图象的对称性可得2×π4+φ+π3=k π+π2(k ∈Z ),所以φ=k π-π3(k ∈Z ),因为0<φ<π,所以φ=2π3;若a =-3,则f (x )=sin(2x +φ)-3cos(2x +φ)=2sin ⎝⎛⎭⎪⎫2x +φ-π3,由函数图象的对称性可得2×π4+φ-π3=k π+π2(k ∈Z ),所以φ=k π+π3(k ∈Z ),因为0<φ<π,所以φ=π3.综上可得φ=π3或2π3.答案:π3或2π3三、解答题10.已知函数f (x )=sin 4x +cos 4x +32sin 2x cos 2x . (1)求f (x )的最小正周期;(2)当x ∈⎣⎡⎦⎤0,π4时,求f (x )的最值.解:f (x )=sin 4x +cos 4x +32sin 2x cos 2x =(sin 2x +cos 2x )2-2sin 2x cos 2x +34sin 4x =1-12sin 2 2x +34sin 4x=1-12·1-cos 4x 2+34sin 4x=34sin 4x +14cos 4x +34=12sin ⎝ ⎛⎭⎪⎫4x +π6+34. (1)T =2π4=π2.(2)当x ∈⎣⎢⎡⎦⎥⎤0,π4时,4x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,sin ⎝ ⎛⎭⎪⎫4x +π6∈⎣⎡⎦⎤-12,1,则当4x +π6=π2,即x =π12时,函数f (x )取最大值54;当4x +π6=7π6,即x =π4时,函数f (x )取最小值12.所以,当x ∈⎣⎢⎡⎦⎥⎤0,π4时,函数f (x )的最大值是54,最小值是12.11.已知函数f (x )=3sin 2ωx +cos 4ωx -sin 4ωx +1(其中0<ω<1),若点⎝⎛⎭⎫-π6,1是函数f (x )图象的一个对称中心.(1)求f (x )的解析式,并求距y 轴最近的一条对称轴的方程; (2)先列表,再作出函数f (x )在区间[-π,π]上的图象.解:(1)f (x )=3sin 2ωx +(cos 2ωx -sin 2ωx )(cos 2ωx +sin 2ωx )+1 =3sin 2ωx +cos 2ωx +1 =2sin ⎝⎛⎭⎪⎫2ωx +π6+1.因为点⎝ ⎛⎭⎪⎫-π6,1是函数f (x )图象的一个对称中心,所以-ωπ3+π6=k π,k ∈Z ,所以ω=-3k +12,k ∈Z .因为0<ω<1, 所以k =0,ω=12,所以f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6+1.由x +π6=k π+π2,k ∈Z ,得x =k π+π3,k ∈Z ,令k =0,得距y 轴最近的一条对称轴方程为x =π3.(2)由(1)知,f (x )=2sin ⎝ ⎛⎭⎪⎫x +π6+1,当x ∈[-π,π]时,列表如下:12.设函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32(ω>0)的图象上相邻最高点与最低点的距离为π2+4.(1)求ω的值;(2)若函数y =f (x +φ)(0<φ<π2)是奇函数,求函数g (x )=cos(2x -φ)在[0,2π]上的单调递减区间.解:(1)f (x )=sin ωx ·cos ωx -3cos 2ωx +32=12sin 2ωx -3(1+cos 2ωx )2+32 =12sin 2ωx -32cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx -π3,设T 为f (x )的最小正周期,由f (x )的图象上相邻最高点与最低点的距离为π2+4,得⎝⎛⎭⎫T 22+[2f (x )max ]2=π2+4, 因为f (x )max =1,所以⎝⎛⎭⎫T 22+4=π2+4, 整理得T =2π.又ω>0,T =2π2ω=2π,所以ω=12.(2)由(1)可知f (x )=sin ⎝ ⎛⎭⎪⎫x -π3,所以f (x +φ)=sin ⎝⎛⎭⎪⎫x +φ-π3.因为y =f (x +φ)是奇函数,则sin ⎝ ⎛⎭⎪⎫φ-π3=0.又0<φ<π2,所以φ=π3,所以g (x )=cos(2x -φ)=cos ⎝ ⎛⎭⎪⎫2x -π3.令2k π≤2x -π3≤2k π+π,k ∈Z ,则k π+π6≤x ≤k π+2π3,k ∈Z ,所以单调递减区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3,k ∈Z ,又因为x ∈[0,2π],所以当k =0时,递减区间是⎣⎢⎡⎦⎥⎤π6,2π3;当k =1时,递减区间是⎣⎢⎡⎦⎥⎤7π6,5π3.所以函数g (x )在[0,2π]上的单调递减区间是⎣⎢⎡⎦⎥⎤π6,2π3,⎣⎢⎡⎦⎥⎤7π6,5π3.。
2019高考数学二轮复习含解析27套
2019届高考数学二轮复习练习:小题专练专题能力提升练一2.1.1Word版含答案
专题能力提升练一集合、复数与平面向量(45分钟80分)一、选择题(每小题5分,共60分)1.若集合A={-1,2},B={0,1},则集合{z|z=x+y,x∈A,y∈B}的子集共有( )A.2个B.4个C.8个D.16个【解析】选D.当x=-1,y=0时,z=-1;当x=-1,y=1时,z=0;当x=2,y=0时,z=2;当x=2,y=1时,z=3.故z的值为-1,0,2,3,即求集合{-1,0,2,3}的子集个数,根据规律得子集共有24=16个.2.已知复数z1,z2在复平面内对应的点分别为(1,-1),(3,1),则等于 ( )A.1-2iB.1+2iC.-iD.-i【解析】选B.因为z1=1-i,z2=3+i,所以==1+2i.3.已知复数z为纯虚数,且=1,则z= ()A.±2iB.±iC.iD.i【解析】选 B.因为z是纯虚数,所以可设z=ai(a∈R),===1,可得=2,a=±,所以z=±i.4.已知集合A={x∈Z|log2k<x<2},若集合A中至少有3个元素,则实数k的取值范围为( )A.(1,2)B.(0,1)C. D.【解析】选C.因为由题意可知log2k<-1,所以解得0<k<.5.在四边形ABCD中,=,且·=0,则四边形ABCD为( )A.矩形B.菱形C.直角梯形D.等腰梯形【解析】选B.因为=即一组对边平行且相等,·=0即对角线互相垂直;所以该四边形ABCD为菱形.6.(2018·菏泽一模)已知集合A={x|x2-4x+3≥0},B={x∈N|-1≤x≤5},则A∩B=( ) A.{1,3,4,5} B.{0,1,4,5}C.{0,1,3,4,5}D.{3,4,5}【解析】选C.因为集合A={x|x2-4x+3≥0}={x|x≤1或x≥3},B={x∈N|-1≤x≤5}={0,1,2,3,4,5},所以A∩B={0,1,3,4,5}.7.已知R为实数集,A={x|y=lg(x+3)},B={x|x≥2},则R(A∪B)=( )A.{x|x>-3}B.{x|x<-3}C.{x|2≤x<3}D.{x|x≤-3}【解析】选D.因为R为实数集,A={x|y=lg(x+3)}={x|x>-3},B={x|x≥2}, 所以A∪B={x|x>-3},所以R(A∪B)={x|x≤-3}.8.图中网格纸的小正方形的边长是1,复平面内点Z所表示的复数z 满足(z1-i)·z=1,则复数z1= ( )A.-+iB.+iC.-iD.--i【解析】选B.由图得z=2+i,则(z1-i)(2+i)=1,所以z1=i+=+i.9.(2018·北京高考)在复平面内,复数的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】选D.复数z=====+i,所以z的共轭复数=-i,对应的点为,位于第四象限.10.若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=( )A.⌀B.{-1,-4}C.{0}D.{1,4}【解析】选 A.因为M={x|(x+4)(x+1)=0}={-4,-1},N={x|(x-4)(x-1)=0}={1,4},所以M∩N=⌀.11.已知复数z= -2i (其中i为虚数单位),则|z|=)A.3B.3C.2D.2【解析】选 B.z=-2i=-2i=3-i-2i=3-3i,则|z|=3.12.(2018·天津高考)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD上的动点,则·的最小值为( )A. B. C. D.3【解析】选 A.由已知DB=且△BCD为等边三角形,因为=++,所以·=(++)·=,设=λ(0≤λ≤1),则·=·(-)=(-)·(--)=(-)2-(-)·=3λ2-λ+.所以,当λ=时,·有最小值.二、填空题(每小题5分,共20分)13.在△ABC中,==,则sin A∶sin B∶sin C=________.。
2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案8
专题能力训练8 利用导数解不等式及参数的取值范围一、能力突破训练1.设f (x )=x ln x-ax 2+(2a-1)x ,a ∈R .(1)令g (x )=f'(x ),求g (x )的单调区间;(2)已知f (x )在x=1处取得极大值,求实数a 的取值范围.2.(2018全国Ⅲ,理21)已知函数f (x )=(2+x+ax 2)·ln(1+x )-2x.(1)若a=0,证明:当-1<x<0时,f (x )<0;当x>0时,f (x )>0;(2)若x=0是f (x )的极大值点,求a.3.已知函数f (x )=ax+x ln x 的图象在x=e(e 为自然对数的底数)处的切线的斜率为3.(1)求实数a 的值;(2)若f (x )≤kx 2对任意x>0成立,求实数k 的取值范围;(3)当n>m>1(m ,n ∈N *)时,证明:.nmmn>mn4.设函数f (x )=ax 2-a-ln x ,其中a ∈R .(1)讨论f (x )的单调性;(2)确定a 的所有可能取值,使得f (x )>-e 1-x 在区间(1,+∞)内恒成立(e =2.718…为自然对数的底数).1x 5.设函数f (x )=a ln x ,g (x )=x 2.12(1)记g'(x )为g (x )的导函数,若不等式f (x )+2g'(x )≤(a+3)x-g (x )在x ∈[1,e]内有解,求实数a 的取值范围;(2)若a=1,对任意的x 1>x 2>0,不等式m [g (x 1)-g (x 2)]>x 1f (x 1)-x 2f (x 2)恒成立.求m (m ∈Z ,m ≤1)的值.6.已知函数f (x )=-2(x+a )ln x+x 2-2ax-2a 2+a ,其中a>0.(1)设g (x )是f (x )的导函数,讨论g (x )的单调性;(2)证明:存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.二、思维提升训练7.已知函数f (x )=x 3+x 2+ax+1(a ∈R ).13(1)求函数f (x )的单调区间;(2)当a<0时,试讨论是否存在x 0∈,使得f (x 0)=f .(0,12)∪(12,1)(12)专题能力训练8 利用导数解不等式及参数的取值范围一、能力突破训练1.解 (1)由f'(x )=ln x-2ax+2a ,可得g (x )=ln x-2ax+2a ,x ∈(0,+∞).则g'(x )=-2a=,1x 1-2ax x 当a ≤0时,x ∈(0,+∞)时,g'(x )>0,函数g (x )单调递增;当a>0时,x 时,g'(x )>0,函数g (x )单调递增,x 时,函数g (x )单调递减.∈(0,12a )∈(12a ,+∞)所以当a ≤0时,g (x )的单调增区间为(0,+∞);当a>0时,g (x )单调增区间为,单调减区间为(0,12a )(12a ,+∞).(2)由(1)知,f'(1)=0.①当a ≤0时,f'(x )单调递增,所以当x ∈(0,1)时,f'(x )<0,f (x )单调递减.当x ∈(1,+∞)时,f'(x )>0,f (x )单调递增.所以f (x )在x=1处取得极小值,不合题意.②当0<a<时,>1,由(1)知f'(x )在区间内单调递增,1212a (0,12a )可得当x ∈(0,1)时,f'(x )<0,x 时,f'(x )>0.∈(1,12a )所以f (x )在区间(0,1)内单调递减,在区间内单调递增,所以f (x )在x=1处取得极小值,不合题(1,12a )意.③当a=时,=1,f'(x )在区间(0,1)内单调递增,在区间(1,+∞)内单调递减,1212a 所以当x ∈(0,+∞)时,f'(x )≤0,f (x )单调递减,不合题意.④当a>时,0<<1,当x 时,f'(x )>0,f (x )单调递增,1212a ∈(12a ,1)当x ∈(1,+∞)时,f'(x )<0,f (x )单调递减,所以f (x )在x=1处取极大值,合题意.综上可知,实数a 的取值范围为a>12.2.解 (1)当a=0时,f (x )=(2+x )ln(1+x )-2x ,f'(x )=ln(1+x )-,x1+x 设函数g (x )=f'(x )=ln(1+x )-,则g'(x )=,x1+x x (1+x )2当-1<x<0时,g'(x )<0;当x>0时,g'(x )>0.故当x>-1时,g (x )≥g (0)=0,且仅当x=0时,g (x )=0,从而f'(x )≥0,且仅当x=0时,f'(x )=0.所以f (x )在(-1,+∞)内单调递增.又f (0)=0,故当-1<x<0时,f (x )<0;当x>0时,f (x )>0.(2)①若a ≥0,由(1)知,当x>0时,f (x )≥(2+x )·ln(1+x )-2x>0=f (0),这与x=0是f (x )的极大值点矛盾.②若a<0,设函数h (x )==ln(1+x )-f (x )2+x +ax22x2+x +ax 2.由于当|x|<min 时,2+x+ax 2>0,故h (x )与f (x )符号相同.{1,1|a |}又h (0)=f (0)=0,故x=0是f (x )的极大值点当且仅当x=0是h (x )的极大值点.h'(x )=11+x ‒2(2+x +ax 2)-2x (1+2ax )(2+x +ax 2)2=x 2(a 2x 2+4ax +6a +1)(x +1)(ax 2+x +2)2.若6a+1>0,则当0<x<-,且|x|<min 时,h'(x )>0,故x=0不是h (x )的极大值点.6a +14a {1,1|a |}若6a+1<0,则a 2x 2+4ax+6a+1=0存在根x 1<0,故当x ∈(x 1,0),且|x|<min 时,h'(x )<0,所以{1,1|a |}x=0不是h (x )的极大值点.若6a+1=0,则h'(x )=x 3(x -24)(x +1)(x 2-6x -12)2.则当x ∈(-1,0)时,h'(x )>0;当x ∈(0,1)时,h'(x )<0.所以x=0是h (x )的极大值点,从而x=0是f (x )的极大值点.综上,a=-16.3.解 (1)∵f (x )=ax+x ln x ,∴f'(x )=a+ln x+1.又f (x )的图象在点x=e 处的切线的斜率为3,∴f'(e)=3,即a+ln e +1=3,∴a=1.(2)由(1)知,f (x )=x+x ln x ,若f (x )≤kx 2对任意x>0成立,则k 对任意x>0成立.≥1+ln xx令g (x )=,则问题转化为求g (x )的最大值,g'(x )==-1+ln xx 1x ·x -(1+ln x )x 2ln x x 2.令g'(x )=0,解得x=1.当0<x<1时,g'(x )>0,∴g (x )在区间(0,1)内是增函数;当x>1时,g'(x )<0,∴g (x )在区间(1,+∞)内是减函数.故g (x )在x=1处取得最大值g (1)=1,∴k ≥1即为所求.(3)证明:令h (x )=,则h'(x )=x ln xx -1x -1-ln x(x -1)2.由(2)知,x ≥1+ln x (x>0),∴h'(x )≥0,∴h (x )是区间(1,+∞)内的增函数.∵n>m>1,∴h (n )>h (m ),即,n ln nn -1>m ln mm -1∴mn ln n-n ln n>mn ln m-m ln m ,即mn ln n+m ln m>mn ln m+n ln n ,∴ln n mn +ln m m >ln m mn +ln n n .整理,得ln(mn n )m >ln(nm m )n .∴(mn n )m >(nm m )n ,∴nm m n >mn .4.解 (1)f'(x )=2ax-(x>0).1x =2ax 2-1x 当a ≤0时,f'(x )<0,f (x )在区间(0,+∞)内单调递减.当a>0时,由f'(x )=0,有x=12a .此时,当x 时,f'(x )<0,f (x )单调递减;∈(0,12a )当x 时,f'(x )>0,f (x )单调递增.∈(12a ,+∞)(2)令g (x )=,s (x )=ex-1-x.1x ‒1ex -1则s'(x )=e x-1-1.而当x>1时,s'(x )>0,所以s (x )在区间(1,+∞)内单调递增.又由s (1)=0,有s (x )>0,从而当x>1时,g (x )>0.当a ≤0,x>1时,f (x )=a (x 2-1)-ln x<0.故当f (x )>g (x )在区间(1,+∞)内恒成立时,必有a>0.当0<a<时,>1.1212a 由(1)有f <f (1)=0,而g >0,(12a )(12a )所以此时f (x )>g (x )在区间(1,+∞)内不恒成立.当a 时,令h (x )=f (x )-g (x )(x ≥1).≥12当x>1时,h'(x )=2ax--e 1-x >x->0.1x +1x 21x +1x 2‒1x =x 3-2x +1x 2>x 2-2x +1x 2因此,h (x )在区间(1,+∞)单调递增.又因为h (1)=0,所以当x>1时,h (x )=f (x )-g (x )>0,即f (x )>g (x )恒成立.综上,a ∈[12,+∞).5.解 (1)不等式f (x )+2g'(x )≤(a+3)x-g (x ),即a ln x+2x ≤(a+3)x-x 2,12化简,得a (x-ln x )x 2-x.≥12由x ∈[1,e]知x-ln x>0,因而a 设y=,≥12x 2-x x -ln x .12x 2-x x -ln x 则y'=(x -1)(x -ln x )-(1-1x )(12x 2-x)(x -ln x )2=(x -1)(12x +1-ln x)(x -ln x )2.∵当x ∈(1,e)时,x-1>0,x+1-ln x>0,12∴y'>0在x ∈[1,e]时成立.由不等式有解,可得a ≥y min =-,12即实数a 的取值范围是[-12,+∞).(2)当a=1时,f (x )=ln x.由m [g (x 1)-g (x 2)]>x 1f (x 1)-x 2f (x 2)恒成立,得mg (x 1)-x 1f (x 1)>mg (x 2)-x 2f (x 2)恒成立,设t (x )=x 2-x ln x (x>0).m2由题意知x 1>x 2>0,则当x ∈(0,+∞)时函数t (x )单调递增,∴t'(x )=mx-ln x-1≥0恒成立,即m 恒成立.≥ln x +1x 因此,记h (x )=,得h'(x )=ln x +1x -ln xx 2.∵函数在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,∴函数h (x )在x=1处取得极大值,并且这个极大值就是函数h (x )的最大值.由此可得h (x )max =h (1)=1,故m ≥1,结合已知条件m ∈Z ,m ≤1,可得m=1.6.(1)解 由已知,函数f (x )的定义域为(0,+∞),g (x )=f'(x )=2(x-a )-2ln x-2,(1+ax )所以g'(x )=2-2x +2ax2=2(x -12)2+2(a -14)x 2.当0<a<时,g (x )在区间内单调递增,14(0,1-1-4a 2),(1+1-4a2,+∞)在区间内单调递减;(1-1-4a 2,1+1-4a2)当a 时,g (x )在区间(0,+∞)内单调递增.≥14(2)证明 由f'(x )=2(x-a )-2ln x-2=0,解得a=(1+ax )x -1-ln x 1+x -1.令φ(x )=-2ln x+x 2-2x-2(x +x -1-ln x 1+x -1)(x -1-ln x 1+x -1)(x -1-ln x 1+x -1)2+x -1-ln x 1+x -1.则φ(1)=1>0,φ(e)=--2<0.e (e -2)1+e -1(e -21+e -1)2故存在x 0∈(1,e),使得φ(x 0)=0.令a 0=,u (x )=x-1-ln x (x ≥1).x 0-1-ln x 01+x -1由u'(x )=1-0知,函数u (x )在区间(1,+∞)内单调递增.1x ≥所以0==a 0<<1.u (1)1+1<u (x 0)1+x -10u (e )1+e -1=e -21+e -1即a 0∈(0,1).当a=a 0时,有f'(x 0)=0,f (x 0)=φ(x 0)=0.由(1)知,f'(x )在区间(1,+∞)内单调递增,故当x ∈(1,x 0)时,f'(x )<0,从而f (x )>f (x 0)=0;当x ∈(x 0,+∞)时,f'(x )>0,从而f (x )>f (x 0)=0.所以,当x ∈(1,+∞)时,f (x )≥0.综上所述,存在a ∈(0,1),使得f (x )≥0在区间(1,+∞)内恒成立,且f (x )=0在区间(1,+∞)内有唯一解.二、思维提升训练7.解 (1)f'(x )=x 2+2x+a ,方程x 2+2x+a=0的判别式为Δ=4-4a ,①当a ≥1时,Δ≤0,则f'(x )≥0,此时f (x )在R 上是增函数;②当a<1时,方程x 2+2x+a=0两根分别为x 1=-1-,x 2=-1+,1-a 1-a 解不等式x 2+2x+a>0,解得x<-1-或x>-1+,1-a 1-a 解不等式x 2+2x+a<0,解得-1-<x<-1+,1-a 1-a 此时,函数f (x )的单调递增区间为(-∞,-1-)和(-1+,+∞),1-a 1-a 单调递减区间为(-1-,-1+).1-a 1-a 综上所述,当a ≥1时,函数f (x )的单调递增区间为(-∞,+∞);当a<1时,函数f (x )的单调递增区间为(-∞,-1-)和(-1+,+∞),单调递减区间为(-1-1-a 1-a 1-a,-1+).1-a (2)f (x 0)-f +ax 0+1--a -1(12)=13x 30+x 2013·(12)3‒(12)2·12=+a 13[x 30-(12)3]+[x 20-(12)2](x 0-12)=13(x 0-12)(x 20+x 02+14)+(x 0-12)·+a +x 0+(4+14x 0+7+12a ).(x 0+12)(x 0-12)=(x 0-12)·(x 203+x 06+11212+a )=112(x 0-12)x 20若存在x 0,使得f (x 0)=f ,则4+14x 0+7+12a=0在内有解.∈(0,12)∪(12,1)(12)x 20(0,12)∪(12,1)由a<0,得Δ=142-16(7+12a )=4(21-48a )>0,故方程4+14x 0+7+12a=0的两根为x 1'=,x'2=x 20-7-21-48a 4-7+21-48a4.由x 0>0,得x 0=x'2=,-7+21-48a4依题意,0<<1,即7<<11,所以49<21-48a<121,即-<a<-,-7+21-48a21-48a 2512712又由得a=-,-7+21-48a 4=1254故要使满足题意的x 0存在,则a ≠-54.综上,当a 时,存在唯一的x 0满足f (x 0)=f ,当a ∈(-2512,-54)∪(-54,-712)∈(0,12)∪(12,1)(12)∈时,不存在x 0满足f (x 0)=f (-∞,-2512]∪(-54)∪[-712,0)∈(0,12)∪(12,1)(12).。
2019届高考数学二轮复习 第二部分专项二 专题一 4 第4讲 专题强化训练 Word版含解析
1.(2018·高考全国卷Ⅱ)已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.解:(1)当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减. (2)证明:由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点, 从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点. 综上,f (x )只有一个零点.2.(2018·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)若f (x )≥0,求a 的取值范围;(2)若f (x 1)=f (x 2),且x 1≠x 2,证明:x 1+x 2>2a . 解:(1)由题意知,f ′(x )=x -a 2x =(x +a )(x -a )x .当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增.当x =a 时,f (x )取得最小值f (a )=12a 2-a 2ln a .令12a 2-a 2ln a ≥0,解得0<a ≤ e. 故a 的取值范围是(0, e ].(2)证明:由(1)知,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, 设0<x 1<a <x 2,则2a -x 1>a .要证x 1+x 2>2a 即x 2>2a -x 1,则只需证f (x 2)>f (2a -x 1). 因f (x 1)=f (x 2),则只需证f (x 1)>f (2a -x 1). 设g (x )=f (x )-f (2a -x ),0<x <a .则g ′(x )=f ′(x )+f ′(2a -x )=x -a 2x +2a -x -a 22a -x =-2a (a -x )2x (2a -x )<0,所以g (x )在(0,a )上单调递减,从而g (x )>g (a )=0. 又由题意得0<x 1<a ,于是g (x 1)=f (x 1)-f (2a -x 1)>0,即f (x 1)>f (2a -x 1). 因此x 1+x 2>2a .3.(2018·石家庄质量检测(二))已知函数f (x )=x +ax ln x (a ∈R ). (1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2.解:(1)由题意x >0,f ′(x )=1+a +a ln x .①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增; ②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )<0,当x ∈(e -1-1a ,+∞)时,f ′(x )>0,所以函数f (x )在(0,e -1-1a )上单调递减,在(e-1-1a,+∞)上单调递增;③当a <0时,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a >0,故当x ∈(0,e -1-1a )时,f ′(x )>0,当x ∈(e -1-1a ,+∞)时,f ′(x )<0,所以函数f (x )在(0,e-1-1a)上单调递增,在(e -1-1a ,+∞)上单调递减.(2)证明:由(1)可知若函数f (x )=x +ax ln x 存在极大值,且极大值点为1, 则a <0,且e -1-1a =1,解得a =-1,故此时f (x )=x -x ln x , 要证f (x )≤e -x +x 2,只须证x -x ln x ≤e -x +x 2,即证e -x +x 2-x +x ln x ≥0, 设h (x )=e -x +x 2-x +x ln x ,x >0, 则h ′(x )=-e -x +2x +ln x . 令g (x )=h ′(x ), 则g ′(x )=e -x +2+1x>0,所以函数h ′(x )=-e -x +2x +ln x 在(0,+∞)上单调递增, 又h ′⎝⎛⎭⎫1e =-e -1e +2e -1<0,h ′(1)=-1e+2>0, 故h ′(x )=-e -x +2x +ln x 在⎝⎛⎭⎫1e ,1上存在唯一零点x 0,即-e -x 0+2x 0+ln x 0=0. 所以当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以函数h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,故h (x )≥h (x 0)=e -x 0+x 20-x 0+x 0ln x 0,所以只需证h (x 0)=e -x 0+x 20-x 0+x 0ln x 0≥0即可,由-e -x 0+2x 0+ln x 0=0, 得e -x 0=2x 0+ln x 0,所以h (x 0)=(x 0+1)(x 0+ln x 0), 又x 0+1>0,所以只要x 0+ln x 0≥0即可,当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x 0⇒-e -x 0+x 0<0, 所以-e -x 0+x 0+x 0+ln x 0<0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x 0⇒-e -x 0+x 0>0,所以-e -x 0+x 0+x 0+ln x 0>0与-e -x 0+2x 0+ln x 0=0矛盾; 当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x 0⇒-e -x 0+x 0=0, 得-e -x 0+2x 0+ln x 0=0,故x 0+ln x 0=0成立, 得h (x 0)=(x 0+1)(x 0+ln x 0)=0, 所以h (x )≥0,即f (x )≤e -x +x 2.4.(2018·郑州质量检测(二))已知函数f (x )=e x -x 2. (1)求曲线y =f (x )在x =1处的切线方程; (2)求证:当x >0时,e x +(2-e )x -1x ≥ln x +1.解:(1)由题意得,f ′(x )=e x -2x , 则f ′(1)=e -2,f (1)=e -1,所以曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1. (2)证明:f ′(x )=e x -2x ,令h (x )=e x -2x , 则h ′(x )=e x -2,易知f ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, 所以f ′(x )≥f ′(ln 2)=2-2ln 2>0, 所以f (x )在(0,+∞)上单调递增. 又曲线y =f (x )过点(1,e -1),且曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1,所以可猜测:当x >0,x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方. 下证:当x >0时,f (x )≥(e -2)x +1.设g (x )=f (x )-(e -2)x -1=e x -x 2-(e -2)x -1,x >0, 则g ′(x )=e x -2x -(e -2),令φ(x )=g ′(x ), 则φ′(x )=e x -2,易知g ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,又g ′(0)=3-e>0,g ′(1)=0,0<ln 2<1,所以g ′(ln 2)<0,所以存在x 0∈(0,ln 2),使得g ′(x 0)=0,所以当x ∈(0,x 0)∪(1,+∞)时,g ′(x )>0;当x ∈(x 0,1)时,g ′(x )<0, 故g (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增, 又g (1)=0,所以g (x )=e x -x 2-(e -2)x -1≥0,当且仅当x =1时取等号,故e x +(2-e )x -1x≥x ,x >0.又x ≥ln x +1,所以e x +(2-e )x -1x ≥ln x +1,当且仅当x =1时等号成立.。
2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案3
16.已知������������
⊥
������������,|������������|=������,|������������|=t.若点
P
是△ABC
所在平面内的一点,且������������
=
|������������|
+
,则������������·������������的最
|������������|
������ - i
20.已知 a∈R,i 为虚数单位,若2 + i为实数,则 a 的值为 .
高清试卷 下载可打印
高清试卷 下载可打印
专题能力训练 3 平面向量与复数
一、能力突破训练
11
������ - ������i
1.B 解析 p1:设 z=a+bi(a,b∈R),则������ = ������ + ������i = ������2 + ������2 ∈ R,所以 b=0,所以 z∈R.故 p1 正确;
3.D 解析 (1+i)(2-i)=2+i-i2=3+i.
5i
( )
3
A.-2a2
3
B.-4a2
3
C.4a2
3
D.2a2
1
8.已知非零向量 m,n 满足 4|m|=3|n|,cos<m,n>=3.若 n⊥(tm+n),则实数 t 的值为( )
A.4
B.-4
9
9
C.4
D.-4
9.如图,已知平面四边形 ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC 与 BD 交于点 O,记 I1=������������·������������,I2= ������������·������������,I3=������������·������������,则( )
2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案11
专题能力训练 11 等差数列与等比数列
一、能力突破训练
1.D 解析 因为 a4+a10+a16=30,所以 3a10=30,即 a10=10,所以 a18-2a14=-a10=-10.故选 D. 2.A 解析 由题意得 log2(a2·a3·a5·a7·a8)=log2������55=5log2a5=5,所以 a5=2.所以 a1·a9=������25=4.故选 A.
B.5
C.2
D.25
3.设{an}是等比数列,Sn 是{an}的前 n 项和.对任意正整数 n,有 an+2an+1+an+2=0,又 a1=2,则 S101 的值为 ( )
A.2
B.200
C.-2
D.0
4.已知{an}是等差数列,公差 d 不为零,前 n 项和是 Sn,若 a3,a4,a8 成等比数列,则( )
n=2n+1-2-n.
������(1 + ������)
由题意,N>100,令 2 >100,得 n≥14 且 n∈N*,即 N 出现在第 13 组之后.若要使最小整数 N 满 足:N>100 且前 N 项和为 2 的整数幂,则 SN-������������(1 + ������)应与-2-n 互为相反数,即 2k-1=2+n(k∈N*,n≥14),所
A.440
B.330
C.220
D.110
2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案15
专题能力训练15 立体几何中的向量方法一、能力突破训练1.如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(1)求证:EG ∥平面ADF ;(2)求二面角O-EF-C 的正弦值;(3)设H 为线段AF 上的点,且AH=HF ,求直线BH 和平面CEF 所成角的正弦值.232.(2018北京,理16)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC=,AC=AA 1=2.5(1)求证:AC ⊥平面BEF ;(2)求二面角B-CD-C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.3.如图,几何体是圆柱的一部分,它是由矩形ABCD (及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是的中点.⏜DF (1)设P 是上的一点,且AP ⊥BE ,求∠CBP 的大小;⏜CE (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.4.如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=AD=1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.5.如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,PA=PD=,AB=4.6(1)求证:M 为PB 的中点;(2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.6.如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC=EB ,AB=4,tan ∠EAB=.14(1)证明:平面ADE ⊥平面ACD ;(2)当三棱锥C-ADE 体积最大时,求二面角D-AE-B 的余弦值.二、思维提升训练7.如图甲所示,BO是梯形ABCD的高,∠BAD=45°,OB=BC=1,OD=3OA,现将梯形ABCD沿OB折起3成如图乙所示的四棱锥P-OBCD,使得PC=,E是线段PB上一动点.(1)证明:DE和PC不可能垂直;(2)当PE=2BE时,求PD与平面CDE所成角的正弦值.8.如图,平面PAD ⊥平面ABCD ,四边形ABCD 为正方形,∠PAD=90°,且PA=AD=2;E ,F ,G 分别是线段PA ,PD ,CD 的中点.(1)求证:PB ∥平面EFG.(2)求异面直线EG 与BD 所成的角的余弦值.(3)在线段CD 上是否存在一点Q ,使得点A 到平面EFQ的距离为?若存在,求出CQ 的值;若不存在,45请说明理由.专题能力训练15 立体几何中的向量方法一、能力突破训练1.解 依题意,OF ⊥平面ABCD ,如图,以O 为原点,分别以的方向为x 轴、y 轴、z 轴的正方AD ,BA ,OF 向建立空间直角坐标系,依题意可得O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0),D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).(1)证明:依题意,=(2,0,0),=(1,-1,2).AD AF 设n 1=(x ,y ,z )为平面ADF 的法向量,则{n 1·AD =0,n 1·AF =0,即{2x =0,x -y +2z =0.不妨设z=1,可得n 1=(0,2,1),又=(0,1,-2),可得n 1=0,EG EG ·又因为直线EG ⊄平面ADF ,所以EG ∥平面ADF.(2)易证=(-1,1,0)为平面OEF 的一个法向量.依题意,=(1,1,0),=(-1,1,2).OA EF CF 设n 2=(x ,y ,z )为平面CEF 的法向量,则{n 2·EF =0,n 2·CF =0,即{x +y =0,-x +y +2z =0.不妨设x=1,可得n 2=(1,-1,1).因此有cos <,n 2,OA OA n |OA |·|n 2|63于是sin <,n 2>=OA 33.所以,二面角O-EF-C的正弦值为33.(3)由AH=HF ,得AH=AF.2325因为=(1,-1,2),AF所以,AH =25AF =(25,-25,45)进而有H ,从而,(-35,35,45)BH =(25,85,45)因此cos <,n 2BH BH ·n |BH |·|n 2|721.所以,直线BH 和平面CEF所成角的正弦值为721.2.(1)证明 在三棱柱ABC-A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF.∵AB=BC ,∴AC ⊥BE ,∴AC ⊥平面BEF.(2)解 由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.∵CC 1⊥平面ABC ,∴EF ⊥平面ABC.∵BE ⊂平面ABC ,∴EF ⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).=(2,0,1),=(1,2,0).∴CD CB 设平面BCD 的法向量为n =(a ,b ,c ),则{n ·C D =0,n ·CB =0,∴{2a +c =0,a +2b =0.令a=2,则b=-1,c=-4,∴平面BCD 的法向量n =(2,-1,-4).又平面CDC 1的法向量为=(0,2,0),EB∴cos <n ,>==-EB n EB |n ||EB |2121.由图可得二面角B-CD-C 1为钝角,∴二面角B-CD-C 1的余弦值为-2121.(3)证明 平面BCD 的法向量为n =(2,-1,-4),∵G (0,2,1),F (0,0,2),=(0,-2,1),∴GF ∴n =-2,∴n 与不垂直,·GF GF ∴FG 与平面BCD 不平行且不在平面BCD 内,∴FG 与平面BCD 相交.3.解 (1)因为AP ⊥BE ,AB ⊥BE ,AB ,AP ⊂平面ABP ,AB ∩AP=A ,所以BE ⊥平面ABP ,又BP ⊂平面ABP ,所以BE ⊥BP ,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取的中点H ,连接EH ,GH ,CH.⏜EC因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=32+22=13.取AG 中点M ,连接EM ,CM ,EC ,则EM ⊥AG ,CM ⊥AG ,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM==213-1 3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC 2=22+22-2×2×2×cos 120°=12,所以EC=2,因此△EMC 为等边三角形,故所3求的角为60°.解法二:以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,,3),C (-1,,0),故=(2,0,-3),=(1,,0),=(2,0,3),设33AE AG 3CG m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由可得{m ·AE =0,m ·AG =0,{2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-,2).3设n =(x 2,y 2,z 2)是平面ACG 的一个法向量.由可得{n ·A G =0,n ·CG =0,{x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-,-2).3所以cos <m ,n >=m ·n |m ||n |=12.因此所求的角为60°.4.解 以A 为原点,的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).AB ,AD ,AA 1设AB=a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ,B 1(a ,0,1),(a 2,1,0)故=(0,1,1),=(a ,0,1),AD 1B 1E =(-a 2,1,-1),AB 1AE =(a 2,1,0).(1)证明:=-0+1×1+(-1)×1=0,∴B 1E ⊥AD 1.∵AD 1·B 1E a 2×(2)假设在棱AA 1上存在一点P (0,0,z 0),使得DP ∥平面B 1AE ,此时=(0,-1,z 0).DP 又设平面B 1AE 的法向量n =(x ,y ,z ).∵n ⊥平面B 1AE ,∴n ,n ,得⊥AB 1⊥AE {ax +z =0,ax 2+y =0.取x=1,得平面B 1AE 的一个法向量n =(1,-a 2,-a ).要使DP ∥平面B 1AE ,只要n ,有-az 0=0,⊥DP a 2解得z 0=12.又DP ⊄平面B 1AE ,∴存在点P ,满足DP ∥平面B 1AE ,此时AP=12.5.(1)证明 设AC ,BD 交点为E ,连接ME.因为PD ∥平面MAC ,平面MAC ∩平面PDB=ME ,所以PD ∥ME.因为ABCD 是正方形,所以E 为BD 的中点.所以M 为PB 的中点.(2)解 取AD 的中点O ,连接OP ,OE.因为PA=PD ,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD ,且OP ⊂平面PAD ,所以OP ⊥平面ABCD.因为OE ⊂平面ABCD ,所以OP ⊥OE.因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,),D (2,0,0),B (-2,4,0),=(4,-4,0),=(2,0,-).2BD PD 2设平面BDP 的法向量为n =(x ,y ,z ),则{n ·BD =0,n ·PD =0,即{4x -4y =0,2x -2z =0.令x=1,则y=1,z= 2.于是n =(1,1,),平面PAD 的法向量为p =(0,1,0).2所以cos <n ,p >=n ·p|n ||p |=12.由题知二面角B-PD-A为锐角,所以它的大小为π3.(3)解 由题意知M ,C (2,4,0),(-1,2,22)MC =(3,2,-22).设直线MC 与平面BDP 所成角为α,则sin α=|cos <n ,>|=MC ·MC ||n ||MC |=269.所以直线MC 与平面BDP 所成角的正弦值为269.6.(1)证明 因为AB 是直径,所以BC ⊥AC.因为CD ⊥平面ABC ,所以CD ⊥BC.因为CD ∩AC=C ,所以BC ⊥平面ACD.因为CD ∥BE ,CD=BE ,所以四边形BCDE 是平行四边形,所以BC ∥DE ,所以DE ⊥平面ACD.因为DE ⊂平面ADE ,所以平面ADE ⊥平面ACD.(2)解 依题意,EB=AB×tan ∠EAB=4=1.×14由(1)知V C-ADE =V E-ACD =S △ACD ×DE13×=AC×CD×DE13×12×=AC×BC (AC 2+BC 2)16×≤112×=AB 2=,112×43当且仅当AC=BC=2时等号成立.2如图,建立空间直角坐标系,则D (0,0,1),E (0,2,1),A (2,0,0),B (0,2,0),222则=(-2,2,0),=(0,0,1),AB 22BE =(0,2,0),=(2,0,-1).DE 2DA 2设平面DAE 的法向量为n 1=(x ,y ,z ),则取n 1=(1,0,2).{n 1·DE =0,n 1·DA =0,即{22y =0,22x -z =0,2设平 面ABE 的法向量为n 2=(x ,y ,z ),则{n 2·BE =0,n 2·AB =0,即{z =0,-22x +22y =0,取n 2=(1,1,0),所以cos <n 1,n 2>=n 1·n 2|n 1||n 2|=12×9=26.可以判断<n 1,n 2>与二面角D-AE-B 的平面角互补,所以二面角D-AE-B的余弦值为-26.二、思维提升训练7.解 如题图甲所示,因为BO 是梯形ABCD 的高,∠BAD=45°,所以AO=OB.因为BC=1,OD=3OA ,可得OD=3,OC=,如题图乙所示,OP=OA=1,OC=,PC=,所以有223OP 2+OC 2=PC 2.所以OP ⊥OC.而OB ⊥OP ,OB ⊥OD ,即OB ,OD ,OP 两两垂直,故以O 为原点,建立空间直角坐标系(如图),则P (0,0,1),C (1,1,0),D (0,3,0),(1)证明:设E (x ,0,1-x ),其中0≤x ≤1,所以=(x ,-3,1-x ),=(1,1,-1).DE PC 假设DE 和PC 垂直,则=0,有x-3+(1-x )·(-1)=0,解得x=2,这与0≤x ≤1矛盾,假设不成立,所DE ·PC 以DE 和PC 不可能垂直.(2)因为PE=2BE ,所以E 设平面CDE 的一个法向量是n =(x ,y ,z ),因为=(-1,2,0),(23,0,13).CD ,所以n =0,n =0,DE =(13,-3,13)·CD ·DE 即{-x +2y =0,23x -3y +13z =0.令y=1,则n =(2,1,5),而=(0,3,-1),PD 所以|cos <,n >|=PD |PD |PD ||n ||=315.所以PD 与平面CDE 所成角的正弦值为315.8.解 ∵平面PAD ⊥平面ABCD ,且∠PAD=90°,∴PA ⊥平面ABCD ,而四边形ABCD 是正方形,即AB⊥AD.故可建立如图所示的空间直角坐标系,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).(1)证明:=(2,0,-2),=(0,-1,0),=(1,1,-1),∵PB FE FG 设=s +t ,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),解得s=t=2,PB FE FG =2+2∴PB FE FG .又不共线,共面.∵FE 与FG ∴FE 与FG ∵PB ⊄平面EFG ,∴PB ∥平面EFG.(2)=(1,2,-1),=(-2,2,0),∵EG BD =(1,2,-1)·(-2,2,0)=1×(-2)+2×2+(-1)×0=2.∴EG ·BD 又∵||=,EG 12+22+(-1)2=6||==2,BD (-2)2+22+022∴cos <>=EG ,BD EG BD |EG |·|BD |26×22=36.因此,异面直线EG 与BD 所成的角的余弦值为36.(3)假设在线段CD 上存在一点Q 满足题设条件,令CQ=m (0≤m ≤2),则DQ=2-m ,∴点Q 的坐标为(2-m ,2,0),=(2-m ,2,-1).∴EQ 而=(0,1,0),EF 设平面EFQ 的法向量为n =(x ,y ,z ),则{n ·EF =(x ,y ,z )·(0,1,0)=0,n ·EQ =(x ,y ,z )·(2-m ,2,-1)=0,∴{y =0,(2-m )x +2y -z =0,令x=1,则n =(1,0,2-m ),∴点A 到平面EFQ 的距离d=,|AE ·n ||n |=|2-m |1+(2-m )2=45即(2-m )2=,169∴m=或m=(不合题意,舍去),23103故存在点Q ,当CQ=时,点A 到平面EFQ 的距离为2345.。
2019年高考数学(理科,天津课标版)二轮复习专题能力训练 Word版含答案23
专题能力训练23不等式选讲(选修4—5)能力突破训练1.不等式|x-2|+|4-x|<3的解集是()A.[32,92] B.(32,92)C.(1,5)D.(3,9)2.已知不等式|x-2|>1的解集与关于x的不等式x2+ax+b>0的解集相同,则a,b的值为()A.a=1,b=3B.a=3,b=1C.a=-4,b=3D.a=3,b=-43.“a>2”是“关于x的不等式|x+1|+|x-1|≤a的解集非空”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件4.不等式x+3>|2x-1|的解集为.5.若关于x的不等式|x+1|+|x-3|≥|m-1|恒成立,则m的取值范围为.6.设函数f(x)=|x-4|+|x-3|,则f(x)的最小值m=.7.若函数f(x)=√|x+2|+|x-m|-4的定义域为R,则实数m的取值范围为.8.使关于x的不等式|x+1|+k<x有解的实数k的取值范围是.思维提升训练9.不等式1<|x+1|<3的解集为()A.(0,2)B.(-2,0)∪(2,4)C.(-4,0)D.(-4,-2)∪(0,2)10.已知不等式|y+4|-|y|≤2x +a 2x 对任意的实数x ,y 成立,则正实数a 的最小值为( )A.1B.2C.3D.4 11.已知关于x 的不等式|2x-m|≤1的整数解有且仅有一个值为2,则整数m= .12.若不等式|x+a|≤2在x ∈[1,2]时恒成立,则实数a 的取值范围是 .13.已知函数f (x )=|x-2|-|x-5|,则不等式f (x )≥x 2-8x+15的解集为 .14.若不等式x 2+25+|x 3-5x 2|≥ax 在[1,12]上恒成立,则实数a 的取值范围是 .15.设函数f (x )=|x-4|+|x-a|(a<4),(1)若f (x )的最小值为3,则a= ;(2)不等式f (x )≥3-x 的解集为 .##专题能力训练23 不等式选讲(选修4—5)能力突破训练1.B 解析 原不等式可化为{x <2,2-x +4-x <3或{2≤x <4,x -2+4-x <3或{x ≥4,x -2+x -4<3, 解得32<x<2或2≤x<4或4≤x<92,即32<x<92.故不等式的解集为{x |32<x <92}.2.C 解析 解不等式|x-2|>1得x<1或x>3,所以x 2+ax+b=0的两个根为1和3,由根与系数的关系知a=-4,b=3.3.A 解析 ∵|x+1|+|x-1|表示在数轴上到-1,1两点距离和大于等于2,∴a>2时,不等式|x+1|+|x-1|≤a 非空.而当a=2时|x+1|+|x-1|≤a 也非空.∴必要性不成立,故选A .4.{x |-23<x <4} 解析 不等式等价于{2x -1≥0,x +3>2x -1或{2x -1<0,x +3>1-2x ,解得12≤x<4或-23<x<12,故不等式解集为{x |-23<x <4}.5.[-3,5] 解析 ∵|x+1|+|x-3|≥|(x+1)-(x-3)|=4,∴不等式|x+1|+|x-3|≥|m-1|恒成立,只需|m-1|≤4,即-3≤m ≤5.6.1 解析 方法一:f (x )=|x-4|+|x -3|≥|(x-4)-(x-3)|=1,故函数f (x )的最小值为1,即m=1.方法二:f (x )={2x -7,x ≥41,3≤x <4,7-2x ,x <3.当x ≥4时,f (x )≥1;当x<3时,f (x )>1;当3≤x<4时,f (x )=1,故函数f (x )的最小值为1.所以m=1.7.(-∞,-6]∪[2,+∞) 解析 根据题意,不等式|x+2|+|x-m|-4≥0恒成立,所以(|x+2|+|x-m|-4)min ≥0.又|x+2|+|x-m|-4≥|m+2|-4,所以|m+2|-4≥0⇒m ≤-6或m ≥2.8.(-∞,-1) 解析 ∵|x+1|+k<x ⇔k<x-|x+1|,又x-|x+1|={2x +1,x <-1,-1,x ≥-1, ∴x-|x+1|的最大值为-1.∴k<-1.思维提升训练9.D 解析 由{|x +1|>1,|x +1|<3⇒{x +1>1或x +1<-1,-3<x +1<3⇒{x >0或x <-2,-4<x <2,故-4<x<-2或0<x<2.10.D11.4 解析 由|2x-m|≤1,得m -12≤x ≤m+12. ∵不等式的整数解为2,∴m -12≤2≤m+12⇒3≤m ≤5.又不等式仅有一个整数解2,∴m=4.12.[-3,0] 解析 由题意得-2≤x+a ≤2,-2-x ≤a ≤2-x ,所以(-2-x )max ≤a ≤(2-x )min ,因为x ∈[1,2],所以-3≤a ≤0.13.{x|5-√3≤x ≤6} 解析 原不等式可化为{x <2,2-x -(5-x )≥x 2-8x +15或{2≤x <5,x -2-(5-x )≥x 2-8x +15或{x ≥5,x -2-(x -5)≥x 2-8x +15,解得x ∈⌀或5-√3≤x<5或5≤x ≤6,故5-√3≤x ≤6,即不等式的解集为{x|5-√3≤x ≤6}.14.(-∞,10]15.(1)1 (2)R 解析 (1)因为|x-4|+|x-a|≥|(x-4)-(x-a )|=|a-4|.又因为a<4,所以当且仅当a ≤x ≤4时等号成立. 故|a-4|=3,即a=1.(2)不等式f (x )≥3-x 即不等式|x-4|+|x-a|≥3-x (a<4), ①当x<a 时,原不等式可化为4-x+a-x ≥3-x ,即x ≤a+1.所以,当x<a 时,原不等式成立.②当a ≤x ≤4时,原不等式可化为4-x+x-a ≥3-x. 即x ≥a-1.所以,当a ≤x ≤4时,原不等式成立.③当x>4时,原不等式可化为x-4+x-a ≥3-x.即x ≥a+73.由于a<4时4>a+73. 所以,当x>4时,原不等式成立.综合①②③可知,不等式f (x )≥3-x 的解集为R .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.(2018·福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,则不同的安排方案共有( )A .90种B .180种C .270种D .360种解析:选B.可分两步:第一步,甲、乙两个展区各安排一个人,有A 26种不同的安排方案;第二步,剩下两个展区各两个人,有C 24C 22种不同的安排方案,根据分步乘法计数原理,不同的安排方案的种数为A 26C 24C 22=180.故选B.2.(2018·河北“五个一名校联盟”模拟)⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( )A .-3 2B .3 2C .6D .-6解析:选D.通项T r +1=C r 3⎝⎛⎭⎫2x 23-r(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r,当-6+6r =0,即r=1时为常数项,T 2=-6,故选D.3.若二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为-1,则含x 2项的系数为( ) A .560 B .-560 C .280D .-280解析:选 A.取x =1,得二项式⎝⎛⎭⎫x 2+ax 7的展开式的各项系数之和为(1+a )7,即(1+a )7=-1,1+a =-1,a =-2.二项式⎝⎛⎭⎫x 2-2x 7的展开式的通项T r +1=C r 7·(x 2)7-r ·⎝⎛⎭⎫-2x r=C r 7·(-2)r·x 14-3r .令14-3r =2,得r =4.因此,二项式⎝⎛⎭⎫x 2-2x 7的展开式中含x 2项的系数为C 47·(-2)4=560,故选A.4.⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( ) A .15 B .20 C .30D .35解析:选C.(1+x )6的展开式的通项T r +1=C r 6x r ,所以⎝⎛⎫1+1x (1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C. 5.设(x 2-3x +2)5=a 0+a 1x +a 2x 2+…+a 10x 10,则a 1等于( ) A .80 B .-80 C .-160D .-240解析:选D.因为(x2-3x+2)5=(x-1)5(x-2)5,所以二项展开式中含x项的系数为C45×(-1)4×C55×(-2)5+C55×(-1)5×C45×(-2)4=-160-80=-240,故选D.6.(2018·沈阳教学质量监测(一))若4个人按原来站的位置重新站成一排,恰有1个人站在自己原来的位置,则不同的站法共有()A.4种B.8种C.12种D.24种解析:选B.将4个人重排,恰有1个人站在自己原来的位置,有C14种站法,剩下3人不站原来位置有2种站法,所以共有C14×2=8种站法,故选B.7.(2018·柳州模拟)从{1,2,3,…,10}中选取三个不同的数,使得其中至少有两个数相邻,则不同的选法种数是()A.72 B.70C.66 D.64解析:选D.从{1,2,3,…,10}中选取三个不同的数,恰好有两个数相邻,共有C12·C17+C17·C16=56种选法,三个数相邻共有C18=8种选法,故至少有两个数相邻共有56+8=64种选法,故选D.8.(2018·惠州第二次调研)旅游体验师小明受某网站邀请,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则小李可选的旅游路线数为()A.24 B.18C.16 D.10解析:选D.分两种情况,第一种:最后体验甲景区,则有A33种可选的路线;第二种:不在最后体验甲景区,则有C12·A22种可选的路线.所以小李可选的旅游路线数为A33+C12·A22=10.故选D.9.已知(x+2)9=a0+a1x+a2x2+…+a9x9,则(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2的值为()A.39B.310C.311D.312解析:选D.对(x+2)9=a0+a1x+a2x2+…+a9x9两边同时求导,得9(x+2)8=a1+2a2x +3a3x2+…+8a8x7+9a9x8,令x=1,得a1+2a2+3a3+…+8a8+9a9=310,令x=-1,得a1-2a2+3a3-…-8a8+9a9=32.所以(a1+3a3+5a5+7a7+9a9)2-(2a2+4a4+6a6+8a8)2=(a1+2a2+3a3+…+8a8+9a9)(a1-2a2+3a3-…-8a8+9a9)=312,故选D.10.(2018·广州调研)某学校获得5个高校自主招生推荐名额,其中甲大学2个,乙大学2个,丙大学1个,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有()A.36种B.24种C.22种D.20种解析:选B.根据题意,分两种情况讨论:第一种,3名男生每个大学各推荐1人,2名女生分别推荐给甲大学和乙大学,共有A33A22=12种推荐方法;第二种,将3名男生分成两组分别推荐给甲大学和乙大学,共有C23A22A22=12种推荐方法.故共有24种推荐方法,故选B.11.若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是()A.100 B.150C.30 D.300解析:选D.第一步,1=1+0,1=0+1,共2种组合方式;第二步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第三步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第四步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理知,值为 1 942的“简单的”有序对的个数是2×10×5×3=300.故选D.12.(2018·郑州第二次质量预测)《红海行动》是一部现代化海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成A,B,C,D,E,F六项任务,并对任务的顺序提出了如下要求,重点任务A必须排在前三位,且任务E,F必须排在一起,则这六项任务完成顺序的不同安排方案共有() A.240种B.188种C.156种D.120种解析:选D.因为任务A必须排在前三位,任务E,F必须排在一起,所以可把A的位置固定,E,F捆绑后分类讨论.当A在第一位时,有A44A22=48种;当A在第二位时,第一位只能是B,C,D中的一个,E,F只能在A的后面,故有C13A33 A22=36种;当A在第三位时,分两种情况:①E,F在A之前,此时应有A22A33种,②E,F在A之后,此时应有A23A22A22种,故而A在第三位时有A22A33+A23A22A22=36种.综上,共有48+36+36=120种不同的安排方案.故选D.二、填空题13.(一题多解)(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:可分两种情况:第一种情况,只有1位女生入选,不同的选法有C12C24=12(种);第二种情况,有2位女生入选,不同的选法有C 22C 14=4(种).根据分类加法计数原理知,至少有1位女生入选的不同的选法有16种.法二:从6人中任选3人,不同的选法有C 36=20(种),从6人中任选3人都是男生,不同的选法有C 34=4(种),所以至少有1位女生入选的不同的选法有20-4=16(种).答案:1614.(2018·武汉调研)在⎝⎛⎭⎫x +4x -45的展开式中,x 3的系数是________. 解析:⎝⎛⎭⎫x +4x -45的展开式的通项T r +1=C r 5(-4)5-r ·⎝⎛⎭⎫x +4x r,r =0,1,2,3,4,5,⎝⎛⎭⎫x +4x r的展开式的通项T k +1=C k r x r -k⎝⎛⎭⎫4x k=4k C k r x r -2k,k =0,1,…,r .令r -2k =3,当k =0时,r =3;当k =1时,r =5.所以x 3的系数为40×C 03×(-4)5-3×C 35+4×C 15×(-4)0×C 55=180. 答案:180.15.在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为________.解析:因为二项式(1+2x )6的展开式中含x 的项的系数为2C 16,二项式(1+y )5的展开式中含y 3的项的系数为C 35,所以在多项式(1+2x )6(1+y )5的展开式中,xy 3的系数为2C 16C 35=120.答案:12016.(2018·成都模拟)从甲、乙等8名志愿者中选5人参加周一到周五的社区服务,每天安排一人,每人只参加一天.若要求甲、乙两人至少选一人参加,且当甲、乙两人都参加时,他们参加社区服务的日期不相邻,那么不同的安排种数为________.(用数字作答)解析:根据题意,分2种情况讨论,若只有甲、乙其中一人参加,有C 12·C 46·A 55=3 600(种);若甲、乙两人都参加,有C 22·A 36·A 24=1 440(种).则不同的安排种数为3 600+1 440=5 040. 答案:5 040。