高三数学专题选择题集锦
高三数学选择题试卷及答案
一、选择题(每题5分,共50分)1. 下列函数中,在其定义域内单调递增的是()A. \( y = x^2 \)B. \( y = 2^x \)C. \( y = \log_2 x \)D. \( y = \sqrt{x} \)2. 已知等差数列的前三项分别为1,a,b,且a+b=4,则该数列的公差是()A. 2B. 3C. 4D. 53. 下列命题中正确的是()A. 若\( a > b \),则\( a^2 > b^2 \)B. 若\( a > b \),则\( \frac{1}{a} < \frac{1}{b} \)C. 若\( a > b \),则\( \frac{a}{c} > \frac{b}{c} \)(c为正数)D. 若\( a > b \),则\( \frac{a}{c} < \frac{b}{c} \)(c为正数)4. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A.(3,2)B.(2,3)C.(-3,-2)D.(-2,-3)5. 已知函数\( f(x) = ax^2 + bx + c \)在x=1时取得最小值,且\( f(0) = 2 \),\( f(2) = 8 \),则a的值为()A. 1B. 2C. 3D. 46. 下列函数中,在定义域内为奇函数的是()A. \( y = x^3 \)B. \( y = x^2 \)C. \( y = |x| \)D. \( y = \sqrt{x} \)7. 已知向量\( \vec{a} = (2, -3) \),\( \vec{b} = (4, 6) \),则向量\( \vec{a} \)与\( \vec{b} \)的数量积是()A. 0B. -12C. 12D. 248. 下列命题中正确的是()A. 若\( a > b \),则\( a - b > 0 \)B. 若\( a > b \),则\( a + b > 0 \)C. 若\( a > b \),则\( ab > 0 \)D. 若\( a > b \),则\( \frac{a}{b} > 0 \)9. 已知等比数列的前三项分别为1,a,b,且a+b=3,则该数列的公比是()A. 1B. 2C. 3D. 410. 在平面直角坐标系中,点A(1,2),点B(4,5)的斜率是()A. 1B. 2C. 3D. 4二、答案1. B2. A3. C4. A5. B6. A7. B8. A9. B10. A注意:以上试卷仅供参考,实际考试题目可能会有所不同。
全国高三高中数学专题试卷带答案解析
全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知命题“如果x⊥y,y∥z,则x⊥z”是假命题,那么字母x,y,z在空间所表示的几何图形可能是() A.全是直线B.全是平面C.x,z是直线,y是平面D.x,y是平面,z是直线2.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则()A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直二、填空题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的________条件.2.如图,AB为圆O的直径,点C在圆周上(异于点A,B),直线PA垂直于圆O所在的平面,点M为线段PB的中点.有以下四个命题:①PA∥平面MOB;②MO∥平面PAC;③OC⊥平面PAC;④平面PAC⊥平面PBC.其中正确的命题是________(填上所有正确命题的序号).3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .2.如图,在三棱锥S -ABC 中,平面SAB ⊥平面SBC ,AB ⊥BC ,AS =AB .过A 作AF ⊥SB ,垂足为F ,点E ,G 分别是棱SA ,SC 的中点.求证:(1)平面EFG ∥平面ABC ;(2)BC ⊥SA .3.如图,点C 是以AB 为直径的圆上的一点,直角梯形BCDE 所在平面与圆O 所在平面垂直,且DE ∥BC ,DC ⊥BC ,DE =BC .(1)证明:EO ∥平面ACD ;(2)证明:平面ACD ⊥平面BCDE .全国高三高中数学专题试卷答案及解析一、选择题1.已知命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是假命题,那么字母x ,y ,z 在空间所表示的几何图形可能是( )A .全是直线B .全是平面C .x ,z 是直线,y 是平面D .x ,y 是平面,z 是直线【答案】D【解析】当x 、y 、z 是A 、B 、C 中的几何图形时,命题“如果x ⊥y ,y ∥z ,则x ⊥z ”是真命题,故选D.2.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D【解析】根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l,故选D3.已知异面直线a,b分别在平面α,β内,且α∩β=c,那么直线c一定()A.与a,b都相交B.只能与a,b中的一条相交C.至少与a,b中的一条相交D.与a,b都平行【答案】C【解析】若c与a,b都不相交,则c与a,b都平行,根据公理4,知a∥b,与a,b异面矛盾.故选C.4.设α,β是两个不同的平面,l是一条直线,以下命题正确的是()A.若l⊥α,α⊥β,则l⊂βB.若l∥α,α∥β,则l⊂βC.若l⊥α,α∥β,则l⊥βD.若l∥α,α⊥β,则l⊥β【答案】C【解析】选项A中也可以l∥β,选项B中也可以l∥β,选项D中也可以l⊂β,l∥β或l与β斜交.5.已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【答案】D【解析】若m∥α,n∥α,m,n可以平行,可以相交,也可以异面,故①不正确;若α⊥γ,β⊥γ,α,β可以相交,故②不正确;若m∥α,m∥β,α,β可以相交,故③不正确;若m⊥α,n⊥α,则m∥n,④正确.故选D.6.将图(1)中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四面体ABCD(如图(2)),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在题图(1)中的等腰直角三角形ABC中,斜边上的中线AD就是斜边上的高,则AD⊥BC,翻折后如题图(2),AD与BC变成异面直线,而原线段BC变成两条线段BD、CD,这两条线段与AD垂直,即AD⊥BD,AD⊥CD,BD∩CD=D,故AD⊥平面BCD,所以AD⊥BC.故选C.二、填空题1.已知E ,F ,G ,H 是空间四点,命题甲:E ,F ,G ,H 四点不共面,命题乙:直线EF 和GH 不相交,则甲是乙成立的________条件.【答案】充分不必要【解析】E ,F ,G ,H 四点不共面时,EF ,GH 一定不相交,否则,由于两条相交直线共面,则E ,F ,G ,H 四点共面,与已知矛盾,故甲可以推出乙;反之,EF ,GH 不相交,含有EF ,GH 平行和异面两种情况,当EF ,GH 平行时,E ,F ,G ,H 四点共面,故乙不能推出甲.即甲是乙的充分不必要条件.2.如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线PA 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题:①PA ∥平面MOB ;②MO ∥平面PAC ;③OC ⊥平面PAC ;④平面PAC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号).【答案】②④【解析】①错误,PA ⊂平面MOB ;②正确;③错误,否则,有OC ⊥AC ,这与BC ⊥AC 矛盾;④正确,因为BC ⊥平面PAC .3.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠,有以下四个结论:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)【答案】①③【解析】过N 作NP ⊥BB 1于点P ,连接MP ,可证AA 1⊥平面MNP ,得AA 1⊥MN ,①正确;过M ,N 分别作MR ⊥A 1B 1,NS ⊥B 1C 1于点R ,S ,则当M 不是AB 1的中点,N 不是BC 1的中点时,直线A 1C 1与直线RS 相交;当M ,N 分别是AB 1,BC 1的中点时,A 1C 1∥RS ,所以A 1C 1与MN 可以异面,也可以平行,故②④错误;由①正确知,AA 1⊥平面MNP ,而AA 1⊥平面A 1B 1C 1D 1,所以平面MNP ∥平面A 1B 1C 1D 1,故③正确.三、解答题1.已知四棱锥P -ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD =2EC .(1)求证:BE ∥平面PDA ;(2)若N 为线段PB 的中点,求证:NE ⊥平面PDB .【答案】(1)见解析(2)见解析【解析】(1)∵EC ∥PD ,PD ⊂平面PDA ,EC ⊄平面PDA ,∴EC ∥平面PDA ,同理可得BC ∥平面PDA .∵EC ⊂平面EBC ,BC ⊂平面BEC 且EC ∩BC =C , ∴平面BEC ∥平面PDA .又∵BE ⊂平面BEC ,∴BE ∥平面PDA .(2)连接AC ,交BD 于点F ,连接NF ,∵F 为BD 的中点,∴NF∥PD且NF=PD,又EC∥PD且EC=PD,∴NF∥EC且NF=EC.∴四边形NFCE为平行四边形,∴NE∥FC,∵PD⊥平面ABCD,AC⊂平面ABCD,∴AC⊥PD,又DB⊥AC,PD∩BD=D,∴AC⊥平面PDB,∴NE⊥平面PDB.2.如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.【答案】(1)见解析(2)见解析【解析】(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC.因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.3.如图,点C是以AB为直径的圆上的一点,直角梯形BCDE所在平面与圆O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.(1)证明:EO∥平面ACD;(2)证明:平面ACD⊥平面BCDE.【答案】(1)见解析(2)见解析【解析】(1)如图,取BC的中点M,连结OM、ME.在△ABC中,O为AB的中点,M为BC的中点,∴OM∥AC,在直角梯形BCDE中,DE∥BC,且DE=BC=CM,∴四边形MCDE为平行四边形,∴EM∥DC,∴面EMO∥面ACD,又∵EO⊂面EMO,∴EO∥面ACD.(2)∵C在以AB为直径的圆上,∴AC⊥BC,又∵面BCDE⊥面ABC,面BCDE∩面ABC=BC,∴AC⊥面BCDE,又∵AC⊂面ACD,∴面ACD⊥面BCDE.。
高三数学:选择题汇总(含答案解析)
1.在吸烟与患肺病这两个分类变量的计算中,下列说法正确的是( )A .若2χ的观测值为6.635,我们有99%的把握认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;B .从独立性检验可知有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患有肺病;C .若从统计量中求出有95% 的把握认为吸烟与患肺病有关系,是指有5% 的可能性使得推判出现错误;D .以上三种说法都不正确【解析】独立性检验中的有把握的比例值是一个概率值,根据概率的含义只有C 描述的是正确的【解析】由复数的几何意义可知点Z 到点1Z 的距离为||1Z Z -,点Z 到点2Z 的距离为||2Z Z -,因此点Z 到点1Z 的距离等于点Z 到点2Z 的距离,点Z 在线段21Z Z 的中垂线上,答案选B.3.利用数学归纳法证),1(,11 (121)2+++∈≠--=++++N n a aa aa a n n 时,在验证n=1成立时,左边应该是( )A 、1B 、1+aC 、1+a +a 2D 、1+a +a 2+a 3【解析】对于初始值的验证只需令左边n=1,得到1+a +a 2,故选C . 4.在对两个变量x 、y 进行线性回归分析时,有下列步骤:①对所求出的回归直线方程作出解释; ②收集数据(i x 、i y ),1,2i =, ,n ;③求线性回归方程;④求未知参数; ⑤根据所搜集的数据绘制散点图。
如果根据可行性要求能够作出变量x 、y 具有线性相关结论,则在下列操作中正确的顺序是( )A.①②⑤③④B.③②④⑤①C.②④③①⑤D.②⑤④③①【答案】D 【解析】回归分析的大致步骤为:收集数据得到点的坐标,做散点图,求参数,得方程,对回归方程作出解释5.设随机变量ξ服从正态分布p p N =>)1(1,0ξ),(,则)01(<<-ξP ( )A .12p B .12p - C .1-2p D .1-p【解析】随机变量服从标准正态分布,关于=x 对称,()()()p p p p -=>-=<<=<<-211211001ξξξ,故选B . 6.若随机变量X 的分布列如表:则()E X =( )X 0 1 2 3 45 P 2x 3x 7x 2x 3x xA .181B .91C .920 D .【解析】首先237231x x x x x x x +++++==,所以118x =,因此120()021327324354040189E X x x xx x x x =⨯+⨯+⨯+⨯+⨯+⨯==⨯=,故选择C. 7.对于两个复数i 2321+-=α,i 2321--=β,有下列四个结论:①1=αβ;②1=βα;③1=βα;④332αβ+=,其中正确..的结论的个数为( ) A .1 B .2 C .3 D .4 【解析】2213131131332222222222i i i i i αβ⎛⎫⎛⎫⎛⎫⎛⎫=-+--=-+⨯-⨯- ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13144=+=故①正确;222131313322132244213221313442222i i i i i i αβ⎛⎫-+ ⎪-+--⎝⎭====--⎛⎫⎛⎫+---- ⎪ ⎪⎝⎭⎝⎭故②不正确; 222213131,12222αβ⎛⎫⎛⎫⎛⎫⎛⎫=-+==-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,1αβ∴=故③正确. 323131********2222222222i i i i i α⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+=-+-+=---+= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,323131313131312222222222i i i i i β⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=--=----=-+--= ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以332αβ+=.故④正确.综上可得正确的共3个.故C 正确.8.已知箱中共有6个球,其中红球、黄球、蓝球各2个.每次从该箱中取1个球 (有放回,每球取到的机会均等),共取三次.设事件A :“第一次取到的球和第二次取到的球颜色相同”,事件B :“三次取到的球颜色都相同”,则(|)P B A =( )A .16 B .13 C .23D .1【解析】由题意11111111122222422211111166666633()(|),()C C C C C C C C C P A B P A C C C C C C ⋅⋅⋅⋅+⋅⋅==⋅⋅⋅⋅,则()1()()3P AB P B A P A ==,故选B.9.若方程04)1(2=++-x m x在(0,3]上有两个不相等的实数根,则m 的取值范围为 ( )A .(3,310) B .[3,310) C .[3,310] D .(3,310] 【解析】设()()214f x x m x =-++,由题意可知函数在(0,3]上与x 轴有两个交点,需满足()()0103103230030m m f f ∆>⎧⎪+⎪<<⎪∴<≤⎨⎪>⎪≥⎪⎩ 10下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程 35y x =-,变量x 增加一个单位时,y 平均增加5个单位; ③线性回归直线方程y bxa =+ 必过(),x y ; ④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系; 其中错误的个数是( ) A .0 B .1 C .2 D .3【解析】由方差计算公式可知,每个数据都加上或减去同一个数,方差不变,故①正确;对于②,当变量x 增加一个单位时,y 平均减少5个单位,故②错;对于③,由线性回归知识可知,回归直线一定过样本中心点,故③正确;对于④,只是有99%的把握认为有关,不能确认,故④错;故选C .11.由直线与圆相切时,圆心到切点连线与直线垂直,想到平面与球相切时,球心与切点连线与平面垂直,用的是 ( )A .归纳推理B .演绎推理C .类比推理D .传递性推理【答案】C 【解析】类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理。
高三数学题及答案解析
高三数学题及答案解析一、选择题1. 已知函数f(x) = ax^2 + bx + c在点x=1取得最小值3,且知道a>0,求a、b、c的值。
答案解析:由题意知,函数f(x) = ax^2 + bx + c在x=1处取得最小值,因此x=1为抛物线的对称轴,即-b/2a = 1。
由此可得b = -2a。
又因为f(1) = 3,即a + b + c = 3。
将b的值代入,得到a - 2a + c = 3,即c = 3 + a。
由于a>0,我们可以取a=1,得到b=-2,c=1。
所以a=1,b=-2,c=1。
2. 已知数列{an}满足a1=1,an=an-1+2n-1,求a10的值。
答案解析:根据数列的递推公式an=an-1+2n-1,我们可以逐步计算得到数列的前几项:a1 = 1a2 = a1 + 2*2 - 1 = 1 + 3 = 4a3 = a2 + 2*3 - 1 = 4 + 5 = 9...通过观察可以发现,数列的第n项实际上是前n项和的公式,即an =1 + 3 + 5 + ... + (2n-1)。
这是一个等差数列的前n项和,根据等差数列求和公式,我们可以得到an = n^2。
所以a10 = 10^2 = 100。
二、填空题1. 若复数z满足|z-2-3i| = |z+1+i|,请计算z的实部和虚部。
答案解析:设z = x + yi,根据题意有|z-2-3i| = |z+1+i|,即|(x-2) + (y-3)i| = |(x+1) + (y+1)i|。
根据复数模的计算公式,我们可以得到两个方程:(x-2)^2 + (y-3)^2 = (x+1)^2 + (y+1)^2解这个方程组,我们可以得到x和y的值:x = 1, y = 2所以z的实部为1,虚部为2,即z = 1 + 2i。
三、解答题1. 已知圆的方程为(x-3)^2 + (y+1)^2 = 9,求圆上一点P(x, y)到圆心(3, -1)的距离。
高三数学考试题目及答案大全
高三数学考试题目及答案大全第一节选择题1.若a+b=0,则下列说法错误的是() A. a=-b B. b=-a C. a·b=0 D. a=b2.若函数y=ax+b在点(1,-3)处的斜率为-2,则a,b的值分别为() A. 2,-1 B. -2,1 C. -1,2 D. 1,-23.若直线2x+y+1=0与x轴交于点(-1, 0),求直线的斜率k为() A. k=0 B. k=1 C. k=-1 D. k=1/2第二节填空题1.已知平方根2的近似值为1.414,则2的近似值为_________。
2.已知函数y=x^2+4x+6,当x=-2时,y的值为_________。
第三节计算题1.求函数y=3x^2-4x+5的极小值。
2.解方程组: \[ \begin{cases} 2x+y=3 \\ x-3y=-2 \end{cases} \]3.计算极限: \[ \lim_{{x\to 1}}\frac{x^2-1}{x-1} \]第四节证明题证明:直线y=3x+1与直线y=3x+2平行。
答案参考第一节选择题1. D. a=b2. D. 1,-23. B. k=1第二节填空题1.2的近似值为1.414 x 2 =2.8282.当x=-2时,y=(-2)^2 + 4 × (-2)+ 6 = 2第三节计算题1.函数y=3x^2-4x+5的极小值为(4, 9)2.解得x=5,y=-73.解得极限值为2第四节证明题设直线y=3x+1过点(0, 1),直线y=3x+2过点(0,2),斜率均为3,两直线平行。
证毕。
以上为高三数学考试题目及答案大全内容,希望对你的学习有所帮助。
全国高三高中数学专题试卷带答案解析
全国高三高中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.45.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).3.如图,在长方形ABCD 中,AB =2,BC =1,E 为DC 的中点,F 为线段EC 上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.三、解答题1.如图,正方形ABCD 和三角形ACE 所在的平面互相垂直,EF ∥BD ,AB =EF .(1)求证:BF ∥平面ACE ;(2)求证:BF ⊥BD .2.如图,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,AB =2,∠BAD =60°.(1)求证:OM ∥平面PAB ;(2)求证:平面PBD ⊥平面PAC ;(3)当四棱锥P-ABCD 的体积等于时,求PB 的长.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .全国高三高中数学专题试卷答案及解析一、选择题1.已知两条直线a,b与两个平面α,β,b⊥α,则下列命题中正确的是().①若a∥α,则a⊥b;②若a⊥b,则a∥α;③若b⊥β,则α∥β;④若α⊥β,则b∥β.A.①③B.②④C.①④D.②③【答案】A【解析】过直线a作平面γ使α∩γ=c,则a∥c,再根据b⊥α可得b⊥c,从而b⊥a,命题①是真命题;下面考虑命题③,由b⊥α,b⊥β,可得α∥β,命题③为真命题.故正确选项为A.2.已知α,β,γ是三个不重合的平面,a,b是两条不重合的直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,那么a∥b”为真命题,则可以在横线处填入的条件是().A.①或②B.②或③C.①或③D.只有②【答案】C【解析】由定理“一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行”可得,横线处可填入条件①或③,结合各选项知,选C.3.已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m⊥β的是().A.α⊥β,且m⊂αB.m∥n,且n⊥βC.α⊥β,且m∥αD.m⊥n,且n∥β【答案】B【解析】根据定理、性质、结论逐个判断.因为α⊥β,m⊂α⇒m,β的位置关系不确定,可能平行、相交、m在β面内,故A错误;由线面垂直的性质定理可知B正确;若α⊥β,m∥α,则m,β的位置关系也不确定,故C错误;若m⊥n,n∥β,则m,β的位置关系也不确定,故D错误.4.已知两条不同的直线m,n和两个不同的平面α,β,给出下列四个命题:①若m∥α,n∥β,且α∥β,则m∥n;②若m∥α,n⊥β,且α⊥β,则m∥n;③若m⊥α,n∥β,且α∥β,则m⊥n;④若m⊥α,n⊥β,且α⊥β,则m⊥n.其中正确的个数有().A.1B.2C.3D.4【答案】B【解析】①中m,n可能异面或相交,故不正确;②因为m∥α,n⊥β且α⊥β成立时,m,n两直线的关系可能是相交、平行、异面,故不正确;③因为m⊥α,α∥β可得出m⊥β,再由n∥β可得出m⊥n,故正确;④分别垂直于两个垂直平面的两条直线一定垂直,正确.故选B.5.如图所示,在四边形A-BCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD沿BD折起,使平面ABD⊥平面BCD,构成三棱锥A-BCD,则在三棱锥ABCD中,下列命题正确的是().A.平面ABD⊥平面ABCB.平面ADC⊥平面BDCC.平面ABC⊥平面BDCD.平面ADC⊥平面ABC【答案】D【解析】在平面图形中CD⊥BD,折起后仍有CD⊥BD,由于平面ABD⊥平面BCD,故CD⊥平面ABD,CD⊥AB.又AB⊥AD,故AB⊥平面ADC.所以平面ABC⊥平面ADC.D选项正确.二、填空题1.设α和β为两个不重合的平面,给出下列四个命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的充分必要条件是l与α内的两条直线垂直.其中为真命题的是________(写出所有真命题的序号).【答案】①②【解析】由①知α内两条相交直线分别平行于平面β,则两条相交直线确定的平面α平行于平面β,故①为真命题;由线面平行的判定定理知,②为真命题;对于③,如图,α∩β=l,a⊂α,a⊥l,但不一定有α⊥β,故③为假命题;对于④,直线l与平面α垂直的充分必要条件是l与α内的两条相交直线垂直,故④为假命题.综上所述,真命题的序号为①②.2.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出直线AB∥平面MNP的图形的序号是________(写出所有符合要求的图形序号).【答案】①③【解析】对于①,注意到该正方体的面中过直线AB的侧面与平面MNP平行,因此直线AB平行于平面MNP;对于②,注意到直线AB和过点A的一个与平面MNP平行的平面相交,因此直线AB与平面MNP相交;对于③,注意到此时直线AB与平面MNP内的一条直线MP平行,且直线AB位于平面MNP外,因此直线AB与平面MNP平行;对于④,易知此时AB与平面MNP相交.综上所述,能得出直线AB平行于平面MNP的图形的序号是①③.3.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点D作DK⊥AB,K为垂足.设AK=t,则t的取值范围是________.【答案】【解析】如图,过D作DG⊥AF,垂足为G,连接GK,∵平面ABD⊥平面ABC,DK⊥AB,∴DK⊥平面ABC,∴DK⊥AF.又DG⊥AF,∴AF⊥平面DKG,∴AF⊥GK.容易得到,当F运动到E点时,K为AB的中点,t=AK==1;当F运动到C点时,在Rt△ADF中,易得AF=,且AG=,GF=,又易知Rt△AGK∽Rt△ABF,则,又AB=2,AK=t,则t=.∴t的取值范围是.三、解答题1.如图,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.(1)求证:BF∥平面ACE;(2)求证:BF⊥BD.【答案】见解析【解析】(1)设AC与BD交于O点,连接EO.在正方形ABCD中,BO=AB,又因为AB=EF,∴BO=EF,又因为EF∥BD,∴四边形EFBO是平行四边形,∴BF∥EO,又∵BF⊄平面ACE,EO⊂平面ACE,∴BF∥平面ACE.(2)在正方形ABCD中,AC⊥BD,又因为正方形ABCD和三角形ACE所在的平面互相垂直,BD⊂平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO⊂平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.2.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD的中点,AB=2,∠BAD=60°.(1)求证:OM∥平面PAB;(2)求证:平面PBD⊥平面PAC;(3)当四棱锥P-ABCD的体积等于时,求PB的长.【答案】【解析】(1)证明∵在△PBD中,O,M分别是BD,PD的中点,∴OM是△PBD的中位线,∴OM∥PB.∵OM⊄平面PAB,PB⊂平面PAB,∴OM∥平面PAB.(2)证明∵底面ABCD是菱形,∴BD⊥AC.∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.又AC⊂平面PAC,PA⊂平面PAC,AC∩PA=A,∴BD⊥平面PAC.∵BD⊂平面PBD,∴平面PBD⊥平面PAC.(3)解∵底面ABCD是菱形,AB=2,∠BAD=60°,∴S=2××AB×AD×sin 60°=2×2×=2.菱形ABCD∵四棱锥P-ABCD的高为PA,∴×2×PA=,解得PA=.又∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA ⊥AB .在Rt △PAB 中,PB = ==.3.如图,在四棱台ABCD-A 1B 1C 1D 1中,D 1D ⊥平面ABCD ,底面ABCD 是平行四边形,AB =2AD ,AD =A 1B 1,∠BAD =60°.(1)证明:AA 1⊥BD ;(2)证明:CC 1∥平面A 1BD .【答案】见解析【解析】(1)法一因为D 1D ⊥平面ABCD ,且BD ⊂平面ABCD ,所以D 1D ⊥BD .在△ABD 中,由余弦定理,得BD 2=AD 2+AB 2-2AD ·AB cos ∠BAD .又因为AB =2AD ,∠BAD =60°,所以BD 2=3AD 2.所以AD 2+BD 2=AB 2,因此AD ⊥BD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .法二因为DD 1⊥平面ABCD ,且BD ⊂平面ABCD ,所以BD ⊥D 1D .如图1,取AB 的中点G ,连接DG .图1在△ABD 中,由AB =2AD ,得AG =AD .又∠BAD =60°,所以△ADG 为等边三角形,所以GD =GB ,故∠DBG =∠GDB .又∠AGD =60°,所以∠GDB =30°,所以∠ADB =∠ADG +∠GDB =60°+30°=90°,所以BD ⊥AD .又AD ∩D 1D =D ,所以BD ⊥平面ADD 1A 1.又AA 1⊂平面ADD 1A 1,所以AA 1⊥BD .(2)如图2,连接AC ,A 1C 1.设AC ∩BD 于点E ,图2连接EA 1.因为四边形ABCD 为平行四边形,所以EC =AC .由棱台的定义及AB =2AD =2A 1B 1知,A 1C 1∥EC 且A 1C 1=EC ,所以四边形A 1ECC 1为平行四边形,因此CC 1∥EA 1.又因为EA 1⊂平面A 1BD ,CC 1⊄平面A 1BD ,所以CC 1∥平面A 1BD .。
高考数学试卷选择题
甲醇现货采购合同书范本甲方(买方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 乙方(卖方):名称:_____________________地址:_____________________联系人:___________________电话:_____________________### 鉴于:甲乙双方本着平等自愿、诚实信用的原则,经协商一致,就甲方购买乙方甲醇现货事宜达成如下合同:## 第一条产品描述1. 产品名称:甲醇2. 规格型号:________________3. 质量标准:符合国家标准GB/T338-20114. 包装方式:散装/桶装## 第二条采购数量及价格1. 采购数量:________________吨2. 单价:________________元/吨3. 总金额:________________元## 第三条交货时间及地点1. 交货时间:________________年____月____日前2. 交货地点:________________## 第四条运输方式及费用承担1. 运输方式:________________(如:公路、铁路、水运等)2. 费用承担:由乙方负责运输至甲方指定地点,运输费用由乙方承担。
## 第五条质量验收1. 甲方在收到货物后____天内进行质量验收。
2. 如发现货物质量不符合合同约定,甲方有权要求乙方更换或退货。
## 第六条付款方式及期限1. 付款方式:银行转账/电汇/承兑汇票等。
2. 付款期限:甲方在验收合格后____天内支付全部货款。
## 第七条违约责任1. 如乙方未能按时交货,每逾期一天,应向甲方支付未交货部分货款____%的违约金。
2. 如甲方未能按时付款,每逾期一天,应向乙方支付未付款部分货款____%的滞纳金。
高三数学试题及答案
高三数学试题及答案一、选择题1. 设函数 $f(x)=\sqrt{x}$,则 $f(2+3)=\underline{\qquad}$。
A. 5B. \(\sqrt{5}\)C. 7D. \(\sqrt{7}\)2. 已知等差数列 $\{a_n\}$ 的前 $n$ 项和为$S_n=\frac{n}{2}(2a_1+(n-1)d)$,其中 $a_1=3$,$S_n=12n$,则$d=\underline{\qquad}$。
A. -4B. -3C. 3D. 43. 设点 $A(3,4)$ 和 $B(-2,1)$,则直线 $AB$ 的斜率为\underline{\qquad}。
A. -\(\frac{3}{5}\)B. \(\frac{3}{5}\)C. \(-\frac{7}{5}\)D. \(\frac{7}{5}\)4. 若正方体的棱长为 $a$,则其表面积与体积的比为\underline{\qquad}。
A. \(a^2:2a^3\)B. \(a^2:4a^3\)C. \(a:6\)D. \(1:6a\)二、填空题1. 设集合 $A=\{x\mid x>0,x\leqslant 5\}$,则 $A$ 的基数为\underline{\qquad}。
2. 已知复数 $z=2+3i$,则 $\Bar{z}=$\underline{\qquad}。
3. 若函数 $f(x)$ 为偶函数,则 $f(-2)=$\underline{\qquad}。
4. 若 $f(x)=x^3-3x^2+4$,则 $f(x)$ 的极大值为\underline{\qquad}。
三、解答题1. 已知曲线 $y=\frac{2}{x}$,求曲线 $y$ 轴上的截距。
解:当 $x=0$ 时,$y=\frac{2}{0}$ 没有意义。
所以曲线 $y=\frac{2}{x}$ 在 $y$ 轴上没有截距。
2. 求解方程 $\log_4{(x+4)}-\log_4{(x-2)}=2$。
数学高三试卷真题加答案
一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x + 2,若f(x)在x=1处取得极值,则该极值是()A. 最大值B. 最小值C. 无极值D. 无法确定答案:A解析:首先求导f'(x) = 3x^2 - 3,令f'(x) = 0,解得x = 1或x = -1。
再求二阶导数f''(x) = 6x,将x = 1代入f''(x),得f''(1) = 6 > 0,因此f(x)在x=1处取得极小值。
2. 已知等差数列{an}的首项a1 = 3,公差d = 2,则第10项an = ()A. 23B. 25C. 27D. 29答案:C解析:由等差数列的通项公式an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得an = 3 + (10 - 1)×2 = 3 + 18 = 21。
3. 若复数z = 1 + bi(b∈R),且|z| = √2,则b的值为()A. 1B. -1C. √2D. -√2答案:A解析:由复数的模的定义,得|z| = √(1^2 + b^2) = √2,解得b = ±1。
因为题目中未指定b的正负,所以答案为A。
4. 若不等式|x| + |y| ≤ 1表示的区域为D,则D的面积为()A. 1B. 2C. πD. 4答案:B解析:不等式|x| + |y| ≤ 1表示的区域D是一个以原点为中心的正方形,边长为2,所以D的面积为2×2=4。
5. 已知函数f(x) = log2(x - 1) + log2(3 - x),则f(x)的定义域为()A. (1, 3)B. (1, 2)C. (2, 3)D. (1, 2)∪(2, 3)答案:D解析:由对数函数的定义,得x - 1 > 0且3 - x > 0,解得1 < x < 3。
高三数学选择题专题训练(12套)
高三数学选择题专题训练(一)1.已知集合{}1),(≤+=y x y x P ,{}1),(22≤+=y x y x Q ,则有 ( )A .Q P ⊂≠ B .Q P = C .P Q P = D .Q Q P = 2.函数11)(+-=x x e e x f 的反函数是( )A .)11( 11)(1<<-+-=-x xxLn x f B .)11(11)(1-<>+-=-x x xxLn x f 或 C .)11( 11)(1<<--+=-x x xLnx fD .)11(11)(1-<>-+=-x x xxLn x f 或 3.等差数列{}n a 的前n 项和为n S ,369-=S ,10413-=S ,等比数列{}n b 中,55a b =,77a b =,则6b 的值( )A .24B .24-C .24±D .无法确定 4.若α、β是两个不重合的平面, 、m 是两条不重合的直线,则α∥β的一个充分而非必要条件是( ) A . αα⊂⊂m 且 ∥β m ∥β B .βα⊂⊂m 且∥mC .βα⊥⊥m 且 ∥mD . ∥α m ∥β 且 ∥m 5.已知nn n x a x a a x x x +++=++++++ 102)1()1()1(,若na a a n -=+++-509121,则n 的值( )A .7B .8C .9D .106.已知O ,A ,M ,B 为平面上四点,则OA OB OM )1(λλ-+=,)2,1(∈λ,则( )A .点M 在线段AB 上 B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线 7.若A 为抛物线241x y =的顶点,过抛物线焦点的直线交抛物线于B 、C 两点,则ACAB ⋅等于( ) A .31-B .3-C .3D .43- 8.用四种不同颜色给正方体1111D C B A ABCD -的六个面涂色,要求相邻两个面涂不同的颜色,则共有涂色方法( )A .24种B .72种C .96种D .48种9.若函数x x a y 2cos 2sin -=的图象关于直线π87=x 对称,那么a 的值 ( )A .2B .2-C .1D .1-10.设1F ,2F 是双曲线12222=-by a x ,)00(>>b a ,的两个焦点,P 在双曲线上,若021=⋅PF PF ac 2=,(c 为半焦距),则双曲线的离心率为 ( ) A .231+ B .251+ C .2 D .221+高三数学选择题专题训练(二)1.已知集合S={}{}01,211x x T x x <<=-≤,则ST 等于A SB TC {}1x x ≤ D Φ 2.已知抛物线y =34x 2,则它的焦点坐标是A (0,316 )B ( 316 ,0)C (13 ,0)D (0, 13 )3.设等差数列{a n }的前n 项和为S n ,且S 1=1,点(n , S n )在曲线C 上,C 和直线x -y +1=0交于A,B 两点,|AB|= 6 ,那么这个数列的通项公式是A 21n a n =-B 32n a n =-C 43n a n =- D54n a n =-4.已知a =(1,2+sin x ),b =(2,cos x ),c =(-1,2),(a -c )∥b ,则锐角x 等于 A 15° B 30° C 45° D 60°5.函数y =f (x )的图像与函数y =lg(x -1)+9的图像关于直线y =x 对称,则f (9)的值为A 10B 9C 3D 2 6.若tan 2α=,则sin cos αα的值为 A .12B .23C .25D .17..坐平面内区域M=()()⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--≤≤≤-+≥+-01100101y kx k y x y x y ,x 的面积可用函数f(x)表示,若f(k)=8,则k 等于( ) A.21 B.31C.22 D.23 8.函数11)(2-+-=x x a x f 为奇函数的充要条件是\A 、10<<a B 、10≤<a C 、1>a D 、1≥a 9.若61()x展开式中的第5项是152,设12n n S x x x ---=+++,则lim n n S →∞=A .1B .12C .14D .16(文)点P 在曲线y =x 3-x +7上移动,过P 点的切线的倾斜角取值范围是 A.[0,π) B.(0,2π)∪[4π3,π)C.[0, 2π)∪(2π,4π3] D.[0, 2π)∪[4π3,π)10.如图正方体ABCD -A 1B 1C 1D 1,在它的12条棱及12条面对角线所在直线中,选取若干条直线确定平面。
高三数学试题及解析答案
高三数学试题及解析答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = |x|C. f(x) = sin(x)D. f(x) = cos(x)解析:奇函数满足f(-x) = -f(x)的性质。
选项A是偶函数,选项B是偶函数,选项D是偶函数,只有选项C满足奇函数的定义。
因此,正确答案是C。
2. 已知等差数列{an}的首项a1=2,公差d=3,求第5项a5的值。
解析:等差数列的通项公式为an = a1 + (n-1)d。
将已知条件代入公式,得到a5 = 2 + (5-1)×3 = 2 + 12 = 14。
3. 计算下列积分:∫(3x^2 - 2x + 1)dx解析:根据积分的基本公式,我们可以计算出:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C4. 已知圆的方程为(x-3)^2 + (y-4)^2 = 25,求圆心坐标和半径。
解析:圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)是圆心坐标,r是半径。
根据题目给出的方程,圆心坐标为(3, 4),半径为5。
二、填空题(每题4分,共12分)1. 若sinθ = 3/5,且θ为锐角,求cosθ的值。
答案:根据勾股定理,cosθ = √(1 - sin²θ) = √(1 -(3/5)²) = 4/5。
2. 已知函数f(x) = x^3 - 2x^2 + 3x - 4,求f(2)的值。
答案:将x=2代入函数f(x),得到f(2) = 2³ - 2×2² + 3×2- 4 = 8 - 8 + 6 - 4 = 2。
3. 求方程2x + 5 = 7x - 3的解。
答案:将方程化简,得到5x = 8,解得x = 8/5。
三、解答题(每题18分,共54分)1. 解不等式:|x - 3| < 2。
高三数学练习题及答案
高三数学练习题及答案一、选择题1. 已知函数f(x) = 2x + 3,那么f(1)的值为()。
A. 1B. 5C. 1D. 52. 若|a| = 5,则a的值为()。
A. 5 或 5B. 0C. 5D. 53. 下列函数中,奇函数是()。
A. y = x^2B. y = x^3C. y = |x|D. y = 1/x4. 在等差数列{an}中,若a1 = 1,a3 = 3,则公差d为()。
A. 1B. 2C. 3D. 45. 若复数z满足|z 1| = |z + 1|,则z在复平面上的对应点位于()。
A. 实轴上B. 虚轴上C. 原点D. 不在坐标轴上二、填空题1. 已知等差数列{an}的通项公式为an = 3n 2,则第7项的值为______。
2. 若向量a = (2, 3),向量b = (4, 1),则2a 3b = ______。
3. 不等式2x 3 > x + 1的解集为______。
4. 二项式展开式(a + b)^10中,含a^3b^7的项的系数为______。
5. 在三角形ABC中,a = 5, b = 8, sinA = 3/5,则三角形ABC的面积为______。
三、解答题1. 讨论函数f(x) = x^3 3x在区间(∞, +∞)上的单调性。
2. 设函数f(x) = (1/2)^x 2^x,求f(x)的单调递减区间。
3. 已知等差数列{an}的前n项和为Sn = 2n^2 + n,求该数列的通项公式。
4. 在△ABC中,a = 10, b = 15, C = 120°,求sinA和cosA的值。
5. 解三角形ABC,已知a = 8, b = 10, sinB = 3/5。
6. 已知函数f(x) = x^2 + ax + 1在区间[1, 3]上的最小值为3,求实数a的值。
7. 设函数f(x) = x^2 2x + c,讨论函数在区间[0, 3]上的最大值和最小值。
高中数学选择题真题与解析汇编
高中数学选择题真题与解析汇编在高中数学的学习中,选择题占据着重要的地位。
它不仅考查我们对基础知识的掌握,还检验我们的思维敏捷性和解题技巧。
下面为大家整理了一些具有代表性的高中数学选择题真题,并进行详细的解析。
【真题 1】已知集合\(A =\{x | x^2 2x 3 < 0\}\),\(B =\{x | x > 1\}\),则\(A \cap B =\)()A \(\{x | 1 < x < 3\}\)B \(\{x | x <-1 或 x > 1\}\)C \(\{x | x > 3\}\)D \(\{x | x > 1\}\)【解析】首先,解集合\(A\)中的不等式\(x^2 2x 3 < 0\),即\((x 3)(x + 1) < 0\),解得\(-1 < x < 3\),所以\(A =\{x |-1 < x < 3\}\)。
因为\(B =\{x | x > 1\}\),所以\(A \cap B =\{x | 1 < x < 3\}\),答案选 A。
这道题主要考查了一元二次不等式的解法以及集合的交集运算,需要我们熟练掌握相关的基础知识。
【真题 2】函数\(f(x) =\log_2(x^2 1)\)的定义域为()A \((\infty, -1) \cup (1, +\infty)\)B \((-1, 1)\)C \((\infty, -1 \cup 1, +\infty)\)D \(-1, 1\)【解析】要使函数\(f(x) =\log_2(x^2 1)\)有意义,则\(x^2 1 > 0\),即\((x + 1)(x 1) > 0\),解得\(x <-1\)或\(x > 1\)。
所以函数\(f(x)\)的定义域为\((\infty, -1) \cup (1,+\infty)\),答案选 A。
这道题考查了对数函数的定义域以及一元二次不等式的解法,关键是要记住对数函数中真数大于零这一条件。
【真题 3】已知向量\(\vec{a} =(1, 2)\),\(\vec{b} =(2, -2)\),则\(|\vec{a} +\vec{b}|=\)()A \(5\)B \(4\)C \(3\sqrt{2}\)D \(2\sqrt{5}\)【解析】因为\(\vec{a} =(1, 2)\),\(\vec{b} =(2,-2)\),所以\(\vec{a} +\vec{b} =(3, 0)\)。
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)
[必刷题]2024高三数学下册解析几何专项专题训练(含答案)试题部分一、选择题:1. 在直角坐标系中,点A(2,3)关于原点O的对称点坐标是()A. (2,3)B. (2,3)C. (2,3)D. (3,2)2. 已知直线l的斜率为1,且过点P(1,2),则直线l的方程为()A. x+y3=0B. xy+3=0C. x+y+3=0D. xy3=03. 圆C的方程为x^2+y^2=4,点D(3,0)在圆外,则直线CD的斜率为()A. 1B. 1C. 3D. 34. 下列关于椭圆的方程中,离心率最小的是()A. x^2/4 + y^2/9 = 1B. x^2/9 + y^2/4 = 1C. x^2/16 + y^2/25 = 1D. x^2/25 + y^2/16 = 15. 设双曲线x^2/a^2 y^2/b^2 = 1的渐近线方程为y=kx,则k 的值为()A. a/bB. b/aC. a/bD. b/a6. 在平面直角坐标系中,点A(1,2)到直线y=3x+1的距离为()A. 2B. 3C. 4D. 57. 已知抛物线y^2=8x的焦点坐标为()A. (2,0)B. (2,0)C. (0,2)D. (0,2)8. 若直线y=2x+3与圆(x1)^2+(y2)^2=16相交,则交点的个数为()A. 0B. 1C. 2D. 39. 在等轴双曲线x^2 y^2 = 1上,点P到原点的距离为2,则点P的坐标为()A. (1,1)B. (1,1)C. (1,1)D. (1,1)10. 已知点A(2,3)和点B(2,1),则线段AB的中点坐标为()A. (0,2)B. (0,4)C. (2,2)D. (2,4)二、判断题:1. 直线y=2x+1的斜率为2,截距为1。
()2. 两个圆的半径分别为1和2,圆心距为3,则这两个圆相交。
()3. 椭圆的离心率越大,其形状越接近圆。
()4. 抛物线的焦点到准线的距离等于其焦距的一半。
高三数学试卷题目及答案
一、选择题(每题5分,共50分)1. 若函数$f(x) = x^3 - 3x + 2$在$x=1$处的切线斜率为2,则$f(x)$的导函数$f'(x)$在$x=1$处的值为:A. 1B. 2C. 3D. 42. 已知等差数列$\{a_n\}$的前$n$项和为$S_n = 4n^2 - 3n$,则该数列的首项$a_1$为:A. 5B. 6C. 7D. 83. 下列函数中,在定义域内单调递增的是:A. $f(x) = x^2 - 2x + 1$B. $f(x) = -x^2 + 2x - 1$C. $f(x) = 2x^3 - 3x^2 + 2x - 1$D. $f(x) = \frac{1}{x} + x$4. 若复数$z = a + bi$(其中$a, b \in \mathbb{R}$)满足$|z| = 1$,则$\text{arg}(z)$的取值范围是:A. $[0, \frac{\pi}{2}]$B. $[0, \pi]$C. $[-\frac{\pi}{2}, \frac{\pi}{2}]$D. $[-\pi, \pi]$5. 已知圆$C: x^2 + y^2 = 1$,点$P(1, 0)$到圆$C$的最短距离为:A. $\sqrt{2}$B. $1$C. $\frac{\sqrt{2}}{2}$D.$\frac{1}{\sqrt{2}}$6. 下列命题中,正确的是:A. 函数$y = \log_2(x-1)$的图像关于$y$轴对称B. 方程$x^3 - 3x + 2 = 0$的实根只有一个C. 等差数列$\{a_n\}$的前$n$项和$S_n$是关于$n$的二次函数D. 等比数列$\{a_n\}$的通项公式为$a_n = a_1 \cdot r^{n-1}$7. 若不等式$x^2 - 4x + 3 > 0$的解集为$A$,不等式$|x-2| < 1$的解集为$B$,则$A \cap B$为:A. $\{x | x < 1 \text{ 或 } x > 3\}$B. $\{x | 1 < x < 3\}$C. $\{x | x < 1 \text{ 或 } x > 2\}$D. $\{x | 1 < x < 2\}$8. 若向量$\vec{a} = (1, 2)$,$\vec{b} = (2, -1)$,则$\vec{a} \cdot\vec{b}$的值为:A. 3B. -3C. 5D. -59. 已知函数$f(x) = e^x - x$,则$f'(x)$的值域为:A. $[1, +\infty)$B. $(-\infty, 1]$C. $[1, 0]$D. $[0, +\infty)$10. 若等差数列$\{a_n\}$的前$n$项和为$S_n = \frac{n(3n+1)}{2}$,则该数列的公差$d$为:A. 2B. 3C. 4D. 5二、填空题(每题5分,共50分)1. 函数$f(x) = x^3 - 3x + 2$的极值点为__________。
(完整版)高三数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
高三数学试卷真题及解析
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 2B. x = 1C. x = 3D. x = 4解析:函数f(x) = x^2 - 4x + 3是一个二次函数,其标准形式为f(x) = a(x-h)^2 + k,其中(h, k)为顶点坐标。
由f(x) = x^2 - 4x + 3可知,h = 2,k = -1,因此对称轴为x = 2。
答案为A。
2. 在△ABC中,a = 3,b = 4,c = 5,则sinA + sinB + sinC的值为()A. 6B. 8C. 10D. 12解析:根据正弦定理,sinA = a/c,sinB = b/c,sinC = c/a。
代入已知数据,得sinA = 3/5,sinB = 4/5,sinC = 5/3。
因此,sinA + sinB + sinC = 3/5 + 4/5 + 5/3 = 6。
答案为A。
3. 下列不等式中,正确的是()A. x^2 + 1 > 0B. x^2 - 1 < 0C. x^2 + 1 < 0D. x^2 - 1 > 0解析:对于任何实数x,x^2总是非负的,因此x^2 + 1 > 0恒成立。
而x^2 - 1< 0表示x在(-1, 1)区间内,x^2 - 1 > 0表示x在(-∞, -1)和(1, +∞)区间内。
因此,正确答案为A。
4. 设复数z = a + bi(a, b∈R),若|z - 1| = |z + 1|,则a + b的值为()A. 0B. 2C. -2D. 4解析:复数z = a + bi,|z - 1| = |a - 1 + bi|,|z + 1| = |a + 1 + bi|。
由|z - 1| = |z + 1|,得(a - 1)^2 + b^2 = (a + 1)^2 + b^2。
展开后简化,得a = 0。
高三数学分类练习题
高三数学分类练习题一、选择题1. 设函数f(x) = 3x - 2,若f(a) = 7,则a的值为()A. 1B. 3C. 2D. 42. 已知函数f(x) = ax^2 - 2x + 3,当x = 2时,f(x)的值为6,求a的值。
A. 1B. 2C. 3D. 43. 若二次函数y = ax^2 + bx + c的图象过点(1,4)、(2,9),则a+b+c的值为()A. -1B. 1C. 2D. 34. 在等差数列an中,已知a1 = 2,d = 3,若an = 20,求n的值。
A. 6B. 7C. 8D. 95. 若对于等差数列an,已知a5 = 7,a10 = 12,an = 37,则数列的公差d为()A. 3B. 4C. 5D. 6二、填空题1. 若f(x) = 3x^2 - 2x + 1,求f(2) = _____。
2. 若等差数列an的公差为3,a1 = 1,an = 10,则n的值为_____。
3. 若等比数列bn的公比为2,b1 = 3,bn = 48,则n的值为_____。
4. 若a + b = 5,a - b = 1,求a的值为_____。
5. 若函数f(x) = ax^2 + bx + c,且f(1) = 0,f(2) = 8,求a、b和c的值。
三、计算题1. 已知二次函数f(x) = ax^2 - 5x + 6,当x = 2时,f(x)的值为10。
求a的值。
2. 在等差数列(an)中,已知a1 = 2,d = 3,求前5项和S5的值。
3. 在等比数列(bn)中,已知b1 = 4,q = 2,求前6项和Sn的值。
4. 在四边形ABCD中,AB = 3,BC = 4,CD = 6,DA = 5。
求对角线AC的长度。
5. 已知函数f(x) = ax^2 + bx + c,经过点(-1, -6)、(0, -1)、(1, 2)。
求函数f(x)的表达式。
四、解答题1. 已知数列(an)是等差数列,且a1 = 3,a6 = 18。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学试题选择题集锦陕西特级教师 安振平1. 满足不等式03329≥-⋅-x x 的x 的最小实数值是(A) –1 (B) 0 (C) 1 (D) 32. 在ABC ∆中, AB=5, ,3≤AC 7≥BC , 则<CAB 的最小值为(A) 2π (B) 32π (C) 43π (D) 65π 3. 某工厂六年来生产某种产品的情况是:前三年年产量的增长速度越来越快,后三年年产量保持不变,则该厂六年来这种产品的总产量C 与时间t (年)的函数关系可用图像表示的是.4. 函数)(x f y =的图像如图甲所示,则函数)(x f y -=1的图像可能是( ).(A) (B) (甲)(C ) (D)5. 设22+-=z z z f )(,且),()(R y x yi x i f ∈+=+1,则)(i f -1等于(A) yi x + (B )yi x -- (C )yi x +- (D )yi x -6. 已知函数)(x f 是奇函数,当0<x 时,232x a x x f π-=sin)(,且63=)(f ,则a 等于 (A )5- (B). 1- (C) 5 (D). 17. 函数x x f sin )(2=,对于任意的R x ∈,都有)()()(21x f x f x f ≤≤,则21x x -的最小值为(A)4π (B) 2π (C) π (D) π2 8. 某台风在坐标平面上以等速直线行进,上午7时台风中心位于点),(21,上午9时位于点),(23-,则下午5时台风中心位于点(A) ),(1811- (B) ),(1811- (C) ),(188- (D) ),(188 9. 若一个四面体由长度为1,2,3的三种棱所构成,则这样的四面体的个数是(A) 2 (B ) 4 (C ) 6 (D) 810. 汽车牌照由26个英文字母和0—9这10个数字组成。
某地区若使用2个字母后接3个数字的方式构成汽车牌照,那么共有牌照(A) 468000个 (B )650000个 (C) 486720个 (D) 676000个11. 已知曲线C 的方程为1||2+=x x y ,则曲线C 的大致图象是12. 函数)0)((>+=a ax tg y θ的自变量x 从n 变到n+1(n ∈N )时,y 恰好从-∞变到+∞,则常数a 的值为(A) 1 (B ) 2 (C) 2π (D) π13. 某农贸市场出售西红柿,当价格上涨时,供给量相应增加,而需求量相应减少,具体调 查结果如下表:表1 市场供给量 表2 市场需求量根据以上提供的信息,市场供需平衡点(即供给量和需求量相等时的单价)应在区间 ( A )(2.3,2.6)内 (B ) (2.4,2.6)内(C) (2.6,2.8)内 ( D) (2.8,2.9)内 (A ) (B ) (C ) (D )14. 函数x y 1=的图象是平面上到两定点距离之差的绝对值等于定长的点的轨迹,则这个定长为(A) 22 (B) 3 (C)2(D) 2 15. C 是曲线)0(12≤-=x x y 上一点,CD y ⊥轴,D 是垂足,A 点坐标是(-1,0),设θ=∠CAO (其中O 表示原点),将AC+CD 表示成关于θ的函数)(θf 则)(θf =( )(A )θθ2cos cos 2-(B )θθsin cos + (C ))cos 1(cos 2θθ+ (D )2cos sin 2-+θθ 16. 据卫生部门初步统计,到2002年底,我国爱滋病病毒实际感染人数已达到100万人,且平均以每年30%的速度递增,如果不加以控制,那么,到2010年底我国爱滋病病毒实际感染人数将达到(A ) 700万人 ( B ) 742万人( C) 800万人 ( D ) 816万人17. 如图,在一根长11cm ,外圆周长6cm 的圆柱形柱体外表面,用一根细铁丝缠绕,组成10个螺旋,如果铁丝的两端恰好落在圆柱的同一条母线上,则铁丝长度的最小值为18. 已知486950183))((,43)(2342++++=+-=x x x x x g f x x x f ,那么)(x g 的各项系数和为(A )8 (B )9(C )10 (D )1119. 用一张钢板制做一个容积为4 的无盖长方体水箱,可用的钢板有四种不同的规格(长×宽的尺寸如各选项所示,单位均为)若既要够用,又要所剩最少,则应选择钢板的规格是 ( )(A ) 2×5 ( B ) 2×5.5 (C ) 2×6.1 ( D ) 3×5 20. 如图,在正方体ABCD-A 1B 1C 1D 1中,E 为CC 1的中点,过点E 作一条直线与直线A 1D 1和AB 都相交,则这样的直线(A) 有三条 ( B ) 有两条(C ) 仅有一条 ( D ) 不存在21. 某厂有一批长为2.5 m 的条形钢材,要截成60 cm 长的A 型和43 cm 长的B 型的两种规(A )61 cm (B )157cm(C )1021cm (D )3710cm格的零件毛坯,则下列哪种方案最佳(所剩材料最少)( A ) A 型4个 ( B ) A 型2个,B 型3个( C ) A 型1个,B 型4个 ( D ) B 型5个22. 九○年度大学学科能力测验有12万名学生,各学科成绩采用15级分,数学学科能力测验成绩分布图如下图。
请问有多少考生的数学成绩级分高于11级分?选出最接近的数目(A ) 4000人 (B ) 10000人 (C) 15000人 (D ) 20000人23. 不等式组 300))(5(≤≤≥++-x y x y x 表示的平面区域是(A ) 矩形 ( B) 三角形 (C ) 直角梯形 (D ) 等腰梯形24. 设A 是已知复数,a 是已知实数,且a A >2, 则满足关系式:0=+++a z A z A z z 的复数z 在复平面上对应的点M 的轨迹是 (A) 双曲线 ( B) 椭圆 ( C ) 圆 ( D ) 直线25. 国际上通常用恩格尔系数来衡量一个国家和地区人民生活水平状况,它的计算公式yx n =(x :人均食品支出总额,y :人均个人消费支出总额),且4752+=x y ,各种类李先生居住地2002年比98年食品价格下降了7.5%,该家庭在2002年购买食品和98年完全相同的情况下人均少支出75元,则该家庭2002年属于 (A ) 贫困 ( B) 温饱 ( C) 小康 (D ) 富裕 26. 设⎩⎨⎧=为无理数时当为有理数时当x 0x 1)(x f ,对所有实数x 均满足xf(x)≤g(x),那么函数g(x)可以是(A )g(x)=sinx (B )g(x)=x(C )2)(x x g = (D )g(x)=|x|27. 用记号“○+”表示求两个实数a 与b 的算术平均数的运算,即a ○+b =2b a +.已知数列{x n }满足x 1=0,x 2=1,x n =x n -1○+x n -2(n ≥3),则n n xlim ∞→等于 (A ) 0 ( B) 21 (C ) 32 ( D ) 1 28. 设x x x f sin )(=,若]2,2[,21ππ-∈x x ,且)()(21x f x f >,则下列结论中,必成立的是 (A )21x x > (B )021>+x x(C )21x x < (D )2221x x >29. 关于函数f(x)=(sinx)2-(23)|x|+12,有下面四个结论: (1) f(x)是奇函数 ;(2) 当x >2003时, f(x)>12恒成立; (3) f(x)的最大值是32; (4) f(x)的最小值是- 12. 其中正确结论的个数为( A ) 1个 ( B ) 2个 ( C ) 3个 ( D ) 4个30. 台风中心从A 地以每小时20千米的速度向东北方向移动,离台风中心30千米内的地区为危险区,城市B 在A 的正东40千米处,B 城市处于危险区内的时间为( A ) 0.5小时 ( B ) 1小时( C ) 1.5小时 ( D ) 2小时31. 在直角坐标系xOy 中,已知△AOB 三边所在直线的方程分别为3032,0,0=+==y x y x ,则△AOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是(A ) 95 ( B ) 91 ( C ) 88 ( D ) 7532. 某商场开展促销抽奖活动,摇奖器摇出的一组中奖号码是6,5,2,9,0,4.参抽奖的每位顾客从0,1…,9这十个号码中抽出六个组成一组.如果顾客抽出的六个号码中至少有5个与摇奖器摇出的号码相同(不计顺序)就可以得奖,某位顾客可能获奖的概率为( A ) 421 ( B ) 301 ( C ) 354 ( D ) 425 33. 函数a ax x x f +-=22)(在区间),(1-∞上有最小值,则函数xx f x g )()(=在区间),(∞+1上一定 (A) 有最小值 (B) 有最大值(C) 是减函数 (D) 是增函数34. 平行移动抛物线x 3y 2-=,使其顶点的横坐标非负,并使其顶点到点)0,41(的距离比到y 轴的距离多41,这样得到的所有抛物线所经过的区域是 (A )xOy 平面 (B )x 2y 2-≥ (C )x 2y 2-≤ (D )x 2y 2≥35. 某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花(A)3360元 (B ) 6720元 ( C) 4320元 ( D) 8640元36. 在三张卡片的正反面上分别写有数字0与2,3与4,5与6,且6可以作9用,把这三张卡片拼在一起表示一个三位数,则三位数的个数为( A ) 12 ( B ) 72 ( C ) 60 ( D) 4037. 在某学校,星期一有15名学生迟到,星期二有12名学生迟到,星期三有9名学生迟到,如果有22名学生在这三天中至少迟到一次,则三天都迟到的学生人数的最大可能值是 ( A) 5 ( B) 6 (C ) 7 ( D) 838. 花坛水池中央有一喷泉,水管OP=1m ,水从P 点喷出后呈抛物线状,若最高点距水面2m ,点P 距离抛物线对称轴1m ,则在水池直径的下列可选值中,最合算的是( A) 2.5m (B ) 4m (C) 5m ( D) 6m39. 如图,在正方形ABCD 中,E 、F 、G 、H 是各边中点,O 是正方形中心,在A ,E ,B ,F ,C ,G ,D ,H ,O 这九个点中,以其中三个点为顶点作三角形,在这些三角形中,互不全等的三角形共有(A ) 6个 ( B ) 7个 ( C ) 8个 ( D ) 9个40. 平面直角坐标系内,一个圆心在(a, b)的圆包含原点(0, 0),设此圆在第1象限及第3象限的面积和为1S ,在第2象限及第4象限的面积和为2S ,则=-21S S(A )||ab (B )||2ab (C )||4ab(D )||4ab (当21S S ≥时),或||4ab -(当21S S <时)。