高三数学 课堂训练_2-5人教版

合集下载

高三数学教学工作总结及工作目(4篇)

高三数学教学工作总结及工作目(4篇)

高三数学教学工作总结及工作目在这学期,我带的是高三(8)(9)两个班级,现就学期的工作作了以下总结,同时希望今后工作能做得更好。

一、师德方面我在师德方面:严格遵守学校各种规章制度,积极主动参加学校各种教育活动,加强师德修养,严格约束自己,教书育人,为人师表,服从领导安排,注意与同事、学生搞好团结。

平时上课严格要求学生,尊重学生,发扬教学民主,使学生学有所得,不断提高自己的教学水平和思想觉悟,较顺利的完成了本学期的教育教学任务。

注意多阅读书籍,帮助解决工作中遇到的问题,将这些理论和经验作为指导自己的教育教学工作,并且在日常工作中虚心向取得成功的老师学习经验。

二、教学工作:在高三的教学工作中,我积极钻研新课标,研究新课标的高考要求,认真好备课、上好课、多听课、评课,做好课后备课,辅导,批改作业等工作,注重基础知识的教学,让学生形成知识网络。

在平时教学中,注意学生的实际情况,认真编写教案,选择好练习题目,注意讲练结合和师生交流,并不断归纳总结经验教训。

注重课堂教学效果,针对学生特点,以愉快式教学为主,坚持以学生为主体,教师为主导、教学实效为主线。

在教学中注意抓住重点,突破难点。

在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。

当然在本学期的教学仍然有一些遗憾:1、很多问题都要靠我讲他们听,我讲得多学生做得少,同学们不善于挤时间,独立动手能力比较差,稍微变个题型就不知所措,问其原因,回答不会,做题没思路,一没思路就不想往下做。

平时做题少,很多题型没有见过,以致于思维水平还没有达到一定高度,做起题来有困难;2、现在学生比较不勤奋,没有养成良好的学习习惯,有些问题他知道思路后,就只知道说不动手,数学课桌子上不准备草稿纸,以致于每次考试都犯了眼高手低的毛病,得不了高分。

所以高分比较少。

我想学生出现的这些问题,可能是我还没有找到很好解决这种问题的方法。

“学然后知不足,教然后知困”,通过教学,我更加清楚教学相长的意义,我将在以后的教学工作中继续努力,提高自己的解题、讲题水平,多注意思想方法的渗透,并多多向其他老师学习,取长补短,使自己的教学成绩和水平都有较大的提高,争取做一位受学生欢迎,让学校放心的'优秀教师。

高三数学 课堂训练2-9人教版

高三数学 课堂训练2-9人教版

第2章 第9节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·杭州学军中学模拟]下列各函数的导数: (1)(x )′=12x -12;(2)(a x )′=a 2ln x ;(3)(x cos x )′=cos x +x sin x ; (4)(x x +1)′=1x +1, 其中正确的有( ) A. 0个 B. 1个 C. 2个 D. 3个答案:B解析:根据导数的求导公式知只有(1)正确,选B. 2. 已知y =12sin2x +sin x ,则y ′是( )A. 仅有最小值的奇函数B. 既有最大值又有最小值的偶函数C. 仅有最大值的偶函数D. 非奇非偶函数 答案:B解析:∵y ′=12cos2x ·2+cos x =cos2x +cos x=2cos 2x -1+cos x =2(cos x +14)2-98.又当x ∈R 时,cos x ∈[-1,1],函数y ′=2(cos x +14)2-98是既有最大值又有最小值的偶函数.3. [2012·厦门质检]曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1,则P 0点的坐标为( )A. (1,0)或(-1,-4)B. (0,1)C. (1,0)D. (-1,-4) 答案:A解析:由题意得f ′(x )=3x 2+1.设P 0(x 0,y 0).∵曲线f (x )=x 3+x -2在P 0点处的切线平行于直线y =4x -1,∴f ′(x 0)=4,则⎩⎪⎨⎪⎧ y 0=x 30+x 0-23x 20+1=4,得⎩⎪⎨⎪⎧ x 0=1y 0=0或⎩⎪⎨⎪⎧x 0=-1y 0=-4,∴P 0点坐标为(1,0)或(-1,-4),故选A.4. 已知曲线xy =a (a ≠0),则过曲线上任意一点的切线与两坐标轴所围成的三角形的面积是( )A .2a 2B .a 2C .2|a |D .|a |答案:C解析:设切点的坐标为(x 0,y 0),曲线的方程即为y =a x ,y ′=-ax 2,故切线的斜率为-a x 20,切线方程为y -a x 0=-ax 20(x -x 0).令y =0得x =2x 0,即切线与x 轴的交点坐标为(2x 0,0);令x =0得y =2a x 0,即切线与y 轴的交点坐标为(0,2ax 0).故切线与两坐标轴所围成的三角形的面积为12×|2x 0|×|2ax 0|=2|a |.5.[2012·重庆南开中学月考试卷]函数f (x )在定义域R 内可导,若f (x )=f (2-x ),(x -1)f ′(x )<0,设a =f (0),b =f (12),c =f (3),则( )A. a <b <cB. c <a <bC. c <b <aD. b <c <a 答案:B解析:由题知函数的对称轴为x =1.当x >1时,f ′(x )<0;当x <1时,f ′(x )>0,∴c <a <b . 6. [2012·云南一检]点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x +2的最小距离为( )A.22B. 2C. 2 2D. 2 答案:B解析:当点P 为直线y =x +2平移到与曲线y =x 2-ln x 相切的切点时,点P 到直线y =x +2的距离最小.设点P (x 0,y 0),f (x )=x 2-ln x ,则f ′(x 0)=1,∵f ′(x )=2x -1x ,∴2x 0-1x 0=1,又x 0>0,∴x 0=1,∴点P 的坐标为(1,1),此时点P 到直线y =x +2的距离为22=2,故选B.二、填空题(每小题7分,共21分)7. 已知函数f (x )=f ′(π4)cos x +sin x ,则f (π4)的值为________.答案:1解析:∵f (x )=f ′(π4)cos x +sin x ,∴f ′(x )=-f ′(π4)sin x +cos x ,∴f ′(π4)=-f ′(π4)×22+22,∴f ′(π4)=11+2=2-1.故f (π4)=(2-1)×22+22=1.8. 设点P 是曲线y =x 3-3x +23上的任意一点,曲线在P 点处切线的倾斜角为α,则角α的取值范围是__________.答案:[0,π2)∪[2π3,π)解析:y ′=3x 2-3≥-3,即倾斜角的正切值的取值范围是[-3,+∞),当倾斜角的正切值的取值范围为[0,+∞)时,倾斜角的取值范围是[0,π2),当倾斜角的正切值的取值范围为[-3,0)时,倾斜角的取值范围是[2π3,π),故所求倾斜角的取值范围是[0,π2)∪[2π3,π). 9. [2012·无锡质检]y =x 3+ax +1的一条切线方程为y =2x +1,则a =__________. 答案:2解析:设切点为(x 0,y 0),∵y ′=3x 2+a ,则过切点(x 0,y 0)的切线为y -y 0=(3x 20+a )(x -x 0),即y =(3x 20+a )(x -x 0)+y 0=(3x 20+a )x -2x 3+1,则有⎩⎪⎨⎪⎧3x 20+a =2,-2x 30+1=1,解得x 0=0,a=2.三、解答题(10、11题12分、12题13分) 10. 求下列函数的导数: (1)y =15x 5-43x 3+3x 2+2;(2)y =(3x 3-4x )(2x +1); (3)y =x 1-x +x 2.解:(1)y ′=(15x 5)′-(43x 3)′+(3x 2)′+(2)′=x 4-4x 2+6x .(2)法一:∵y =(3x 3-4x )(2x +1)=6x 4+3x 3-8x 2-4x , ∴y ′=24x 3+9x 2-16x -4.法二:y ′=(3x 3-4x )′(2x +1)+(3x 3-4x )(2x +1)′ =(9x 2-4)(2x +1)+(3x 3-4x )·2 =24x 3+9x 2-16x -4.(3)y ′=x ′(1-x +x 2)-x (1-x +x 2)′(1-x +x 2)2=(1-x +x 2)-x (-1+2x )(1-x +x 2)2=1-x 2(1-x +x 2)2.11. [2011·湖北]设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a 、b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l ,求a ,b 的值,并写出切线l 的方程.解:f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线. 故f (2)=g (2)=0,f ′(2)=g ′(2)=1,由此得⎩⎪⎨⎪⎧ 8+8a +2b +a =0,12+8a +b =1,解得⎩⎪⎨⎪⎧a =-2,b =5.所以a =-2,b =5,切线l 的方程为x -y -2=0. 12. 已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x . (1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围; (3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值. 解:(1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6.又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7. (2)因为f ′(x )=2(x +2)(x -2)x,又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0. 即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2a +1≤7,解得2≤a ≤6.(3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x ,且x >0,所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.。

最新人教版八年级数学上册《15.2.1 分式的乘除(第2课时)》优质教学课件

最新人教版八年级数学上册《15.2.1 分式的乘除(第2课时)》优质教学课件
3q
解:原式 =


2
2
5mnp
3 pq
4mn1=Fra bibliotek22n
课堂检测
能力提升题
先化简再求值:
a2 1
a 1
3
2
a 2a 1
a a2
其中a= 3.
a 1
解:原式 = 2

a 2a 1
2
当a = 3
时,原式 =
a 2 a 1
a 1
3
2
3.

a2,
人教版 数学 八年级 上册
15.2
分式的运算
15.2.1 分式的乘除
第2课时
导入新知
我们学习过分数的乘除混合运算,那么
分式的乘除混合运算该如何进行呢?分式的
乘方又与分数的乘方有何异同呢?
素养目标
2. 掌握分式乘方的运算法则,并能灵活运
用法则进行分式乘方的运算.
1.熟练掌握分式的乘除混合运算顺序和方法.
2.发展型作业:完成本课时练习。
总结点评 反思
同学们,这节课你们表现得都非常棒。
在以后的学习中,请相信你们是存在着巨
大的潜力的,发挥想象力让我们的生活更
精彩吧。
课堂检测
拓广探索题
计算.
2
3
2x 2 y
2y
;




y 3x
x

2
2
4
4 x 4 8 y 6
x4
2 x5
解:原式 = 2

3
4 =
y
27 x
16 y
27

人教版九年级上册数学《图形的旋转》旋转说课研讨教学复习课件

人教版九年级上册数学《图形的旋转》旋转说课研讨教学复习课件
AC= , ∠B=60 °,则CD的长为( D )
A. 0.5
B. 1.5
C.
D. 1
E
A
C
B
D
课堂检测
4. △A ′ OB ′是△AOB绕点O按逆时针方向旋转得到
的.已知∠AOB=20 °, ∠ A ′ OB =24°,
AB=3,OA=5,则A ′ B ′ = 3 ,OA ′ = 5 ,
A.2
B.3
C.4
D.5பைடு நூலகம்
课堂检测
2. 下列说法正确的是( B )
A.旋转改变图形的形状和大小
B.平移改变图形的位置
C. 图形可以向某方向旋转一定距离
D.由平移得到的图形也一定可由旋转得到
课堂检测
3.如图,将Rt△ABC绕点A按顺时针方向旋转一定角
度得Rt △ADE,点B的对应点D恰好落在BC边上.若
将△ABE绕点B顺时针旋转90°到△CBE′的位置,若AE=1,
135
BE=2,CE=3则∠BE′C=________度.
解析:连接EE′,
由旋转性质知BE=BE′,∠EBE′=90°,
∴∠BE'E=45°,EE′=
在△EE′C中,E′C=1,EC=3,EE′=
由勾股定理逆定理可知∠EE′C=90°,
解:(1)由题意可知:CD=CE,∠DCE=90°,
∵∠ACB=90°,
∴∠ACD=∠ACB﹣∠DCB,
∠BCE=∠DCE﹣∠DCB,
∴∠ACD=∠BCE,
AC=BC
在△ACD与△BCE中, ∠ACD=∠BCE
CD=CE
∴△ACD≌△BCE(SAS).
链接中考
(2)当AD=BF时,求∠BEF的度数.

高三数学 课堂训练5-5人教版

高三数学 课堂训练5-5人教版

第5章 第5节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·福建质检]在各项均为正数的等比数列{a n }中,a 3a 5=4,则数列{log 2a n }的前7项和等于( )A. 7B. 8C. 27D. 28答案:A解析:在各项均为正数的等比数列{a n }中,由a 3a 5=4,得a 24=4,a 4=2.设b n =log 2a n ,则数列{b n }是等差数列,且b 4=log 2a 4=1. 所以{b n }的前7项和S 7=7(b 1+b 7)2=7b 4=7.2.已知a n =32n -11(n ∈N *),记数列{a n }的前n 项和为S n ,则使S n >0的n 的最小值为( ) A .10 B .11 C .12 D .13答案:B解析:构造函数f (x )=32x -11,此函数关于点P (112,0)对称,故f (1)+f (2)+…+f (10)=0,即S 10=0.当n ≥6时,f (n )>0,∴a 11=f (11)>0,∴S 11>0.故选B.3. [2012·山西检测]已知数列{a n }的前n 项和为S n ,过点P (n ,S n )和Q (n +1,S n +1)(n ∈N *)的直线的斜率为3n -2,则a 2+a 4+a 5+a 9的值等于( )A. 52B. 40C. 26D. 20答案:B解析:由题意得S n +1-S n(n +1)-n =3n -2,∴S n +1-S n =3n -2,即a n +1=3n -2,∴a n =3n -5,因此数列{a n }是等差数列,a 5=10,而a 2+a 4+a 5+a 9=2(a 3+a 7)=4a 5=40,故选B.4. 在数列{a n }中,a 1=15,3a n +1=3a n -2(n ∈N *)则该数列中有相邻两项的乘积是负数的是( )A. a 21·a 22B. a 22·a 23C. a 23·a 24D. a 24·a 25 答案:C解析:由3a n +1=3a n -2得a n +1=a n -23即{a n }是以15为首项,公差为-23的等差数列,∴a 23>0,a 24<0.即选C.5. [2012·重庆模拟]已知各项均为正数的等比数列{a n }满足:a 7=a 6+2a 5,若a m ·a n =2a 1,则1m +9n的最小值为( ) A. 2 B. 3 C. 4 D. 5答案:C解析:记等比数列{a n }的公比为q ,其中q >0.依题意有a 5q 2=a 5q +2a 5≠0,得q 2-q -2=(q -2)(q +1)=0,所以q =2.因为(a 1×2m -1)·(a 1×2n -1)=a 21×2m+n -2=4a 21≠0,所以m +n-2=2,m +n =4,1m +9n =14(m +n )(1m +9n )=14[10+(n m +9m n )]≥14(10+2n m ×9mn)=4,当且仅当⎩⎪⎨⎪⎧n m =9mnm +n =4m ,n ∈N*,即m =1,n =3时取等号,因此1m +9n的最小值是4,选C.6.[2012·潍坊质检]设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则log 2010x 1+log 2010x 2+…+log 2010x 2009的值为( )A .-log 20102009B .-1C .log 20102009-1D .1答案:B解析:由y =x n +1,得y ′=(n +1)x n ,则在点(1,1)处切线的斜率k =y ′|x =1=n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =n n +1,∴log 2010x 1+log 2010x 2+…+log 2010x 2009=log 2010(x 1·x 2·…·x 2009)=log 2010(12×23×34×…×20092010)=log 201012010=-1,故选B.二、填空题(每小题7分,共21分)7. [2012·温州一模]某电脑公司2010年的各项经营收入中,经营电脑配件的收入为400万元,占全年经营总收入的40%.该公司预计2012年经营总收入要达到1690万元,且计划从2010年到2012年,每年经营总收入的年增长率相同,2011年预计经营总收入为__________万元.答案:1300解析:设增长率为x ,则有40040%×(1+x )2=1690,1+x =1310,因此2011年预计经营总收入为40040%×1310=1300(万元).8.数列{a n }中,a n =|n -k |+|n -2k |,若对任意的正整数n ,a n ≥a 3=a 4都成立,则k 的取值范围为________.答案:[2,3]解析:a n =|n -k |+|n -2k |=⎩⎪⎨⎪⎧3k -2n , n <k k , k ≤n ≤2k .2n -3k , n >2k ,其大致图像如图所示,∴a 3=a 4=k ,∴[3,4]⊆[k,2k ],即⎩⎪⎨⎪⎧k ≤32k ≥4,∴2≤k ≤3.9. [2012·上饶联考]设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为__________.答案:-2解析:若q =1,则由2S n =S n +1+S n +2⇒2na 1=(n +1)a 1+(n +2)a 1⇒2n =n +1+n +2矛盾,∴q ≠1,∴由2S n =S n +1+S n +2可得2a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q⇒q n +2+q n +1-2q n =0⇒q 2+q -2=0(∵q ≠1),解得q =-2. 三、解答题(10、11题12分、12题13分)10. [2012·北京海淀一模]数列{a n }的前n 项和为S n ,若a 1=2,且S n =S n -1+2n (n ≥2,n ∈N *).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,则求出数列{b n }的通项公式;若不存在,则说明理由.解:(1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N *成立. 即a n =2n 对n ≥2成立.又a 1=S 1=2×1, 所以a n =2n 对n ∈N *成立.所以a n +1-a n =2对n ∈N *成立,所以{a n }是等差数列. 所以S n =a 1+a n2·n =n 2+n ,n ∈N *.(2)存在.由(1)知a n =2n 对n ∈N *成立,则a 3=6,a 9=18,又a 1=2, 所以由b 1=a 1,b 2=a 3,b 3=a 9,得b 2b 1=b 3b 2=3,即存在以b 1=2为首项,公比为3的等比数列{b n },其通项公式为b n =2·3n -1.11. 这是发生在德国的一个真实故事,一个9岁的孤儿德比为了寻找母亲,表达他对母亲的爱,他每帮助一个人,就请这位被帮助者再去帮助另外10个人,假设每个人都以这种方式将爱心传递下去,且被帮助的人不重复,总有一天自己的母亲也会成为被帮助的对象.如果德比每天帮助一个人,被帮助的人第二天去帮助另外10个人(假设被帮助的人第三天及以后不再帮助其他人),而德国有8220万人.(1)设n 天后,被帮助的总人数为S n ,试求出S n ; (2)最多第几天,德比的母亲成为被帮助的对象?解:(1)根据条件,可知S n =S n -1+1+10+102+…+10n -1(n ≥2且n ∈N *),∴S n =S n -1+10n -19.∴S n =S n -2+10n -1-19+10n -19=……=S 1+102-19+103-19+…+10n -19=19(10+102+103+…+10n -n ) =19×(10n +1-109-n ). 经验证,当n =1时,S n 也满足此通项.故S n =19(10n +1-109-n ).(2)由S n =19(10n +1-109-n )≤8220×104=8.22×107.估计判断:考虑n =8时,S 8=12345678<8220×104, n =9时,S 9=123456789>8220×104.所以,最多第9天,德比可以实现自己的愿望.12. [2012·山东潍坊模拟]已知数列{a n }各项均为正数,其前n 项和为S n ,点(a n ,S n )在曲线(x +1)2=4y 上.(1)求{a n }的通项公式;(2)设数列{b n }满足b 1=3,b n +1=ab n ,c n =b nb n -1+b n +1-2b n +1-1,求数列{c n }的前n 项和T n .解:(1)∵(a n +1)2=4S n , ∴S n =(a n +1)24,S n +1=(a n +1+1)24.∴S n +1-S n =a n +1=(a n +1+1)2-(a n +1)24.即4a n +1=a 2n +1-a 2n +2a n +1-2a n ,∴2(a n +1+a n )=(a n +1+a n )(a n +1-a n ). ∵a n +1+a n ≠0,∴a n +1-a n =2, 即{a n }为公差等于2的等差数列.由(a 1+1)2=4a 1,解得a 1=1,∴a n =2n -1. (2)∵b n +1=ab n ,a n =2n -1,∴b n +1=2b n -1,∴b n +1-1=2(b n -1). 即b n +1-1b n -1=2,∴{b n -1}为以2为公比的等比数列. 又b 1=3,∴b 1-1=2,故b n -1=2·2n -1=2n ,即b n =2n +1.∴c n =b n b n -1+b n +1-2b n +1-1=2n +12n +2n +1-12n +1=1+12n +1-12n +1=2+(12n -12n +1).故T n =2n +(12-122)+(122-123)+…+(12n -12n +1)=2n +12-12n +1.。

高三数学 课堂训练5-3人教版

高三数学 课堂训练5-3人教版

第5章 第3节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江模拟]在各项都是正数的等比数列{a n }中,a 1=3,a 1+a 2+a 3=21,则a 4+a 5+a 6等于( )A. 63B. 168C. 84D. 189答案:B解析:设等比数列{a n }的公比为q , 则a 1+a 2+a 3=3(1+q +q 2)=21,∴q 2+q -6=0,解得q =2或q =-3(舍去).∴a 4+a 5+a 6=a 1q 3(1+q +q 2)=3×23×7=168,故选B.本题还可以这样求解:a 4+a 5+a 6=S 6-S 3=3(1-26)1-2-21=168,故选B.2. [2012·浙江杭州]正项等比数列{a n }中,若log 2(a 2a 98)=4,则a 40a 60等于( ) A. -16 B. 10 C. 16 D. 256答案:C解析:由log 2(a 2a 98)=4,得a 2a 98=24=16,则a 40a 60=a 2a 98=16.3. 数列{a n }的前n 项和S n =3n -c ,则c =1是数列{a n }为等比数列的( ) A .充分非必要条件 B .必要非充分条件 C .充分必要条件 D .既非充分又非必要条件答案:C解析:数列{a n }的前n 项和为S n =3n-c ,则a n =⎩⎪⎨⎪⎧3-c (n =1)2·3n -1 (n ≥2).由等比数列的定义可知:c =1⇔数列{a n }为等比数列.4. [2012·浙江金华联考]已知正项数列{a n }为等比数列,且5a 2是a 4与3a 3的等差中项,若a 2=2,则该数列的前5项的和为( )A. 3312 B. 31C. 314D. 以上都不正确答案:B解析:设{a n }的公比为q ,q >0.由已知得a 4+3a 3=2×5a 2=10a 2, 即a 2q 2+3a 2q =10a 2,2q 2+6q =20, 解得q =2或q =-5(舍去),则a 1=1,所以S 5=a 1(1-q 5)1-q =1×(1-25)1-2=31.5. 已知数列{a n }是正项等比数列,若a 1=32,a 3+a 4=12,则数列{log 2a n }的前n 项和S n 的最大值为( )A. 15B. 12C. 9D. 6答案:A解析:依题意,设数列{a n }的公比为q ,因为a 1=32,a 3+a 4=12,则32q 2+32q 3=12,即8q 2+8q 3-3=0,也即8(q 3-18)+8(q 2-14)=0,解得q =12,因此a n =32×(12)n -1=26-n ,log 2a n=6-n .设数列{log 2a n }的前m 项和最大,则⎩⎪⎨⎪⎧6-m ≥06-(m +1)≤0,∴5≤m ≤6,故数列{log 2a n }的前5项和或前6项和最大,而S 5=S 6=15,故选A.6. [原创题]已知正项等比数列{a n }的前n 项和为S n ,b n =a 3na 2n +1,且{b n }的前n 项和为T n ,若对一切正整数n 都有S n >T n ,则数列{a n }的公比q 的取值范围是( )A. 0<q <1B. q >1C. q > 2D. 1<q < 2答案:B解析:由于{a n }是等比数列,公比为q ,所以b n =a 3na 2n +1=1q 2a n ,于是b 1+b 2+…+b n =1q 2(a 1+a 2+…+a n ),即T n =1q 2·S n .又S n >T n ,且T n >0,所以q 2=S nT n >1.因为a n >0对任意n ∈N *都成立,所以q >0,因此公比q 的取值范围是q >1.二、填空题(每小题7分,共21分)7. [2012·辽宁鞍山]数列{a n }的前n 项之和为S n ,S n =1-23a n ,则a n =__________.答案:35·(25)n -1解析:n =1时,a 1=S 1=1-23a 1,得a 1=35,n ≥2时,S n =1-23a n ,S n -1=1-23a n -1.两式相减得a n =23a n -1-23a n ,即53a n =23a n -1,a n a n -1=25. 所以{a n }是等比数列,首项为a 1=35,公比为25,所以a n =35·(25)n -1.8.在正数等比数列{a n }中,若a 1+a 2+a 3=1,a 7+a 8+a 9=4,则此等比数列的前15项的和为________.答案:31解析:设数列{a n }的公比为q (q >0),则有q 6=a 7+a 8+a 9a 1+a 2+a 3=4,注意到数列S 3,S 6-S 3,S 9-S 6,S 12-S 9,S 15-S 12是以q 3=2为公比的等比数列,因此S 15=1×(1-25)1-2=31,即正数等比数列{a n }的前15项和为31.9. [2012·南京一模]已知各项都为正数的等比数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为__________.答案:4解析:设等比数列{a n }的公比为q ,其中q >0,依题意得a 23=a 2·a 4=4,又a 3>0,因此a 3=a 1q 2=2,a 1+a 2=a 1+a 1q =12,由此解得q =12,a 1=8,a n =8×(12)n -1=24-n ,a n ·a n +1·a n+2=29-3n.由于2-3=18>19,因此要使29-3n >19,只要9-3n ≥-3,即n ≤4,于是满足a n ·a n +1·a a+2>19的最大正整数n 的值为4. 三、解答题(10、11题12分、12题13分)10.等比数列{a n }满足:a 1+a 6=11,a 3·a 4=329,且公比q ∈(0,1).(1)求数列{a n }的通项公式;(2)若该数列前n 项和S n =21,求n 的值. 解:(1)∵a 3·a 4=a 1·a 6=329,由条件知:a 1,a 6是方程x 2-11x +329=0的两根,解得x =13或x =323.又0<q <1,∴a 1=323,a 6=13,∴q 5=a 6a 1=132,q =12,从而a n =a 6·q n -6=13·(12)n -6.(2)∵323[1-(12)n ]1-12=21,得(12)n =164,∴n =6.11. [2012·宁夏模拟]在各项均为负数的数列{a n }中,已知点(a n ,a n +1)(n ∈N *)在函数y =23x 的图像上,且a 2·a 5=827.(1)求证:数列{a n }是等比数列,并求出其通项; (2)若数列{b n }的前n 项和为S n ,且b n =a n +n ,求S n . (1)证明:因为点(a n ,a n +1)(n ∈N *)在函数y =23x 的图像上.所以a n +1=23a n ,即a n +1a n =23,故数列{a n }是公比q =23的等比数列.因为a 2a 5=827,则a 1q ·a 1q 4=827,即a 21(23)5=(23)3, 由于数列{a n }的各项均为负数,则a 1=-32,所以a n =-(23)n -2.(2)解:由(1)知,a n =-(23)n -2,b n =-(23)n -2+n ,S n =b 1+b 2+…+b n=-[(23)-1+(23)0+(23)1+…+(23)n -2]+1+2+…+n =-(23)-1[1-(23)n ]1-23+1+n 2·n所以S n =3·(23)n -1+n 2+n -92.12. [2011·山东卷]等比数列{a n }中,a 1,a 2,a 3分别是下表第一、二、三行中的某一个数,且a 1,a 2,a 3中的任何两个数不在下表的同一列.(1)求数列{a n }(2)若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前n 项和S n .解:(1)由题意知,a 1=2,a 2=6,a 3=18, ∵{a n }为等比数列,q =3, ∴{a n }的通项公式为a n =2·3n -1(2)∵b n =a n +(-1)n ln a n∴S n =(a 1+a 2+…+a n )+(-ln a 1+ln a 2-ln a 3+ln a 4+…+(-1)n ln a n ) =2(1-3n )1-3+[(ln a 2-ln a 1)+(ln a 4-ln a 3)+…]=3n -1+(ln a 2a 1+ln a 4a 3+…)∴当n =2k (k ∈N *)时,S 2k =32k -1+(ln a 2a 1+ln a 4a 3+…+ln a 2ka 2k -1)=32k -1+(ln3+ln3+…+ln3)=32k -1+k ln3.当n =2k +1(n ∈N )时,S 2k +1=32k +1-1+(ln a 2a 1+ln a 4a 3+…+ln a 2k a 2k -1-ln a 2k +1)=32k +1-1+k ln3-ln a 2k +1=32k +1-1+k ln3-ln(2·32k )=32k +1-1-k ln3-ln2.∴S n=⎩⎨⎧3n -1+n2ln3(n 为偶数)3n-1-n -12ln3-ln2(n 为奇数)。

高三数学 课堂训练_2-1人教版

高三数学 课堂训练_2-1人教版

第2章 第1节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江嘉兴一中模拟]设集合M ={x |-2≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示以集合M 为定义域,N 为值域的函数关系的是( )答案:B解析:利用函数的定义,要求定义域内的任一变量都有唯一的函数值与之对应,A 中(0,2]没有函数值,C 中函数值不唯一,D 中的值域不是N ,所以选B.2. 已知f :x →-sin x 是集合A (A ⊆[0,2π])到集合B ={0,12}的一个映射,则集合A 中的元素个数最多有( )A. 4个B. 5个C. 6个D. 7个答案:B解析:A ⊆[0,2π],由-sin x =0得x =0,π,2π;由-sin x =12得x =7π6,11π6,∴A 中最多有5个元素.3. 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2(4-x ), x ≤0f (x -1)-f (x -2), x >0,则f (3)的值为( )A. -1B. -2C. 1D. 2答案:B解析:f (3)=f (3-1)-f (3-2)=f (2)-f (1) =f (2-1)-f (2-2)-f (1)=f (1)-f (0)-f (1)=-f (0)=-log 24=-2.4. [2012·天津模拟]若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族函数”,那么函数解析式为f (x )=x 2,值域为{1,4}的“同族函数”共有 ( )A. 7个B. 8个C. 9个D. 10个答案:C解析:先确定定义域的构成元素,再分类计数得到满足条件的定义域. 由已知x 2=1,得x =±1; x 2=4,得x =±2.∴“同族函数”的定义域必须是由±1,±2两组数中至少各取一个构成的集合. 当定义域中有两个元素时有{-1,-2},{-1,2},{1,-2},{1,2}共4个. 有三个元素时有{-1,-2,2},{-1,-2,1},{-1,2,1},{-2,2,1}共4个. 有四个元素时有{-2,-1,1,2}1个. 综上共有:4+4+1=9个.5. [2012·福建省宁德市模拟]若函数y =mx -1mx 2+4mx +3的定义域为R ,则实数m 的取值范围是( )A. (0,34]B. (0,34)C. [0,34]D. [0,34)答案:D解析:∵y =mx -1mx 2+4mx +3的定义域为R ,当m =0,∴mx 2+4mx +3=3满足题意. 当m >0时,Δ=16m 2-12m <0, 解得0<m <34,当m <0时,Δ=16m 2-12m <0,无解. 综上,0≤m <34,即m ∈[0,34).6. [2012·宁波市“十校联考”]设集合A =[0,12),B =[12,1],函数f (x )=⎩⎪⎨⎪⎧x +12,x ∈A 2(1-x ),x ∈B ,若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )A. (0,14]B. (14,12)C. (14,12]D. [0,38]答案:B解析:因为f [f (x 0)]=f (x 0+12)=2(1-x 0-12)=1-2x 0,所以0≤1-2x 0<12,故14<x 0≤12,又x 0∈A ,所以14<x 0<12.二、填空题(每小题7分,共21分)7. 如图,函数f (x )的图像是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f [1f (3)]的值等于__________.答案:2解析:f [1f (3)]=f (1)=2.8. (1)若2f (x )-f (-x )=x +1,则f (x )=__________;(2)若函数f (x )=xax +b ,f (2)=1,又方程f (x )=x 有唯一解,则f (x )=__________.答案:(1)x 3+1 (2)2xx +2解析:(1)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x , 得2f (-x )-f (x )=-x +1,即有⎩⎪⎨⎪⎧2f (x )-f (-x )=x +12f (-x )-f (x )=-x +1,解方程组消去f (-x ),得f (x )=x3+1.(2)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b-1)=0,解此方程得x =0或x =1-b a ,又∵方程有唯一解,∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.9. [2012·南通六校联考(一)]定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为__________.答案:[-4,6]解析:由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1]x 3-2,x ∈(1,2],当x ∈[-2,1]时,f (x )∈[-4,-1],当x∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].三、解答题(10、11题12分、12题13分)10. (1)已知f (x )的定义域为[0,1),求函数f (x +1)及f (x 2)的定义域; (2)已知f (x 2-3)=lg x 2x 2-6,求f (x )的定义域.解:(1)依题意,0≤x +1<1,∴-1≤x <0, ∴f (x +1)的定义域为[-1,0).由0≤x 2<1得-1<x <1,∴f (x 2)的定义域为(-1,1). (2)令u =x 2-3,则f (x )的定义域就是u 的值域. 要使lg x 2x 2-6有意义,只需x 2>6,即x 2-3>3,∴u >3, 即f (x )的定义域是(3,+∞).11.如图,在△AOB 中,点A (2,1),B (3,0),点E 在射线OB 上自O 开始移动.设OE =x ,过E 作OB 的垂线l ,记△AOB 在直线l 左边部分的面积为S ,试写出S 与x 的函数关系式,并画出大致的图像.解:当0≤x ≤2时,△OEF 的高EF =12x ,∴S =12x ·12x =14x 2;当2<x ≤3时,△BEF 的高EF =3-x ,∴S =12×3×1-12(3-x )·(3-x )=-12x 2+3x -3;当x >3时,S =32.所以S =f (x )=⎩⎪⎨⎪⎧x 24(0≤x ≤2)-12x 2+3x -3(2<x ≤3).32(x >3)函数图像如图所示.12. 定义在正整数集上的函数f (x )对任意m ,n ∈N *,都有f (m +n )=f (m )+f (n )+4(m +n )-2,且f (1)=1.(1)求函数f (x )的表达式;(2)若m 2-tm -1≤f (x )对于任意的m ∈[-1,1],x ∈N *恒成立,求实数t 的取值范围. 解:(1)取m =1,则有f (n +1)-f (n )=f (1)+4(1+n )-2=4n +3,当n ≥2时,f (n )=f (1)+[f (2)-f (1)]+[f (3)-f (2)]+…+[f (n )-f (n -1)]=2n 2+n -2, 又f (1)=1,∴f (x )=2x 2+x -2(x ∈N *). (2)f (x )=2(x +14)2-178,∴x =1时f (x )min =1,由条件得m 2-tm -1≤1在m ∈[-1,1]上恒成立,即m 2-tm -2≤0, 若m =0,则t ∈R ,若0<m ≤1,则t ≥m -2m ,即t ≥-1,若-1≤m <0,则t ≤m -2m ,即t ≤1,综上-1≤t ≤1.。

新人教版新高考高中数学必修第二册全套导学案课后练习题

新人教版新高考高中数学必修第二册全套导学案课后练习题

平面向量的概念【学习过程】一、问题导学预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些?3.两个向量(向量的模)能否比较大小?4.如何判断相等向量或共线向量?向量AB →与向量BA →是相等向量吗?二、合作探究探究点1: 向量的相关概念例1:给出下列命题:①若AB→=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.解析:AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB →|=|DC→|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a =b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.答案:②③ 探究点2: 向量的表示例2:在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 解:(1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA→|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB →|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB→,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC →|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.探究点3:共线向量与相等向量例3:如图所示,O 是正六边形ABCDEF 的中心,且OA →=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些? (2)与a 共线的向量有哪些?解:(1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →. 互动探究1.变条件、变问法:本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.变问法:本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.三、学习小结1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.(3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.(2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 四、精炼反馈1.如图,在▱ABCD 中,点E ,F 分别是AB ,CD 的中点,图中与AE →平行的向量的个数为( )A .1B .2C .3D .4解析:选C.图中与AE→平行的向量为BE →,FD →,FC →共3个.2.下列结论中正确的是( ) ①若a ∥b 且|a |=|b |,则a =b ; ②若a =b ,则a ∥b 且|a |=|b |;③若a 与b 方向相同且|a |=|b |,则a =b ; ④若a ≠b ,则a 与b 方向相反且|a |≠|b |. A .①③ B .②③ C .③④D .②④解析:选B .两个向量相等需同向等长,反之也成立,故①错误,a ,b 可能反向;②③正确;④两向量不相等,可能是不同向或者长度不相等或者不同向且长度不相等.3.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与BC→相等的向量;(2)与OB→长度相等的向量;(3)与DA→共线的向量.解:画出图形,如图所示.(1)易知BC ∥AD ,BC =AD ,所以与BC→相等的向量为AD →.(2)由O 是正方形ABCD 对角线的交点知OB =OD =OA =OC ,所以与OB→长度相等的向量为BO →,OC →,CO →,OA →,AO →,OD →,DO →.(3)与DA→共线的向量为AD →,BC →,CB →.平面向量的应用【第一学时】学习重难点学习目标核心素养向量在平面几何中的应用会用向量方法解决平面几何中的平行、垂直、长度、夹角等问题数学建模、逻辑推理向量在物理中的应用会用向量方法解决物理中的速度、力学问题数学建模、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.利用向量可以解决哪些常见的几何问题?2.如何用向量方法解决物理问题? 二、合作探究探究点1:向量在几何中的应用角度一:平面几何中的垂直问题如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE .证明:法一:设AD→=a ,AB →=b ,则|a |=|b |,a·b =0, 又DE→=DA →+AE →=-a +12b ,AF →=AB →+BF →=b +12a , 所以AF →·DE →=⎝ ⎛⎭⎪⎫b +12a ·⎝ ⎛⎭⎪⎫-a +12b =-12a 2-34a ·b +12b 2=-12|a |2+12|b |2=0.故AF→⊥DE →,即AF ⊥DE . 法二:如图,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),AF →=(2,1),DE →=(1,-2).因为AF→·DE →=(2,1)·(1,-2)=2-2=0, 所以AF→⊥DE →,即AF ⊥DE . 角度二:平面几何中的平行(或共线)问题如图,点O 是平行四边形ABCD 的中心,E ,F 分别在边CD ,AB 上,且CE ED =AFFB=12.求证:点E ,O ,F 在同一直线上.证明:设AB→=m ,AD →=n ,由CE ED =AF FB =12,知E ,F 分别是CD ,AB 的三等分点, 所以FO →=F A →+AO→=13BA →+12AC → =-13m +12(m +n )=16m +12n , OE→=OC →+CE →=12AC →+13CD → =12(m +n )-13m =16m +12n .所以FO→=OE →. 又O 为FO→和OE →的公共点,故点E ,O ,F 在同一直线上.角度三:平面几何中的长度问题如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC的长.解:设AD→=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD→|=|a -b |=a 2-2a ·b +b 2=1+4-2a ·b =5-2a ·b =2, 所以5-2a ·b =4,所以a ·b =12,又|AC →|2=|a +b |2=a 2+2a ·b +b 2=1+4+2a ·b =6,所以|AC →|=6,即AC =6.探究点2:向量在物理中的应用(1)在长江南岸某渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h .渡船要垂直地渡过长江,其航向应如何确定?(2)已知两恒力F 1=(3,4),F 2=(6,-5)作用于同一质点,使之由点A (20,15)移动到点B (7,0),求F 1,F 2分别对质点所做的功.解:(1)如图,设AB →表示水流的速度,AD →表示渡船的速度,AC →表示渡船实际垂直过江的速度.因为AB→+AD →=AC →,所以四边形ABCD 为平行四边形. 在Rt △ACD 中,∠ACD =90°,|DC→|=|AB →|=12.5.|AD→|=25,所以∠CAD =30°,即渡船要垂直地渡过长江,其航向应为北偏西30°. (2)设物体在力F 作用下的位移为s ,则所做的功为W =F ·s .因为AB →=(7,0)-(20,15)=(-13,-15). 所以W 1=F 1·AB→=(3,4)·(-13,-15) =3×(-13)+4×(-15)=-99(焦),W 2=F 2·AB→=(6,-5)·(-13,-15)=6×(-13)+(-5)×(-15)=-3(焦). 三、学习小结1.用向量方法解决平面几何问题的“三个步骤”2.向量在物理学中的应用(1)由于物理学中的力、速度、位移都是矢量,它们的分解与合成与向量的减法和加法相似,可以用向量的知识来解决.(2)物理学中的功是一个标量,即为力F 与位移s 的数量积,即W =F·s =|F ||s |cos θ(θ为F 与s 的夹角). 四、精炼反馈1.河水的流速为2 m/s ,一艘小船以垂直于河岸方向10 m/s 的速度驶向对岸,则小船在静水中的速度大小为( )A .10 m/sB .226 m/sC .4 6 m/sD .12 m/s解析:选B .由题意知|v 水|=2 m/s ,|v 船|=10 m/s ,作出示意图如图. 所以小船在静水中的速度大小 |v |=102+22=226(m/s ).2.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,再加上一个力f 4,则f 4=( )A .(-1,-2)B .(1,-2)C .(-1,2)D .(1,2)解析:选D .由物理知识知f 1+f 2+f 3+f 4=0,故f 4=-(f 1+f 2+f 3)=(1,2). 3.设P ,Q 分别是梯形ABCD 的对角线AC 与BD 的中点,AB ∥DC ,试用向量证明:PQ ∥AB .证明:设DC →=λAB →(λ>0且λ≠1),因为PQ →=AQ →-AP →=AB →+BQ →-AP →=AB →+12(BD→-AC →) =AB→+12[(AD →-AB →)-(AD →+DC →)] =AB→+12(CD →-AB →) =12(CD →+AB →)=12(-λ+1)AB→, 所以PQ →∥AB →,又P ,Q ,A ,B 四点不共线,所以PQ ∥AB .【学习过程】一、问题导学预习教材内容,思考以下问题: 1.余弦定理的内容是什么?2.余弦定理有哪些推论?二、合作探究探究点1:已知两边及一角解三角形(1)(2018·高考全国卷Ⅱ)在△ABC 中,cos C 2=55,BC =1,AC =5,则AB =( ) A .42 B .30 C .29D .25(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 解析:(1)因为cos C =2cos 2 C 2-1=2×15-1=-35,所以由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos C =25+1-2×5×1×⎝ ⎛⎭⎪⎫-35=32,所以AB =42,故选A .(2)由余弦定理得5=22+b 2-2×2b cos A ,因为cos A =23,所以3b 2-8b -3=0,所以b =3⎝ ⎛⎭⎪⎫b =-13舍去.故选D .答案:(1)A (2)D 互动探究:变条件:将本例(2)中的条件“a =5,c =2,cos A =23”改为“a =2,c =23,cos A =32”,求b 为何值?解:由余弦定理得: a 2=b 2+c 2-2bc cos A ,所以22=b 2+(23)2-2×b ×23×32, 即b 2-6b +8=0,解得b =2或b =4. 探究点2:已知三边(三边关系)解三角形(1)在△ABC 中,已知a =3,b =5,c =19,则最大角与最小角的和为( ) A .90°B .120°C .135°D .150°(2)在△ABC 中,若(a +c )(a -c )=b (b -c ),则A 等于( ) A .90° B .60° C .120°D .150°解析:(1)在△ABC 中,因为a =3,b =5,c =19,所以最大角为B ,最小角为A ,所以cos C =a 2+b 2-c 22ab =9+25-192×3×5=12,所以C =60°,所以A +B =120°,所以△ABC 中的最大角与最小角的和为120°.故选B .(2)因为(a +c )(a -c )=b (b -c ),所以b 2+c 2-a 2=bc ,所以cos A =b 2+c 2-a 22bc =12.因为A ∈(0°,180°),所以A =60°.答案:(1)B (2)B 探究点3: 判断三角形的形状在△ABC 中,若b 2sin 2C +c 2sin 2B =2bc cos B cos C ,试判断△ABC 的形状.解:将已知等式变形为b 2(1-cos 2C )+c 2(1-cos 2B )=2bc cos B cos C . 由余弦定理并整理,得b 2+c 2-b 2⎝⎛⎭⎪⎫a 2+b 2-c 22ab 2-c 2⎝ ⎛⎭⎪⎫a 2+c 2-b 22ac 2 =2bc ×a 2+c 2-b 22ac ×a 2+b 2-c22ab ,所以b 2+c 2=[(a 2+b 2-c 2)+(a 2+c 2-b 2)]24a 2=4a 44a 2=a 2.所以A =90°.所以△ABC 是直角三角形. 三、学习小结2.余弦定理的推论cos A=b2+c2-a22bc;cos B=a2+c2-b22ac;cos C=a2+b2-c22ab.3.三角形的元素与解三角形(1)三角形的元素三角形的三个角A,B,C和它们的对边a,b,c叫做三角形的元素.(2)解三角形已知三角形的几个元素求其他元素的过程叫做解三角形.四、精炼反馈1.在△ABC中,已知a=5,b=7,c=8,则A+C=()A.90°B.120°C.135°D.150°解析:选B.cos B=a2+c2-b22ac=25+64-492×5×8=12.所以B=60°,所以A+C=120°.2.在△ABC中,已知(a+b+c)(b+c-a)=3bc,则角A等于()A.30°B.60°C.120°D.150°解析:选B.因为(b+c)2-a2=b2+c2+2bc-a2=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=12,所以A=60°.3.若△ABC的内角A,B,C所对的边a,b,c满足(a+b)2-c2=4,且C=60°,则ab =________.解析:因为C=60°,所以c2=a2+b2-2ab cos 60°,即c2=a2+b2-ab.①又因为(a +b )2-c 2=4, 所以c 2=a 2+b 2+2ab -4.②由①②知-ab =2ab -4,所以ab =43. 答案:434.在△ABC 中,a cos A +b cos B =c cos C ,试判断△ABC 的形状.解:由余弦定理知cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca,cos C =a 2+b 2-c 22ab ,代入已知条件得a ·b 2+c 2-a 22bc +b ·c 2+a 2-b 22ca+c ·c 2-a 2-b 22ab =0,通分得a 2(b 2+c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4.所以a 2-b 2=±c 2,即a 2=b 2+c 2或b 2=a 2+c 2. 根据勾股定理知△ABC 是直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.在直角三角形中,边与角之间的关系是什么?2.正弦定理的内容是什么?二、合作探究探究点1:已知两角及一边解三角形在△ABC中,已知c=10,A=45°,C=30°,解这个三角形.解:因为A=45°,C=30°,所以B=180°-(A+C)=105°.由asin A=csin C得a=c sin Asin C=10×sin 45°sin 30°=102.因为sin 75°=sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64,所以b=c sin Bsin C=10×sin(A+C)sin 30°=20×2+64=52+56.探究点2:已知两边及其中一边的对角解三角形已知△ABC中的下列条件,解三角形:(1)a=10,b=20,A=60°;(2)a=2,c=6,C=π3.解:(1)因为bsin B=asin A,所以sin B=b sin Aa=20sin 60°10=3>1,所以三角形无解.(2)因为asin A=csin C,所以sin A=a sin Cc=22.因为c>a,所以C>A.所以A=π4.所以B=5π12,b=c sin Bsin C=6·sin5π12sinπ3=3+1.互动探究:变条件:若本例(2)中C=π3改为A=π4,其他条件不变,求C,B,b.解:因为asin A=csin C,所以sin C=c sin Aa=32.所以C=π3或2π3.当C=π3时,B=5π12,b=a sin Bsin A=3+1.当C=2π3时,B=π12,b=a sin Bsin A=3-1.探究点3:判断三角形的形状已知在△ABC中,角A,B所对的边分别是a和b,若a cos B=b cos A,则△ABC一定是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形解析:由正弦定理得:a cos B=b cos A⇒sin A cos B=sin B cos A⇒sin(A-B)=0,由于-π<A-B<π,故必有A-B=0,A=B,即△ABC为等腰三角形.答案:A变条件:若把本例条件变为“b sin B=c sin C”,试判断△ABC的形状.解:由b sin B=c sin C可得sin2B=sin2C,因为三角形内角和为180°,所以sin B=sin C.所以B=C.故△ABC为等腰三角形.三、学习小结1.正弦定理2.正弦定理的变形若R为△ABC外接圆的半径,则(1)a=2R sin A,b=2R sin B,c=2R sin C;(2)sin A=a2R,sin B=b2R,sin C=c2R;(3)sin A∶sin B∶sin C=a∶b∶c;(4)a+b+csin A+sin B+sin C=2R.四、精炼反馈1.(2019·辽宁沈阳铁路实验中学期中考试)在△ABC中,AB=2,AC=3,B=60°,则cos C=()A.33B.63C.32D.62解析:选B.由正弦定理,得ABsin C=ACsin B,即2sin C=3sin 60°,解得sin C=33.因为AB<AC,所以C<B,所以cos C=1-sin2C=6 3.2.在△ABC中,角A,B,C的对边分别为a,b,c,且A∶B∶C=1∶2∶3,则a∶b∶c =()A.1∶2∶3B.3∶2∶1C.2∶3∶1D.1∶3∶2解析:选D.在△ABC中,因为A∶B∶C=1∶2∶3,所以B=2A,C=3A,又A+B+C =180°,所以A=30°,B=60°,C=90°,所以a∶b∶c=sin A∶sin B∶sin C=sin 30°∶sin 60°∶sin 90°=1∶3∶2.3.在△ABC中,角A,B,C的对边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形解析:选D.已知c-a cos B=(2a-b)cos A,由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin(A+B)-sin A cos B=2sin A cos A-sin B cos A,化简得cos A(sin B-sin A)=0,所以cos A=0或sin B-sin A=0,则A=90°或A=B,故△ABC为等腰三角形或直角三角形.【学习过程】一、问题导学预习教材内容,思考以下问题:1.什么是基线?2.基线的长度与测量的精确度有什么关系?3.利用正、余弦定理可解决哪些实际问题?二、合作探究探究点1:测量距离问题海上A,B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B岛与C岛间的距离是________.解析:如图,在△ABC中,∠C=180°-(∠B+∠A)=45°,由正弦定理,可得BCsin 60°=ABsin 45°,所以BC=32×10=56(海里).答案:56海里互动探究:变条件:在本例中,若“从B岛望C岛和A岛成75°的视角”改为“A,C两岛相距20海里”,其他条件不变,又如何求B岛与C岛间的距离呢?解:由已知在△ABC中,AB=10,AC=20,∠BAC=60°,即已知两边和两边的夹角,利用余弦定理求解即可.BC2=AB2+AC2-2AB·AC·cos 60°=102+202-2×10×20×12=300.故BC=103.即B,C间的距离为103海里.探究点2测量高度问题如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=________m.解析:由题意,在△ABC中,∠BAC=30°,∠ABC=180°-75°=105°,故∠ACB=45°.又AB=600 m,故由正弦定理得600sin 45°=BCsin 30°,解得BC=300 2 m.在Rt△BCD中,CD=BC·tan 30°=3002×33=1006(m).答案:1006互动探究:变问法:在本例条件下,汽车在沿直线AB方向行驶的过程中,若测得观察山顶D点的最大仰角为α,求tan α的值.解:如图,过点C,作CE⊥AB,垂足为E,则∠DEC=α,由例题可知,∠CBE=75°,BC=3002,所以CE=BC·sin∠CBE=3002sin 75°=3002×2+6 4=150+1503.所以tan α=DCCE=1006150+1503=32-63.探究点3:测量角度问题岛A观察站发现在其东南方向有一艘可疑船只,正以每小时10海里的速度向东南方向航行(如图所示),观察站即刻通知在岛A正南方向B处巡航的海监船前往检查.接到通知后,海监船测得可疑船只在其北偏东75°方向且相距10海里的C处,随即以每小时103海里的速度前往拦截.(1)问:海监船接到通知时,在距离岛A多少海里处?(2)假设海监船在D处恰好追上可疑船只,求它的航行方向及其航行的时间.解:(1)根据题意得∠BAC=45°,∠ABC=75°,BC=10,所以∠ACB=180°-75°-45°=60°,在△ABC中,由ABsin∠ACB=BCsin∠BAC,得AB=BC sin∠ACBsin∠BAC=10sin 60°sin 45°=10×3222=56.所以海监船接到通知时,在距离岛A 5 6 海里处.(2)设海监船航行时间为t小时,则BD=103t,CD=10t,又因为∠BCD=180°-∠ACB=180°-60°=120°,所以BD2=BC2+CD2-2BC·CD cos 120°,所以300t 2=100+100t 2-2×10×10t ·⎝ ⎛⎭⎪⎫-12,所以2t 2-t -1=0,解得t =1或t =-12(舍去). 所以CD =10,所以BC =CD ,所以∠CBD =12(180°-120°)=30°, 所以∠ABD =75°+30°=105°.所以海监船沿方位角105°航行,航行时间为1个小时. (或海监船沿南偏东75°方向航行,航行时间为1个小时) 三、学习小结1.基线在测量过程中,我们把根据测量的需要而确定的线段叫做基线. 2.基线与测量精确度的关系一般来说,基线越长,测量的精确度越高. 图示南偏西60°(指以正南方向为始边,转向目标方向线形成的角)四、精炼反馈1.若P 在Q 的北偏东44°50′方向上,则Q 在P 的( ) A .东偏北45°10′方向上 B .东偏北45°50′方向上 C .南偏西44°50′方向上D .西偏南45°50′方向上解析:选C.如图所示.2.如图,D,C,B三点在地面同一直线上,从地面上C,D两点望山顶A,测得它们的仰角分别为45°和30°,已知CD=200米,点C位于BD上,则山高AB等于()A.1002米B.50(3+1)米C.100(3+1)米D.200米解析:选C.设AB=x米,在Rt△ACB中,∠ACB=45°,所以BC=AB=x.在Rt△ABD中,∠D=30°,则BD=3AB=3x.因为BD-BC=CD,所以3x-x=200,解得x=100(3+1).故选C.3.已知台风中心位于城市A东偏北α(α为锐角)度的150公里处,以v公里/小时沿正西方向快速移动,2.5小时后到达距城市A西偏北β(β为锐角)度的200公里处,若cos α=34cos β,则v=()A.60B.80C.100D.125解析:选C.画出图象如图所示,由余弦定理得(2.5v)2=2002+1502+2×200×150cos(α+β)①,由正弦定理得150sin β=200sin α,所以sin α=43sin β.又cos α=34cos β,sin2α+cos2α=1,解得sin β=35,故cos β=45,sin α=45,cos α=35,故cos(α+β)=1225-1225=0,代入①解得v=100.4.某巡逻艇在A处发现在北偏东45°距A处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船,并指出巡逻艇的航行方向.解:设经过t 小时在点C 处刚好追上走私船,依题意:AC =123t ,BC =12t ,∠ABC =120°,在△ABC 中,由正弦定理得123tsin 120°=12tsin ∠BAC,所以sin ∠BAC =12,所以∠BAC =30°,所以AB =BC =8=12t ,解得t =23,航行的方向为北偏东75°.即巡逻艇最少经过23小时可追到走私船,沿北偏东75°的方向航行.平面向量的运算【第一课时】向量的加法运算【学习重难点】【学习目标】【核心素养】平面向量加法的几何意义理解向量加法的概念以及向量加法的几何意义数学抽象、直观想象平行四边形法则 和三角形法则掌握向量加法的平行四边形法则和三角形法则, 会用它们解决实际问题 数学抽象、直观想象平面向量加法的运算律 掌握向量加法的交换律和结合律,会用它们进行计算数学抽象、数学运算【学习过程】一、问题导学预习教材内容,思考以下问题:1.在求两向量和的运算时,通常使用哪两个法则?2.向量加法的运算律有哪两个?二、新知探究探究点1:平面向量的加法及其几何意义例1:如图,已知向量a ,b ,c ,求作和向量a +b +c .解:法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA→=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA →=a ,OB →=b ;(2)作平行四边形AOBC ,则OC→=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE , 则OE→=OC →+c =a +b +c .OE →即为所求.探究点2:平面向量的加法运算 例2:化简:(1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.解:(1)BC→+AB →=AB →+BC →=AC →.(2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0. 探究点3:向量加法的实际应用例3:某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?解:如图,设此人游泳的速度为OB→,水流的速度为OA →,以OA →,OB →为邻边作▱OACB ,则此人的实际速度为OA→+OB →=OC →.由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时. 三、学习小结即a +b =AB+BC =AC对角线OC就是a 与b 的和2.|a +b |,|a |,|b |之间的关系一般地,|a +b |≤|a |+|b |,当且仅当a ,b 方向相同时等号成立. 四、精炼反馈1.化简OP→+PQ →+PS →+SP →的结果等于( )A .QP →B .OQ →C .SP →D .SQ→ 解析:选B .OP→+PQ →+PS →+SP →=OQ →+0=OQ →.2.在四边形ABCD 中,AC →=AB →+AD →,则一定有( )A .四边形ABCD 是矩形B .四边形ABCD 是菱形C .四边形ABCD 是正方形D .四边形ABCD 是平行四边形解析:选D .由AC→=AB →+AD →得AD →=BC →,即AD =BC ,且AD ∥BC ,所以四边形ABCD的一组对边平行且相等,故为平行四边形.3.已知非零向量a ,b ,|a |=8,|b |=5,则|a +b |的最大值为______. 解析:|a +b |≤|a |+|b |,所以|a +b |的最大值为13. 答案:134.已知▱ABCD ,O 是两条对角线的交点,E 是CD 的一个三等分点(靠近D 点),求作:(1)AO→+AC →; (2)DE→+BA →.解:(1)延长AC ,在延长线上截取CF =AO ,则向量AF→为所求.(2)在AB 上取点G ,使AG =13AB , 则向量BG→为所求.【第二课时】【学习过程】一、问题导入预习教材内容,思考以下问题: 1.a 的相反向量是什么?2.向量减法的几何意义是什么? 二、新知探究探究点1: 向量的减法运算例1:化简下列各式:(1)(AB →+MB →)+(-OB →-MO →); (2)AB →-AD →-DC →.解:(1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB →=AB→. 法二:原式=AB →+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB →-(AD →+DC →)=AB →-AC →=CB →. 探究点2:向量的减法及其几何意义例2:如图,已知向量a ,b ,c 不共线,求作向量a +b -c .解:法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,连接BC ,则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA→=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB →=a +b -c .法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .探究点3:用已知向量表示其他向量例3:如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB →=a ,AC→=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.解:因为四边形ACDE 是平行四边形,所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD →=BC →+CD →=b -a +c . 三、学习小结1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. 2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA→=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. 四、精炼反馈1.在△ABC 中,D 是BC 边上的一点,则AD→-AC →等于( )A .CB → B .BC → C .CD→ D .DC→ 解析:选C .在△ABC 中,D 是BC 边上一点,则由两个向量的减法的几何意义可得AD →-AC→=CD →. 2.化简:AB→-AC →+BD →-CD →+AD →=________.解析:原式=CB →+BD →+DC →+AD →=CD →+DC →+AD →=0+AD →=AD →.答案:AD→3.已知错误!=10,|错误!|=7,则|错误!|的取值范围为______.解析:因为CB →=AB →-AC →,所以|CB→|=|AB →-AC →|. 又错误!≤|错误!-错误!|≤|错误!|+|错误!|, 3≤|AB→-AC →|≤17, 所以3≤|CB →|≤17.答案:[3,17]4.若O 是△ABC 所在平面内一点,且满足|OB→-OC →|=|OB →-OA →+OC →-OA →|,试判断△ABC 的形状.解:因为OB→-OA →+OC →-OA →=AB →+AC →,OB →-OC →=CB →=AB →-AC →.又|OB→-OC →|=|OB →-OA →+OC →-OA →|, 所以|AB→+AC →|=|AB →-AC →|,所以以AB ,AC 为邻边的平行四边形的两条对角线的长度相等,所以该平行四边形为矩形,所以AB ⊥AC ,所以△ABC 是直角三角形.【第三课时】【学习过程】一、问题导学预习教材内容,思考以下问题:1.向量数乘的定义及其几何意义是什么?2.向量数乘运算满足哪三条运算律?3.向量共线定理是怎样表述的?4.向量的线性运算是指的哪三种运算? 二、新知探究探究1: 向量的线性运算 例1:(1)计算:①4(a +b )-3(a -b )-8a ;②(5a -4b +c )-2(3a -2b +c );③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ). (2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ).解:(1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b =53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j )=⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j . 探究点2:向量共线定理及其应用例2:已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线; (2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.解:(1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线. (2)因为k e 1+e 2与e 1+k e 2共线, 所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1. 探究点3:用已知向量表示其他向量例3:如图,ABCD 是一个梯形,AB →∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB→=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________.解析:因为AB→∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB →=-14e 1-e 2+12e 1=14e 1-e 2.答案:(1)e 2+12e 1(2)14e 1-e 2 互动探究变条件:在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →,MN→=MC →+CB →+BN →, 所以2MN →=(MD →+MC →)+DA →+CB →+(AN →+BN →). 又因为M ,N 分别是DC ,AB 的中点,所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →, 所以MN →=12(-AD →-BC →)=-12e 2-12e 1. 三、学习小结1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb . 3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . 四、精炼反馈 1.13⎣⎢⎡⎦⎥⎤12(2a +8b )-(4a -2b )等于( )A .2a -bB .2b -aC .b -aD .a -b解析:选B .原式=16(2a +8b )-13(4a -2b )=13a +43b -43a +23b =-a +2b . 2.若点O 为平行四边形ABCD 的中心,AB →=2e 1,BC →=3e 2,则32e 2-e 1=( ) A .BO→ B .AO→ C .CO→ D .DO→ 解析:选A .BD →=AD →-AB →=BC →-AB →=3e 2-2e 1,BO →=12BD →=32e 2-e 1.3.已知e 1,e 2是两个不共线的向量,若AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,求证A ,B ,D 三点共线.证明:因为CB →=e 1+3e 2,CD →=2e 1-e 2,所以BD→=CD →-CB →=e 1-4e 2. 又AB →=2e 1-8e 2=2(e 1-4e 2),所以AB →=2BD →,所以AB →与BD →共线. 因为AB 与BD 有交点B ,所以A ,B ,D 三点共线.【第四课时】【学习过程】一、问题导学预习教材内容,思考以下问题: 1.什么是向量的夹角? 2.数量积的定义是什么? 3.投影向量的定义是什么? 4.向量数量积有哪些性质? 5.向量数量积的运算有哪些运算律? 二、新知探究探究点1:平面向量的数量积运算例1:(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD →·BC →;②AB →·DA →.解:(1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2 =|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192.(2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120°=4×3×⎝ ⎛⎭⎪⎫-12=-6.互动探究:变问法:若本例(2)的条件不变,求AC→·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC →·BD →=(AB →+AD →)·(AD →-AB →) =AD →2-AB →2=9-16=-7. 探究点2: 向量模的有关计算例2:(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( ) A .3 B .23C .4D .12(2)向量a ,b 满足|a |=1,|a -b |=32,a 与b 的夹角为60°,则|b |=( )A .13B .12C .15D .14 解析:(1)|a +2b |=(a +2b )2=a 2+4a·b +4b 2 =|a |2+4|a ||b |cos 60°+4|b |2= 4+4×2×1×12+4=23.(2)由题意得|a -b |2=|a |2+|b |2-2|a ||b |·cos 60°=34,即1+|b |2-|b |=34,解得|b |=12. 答案:(1)B (2)B 探究点3: 向量的夹角与垂直命题角度一:求两向量的夹角例3:(1)已知|a |=6,|b |=4,(a +2b )·(a -3b )=-72,则a 与b 的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为______.解析:(1)设a 与b 的夹角为θ,(a +2b )·(a -3b )=a ·a -3a ·b +2b ·a -6b ·b =|a |2-a ·b -6|b |2=|a |2-|a ||b |cos θ-6|b |2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12,所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3.答案:(1)π3(2)π3命题角度二:证明两向量垂直例4:已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a +t b ).证明:因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值.此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数例5:(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k 的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.解析:(1)因为3a +2b 与k a -b 互相垂直, 所以(3a +2b )·(k a -b )=0, 所以3k a 2+(2k -3)a·b -2b 2=0. 因为a ⊥b ,所以a ·b =0, 又|a |=2,|b |=3, 所以12k -18=0,k =32.(2)由3a +λb +7c =0,可得7c =-(3a +λb ), 即49c 2=9a 2+λ2b 2+6λa ·b , 而a ,b ,c 为单位向量, 则a 2=b 2=c 2=1, 则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5. 答案:(1)B (2)-8或5 三、学习小结1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. 2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为。

高三数学 课堂训练_2-5人教版

高三数学 课堂训练_2-5人教版

第2章 第5节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·浙江百校联考]已知0<a <1,log a (1-x )<log a x ,则( ) A. 0<x <1 B. x <12C. 0<x <12D. 12<x <1 答案:C解析:由⎩⎪⎨⎪⎧1-x >0x >01-x >x,解得:0<x <12.2.已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),2x (x ≤0),若f (a )=12,则a 的值为( )A.-1B. 2C.-1或12D.-1或 2答案:D解析:由题知,⎩⎪⎨⎪⎧ a >0,log 2a =12或⎩⎪⎨⎪⎧a ≤0,2a =12,可得a =2或-1.故选D. 3.已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图像可能是( )答案:B解析:由题知,a =1b ,则f (x )=(1b )x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单增,g (x )单增,B 正确;当b >1时,f (x )单减,g (x )单减.故选B.4. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A. 2 B. 23 C. 13 D. 1答案:B解析:由题知函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],当f (x )=0时x =1,当f (x )=1时x =3或13,所以要使值域为[0,1],定义域可以为[13,3],[1,3],[13,1],所以b -a 的最小值为23.故选B.5. 若不等式x 2-log a x <0对x ∈(0,12)恒成立,则实数a 的取值范围是( )A. {a |0<a <1}B. {a |116≤a <1}C. {a |a >1}D. {a |0<a ≤116}答案:B解析:由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈(0,12)时,不等式x 2<log a x 恒成立,只需f 1(x )=x 2在(0,12)上的图像在f 2(x )=log a x 图像的下方即可.当a >1时,显然不成立;当0<a <1时,如图,要使x 2<log a x 在x ∈(0,12)上恒成立,需f 1(12)≤f 2(12). 所以有(12)2≤log a 12,解得a ≥116,∴116≤a <1. 6. [2012·东北师大附中摸底考试]若实数a 满足a >|y -1|-|y -2|(y ∈R )恒成立,则函数f (x )=log a (x 2-5x +6)的单调减区间为( )A. (52,+∞)B. (3,+∞)C. (-∞,52)D. (-∞,2)答案: D解析:由于a >|y -1|-|y -2|(y ∈R )恒成立,又|y -1|-|y -2|的最大值是1,故a >1.设g (x )=x 2-5x +6,则函数f (x )的定义域是(-∞,2)∪(3,+∞).又函数g (x )=x 2-5x +6的单调递减区间是(-∞,52),由复合函数的单调性知,函数f (x )=log a (x 2-5x +6)的单调递减区间是(-∞,2).二、填空题(每小题7分,共21分)7. [变式题]函数f (x )=log 2(2x +6)的定义域为________. 答案:[-52,+∞)解析:由题知log 2(2x +6)≥0,即2x +6≥1,解得x ≥-52,所以函数f (x )=log 2(2x +6)的定义域为[-52,+∞).8. 已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图像位于直线y =1上方的x 的取值范围是________.答案:-1<x ≤0或x >2解析:当x ≤0时,3x +1>1⇒x +1>0,∴-1<x ≤0;当x >0时,log 2x >1⇒x >2,∴x >2. 综上所述:-1<x ≤0或x >2.9.设函数f (x )=|log 2x |,则f (x )在区间(m -2,2m )内有定义且不是单调函数的充要条件是________.答案:2≤m <3解析:由题意知,只需1∈(m -2,2m ),且m -2≥0即可.于是0≤m -2<1,且2m >1,于是2≤m <3.三、解答题(10、11题12分、12题13分) 10. 已知y =log 4(2x +3-x 2). (1)求定义域; (2)求f (x )的单调区间;(3)求y 的最大值,并求取得最大值的x 值. 解:(1)由真数2x +3-x 2>0,解得-1<x <3. ∴定义域是{x |-1<x <3}.(2)令u =2x +3-x 2,则u >0,y =log 4u . 由于u =2x +3-x 2=-(x -1)2+4,考虑到定义域,其增区间是(-1,1],减区间是[1,3). 又y =log 4u 在u ∈(0,+∞)上是增函数, 故该函数的增区间是(-1,1],减区间是[1,3). (3)∵u =2x +3-x 2=-(x -1)2+4≤4,∴y =log 4(2x +3-x 2)≤log 44=1.∴当x =1,u 取得最大值4时,y 就取得最大值1.11. [2012·辽宁抚顺]已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图像上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图像.(1)写出函数g (x )的解析式;(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 解:(1)设P (x ,y )为g (x )图像上任意一点,则 Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图像上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x )(a >1). (2)f (x )+g (x )≥m ,即log a x +11-x≥m .设F (x )=log a 1+x1-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,∴F (x )min =F (0)=0.故m ≤0即为所求.12. 定义在R 上的函数f (x )满足对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0.(1)求证:f (x )为奇函数; (2)判断f (x )的单调性并证明;(3)解不等式:f [log 2(x +1x+6)]+f (-3)≤0.解:(1)令x =y =0,则f (0)=0,令y =-x ,则f (x )+f (-x )=f (0)=0. ∴f (x )为奇函数.(2)f (x )为R 上的单调增函数,设x 1<x 2,则x 2-x 1>0,f (x 2-x 1)>0,∴f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1)>f (x 1),∴f (x )为R 上的单调增函数.(3)∵f (0)=0且f (x )在R 上单调递增,∴原不等式等价于f [log 2(x +1x +6)+(-3)]≤f (0)⇔log 2(x +1x +6)≤3⇔0<x +1x +6≤8⇔⎩⎪⎨⎪⎧ x >0x 2+6x +1>0x 2-2x +1≤0或⎩⎪⎨⎪⎧x <0x 2+6x +1<0,x 2-2x +1≥0∴原不等式的解集为{x |x =1或-3-22<x <-3+22}.。

2024年高三数学学科备课组工作计划样本(四篇)

2024年高三数学学科备课组工作计划样本(四篇)

2024年高三数学学科备课组工作计划样本一、教材评估本学期的教学任务重叠且艰巨,需兼顾学考复习、新课教学以及高考一轮复习。

二、学情评估学生面临着繁重的学习压力,需处理学考与选考科目的平衡,导致数学基础知识的掌握和基本技能的训练相对不足。

三、教学目标:强调学习方法指导与心理辅导(1)我们将及时向学生提供有效的学习方法和策略,并根据教学反馈及时调整以补足学生的学习短板。

(2)针对学生的个体差异,我们将合理调整教学难度,以创造有利于学生建立积极学习情感体验的环境,从而促进其学习进步。

(3)教学过程中将重点放在数学题型和解题方法的指导上。

四、提升教学质量的策略我们将坚持以务实的态度确保教学落实,从传统的讲授模式转向“组织学习”,以推动学生学习方式的转变,提升其学习能力,提高课堂教学效率。

具体措施如下:(1)确保每日学习内容的及时消化,通过每日作业的检查和督促来强化学习效果。

所有作业必须批改,对错误进行纠正。

(2)每周实施一次小题训练和一次综合训练,以检验学生的学习进度。

(3)在周练和综合训练中,我们将精心选择试题,准确把握高考的动态,注重基础知识和能力的双重考察,同时注重培养学生的多元思维,适时引入新题型,加大应用题的比重。

所有考试试题将通过集体研究和备课来确保质量。

(4)我们将持续学习,积极参与听课,探索和优化教学模式,以提升教学质量。

2024年高三数学学科备课组工作计划样本(二)一、基本情况1. 本组教师团队由____名成员组成,其中包括四名经验丰富的老教师和两名充满活力的新教师,整体年龄结构呈现合理态势。

____个班级的数学教学任务,其中一位教师担任了学校数学科组长的重要职务,另有____名教师兼任班主任。

值得注意的是,有五位教师各自负责两个高三教学班的授课工作,任务繁重,工作量远超常规标准,充分展现了其高度的责任感和使命感。

2. 在学生方面,本年级学生的数学成绩相较于红岭、福田等校存在一定差距,数学基础相对薄弱。

高三数学 课堂训练2-7人教版

高三数学 课堂训练2-7人教版

第2章 第7节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·龙岩质检]函数f (x )=log 2x -1x 的一个零点落在下列哪个区间( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)答案:B解析:本小题考查函数零点的求法.∵f (1)·f (2)<0,故选B.2. [2012·汕头学业水平测试]根据表格中的数据,可以判定函数f (x )=e x -x -2的一个零点所在的区间为(k ,k +1)(k ∈Z ),则k 的一个值为( )A. 0 C. 2 D. 1答案:D解析:由表可知f (1)·f (2)<0,∴零点在(1,2)内,即k 的一个值为1.3. 若函数f (x )=x 3-3x +a 有3个不同的零点,则实数a 的取值范围是( ) A. (-2,2) B. [-2,2] C. (-∞,-1) D. (1,+∞)答案:A解析:函数f (x )有3个不同的零点,即其图像与x 轴有3个不同的交点,因此只需f (x )的极值异号即可.f ′(x )=3x 2-3,令3x 2-3=0,则x =±1,故极值为f (-1)和f (1),f (-1)=a +2,f (1)=a -2,所以应有(a +2)(a -2)<0,故a ∈(-2,2),选A.4. [2012·浙江省金华十校模拟]已知a 是函数f (x )=ln x -log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A. f (x 0)=0B. f (x 0)>0C. f (x 0)<0D. f (x 0)的符号不确定 答案:C解析:因为函数f (x )=ln x -log 12x 是增函数,且f (a )=0,又0<x 0<a ,所以f (x 0)<0.5. [2012·深圳调研]已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A. x 1<x 2<x 3B. x 2<x 1<x 3C. x 1<x 3<x 2D. x 3<x 2<x 1答案:A解析:令函数f (x )=x +2x =0,因为2x 恒大于零,所以要使得x +2x =0,x 必须小于零,即x 1小于零;令g (x )=x +ln x =0,要使得ln x 有意义,则x 必须大于零,又x +ln x =0,所以ln x <0,解得0<x <1,即0<x 2<1;令h (x )=x -x -1=0,得x =x +1>1,即x 3>1,从而可知x 1<x 2<x 3.6. 设f (x )是定义在R 上的偶函数,对任意的x ∈R ,都有f (x -2)=f (x +2),且当x ∈[-2,0]时,f (x )=(12)x -1,若在区间(-2,6]内关于x 的方程f (x )-log a (x +2)=0(a >1)恰有3个不同的实数根,则a 的取值范围是( )A. (1,2)B. (2,+∞)C. (1,34) D. (34,2) 答案:D解析:由f (x -2)=f (x +2),知f (x )是以4为周期的周期函数,于是可得f (x )在(-2,6]上的大致图像如图中实线所示,令g (x )=log a (x +2)(a >1),则g (x )的大致图像如图所示,结合图像可知,要使得方程f (x )-log a (x +2)=0(a >1)在区间(-2,6]内恰有3个不同的实数根,则必须且只需⎩⎪⎨⎪⎧ g (2)<3g (6)>3,即⎩⎨⎧log a 4<3log a 8>3,解得34<a <2.二、填空题(每小题7分,共21分)7. [2012·山东潍坊]若函数f (x )=x 2-ax -b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是__________.答案:-12,-13解析:由⎩⎪⎨⎪⎧ 22-2a -b =0,32-3a -b =0,得⎩⎪⎨⎪⎧a =5,b =-6,∴g (x )=-6x 2-5x -1,令g (x )=0,解得x =-13或x =-12.∴函数g (x )的零点为-12,-13.8. 在用二分法求方程的近似解时,若初始区间是[1,5],精确度要求是0.001,则需要计算的次数是________.答案:12解析:设需计算n 次,则n 满足42n <0.001,即2n >4000.由于212=4096,故计算12次就可以满足精确度要求.故填12.9. [2012·河南五市联考]已知m 、n 分别是方程10x +x =10与lg x +x =10的根,则m +n =__________.答案:10解析:在同一坐标系中作出y =lg x ,y =10x ,y =10-x 的图像,设其交点为A ,B ,如图所示.设直线y =x 与直线y =10-x 的交点为M ,联立方程,得⎩⎪⎨⎪⎧y =x y =10-x ,解得M (5,5).∵函数y =lg x 和y =10x 的图像关于直线y =x 对称,∴m +n =x A +x B =2x M =10.三、解答题(10、11题12分、12题13分)10.求函数f (x )=x 3-2x 2-x +2的零点,并画出它的大致图像. 解:将f (x )=x 3-2x 2-x +2分解因式求出零点.∵f (x )=x 3-2x 2-x +2=x 2(x -2)-(x -2)=(x -2)(x 2-1)=(x -2)(x -1)(x +1),∴f (x )=x 3-2x 2-x +2的零点为-1,1,2.三个零点将x 轴分成四个区间:(-∞,-1],(-1,1),[1,2],(2,+∞),∵f (0)=2>0,∴函数f (x )=x 3-2x 2-x +2的大致图像如下图所示.11. 是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴恒有一个交点,且只有一个交点?若存在,求出a 的范围,若不存在,说明理由.解:若实数a 满足条件,则只需f (-1)·f (3)≤0即可.f (-1)·f (3)=(1-3a +2+a -1)·(9+9a -6+a -1)=4(1-a )(5a +1)≤0.所以a ≤-15或a ≥1.检验:(1)当f (-1)=0时a =1. 所以f (x )=x 2+x . 令f (x )=0,即x 2+x =0, 得x =0或x =-1.方程在[-1,3]上有两根,不合题意, 故a ≠1.(2)当f (3)=0时a =-15.此时f (x )=x 2-135x -65.令f (x )=0,即x 2-135x -65=0,解之,x =-25或x =3.方程在[-1,3]上有两根,不合题意,故a ≠-15. 综上所述,a <-15或a >1.12.已知二次函数f (x )=ax 2+bx +c .(1)若a >b >c ,且f (1)=0,试证明f (x )必有两个零点.(2)若对x 1,x 2∈R 且x 1<x 2,f (x 1)≠f (x 2),方程f (x )=12[f (x 1)+f (x 2)]有两个不等实根,证明必有一实根属于(x 1,x 2).证明:(1)∵f (1)=0,∴a +b +c =0. 又∵a >b >c ,∴a >0,c <0,即ac <0. 又∵Δ=b 2-4ac ≥-4ac >0,∴方程ax 2+bx +c =0有两个不等实根, 所以函数f (x )有两个零点. (2)令g (x )=f (x )-12[f (x 1)+f (x 2)],则g (x 1)=f (x 1)-12[f (x 1)+f (x 2)]=f (x 1)-f (x 2)2, g (x 2)=f (x 2)-12[f (x 1)+f (x 2)]=f (x 2)-f (x 1)2, ∴g (x 1)·g (x 2)=f (x 1)-f (x 2)2·f (x 2)-f (x 1)2=-14[f (x 1)-f (x 2)]2,∵f (x 1)≠f (x 2),∴g (x 1)·g (x 2)<0, ∴g (x )=0在(x 1,x 2)内必有一实根,即f (x )=12[f (x 1)+f (x 2)]在(x 1,x 2)内必有一实根.。

高三数学 课堂训练2-11人教版

高三数学 课堂训练2-11人教版

第2章 第11节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1.一质点运动时速度与时间的关系为v (t )=t 2-t +2,质点作直线运动,则此物体在时间[1,2]内的位移为( )A.176 B.143 C.136 D.116答案:A解析:s =⎠⎛12(t 2-t +2)d t =(13t 3-12t 2+2t )21=176. 2.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则⎠⎛12f (-x )d x 的值等于( ) A.56 B.12 C.23 D.16答案:A解析:由于f (x )=x m +ax 的导函数f ′(x )=2x +1,所以f (x )=x 2+x ,于是⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =(13x 3-12x 2)21=56. 3.设f (x )=⎩⎪⎨⎪⎧x 2, x ∈[0,1],2-x , x ∈[1,2],则⎠⎛02f (x )d x =( )A.34 B.45 C.56 D .不存在答案:C解析:如右图,⎠⎛2f (x )d x=⎠⎛01x 2d x +⎠⎛12(2-x )d x=13x 310+(2x -12x 2)21 =13+(4-2-2+12)=56.4. 若1 N 的力能使弹簧伸长1 cm ,现在要使弹簧伸长10 cm ,则需要做的功为( ) A. 0.05 J B. 0.5 J C. 0.25 J D. 1 J答案:B解析:设力F =kx (k 是比例系数),当F =1 N 时,x =0.01 m ,可解得k =100 N/m ,则F=100x ,所以W =∫0.10100x d x =50x 2| 0.10=0.5 J .故选B.5. [2011·湖南]由直线x =-π3,x =π3,y =0与曲线y =cos x 所围成的封闭图形的面积为( )A. 12 B. 1 C.32D. 3答案:D解析:封闭图形的面积S =∫π3-π3cos x d x =2∫π30cos x d x =2×sin x | π30=2(sin π3-sin0)=3,∴选D.6. [2012·海南华侨中学统考]如图,由曲线y =x 2和直线y =t 2(0<t <1),x =1,x =0所围成的图形(阴影部分)的面积的最小值是( )A. 23B. 25 C. 13 D. 14答案:D解析:S (t )=⎠⎛0t (t 2-x 2)d x +⎠⎛t1(x 2-t 2)d x =43t 3-t 2+13,S ′(t )=2t (2t -1)=0,得t =12为最小值点,此时S (t )min =14.二、填空题(每小题7分,共21分)7. [2012·广东一模]已知f (x )是偶函数,且⎠⎛05f (x )d x =6,则⎠⎛5-5f (x )d x =________.答案:12解析:因为⎠⎛5-5f (x )d x =⎠⎛0-5f (x )d x +⎠⎛05f (x )d x ,又函数f (x )为偶函数,所以⎠⎛0-5f (x )d x =⎠⎛05f (x )d x ,∴⎠⎛5-5f (x )d x =6+6=12,故填12.8. [2012·安徽合肥第一次质检]函数f (x )=x 3-x 2+x +1在点(1,2)处的切线与函数g (x )=x 2围成的图形的面积等于__________.答案:43解析:由f ′(x )=3x 2-2x +1,得f ′(1)=2, 故在点(1,2)处的切线方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2,得x =0或x =2. 于是,围成的面积S =⎠⎛02(2x -x 2)d x=(x 2-13x 3)| 20=4-83=43. 9. [2012·福州质检]已知函数f (x )=-x 3+ax 2+bx (a ,b ∈R )的图像如图所示,它与x 轴在原点处相切,且x 轴与函数图像所围区域(图中阴影部分)的面积为112,则a 的值为________.答案:-1解析:f ′(x )=-3x 2+2ax +b ,∵f ′(0)=0,∴b =0, ∴f (x )=-x 3+ax 2,令f (x )=0,得x =0或x =a (a <0). S 阴影=-⎠⎛a0(-x 3+ax 2)d x =112a 4=112,∴a =-1.三、解答题(10、11题12分、12题13分) 10. 求下列定积分:(1)⎠⎛12(x -1x )d x ;(2)∫π20cos2xcos x -sin x d x .解:(1)⎠⎛12(x -1x )d x =(12x 2-ln x )| 21=32-ln2. (2)∫π20cos2xcos x -sin xd x =∫π20(cos x +sin x )d x=(sin x -cos x )| π20=2.11.求由曲线xy =1及直线x =y ,y =3所围成的平面图形的面积S .解:解法一:如图,由⎩⎪⎨⎪⎧xy =1,y =x .得A (1,1). 过A 点作直线x =1将阴影部分分割成两部分,所以S =3·(1-13)-⎠⎛1131x d x +S Rt △ABC =4-ln3.解法二:以y 为积分变量S =⎠⎛13(y -1y )d y =(12y 2-ln y )31=4-ln3. 12. 对于函数f (x )=bx 3+ax 2-3x .(1)若f (x )在x =1和x =3处取得极值,且f (x )的图像上每一点的切线的斜率均不超过2sin t cos t -23cos 2t +3,试求实数t 的取值范围;(2)若f (x )为实数集R 上的单调函数,且b ≥-1,设点P 的坐标为(a ,b ),试求出点P 的轨迹所形成的图形的面积S .解:(1)∵f (x )=bx 3+ax 2-3x , ∴f ′(x )=3bx 2+2ax -3.∵f (x )在x =1和x =3处取得极值, ∴x =1和x =3是f ′(x )=0的两个根, ∴⎩⎨⎧1+3=-2a3b,1×3=-33b⇒⎩⎪⎨⎪⎧a =2,b =-13, ∴f ′(x )=-x 2+4x -3.∵f (x )的图像上每一点的切线的斜率均不超过2sin t cos t -23cos 2t +3,∴f ′(x )≤2sin t cos t -23cos 2t +3对x ∈R 恒成立,而f ′(x )=-(x -2)2+1,其最大值为1,故2sin t cos t -23cos 2t +3≥1,∴2sin(2t -π3)≥1,∴kπ+π4≤t ≤kπ+7π12,k ∈Z .(2)当b =0时,由f (x )在R 上单调,知a =0.当b ≠0时,由f (x )在R 上单调⇔f ′(x )≥0恒成立,或者f ′(x )≤0恒成立.∵f ′(x )=3bx 2+2ax -3,∴Δ=4a 2+36b ≤0,可得b ≤-19a 2.从而知满足条件的点P (a ,b )在直角坐标平面aOb 上的轨迹所形成的图形是由曲线b =-19a 2与直线b =-1所围成的封闭图形. 其面积为S =⎠⎛3-3(1-19a 2)d a =(a -a 327)| 3-3=4.。

高三数学 课堂训练5-1人教版

高三数学 课堂训练5-1人教版

第5章 第1节时间:45分钟 满分:100分一、选择题(每小题7分,共42分) 1. [2012·青岛一模]下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项; ②数列23,34,45,56,…的通项公式是a n =n n +1;③数列的图像是一群孤立的点;④数列1,-1,1,-1,…与数列-1,1,-1,1,…是同一个数列. 其中真命题的个数是( ) A. 1 B. 2 C. 3 D. 4答案:A解析:①错误,如已知a n +2=a n +a n +1,a 1=1,就无法写出a 2;②错误,a n =n +1n +2;③正确;④两个数列是不同的有序数列.故应选A.2. [2012·绵阳一诊]数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A. 103 B. 8658 C. 8258D. 108答案:D解析:根据题意并结合二次函数的性质可得: a n =-2n 2+29n +3=-2(n 2-292n )+3 =-2(n -294)2+3+8418,∴n =7时,a n 取得最大值,最大项a 7的值为108.3. 在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A. 1516B. 158C. 34D. 38答案:C解析:由已知得a 2=1+(-1)2=2,∴a 3·a 2=a 2+(-1)3,∴a 3=12,∴12a 4=12+(-1)4,∴a 4=3,∴3a 5=3+(-1)5, ∴a 5=23,∴a 3a 5=12×32=34.4. 若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5=( )A. 56 B. 65 C. 130D. 30答案:D解析:当n ≥2时,a n =S n -S n -1=n n +1-n -1n =1n (n +1),所以1a 5=5×6=30.5. 已知数列{a n }的通项公式是a n =n 2+kn +2,若对所有的n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是( )A. k >0B. k >-1C. k >-2D. k >-3答案:D解析:a n +1>a n ,即(n +1)2+k (n +1)+2>n 2+kn +2,则k >-(2n +1)对所有的n ∈N *都成立,而当n =1时-(2n +1)取得最大值-3,所以k >-3.故选D.6.[2012·广州测试]如图所示的三角形数阵叫“莱布尼兹调和三角形”,它是由整数的倒数组成的,第n 行有n 个数且两端的数均为1n (n ≥2),每个数是它下一行左右相邻两数的和,如11=12+12,12=13+16,13=14+112,…,则第10行第4个数(从左往右数)为( )11 12 12 13 16 13 14 112 112 14 15 120 130 120 15……A.11260B.1840C.1504D.1360答案:B解析:由“第n 行有n 个数且两端的数均为1n ”可得:第10行第一个数为110,由“每个数是它下一行左右相邻两数的和”可得:第10行第二个数等于19-110=190,同理,可得第9行第二个数为172,从而第10行第三个数等于172-190=1360;第9行第三个数为1252,从而第10行第四个数等于1252-1360=1840.二、填空题(每小题7分,共21分)7. [2012·辽宁大连双基测试]已知两个数列{a n },{b n },满足b n =3n a n ,且数列{b n }的前n 项和为S n =3n -2,则数列{a n }的通项公式为__________.答案:a n=⎩⎨⎧13,n =113n -1,n ≥2解析:由题意可知3a 1+32a 2+…+3n a n =3n -2.① 当n =1时,a 1=13;当n ≥2时,3a 1+32a 2+…+3n -1a n -1=3(n -1)-2,②①-②,得3n a n =3,a n =13n -1,此时,令n =1,有a 1=1,与a 1=13相矛盾.故a n=⎩⎨⎧13,n =1,13n -1,n ≥2.8. 已知数列{a n }的通项a n =nanb +c (a ,b ,c 均为正实数),则a n 与a n +1的大小关系是__________.答案:a n <a n +1解析:∵a n =na nb +c=a b +c n ,又∵{cn }是单调递减数列,∴{a n }是单调递增数列,∴a n <a n +1.9.[2012·广州测试]如图是一个n 层(n ≥2)的六边形点阵.它的中心是一个点,算作第一层,第2层每边有2个点,第3层每边有3个点,……,第n 层每边有n 个点,则这个点阵的点数共有________个.答案:3n 2-3n +1解析:每层的点数可构成数列{a n },结合图形可知a 1=1,a 2=6,…,a n =a n -1+6(n ≥3), 那么,前n 层所有点数之和为S n =1+ (n -1)[6+(6n -6)]2=3n 2-3n +1.三、解答题(10、11题12分、12题13分)10. 已知数列{a n }的通项a n =(n +1)(1011)n (n ∈N *),试问该数列{a n }有没有最大项?若有,求最大项的项数;若没有,说明理由.解:∵a n +1-a n =(n +2)(1011)n +1-(n +1)·(1011)n =(1011)n ·9-n11.当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n . 故a 1<a 2<a 3<…<a 9=a 10>a 11>a 12>…, 所以数列中有最大项为第9、10项.11. 已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),∵a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性.可知1>a 1>a 2>a 3>a 4; a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立, 并结合函数f (x )=1+12x -2-a 2的单调性,∴5<2-a 2<6,∴-10<a <-8.12. [2012·福建厦门一模]已知二次函数f (x )=ax 2+bx 的图像过点(-4n,0),且f ′(0)=2n ,n ∈N *.(1)求f (x )的解析式;(2)若数列{a n }满足1a n +1=f ′(1a n ),且a 1=4,求数列{a n }的通项公式;(3)记b n =a n a n +1,数列{b n }的前n 项和T n ,求证:43≤T n <2.解:(1)由题意及f ′(x )=2ax +b 得⎩⎪⎨⎪⎧b =2n ,16n 2a -4nb =0,解之得⎩⎪⎨⎪⎧a =12,b =2n ,即f (x )=12x 2+2nx (n ∈N *).(2)由条件得1a n +1=1a n +2n ,∴1a n +1-1a n=2n ,累加得1a n -14=2+4+6+…+2(n -1)=2+2(n -1)2(n -1)=n 2-n ,1a n =(n -12)2,所以a n =1(n -12)2=4(2n -1)2(n ∈N *). (3)b n =a n a n +1=4(2n -1)(2n +1)=2(12n -1-12n +1),则T n =b 1+b 2+…+b n =a 1a 2+a 2a 3+…+a n a n +1 =2[(1-13)+(13-15)+…+(12n -1-12n +1)]=2(1-12n +1)<2. ∵2n +1≥3,故2(1-12n +1)≥43.∴43≤T n <2.。

高三数学 课堂训练2-10人教版

高三数学 课堂训练2-10人教版

第2章 第10节时间:45分钟 满分:100分一、选择题(每小题7分,共42分)1. [2012·龙岩质检]已知函数f (x )的导函数的图像如图所示,给出下列四个结论:①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值. 则其中正确的是( ) A. ②④ B. ①④ C. ①③ D. ②③答案:A解析:由图像可知函数f (x )在(-3,1)内单调递增,在(1,7)内单调递减,在(7,+∞)内单调递增,所以①是错误的;②是正确的;③是错误的;④是正确的.故选A.2. [2012·山东烟台一模]已知函数f (x )的图像过点(0,-5),它的导数f ′(x )=4x 3-4x ,则当f (x )取得最大值-5时,x 的值应为( )A. -1B. 0C. 1D. ±1 答案:B解析:由题意易知f (x )=x 4-2x 2-5.由f ′(x )=0得x =0或x =±1,只有f (0)=-5,故选B.3. [2012·江西七校联考]函数f (x )=x cos x 的导函数f ′(x )在区间[-π,π]上的图像大致是( )答案:A解析:令g (x )=f ′(x )=cos x -x sin x ,则g (-x )=cos(-x )-(-x )sin(-x )=cos x -x sin x =g (x ),即函数f ′(x )是偶函数,其图像关于y 轴对称.当0<x <π2时,g ′(x )=-sin x -(x cos x+sin x )<0,此时f ′(x )是减函数,因此结合各选项知,选A.4. 已知函数y =f (x )(x ∈R )的图像如图所示,则不等式xf ′(x )<0的解集为 ( )A .(-∞,12)∪(12,2)B .(-∞,0)∪(12,2)C .(-∞,12)∪(12,+∞)D .(-∞,12)∪(2,+∞)答案:B解析:由f (x )图像单调性可得f ′(x )在(-∞,12)∪(2,+∞)大于0,在(12,2)上小于0,∴xf ′(x )<0的解集为(-∞,0)∪(12,2).5. [2011·湖南]设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图像分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A. 1B. 12C.52D.22答案:D解析:当x =t 时,|MN |=|f (t )-g (t )|=|t 2-ln t |,令φ(t )=t 2-ln t ,∴φ′(t )=2t -1t =2t 2-1t,可知t ∈(0,22)时,φ(t )单调递减;t ∈(22,+∞)时,φ(t )单调递增,∴t =22时|MN |取最小值.6. 设f (x )、g (x )是R 上的可导函数,f ′(x ),g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (b )g (a )答案:C解析:令y =f (x )·g (x ),则y ′=f ′(x )·g (x )+f (x )·g ′(x ), 由于f ′(x )g (x )+f (x )g ′(x )<0, 所以y 在R 上单调递减, 又x <b ,故f (x )g (x )>f (b )g (b ). 二、填空题(每小题7分,共21分)7. f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________. 答案:6解析:f (x )=x 3-2cx 2+c 2x , f ′(x )=3x 2-4cx +c 2, f ′(2)=0⇒c =2或c =6, 若c =2,f ′(x )=3x 2-8x +4, 令f ′(x )>0⇒x <23或x >2,f ′(x )<0⇒23<x <2,故函数在(-∞,23)及(2,+∞)上单调递增,在(23,2)上单调递减,∴x =2是极小值点, 故c =2不合题意,所以c =6.8. 关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是__________.答案:(-4,0)解析:由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0得x 1=0,x 2=2,当x <0时f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0-4-a <0,解得-4<a <0.9. [2012·山东聊城外国语学校一模]一辆列车沿直线轨道前进,从刹车开始到停车这段时间内,测得刹车后t 秒内列车前进的距离为s =27t -0.45t 2米,则列车刹车后__________秒车停下来,期间列车前进了__________米.答案:30 405解析:s ′(t )=27-0.9t ,由瞬时速度v (t )=s ′(t )=0得t =30(秒),期间列车前进了s (30)=27×30-0.45×302=405(米).三、解答题(10、11题12分、12题13分) 10. 设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. 解:(1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调递减,在(0,+∞)单调递增.(2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立. 故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤12时,f ′(x )≥0(x ≥0),∴f (x )在[0,+∞)上单调递增,而f (0)=0,于是当x ≥0时,f (x )≥0. 由e x >1+x (x ≠0)可得e -x >1-x (x ≠0).从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时,f ′(x )<0,∴f (x )在(0,ln2a )上单调递减, 而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0.不符合要求. 综合得a 的取值范围为(-∞,12].11. [2011·南昌一模]已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2+bx +c (x <1)a ln x (x ≥1)的图像过点(-1,2),且在x =23处取得极值.(1)求实数b ,c 的值;(2)求f (x )在[-1,e](e 为自然对数的底数)上的最大值. 解:(1)当x <1时,f ′(x )=-3x 2+2x +b , 由题意得:⎩⎪⎨⎪⎧f (-1)=2,f ′(23)=0, 即⎩⎪⎨⎪⎧2-b +c =2,-3×49+43+b =0, 解得b =c =0. (2)由(1)知:f (x )=⎩⎪⎨⎪⎧-x 3+x 2(x <1),a ln x (x ≥1).①当-1≤x <1时,f ′(x )=-x (3x -2),解f ′(x )>0得0<x <23;解f ′(x )<0得-1≤x <0或23<x <1.∴f (x )在[-1,0)和(23,1)上单减,在(0,23)上单增,由f ′(x )=-x (3x -2)=0得x =0或x =23.∵f (-1)=2,f (23)=427,f (0)=0,f (1)=0,∴f (x )在[-1,1)上的最大值为2. ②当1≤x ≤e 时,f (x )=a ln x ,当a ≤0时,f (x )≤0;当a >0时,f (x )在[1,e]上单调递增, ∴f (x )在[1,e]上的最大值为a .∴当a ≥2时,f (x )在[-1,e]上的最大值为a ; 当a <2时,f (x )在[-1,e]上的最大值为2. 12. [2012·山东烟台一模]已知f (x )=x ln x ,g (x )= -x 2+ax -3.(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)对一切x ∈(0,+∞),2f (x )≥g (x )恒成立,求实数a 的取值范围. 解:(1)f ′(x )=ln x +1,则当x ∈(0,1e )时,f ′(x )<0,f (x )单调递减,当x ∈(1e ,+∞)时,f ′(x )>0,f (x )单调递增.①0<t <t +2<1e,不成立舍去;②0<t <1e <t +2,即0<t <1e 时,f (x )min =f (1e )=-1e;③1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t . 所以f (x )min=⎩⎨⎧-1e ,0<t <1e,t ln t ,t ≥1e.(2)2x ln x ≥-x 2+ax -3, 则a ≤2ln x +x +3x,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.①x ∈(0,1),h ′(x )<0,h (x )单调递减; ②x ∈(1,+∞),h ′(x )>0,h (x )单调递增.所以h(x)min=h(1)=4,对一切x∈(0,+∞),2f(x)≥g(x)恒成立.所以a≤h(x)min=4,即a的取值范围是(-∞,4].。

2024年高三数学教学的工作计划样本(四篇)

2024年高三数学教学的工作计划样本(四篇)

2024年高三数学教学的工作计划样本一、指导原则。

本学期,我们将致力于研究新的教材,掌握最新的信息,更新教育观念,探索创新的教学模式。

我们将强化教学改革,强调团队协作,面向全体学生,实施因材施教,以激发学生对数学学习的热情,提升他们的数学素养,全力促进教学效果的提升。

二、学生状况分析。

在新的学期中,我将负责高三10、11两个文科班的数学教学。

这些学生大多基础薄弱,缺乏自主学习的习惯,自我控制能力不足,上课时注意力难以集中,容易分心,课后独立完成作业的能力较弱,且有严重的惰性思维。

因此,高三的复习工作将面临重大挑战。

三、教学策略。

1、深入研究《考试说明》和高考题目,以提升复习课的效率。

《考试说明》是命题和备考的依据,高考题目则具体展示了其要求。

通过深入研究历年高考题目,我们将更准确地理解《考试说明》,把握高考新趋势,明确教学的重点和难点,有针对性地选择例题,优化教学设计,以提升复习质量。

2、教学进度安排。

我们将按照高三数学组制定的年度教学计划进行,同时结合班级实际情况,进行第一轮高三总复习,预计在____月底____月初完成。

我们将配合学校的月度考试,并及时进行教学反思。

3、了解和观察学生。

通过课堂表现、学生互动、作业批改、试卷评阅、课堂板书以及学生课堂行为的变化等多方面,深入了解学生的学习状况,及时捕捉学生的信息,调整教学方法,确保教学最大程度地服务于学生。

对于基础较弱的学生,我们将给予更多的鼓励和学习方法的指导,以增强他们的学习信心和勇气。

4、精心备课。

我们将全力以赴地准备每一节课,以提高课堂效率。

我们会积极听取同科教师的课程,向经验丰富的教师学习教学经验和策略,以提升自身的教学能力。

5、优化练习和反馈。

我们将精选练习题,控制好题量,确保题目的典型性和层次性,以适应不同水平的学生。

我们将全批全改作业,统计学生的错题,对错误较多的题目进行深入分析。

练习的讲评将是我们教学的重要环节,确保讲解透彻,针对性强。

高中数学 2-5课后练习同步导学 新人教A版必修5 试题

高中数学 2-5课后练习同步导学 新人教A版必修5 试题

第2章 (本栏目内容,在学生用书中以活页形式分册装订!) 一、选择题(每小题5分,共20分)1.设等比数列{a n }的公比为q (q ≠1),则数列a 3,a 6,a 9,…,a 3n ,…的前n 项和为( ) A.a 11-q 2n 1-q B.a 11-q 3n1-q 3C.a 131-q 3n 1-q 3 D.a 31-q 3n1-q 3解析: 由于a 3+a 6+a 9+…+a 3n =a 31-q 3n1-q 3.故选D.答案: D2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2=( )A .2B .4C.152D.172解析: S 4a 2=a 11-q 41-q a 1q =a 11-16-a 1·2=152.答案: C3.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2 B.73C.83D .3解析: 设公比为q ,则S 6S 3=1+q 3S 3S 3=1+q 3=3⇒q 3=2,于是S 9S 6=1+q 3+q61+q3=1+2+41+2=73.答案: B4.等比数列{a n }共有2n +1项,奇数项之积为100,偶数项之积为120,则a n +1等于()A.65B.56C .20D .110解析: 由题意知:S 奇=a 1·a 3·…·a 2n +1=100,S 偶=a 2·a 4·…·a 2n =120∴S 奇S 偶=a 3·a 5·…·a 2n +1a 2·a 4·…·a 2n ·a 1=100120=56, ∴a 1·q n =a n +1=56,故选B. 答案: B二、填空题(每小题5分,共10分)5.等比数列中S n =48,S 2n =60,则S 3n 等于________.解析: ∵S n ,S 2n -S n ,S 3n -S 2n 构成等比数列.又S n =48,S 2n =60,∴S 3n -S 2n =S 3n -60∴122=48(S 3n -60)∴S 3n =63.答案: 636.在等比数列{a n }中,已知a 1+a 2+a 3=1,a 4+a 5+a 6=-2,则该数列的前15项和S 15=________.解析: 设数列{a n }的公比为q ,则由已知,得q 3=-2.又a 1+a 2+a 3=a 11-q(1-q 3)=1, ∴a 11-q =13, ∴S 15=a 11-q (1-q 15)=a 11-q [1-(q 3)5]=13×[1-(-2)5]=11.故填11. 答案: 11三、解答题(每小题10分,共20分)7.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解析: (1)依题意有2S 3=S 1+S 2,即a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+qq ≠0,从而q =-12. (2)由已知可得a 1-a 1⎝ ⎛⎭⎪⎫-122=3, 故a 1=4,从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n . 8.数列{a n }的前n 项和为S n ,a 1=1,a n +1=2S n (n ∈N *).(1)求数列{a n }的通项a n ;(2)求数列{na n }的前n 项和T n .解析: (1)∵a n +1=2S n ,∴S n +1-S n =a n +1=2S n ,∴S n +1S n=3. 又∵S 1=a 1=1,∴数列{S n }是首项为1,公比为3的等比数列.∴S n =3n -1(n ∈N *).当n ≥2时,a n =2S n -1=2·3n -2,且a 1=1, ∴a n =⎩⎪⎨⎪⎧1 n =12·3n -2n ≥2. (2)T n =a 1+2a 2+3a 3+…+na n , 当n =1时,T 1=1; 当n ≥2时,T n =1+4·30+6·31+…+2n ·3n -2① ∴3T n =3+4·31+6·32+…+2n ·3n -1② ①-②得,-2T n =-2+4+2(31+32+…+3n -2)-2n ·3n -1 =2+2·31-3n -21-3-2n ·3n -1=-1+(1-2n )·3n -1,∴T n =12+⎝ ⎛⎭⎪⎫n -123n -1(n ≥2), 又∵T 1=a 1=1也满足上式,∴T n =12+⎝ ⎛⎭⎪⎫n -123n -1(n ∈N *). 尖子生题库☆☆☆9.(10分)国家计划在西部地区退耕还林6 370万亩,2001年底西部已退耕还林的土地面积为515万亩,以后每年退耕还林的面积按12%递增.87≈2.211)(精确到1年)(2)为支持退耕还林工作,国家财政从2002年起补助农民当年退耕地每亩300斤粮食,每斤粮食按0.7元折算,并且补助当年退耕地每亩20元.试问:西部完成退耕还林计划,国家财政共需支付多少亿元?(精确到亿元)解析:(1)设从2001年底起以后的每年退耕还林的土地面积(单位:万亩)依次为a1,a2,a3,…,a n,….则a1=515×(1+12%),a2=515×(1+12%)2,…,a n=515×(1+12%)n,…S n=a1+a2+…+a n=错误!=6 370-515,n-1)=5 855×0.12,n≈2.218.又因为n∈N*,当n7≈2.211,此时完不成退耕还林计划.所以n=8.故到2009年底西部地区才能完成退耕还林计划.(2)设财政补助费为W亿元.则W=(300×0.7+20)×(6 370-515)×10-4≈135(亿元),所以西部完成退耕还林计划,国家财政共需支付约135亿元.。

数学人教A版选修2--3练习课时训练5

数学人教A版选修2--3练习课时训练5

数学人教A 版选修2-—3练习课时训练5 1.90×9l ×92×……×100=( )(A )10100A (B )11100A (C )12100A (D )11101A2.下列各式中与排列数mnA 相等的是( )(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n-m) (C)11m n n A n m --+ (D )111m nn A A--3.若 n ∈N 且 n 〈20,则(27-n)(28-n )……(34-n)等于( )(A )827n A -(B)2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是( )(A)0 (B )3 (C )5 (D )85.用1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有( )(A )24个 (B )30个 (C )40个 (D )60个6.从0,l,3,5,7,9中任取两个数做除法,可得到不同的商共有( )(A )20个 (B )19个 (C )25个 (D)30个7.甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不 同的试种方法共有( )(A)12种 (B )18种 (C )24种 (D )96种8.某天上午要排语文、数学、体育、计算机四节课,其中体育不排在第一节,那么这天上午课程表的不同排法共有( )(A)6种(B)9种(C)18种(D)24种9.有四位司机、四个售票员组成四个小组,每组有一位司机和一位售票员,则不同的分组方案共有()(A)88A种(B)48A种(C)44A·44A种(D)44A种10.有4位学生和3位老师站在一排拍照,任何两位老师不站在一起的不同排法共有()(A)(4!)2种(B)4!·3!种(C)34A·4!种(D)35A·4!种11.把5件不同的商品在货架上排成一排,其中a,b两种必须排在一起,而c,d两种不能排在一起,则不同排法共有( )(A)12种(B)20种(C)24种(D)48种12.6个人站一排,甲不在排头,共有种不同排法.13.6个人站一排,甲不在排头,乙不在排尾,共有种不同排法.14.五男二女排成一排,若男生甲必须排在排头或排尾,二女必须排在一起,不同的排法共有种.15.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的口袋中,但红口袋不能装入红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有种不同的送法.17.一场晚会有5个唱歌节目和3个舞蹈节目,要求排出一个节目单(1)前4个节目中要有舞蹈,有多少种排法?(2)3个舞蹈节目要排在一起,有多少种排法?(3)3个舞蹈节目彼此要隔开,有多少种排法?18.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果三个女生站在前排,五个男生站在后排,有多少种不同的排法。

高三数学课堂45分钟基础训练题二 人教版

高三数学课堂45分钟基础训练题二 人教版

高三数学课堂45分钟基础训练题二 一.选择题 1.已知椭圆x y 2241+=上的一点P 到左焦点的距离为1,则点P 到左准线的距离为( )A .32 B .233C .1D .4332.等比数列{}n a 中,6234a a +=,6230a a -=,那么a 4等于( ) A .8 B .16C .±8D .±163.已知直线m 、n ,平面α、β,且m α⊥,n β⊂,给出下列命题:① 若//αβ,则m n ⊥; ② 若m n ⊥,则//αβ;③ 若αβ⊥,则//m n ; ④ 若//m n ,则αβ⊥。

其中正确的命题是( )A .①④B .①③C .②③D .③④4.已知等比数列{}a n 的前n 项和为S x n n =⋅--3161,则x 的值为( ) A .13B .-13C .12D .-12 二.填空题5.在ABC ∆中,设AB a =,AC b =,若点D 在线段BC 上,且3BD DC =,则AD 用a ,b 表示为______________.6.要用6种不同的颜色给图中的“笑脸”涂色,要求“眼睛”(即图中A 、B 所示区域)用相同的颜色,则不同的涂法共有________种.(用数字作答)7.已知x 、y 满足约束条件001x y x y ≥⎧⎪≥⎨⎪+≥⎩,则22)2(y x ++的最小值为________.三.解答题如图,直三棱柱111ABC A B C -中,CB ⊥平面11ABB A ,点E 是棱BC 的中点,1AB BC AA ==.⑴ 求证直线1//CA 平面1AB E ;⑵ 求二面角11C A B B --的大小;⑶ 求直线1CA 与平面11BB C C 所成角的大小.C B 11A[参考答案]一.选择题B A A C二.填空题34a b +,216,5 三.解答题⑴∵平面PAD ⊥平面ABCD ,AD 为交线,CD ⊥AD∴⊥CD 平面PADAE ⊂平面PAD∴⊥AE CD又 ∆PAD 为正三角形,E 为PD 中点∴⊥AE PDPD DC D ⋂=∴⊥AE 平面PCD⑵ 作PQ//AB 且PQ =AB ,连QB 、QC 可得AD =BC =BQ =AP =DP =CQ ∴≅∆∆PAD QBCCD ⊥平面PAD ,所以CD PD CD PA ⊥⊥,∴⊥⊥PQ BQ PQ CQ ,∴∠BQC 是平面PAB 与平面PDC 所成二面角的平面角 ∠=∠=BQC APD 60∴平面PAB 与平面PDC 所成二面角的大小为60°⑶ 作BF QC ⊥,则F 为QC 中点,连PFEF AB //∴四边形AEFB 是平行四边形,BF//AEAE ⊥平面PDC∴⊥BF 平面PDC∴∠BPF 是BP 与平面PDC 所成的角设PA =a ,则BF a =32,BP a =2 则由直三角形PFB 可得sin ∠==BPF BF BP 64 ∴∠=BPF arcsin 64∴直线PB 与平面PDC 所成角的大小为arcsin64。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章 第5节
时间:45分钟 满分:100分
一、选择题(每小题7分,共42分)
1. [2012·浙江百校联考]已知0<a <1,log a (1-x )<log a x ,则( ) A. 0<x <1 B. x <1
2
C. 0<x <12
D. 1
2
<x <1
答案:C 解析:由⎩⎪⎨⎪

1-x >0x >0
1-x >x
,解得:0<x <1
2
.
2.已知函数f (x )=⎩⎪⎨⎪⎧
log 2x (x >0),2x (x ≤0),
若f (a )=1
2,则a 的值为( )
A.-1
B. 2
C.-1或1
2
D.-1或 2
答案:D
解析:由题知,⎩⎪⎨⎪⎧ a >0,log 2a =12或⎩⎪⎨⎪

a ≤0,2a =1
2
,可得a =2或-1.故选D. 3.已知lg a +lg b =0,则函数f (x )=a x 与函数g (x )=-log b x 的图像可能是( )
答案:B
解析:由题知,a =1b ,则f (x )=(1
b )x =b -x ,g (x )=-log b x ,当0<b <1时,f (x )单增,g (x )
单增,B 正确;当b >1时,f (x )单减,g (x )单减.故选B.
4. 函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为( ) A. 2 B. 23 C. 1
3 D. 1
答案:B
解析:由题知函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],当f (x )=0时x =1,当f (x )=1时x =3或13,所以要使值域为[0,1],定义域可以为[13,3],[1,3],[1
3,1],所以b -a 的
最小值为2
3
.故选B.
5. 若不等式x 2
-log a x <0对x ∈(0,12恒成立,则实数a 的取值范围是( )
A. {a |0<a <1}
B. {a |
1
16
a <1} C. {a |a >1} D. {a |0<a ≤1
16
}
答案:B
解析:由x 2-log a x <0得x 2<log a x ,设f 1(x )=x 2,f 2(x )=log a x ,要使x ∈(0,1
2)时,不等式
x 2<log a x 恒成立,只需f 1(x )=x 2在(0,1
2
)上的图像在f 2(x )=log a x 图像的下方即可.
当a >1时,显然不成立;
当0<a <1时,如图,要使x 2<log a x 在x ∈(0,1
2)上恒成立,需
f 1(12)≤f 2(12
). 所以有(122≤log a 12,解得a ≥116,

1
16
≤a <1. 6. [2012·东北师大附中摸底考试]若实数a 满足a >|y -1|-|y -2|(y ∈R )恒成立,则函数f (x )=log a (x 2-5x +6)的单调减区间为( )
A. (5
2,+∞)
B. (3,+∞)
C. (-∞,5
2
D. (-∞,2)
答案: D
解析:由于a >|y -1|-|y -2|(y ∈R )恒成立,又|y -1|-|y -2|的最大值是1,故a >1.设g (x )=x 2-5x +6,则函数f (x )的定义域是(-∞,2)∪(3,+∞).又函数g (x )=x 2-5x +6的单调递减区间是(-∞,5
2
),由复合函数的单调性知,函数f (x )=log a (x 2-5x +6)的单调递减区间是(
-∞,2).
二、填空题(每小题7分,共21分)
7. [变式题]函数f (x )=log 2(2x +6)的定义域为________. 答案:[-5
2
,+∞)
解析:由题知log 2(2x +6)≥0,即2x +6≥1,解得x ≥-5
2,所以函数f (x )=log 2(2x +6)
的定义域为[-5
2
,+∞).
8. 已知函数f (x )=⎩⎨⎧
3x +1
x ≤0
log 2x x >0
,则使函数f (x )的图像位于直线y =1上方的x 的取值范
围是________.
答案:-1<x ≤0或x >2
解析:当x ≤0时,3x +1>1⇒x +1>0, ∴-1<x ≤0;
当x >0时,log 2x >1⇒x >2,∴x >2. 综上所述:-1<x ≤0或x >2.
9.设函数f (x )=|log 2x |,则f (x )在区间(m -2,2m )内有定义且不是单调函数的充要条件是________.
答案:2≤m <3
解析:由题意知,只需1∈(m -2,2m ),且m -2≥0即可.于是0≤m -2<1,且2m >1,于是2≤m <3.
三、解答题(10、11题12分、12题13分) 10. 已知y =log 4(2x +3-x 2). (1)求定义域; (2)求f (x )的单调区间;
(3)求y 的最大值,并求取得最大值的x 值. 解:(1)由真数2x +3-x 2
>0,解得-1<x <3. ∴定义域是{x |-1<x <3}.
(2)令u =2x +3-x 2,则u >0,y =log 4u . 由于u =2x +3-x 2=-(x -1)2+4,
考虑到定义域,其增区间是(-1,1],减区间是[1,3). 又y =log 4u 在u ∈(0,+∞)上是增函数, 故该函数的增区间是(-1,1],减区间是[1,3). (3)∵u =2x +3-x 2
=-(x -1)2
+4≤4,
∴y =log 4(2x +3-x 2)≤log 44=1.
∴当x =1,u 取得最大值4时,y 就取得最大值1.
11. [2012·辽宁抚顺]已知函数f (x )=log a (x +1)(a >1),若函数y =g (x )图像上任意一点P 关于原点对称的点Q 的轨迹恰好是函数f (x )的图像.
(1)写出函数g (x )的解析式;
(2)当x ∈[0,1)时总有f (x )+g (x )≥m 成立,求m 的取值范围. 解:(1)设P (x ,y )为g (x )图像上任意一点,则 Q (-x ,-y )是点P 关于原点的对称点, ∵Q (-x ,-y )在f (x )的图像上, ∴-y =log a (-x +1), 即y =g (x )=-log a (1-x )(a >1). (2)f (x )+g (x )≥m ,即log a x +11-x
≥m .
设F (x )=log a 1+x
1-x ,x ∈[0,1),由题意知,只要F (x )min ≥m 即可.∵F (x )在[0,1)上是增函数,
∴F (x )min =F (0)=0.故m ≤0即为所求.
12. 定义在R 上的函数f (x )满足对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0.
(1)求证:f (x )为奇函数; (2)判断f (x )的单调性并证明;
(3)解不等式:f [log 2(x +1
x
+6)]+f (-3)≤0.
解:(1)令x =y =0,则f (0)=0,令y =-x ,则f (x )+f (-x )=f (0)=0. ∴f (x )为奇函数.
(2)f (x )为R 上的单调增函数,设x 1<x 2,则x 2-x 1>0,f (x 2-x 1)>0,∴f (x 2)=f [x 1+(x 2-x 1)]=f (x 1)+f (x 2-x 1)>f (x 1),
∴f (x )为R 上的单调增函数.
(3)∵f (0)=0且f (x )在R 上单调递增,
∴原不等式等价于f [log 2(x +1x +6)+(-3)]≤f (0)⇔log 2(x +1x +6)≤3⇔0<x +1
x +6≤8⇔
⎩⎪⎨⎪⎧ x >0x 2+6x +1>0x 2-2x +1≤0或⎩⎪⎨⎪⎧
x <0x 2
+6x +1<0,x 2-2x +1≥0
∴原不等式的解集为{x |x =1或-3-22<x <-3+22}.。

相关文档
最新文档