高三一轮复习导学案60 第10章 第03节——二项式定理
高中数学《二项式定理》导学案
![高中数学《二项式定理》导学案](https://img.taocdn.com/s3/m/c190a7a3e109581b6bd97f19227916888586b970.png)
第一章计数原理第三节二项式定理(第1课时)一、学习目标1.理解并掌握二项式定理,能利用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.3.培养学生的自主探究意识,合作精神,体验二项式定理的发现和创造历程,体会数学语言的简洁和严谨.【重点、难点】二项式定理;二项式定理的性质.二、学习过程【情景创设】二项式定理研究的是(a+b)n的展开式,如:(a+b)2=a2+2ab+b2,(a+b)3=?,(a+b)4=?,(a+b)100=?,那么(a+b)n的展开式是什么?这就是本节课我们将要学习的内容.【导入新课】问题1:(1)二项式定理:(a+b)n= (n∈N+).(2)错误!未找到引用源。
+错误!未找到引用源。
+错误!未找到引用源。
+…+错误!未找到引用源。
+错误!未找到引用源。
= (n∈N+).问题2:二项展开式的通项和二项式系数在二项式定理中,右边的多项式叫作(a+b)n的二项展开式,展开式的第r+1项为(r=0,1,2…n),其中的系数错误!未找到引用源。
(r=0,1,2…n)叫作.问题3:使用二项展开式的通项要注意的问题①通项T r+1是第项,不是第r项;②通项T r+1的作用:处理与、、、等有关的问题.③二项展开式中二项式系数与展开项的系数是不同的概念.如:(a+2b)3=错误!未找到引用源。
a3+错误!未找到引用源。
a2·(2b)+错误!未找到引用源。
a·(2b)2+错误!未找到引用源。
(2b)3=a3+6a2b+12ab2+8b3,第三项的二项式系数为,第三项的系数为.问题4:使用二项式定理需要注意的问题二项式定理展开式中的a和b的位置不能颠倒,且包括a,b前面的,而且a的次数逐渐,b的次数逐渐,每一项的次数都为.答案:问题1:(1)错误!未找到引用源。
a n+错误!未找到引用源。
a n-1b+错误!未找到引用源。
a n-2b2+…+错误!未找到引用源。
2020高考数学理科大一轮复习导学案《二项式定理》
![2020高考数学理科大一轮复习导学案《二项式定理》](https://img.taocdn.com/s3/m/f1f839e9cc22bcd126ff0c7d.png)
第三节二项式定理知识点一二项式定理1.二项式定理公式(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)叫做二项式定理.2.二项展开式的通项T k+1=C k n a n-k b k为展开式的第k+1项.1.(1+2x)5的展开式中,x2的系数等于(B)A.80 B.40C.20 D.10解析:T k+1=C k n a n-k b k=C k515-k(2x)k=2k C k5x k,令k=2,则可得x2的系数为22×10=40.2.(2018·全国卷Ⅲ)(x 2+2x )5的展开式中x 4的系数为( C ) A .10 B .20 C .40D .80解析:T r +1=C r 5(x 2)5-r (2x)r =C r 52r x10-3r ,由10-3r =4,得r =2,所以x 4的系数为C 25×22=40.3.若C 1n +3C 2n +32C 3n +…+3n -2C n -1n +3n -1=85,则n 的值为4. 解析:由已知等式,可得C 0n +3C 1n +32C 2n +…+3n C n n =256.即(1+3)n =256,解得n =4.知识点二 二项式系数与项的系数1.二项式系数二项展开式中各项的系数C k n (k ∈{0,1,…,n })叫做二项式系数. 2.项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.3.二项式系数的性质4.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+…+C r n +…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.4.(2019·山西八校联考)已知(1+x)n的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( A )A .29B .210C .211D .212解析:由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29,故选A.5.化简C 22n +C 42n +…+C 2k 2n +…+C 2n 2n 的值为22n -1-1. 解析:(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0. 两式相加得2(C 02n +C 22n +…+C 2n 2n )=22n ,又C 02n =1,得C 22n +C 42n +…+C 2k 2n +…+C 2n 2n =22n2-1=22n -1-1.1.二项展开式共有n +1项;各项的次数都等于二项式的幂指数n ,等于a 与b 的指数的和n .2.通项T k +1=C k n a n -k b k是(a +b )n 的展开式的第k +1项,而不是第k 项,这里k =0,1,…,n .3.区别(a +b )n 的展开式中“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,第k +1项的二项式系数是C kn ,只与n 和k 有关,恒为正.考向一 二项展开式中的特定项或系数【例1】 (1)(2018·天津卷)在(x -12x)5的展开式中,x 2的系数为________.(2)⎝ ⎛⎭⎪⎫9x -13x n (n ∈N *)的展开式中第3项的二项式系数为36,则其展开式中的常数项为________.【解析】 (1)(x -12x)5的展开式的通项T r +1=C r 5x 5-r(-12x)r =C r 5x 5-3r2(-12)r ,令5-32r =2,得r =2,所以x 2的系数为 C 25(-12)2=52.(2)由第3项的二项式系数为C 2n =n ·(n -1)2=36,得n =9,所以其通项公式为 T r +1=⎝⎛⎭⎪⎫-13r C r 9(9x )9-r·x -12r=⎝ ⎛⎭⎪⎫-13r 99-r ·C r 9x 9-32r,当9-32r =0,即r =6时,可得常数项为⎝ ⎛⎭⎪⎫-13699-6C 69=84.【答案】 (1)52 (2)84二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步,根据给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步,根据所求的指数求解所求的项.(1)设n 为正整数,⎝ ⎛⎭⎪⎫x -1x x 2n 的展开式中存在常数项,则n 的一个可能取值为( B )A .16B .10C .4D .2(2)(2018·浙江卷)二项式(3x +12x )8的展开式的常数项是7.解析:(1)⎝ ⎛⎭⎪⎫x -1x x 2n 展开式的通项公式为T r +1=C r 2n ·x 2n -r ⎝ ⎛⎭⎪⎫-1x x r =C r 2n(-1)rx 4n -5r2 ,令4n -5r 2=0,得r =4n5,∵n ,r 均为非负整数,∴n 可取10.(2)该二项展开式的通项公式为T r +1=C r 8x8-r3(12x )r =C r 8(12)r x8-4r 3.令8-4r 3=0,解得r =2,所以所求常数项为C 28×(12)2=7. 考向二 二项式系数的性质或各项系数和【例2】 (2019·益阳、湘潭调研考试)若(1-3x )2 018=a 0+a 1x +…+a 2018x 2 018,x ∈R ,则a 1·3+a 2·32+…+a 2 018·32 018的值为( ) A .22 018-1 B .82 018-1 C .22 018D .82 018【解析】 由已知,令x =0,得a 0=1,令x =3,得a 0+a 1·3+a 2·32+…+a 2 018·32 018=(1-9)2 018=82 018,所以a 1·3+a 2·32+…+a 2 018·32 018=82018-a 0=82 018-1,故选B. 【答案】 B(1)“赋值法”普遍运用于恒等式,是一种处理二项式相关问题比较常用的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式各项系数之和,只需令x =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为f (1)+f (-1)2,偶数项系数之和为f (1)-f (-1)2.(1)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=( B )A .-180B .180C .45D .-45(2)已知a >0,⎝ ⎛⎭⎪⎫x -a x 26的二项展开式中,常数项等于60,则⎝ ⎛⎭⎪⎫x -a x 26的展开式中各项系数和为1.(用数字作答)解析:(1)令t =1-x ,则x =1-t ,所以有(2-t )10=a 0+a 1t +a 2t 2+…+a 10t 10,则T r +1=C r 10210-r (-t )r =C r 10210-r (-1)r t r ,令r =8,则a 8=C 810×22=180. (2)∵⎝ ⎛⎭⎪⎫x -a x 26的通项公式为T r +1=C r6(-a )r x 6-3r ,当6-3r =0时,r =2,∴常数项是C 26(-a )2=60,∴a =2.令x =1,得⎝ ⎛⎭⎪⎫x -2x 26的二项展开式中各项的系数之和是1.考向三 多项式展开式中的特定项方向1 几个多项式和或积的展开式问题【例3】 (1)已知(1+ax )3+(1-x )5的展开式中x 3的系数为-2,则a 等于( )A .2 3B .2C .-2D .-1(2)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a5=________.【解析】(1)(1+ax)3,(1-x)5的展开式中x3的系数分别为a3,C35(-1)3,由题可得a3-10=-2,即a3=8,解得a=2.(2)由题意,得a4是展开式中的一次项的系数,则a4=C23·12·C22·22+C33·13·C12·21=16,a5是展开式中的常数项,则a5=C33·13·C22·22=4.【答案】(1)B(2)16 4方向2二项展开式的有关问题【例4】(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20C.30 D.60【解析】解法1:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.解法2:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.【答案】 C(1)对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到特定的项,再求和即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.(3)对于三项式问题一般先变形化为二项式再解决.1.(方向1)⎝ ⎛⎭⎪⎫x 3-2x 4+⎝ ⎛⎭⎪⎫x +1x 8的展开式中的常数项为( D )A .32B .34C .36D .38解析:⎝ ⎛⎭⎪⎫x 3-2x 4的展开式的通项为T k +1=C k 4(x 3)4-k ·⎝ ⎛⎭⎪⎫-2x k =C k 4(-2)k x 12-4k,令12-4k =0,解得k =3,⎝ ⎛⎭⎪⎫x +1x 8的展开式的通项为T r +1=C r 8·x 8-r ·⎝ ⎛⎭⎪⎫1x r =C r 8·x 8-2r,令8-2r =0,得r =4,所以所求常数项为C 34(-2)3+C 48=38.2.(方向2)在(x -1x -1)4的展开式中,常数项为-5.解析:易知(x -1x -1)4的展开式的通项T r +1=C r 4(-1)4-r·(x -1x )r ,又(x -1x )r 的展开式的通项R m +1=C m r (-x -1)m x r -m =C m r (-1)m x r -2m ,∴T r +1=C r4(-1)4-r ·C m r (-1)m xr -2m,令r -2m =0,得r =2m ,∵0≤r ≤4,∴0≤m ≤2,∴当m =0,1,2时,r =0,2,4,故常数项为T 1+T 3+T 5=C 04(-1)4+C 24(-1)2·C 12(-1)1+C 44(-1)0·C 24(-1)2=-5.。
高三数学第一轮复习 二项式定理教案_
![高三数学第一轮复习 二项式定理教案_](https://img.taocdn.com/s3/m/d22d0dc4ab00b52acfc789eb172ded630b1c98b7.png)
城东蜊市阳光实验学校二项式定理〔2〕一.复习目的:1.能利用二项式系数的性质求多项式系数的和与求一些组合数的和.2.能纯熟地逆向运用二项式定理求和.3.能利用二项式定理求近似值,证明整除问题,证明不等式.二.课前预习:1.1003)32(+的展开式中无理项的个数是〔A 〕 ()A 84()B 85()C 86()D 872.设1510105)(2345++-+-=x x x x x x f ,那么)(1x f-等于〔C 〕 3.假设21872221221=++++n n n n n C C C ,那么=++++n n n n n C C C C 210128. 4.n n n n n C n C C 11)1(3121121+-+-+- =11+n . 5.9)23(z y x +-展开式中含432z y x 的项为43290720z y x -.6.假设1001002210100)1()1()1()21(-++-+-+=+x a x a x a a x ,那么=++++99531a a a a 215100-. 四.例题分析:例1.}{n a 是等比数列,公比为q ,设n n n n n n C a C a C a a S 123121+++++= 〔其中+∈>N n n ,2〕,且n n n n n n C C C C S ++++= 2101,假设1lim n nn S S ∞→存在,求公比q 的取值范围.解:由题意11-⋅=n n q a a ,n n S 21=,)0()1()1(122111221111≠+=++++=++++=q q a C q C q qC a C q a C q a qC a a S n n n n n n n nn n n n ∴n nn n n q a q a S S )21(2)1(111+=+=.假设1lim nn n S S ∞→存在,那么1|21|<+q 或者者121=+q , ∴212<+<-q 或者者1=q ,故13≤<-q 且0≠q .例2.(1)求多项式673410234)157()53()323(--⋅-⋅---x x x x x x 展开式各项系数和.(2)多项式1000231000)22(+--⋅-x x x x展开式中x 的偶次幂各项系数和与x 奇次幂各项系数和各是多少? 解:〔1〕设)()157()53()323()(2210673410234N n xa x a x a a x x x x x x x f n n ∈++++=--⋅-⋅---= , 其各项系数和为n a a a a ++++ 210. 又∵102674102210316)157()53()3213()1(⋅=--⋅-⋅---=++++=n a a a a f ,∴各项系数和为102316⋅. 〔2〕设30013001101000231000)22()(x a x a a x x x x x f +++=+--⋅-= , ∴0)1(3001210=++++=a a a a f ,2)1(3001210=--+-=-a a a a f ,故1300131-=+++a a a ,1300020=+++a a a ,∴)(x f 展开式中x 的偶次幂各项系数和为1,x 奇次幂各项系数和为-1.例3.证明:〔1〕∑==n k n k n k C 032)(N n ∈;〔2〕12221223222120223222--⋅=++++++n n n n n n n n n C C C C C C )(N n ∈;〔3〕)(3)11(2N n nn ∈<+<;〔4〕2222212)1(21-⋅+=⋅++⋅+⋅n n n n n n n n C C C 由(i)知例4.小结:五.课后作业:班级学号姓名1.假设n x x )1(23+的展开式中只有第6项的系数最大,那么不含x 的项为〔C 〕 ()A 462()B 252()C 210()D 102.用88除78788+,所得余数是〔〕()A 0()B 1()C 8()D 803.2002年4月20日是星期五,那么9010天后的今天是星期.4.某公司的股票今天的指数是2,以后每天的指数都比上一天的指数增加%02.0,那么100天后这家公司的股票指数约为42〔准确到0.001〕.5.55443322105)23(x a x a x a x a x a a x +++++=-,那么 〔1〕5432a a a a +++的值是568;〔2〕=++++||||||||||54321a a a a a 2882.6.假设n ax 2)1(+和12)(++n a x 的展开式中含n x 项的系数相等〔*N n ∈,0≠a 〕,那么a 的取值范围为]32,21( 7.求满足500323210<+++++n n n n n nnC C C C C 的最大整数n . 原不等式化为n·2n -1<499∵27=128,∴n=8时,8·27=210=1024>500.当n=7时,7·26=7×64=448<449.故所求的最大整数为n=7.8.求证:222222120)()()()(n n n n n n C C C C C =++++证明 由(1+x)n·(1+x)n=(1+x)2n,两边展开得:比较等式两边xn 的系数,它们应当相等,所以有:9.(1+3x)n 的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项. ∴n=15或者者n =-16(舍)设第r +1项与第r 项的系数分别为tr+1,tr∴tr+1≥tr 那么可得3(15-r +1)>r 解得r≤12∴当r 取小于12的自然数时,都有tr <tr+1当r =12时,tr+1=tr。
高三数学一轮复习精品教案1:二项式定理(理)教学设计
![高三数学一轮复习精品教案1:二项式定理(理)教学设计](https://img.taocdn.com/s3/m/2e5755a1bed5b9f3f90f1ceb.png)
10.7二项式定理、1.二项式定理(1)定理公式(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)叫做二项式定理.(2)通项T r+1=C r n a n-r b r为展开式的第r+1项.2.二项式系数与项的系数(1)二项式系数二项展开式中各项的系数C r n(r∈{0,1,…,n})叫做二项式系数.(2)项的系数项的系数是该项中非字母因数部分,包括符号等,与二项式系数是两个不同的概念.3.二项式系数的性质性质内容对称性与首末两端等距离的两个二项式系数相等,即C m n=C n-mn增减性当r<n+12时,二项式系数逐渐增大;当r>n+12时,二项式系数逐渐减小最大值当n是偶数时,中间一项⎝⎛⎭⎫第n2+1项的二项式系数最大,最大值为Cn2n;当n是奇数时,中间两项⎝⎛第n-12+1项和第n+12+1)项的二项式系数相等,且同时取得最大值,最大值为Cn-12n或Cn+12n4.各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,即C0n+C1n+C2n+…+C r n+…+C n n=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C1n+C3n+C5n+…=C0n+C2n+C4n+…=2n-1.1.二项式的通项易误认为是第r 项实质上是第r +1项.2.(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不相同的,所以公式中的第一个量a 与第二个量b 的位置不能颠倒.3.易混淆二项式中的“项”,“项的系数”、“项的二项式系数”等概念,注意项的系数是指非字母因数所有部分,包含符号,二项式系数仅指C r n (r =0,1,…,n ). 『试一试』1.(2014·无锡调研)化简C 22n +C 42n +…+C 2k 2n +…+C 2n 2n 的值为________. 『解析』(1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n . 令x =1得C 02n +C 12n +C 22n +…+C 2n -12n +C 2n 2n =22n ;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n 2n =0. 两式相加得2(C 02n +C 22n +…+C 2n 2n )=22n ,又C 02n =1,得C 22n +C 42n +…+C 2k 2n +…+C 2n 2n =22n 2-1=22n -1-1.『答案』22n -1-12.(2014·深圳调研)若(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 3=________.『解析』根据已知条件得,T 3+1=C 35(2x )3=80x 3,∴a 3=80. 『答案』803.(2014·沈阳模拟)设二项式(x -ax )6的展开式中x 2的系数为A ,常数项为B ,若B =4A ,则a =________.『解析』T r +1=C r 6x 6-r ·⎝⎛⎭⎫-a x r =(-a )r C r 6x 6-2r ,令6-2r =2,得r =2,A =a 2C 26=15a 2;令6-2r =0,得r =3,B =-a 3C 36=-20a 3,代入B =4A 得a =-3.『答案』-31.赋值法研究二项式的系数和问题“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. 2.利用二项式定理解决整除问题的思路要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开. 3.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝⎛⎭⎫第⎝⎛⎭⎫n 2+1项的二项式系数最大; (2)如果n 是奇数,则中间两项⎝⎛第n +12项与第⎝⎛⎭⎫n +12+1 )项的二项式系数相等并最大.4.二项展开式系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第r 项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1从而解出r 来,即得.『练一练』1.设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =________.『解析』512 012+a =(13×4-1)2 012+a ,被13整除余1+a ,结合选项可得a =12时,512 012+a 能被13整除. 『答案』122.若x ∈(0,+∞),则(1+2x )15的二项展开式中系数最大的项为第________项.『解析』T r +1=C r 152r x r ,由C r -1152r -1≤C r 152r ,C r +1152r +1≤C r 152r ⇒293≤r ≤323,r =10,所以第11项的系数最大. 『答案』11考点一二项式中的特定项或特定项的系数1.(2013·江西高考改编)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为________. 『解析』T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫-2x 3r =C r 5·(-2)r ·x 10-5r ,令10-5r =0,得r =2,故常数项为C 25×(-2)2=40. 『答案』402.(2014·浙江五校联考)在⎝⎛⎭⎫x 2+1x 5的展开式中x 的系数为__________. 『解析』∵T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫1x r =C r 5x 10-3r , ∴x 的系数为C 35=10. 『答案』103.(2013·安徽高考)若⎝⎛⎭⎪⎫x +a 3x 8的展开式中x 4的系数为7,则实数a =________.『解析』二项式⎝⎛⎭⎪⎫x +a 3x 8展开式的通项为T r +1=C r 8a r x 8-43r ,令8-43r =4,可得r =3,故C 38a 3=7,易得a =12.『答案』12『备课札记』 『类题通法』求二项展开式中的指定项,一般是利用通项公式进行化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.考点二二项式系数和或各项系数和问题『典例』 (1)(2014·北京西城一模)若⎝⎛⎭⎪⎫3x -13x 2m 的展开式中二项式系数之和为128,则展开式中1x3的系数是________.(2)(2013·成都诊断)若(1-2x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1+a 2+a 3+a 4=________. 『解析』 (1)∵2m =128,∴m =7, ∴展开式的通项T r +1=C r 7(3x )7-r ·⎝⎛⎭⎪⎫-13x 2r =C r 737-r (-1)r x 7-5r 3,令7-53r =-3,解得r =6,∴1x3的系数为C 6737-6(-1)6=21. (2)令x =1可得a 0+a 1+a 2+a 3+a 4=1,令x =0,可得a 0=1,所以a 1+a 2+a 3+a 4=0. 『答案』 (1)21 (2)0『备课札记』在本例(2)中条件不变,问题变为“求|a 0|+|a 1|+|a 2|+|a 3|+|a 4|”.『解』由题意知(1+2x )4=a 0+|a 1|x +|a 2|x 2+|a 3|x 3+|a 4|x 4,令x =1得a 0+|a 1|+|a 2|+|a 3|+|a 4|=34=81. 『类题通法』1.二项式定理给出的是一个恒等式,对于a ,b 的一切值都成立.因此,可将a ,b 设定为一些特殊的值.在使用赋值法时,令a ,b 等于多少时,应视具体情况而定,一般取“1、-1或0”,有时也取其他值.2.一般地,若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f 1+f -12,偶数项系数之和为a 1+a 3+a 5+…=f 1-f -12.『针对训练』若(1-2x )2 013=a 0+a 1x +a 2x 2+…+a 2 013x 2 013,则a 12+a 222+…+a 2 01322 013=________.『解析』当x =0时,左边=1,右边=a 0,∴a 0=1. 当x =12时,左边=0,右边=a 0+a 12+a 222+…+a 2 01322 013,∴0=1+a 12+a 222+…+a 2 01322 013.即a 12+a 222+…+a 2 01322 013=-1 『答案』-1考点三多项式展开式中的特定项(系数问题)在高考中,常常涉及一些多项式二项式问题,主要考查学生的化归能力,归纳起来常见的命题角度有: 1几个多项式和的展开式中的特定项系数问题 2几个多项式积的展开式中的特定项系数问题3三项展开式中的特定项系数问题角度一 几个多项式和的展开式中的特定项(系数)问题 1.⎝⎛⎭⎫x 3-2x 4+⎝⎛⎭⎫x +1x 8的展开式中的常数项为________. 『解析』⎝⎛⎭⎫x 3-2x 4的展开式的通项为T m +1=C m 4(x 3)4-m ·⎝⎛⎭⎫-2x m =C m 4(-2)m x 12-4m ,令12-4m =0,解得m =3,⎝⎛⎭⎫x +1x 8的展开式的通项为T n +1=C n 8x 8-n ⎝⎛⎭⎫1x n =C n 8x 8-2n ,令8-2n =0,解得n =4,所以所求常数项为C 34(-2)3+C 48=38.『答案』38角度二 几个多项式积的展开式中的特定项(系数)问题2.(2013·全国课标卷Ⅱ改编)已知(1+ɑx )(1+x )5的展开式中x 2的系数为5,则ɑ=________.『解析』展开式中含x 2的系数为C 25+a C 15=5,解得a =-1.『答案』-1角度三 三项展开式中特定项(系数)问题3.⎝⎛⎭⎫x 2+1x +25的展开式中的常数项为________.(用数字作答) 『解析』原式=⎝ ⎛⎭⎪⎫x 2+22x +22x 5=132x5·『()x +22』5=132x 5()x +210. 求原式的展开式中的常数项,转化为求()x +210的展开式中含x 5项的系数,即C 510·()25. 所以所求的常数项为C 510·()2532=6322.『答案』6322『备课札记』 『类题通法』1.对于几个多项式和的展开式中的特定项(系数)问题,只需依据二项展开式的通项,从每一项中分别得到含x 3的项,再求和即可.2.对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. 3.对于三项式问题一般先变形化为二项式再解决.『课堂练通考点』1.(2013·辽宁高考改编)使⎝⎛⎭⎫3x +1x x n (n ∈N +)的展开式中含有常数项的最小的n 为________. 『解析』由二项式定理得,T r +1=C r n (3x )n -r ⎝⎛⎭⎫1x x r =C r n 3n -r·xn -52r ,令n -52r =0,当r =2时,n =5,此时n 最小. 『答案』52.(2013·贵阳模拟)在二项式(x 2+x +1)(x -1)5的展开式中,含x 4项的系数是________. 『解析』∵(x 2+x +1)(x -1)=x 3-1, ∴原式可化为(x 3-1)·(x -1)4.故展开式中,含x 4项的系数为C 34(-1)3-C 04=-4-1=-5.『答案』-53.(2014·厦门质检)()2-x 8的展开式中不含x 4项的系数的和为________.『解析』()2-x 8展开式中各项的系数和为()2-18=1,展开式的通项为C r 828-r (-x )r ,则x 4项的系数为C 88×28-8=1,则()2-x 8展开式中不含x 4项的系数的和为0. 『答案』04.若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5等于________. 『解析』在已知等式两边对x 求导,得5(2x -3)4×2=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4,令x =1得a 1+2a 2+3a 3+4a 4+5a 5=5×(2×1-3)4×2=10. 『答案』105.(2013·江苏泰州中学5月调研)在二项式⎝⎛⎭⎫x +3x n 的展开式中,各项系数之和为A ,各项的二项式系数之和为B ,且A +B =72,则n =________.『解析』令x =1,得展开式的各项系数之和A =4n ,又各项的二项式系数之和B =2n ,所以A +B =4n +2n =72,即(2n -8)·(2n +9)=0,所以2n =8,得n =3.故填3. 『答案』3。
最新(新课标)高三数学一轮复习 第10篇 二项式定理学案 理
![最新(新课标)高三数学一轮复习 第10篇 二项式定理学案 理](https://img.taocdn.com/s3/m/59196af22cc58bd63186bdad.png)
第五十八课时 二项式定理课前预习案1.能用计数原理证明二项式定理.2.对于二项式定理,主要考查利用通项公式求展开式的特定项、求特定项的系数、利用赋值法求二项式展开式系数问题等.1.二项式定理:(a +b)n =_________________________________________这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b)n 的二项展开式.式中的____________叫二项展开式的通项,用T r +1表示,即通项T r +1=___________.注意:(1)它表示的是二项式的展开式的第1r +项,而不是第r 项.(2)其中C rn 叫二项式展开式第1r +项的二项式系数,而二项式展开式第1r +项的系数是字母幂前的常数.2.二项展开式形式上的特点(1)项数为_______.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为 .(3)字母a 按 排列,从第一项开始,次数由n 逐项减1直到 ;字母b 按 排列,从第一项起,次数由零逐项增1直到 .(4)二项式的系数从0C n ,C 1n ,一直到 , . 3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即C C r n r n n -=.(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项______________取得最大值;当n 是奇数时,中间两项__________,__________取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C nn = ;C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…= .4.二项展开式的系数0123,,,,n a a a a a ⋅⋅⋅的性质:对于2012()n n f x a a x a x a x =+++⋅⋅⋅+,0123(1)n a a a a a f ++++⋅⋅⋅+=; 0123(1)(1)n n a a a a a f -+-+⋅⋅⋅+-=-1.(20xx ·福建)(1+2x )5的展开式中,x 2的系数等于( ).A .80B .40C .20D .102.若(1+2)5=a +b 2(a ,b 为有理数),则a +b =( ).A .45B .55C .70D .803.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ).A .9B .8C .7D .64.(20xx ·重庆)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =( ).A .6B .7C .8D .95.(20xx ·安徽)设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=________.课堂探究案考点1 二项展开式中的特定项或特定项的系数【典例1】已知n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.【变式1】(1) (20xx ·山东)若⎝ ⎛⎭⎪⎫x -a x 26展开式的常数项为60,则常数a 的值为__ _. (2)已知(1+x +x 2)31()n x x+的展开式中没有常数项,n ∈N *,且2≤n ≤8,n= .考点2 二项式中的系数与二项式系数【典例2】(1) 在2101()2x x+的二项展开式中,x 11的系数是_____. (2)若1()nx x +展开式的二项式系数之和为64,则展开式的常数项为( )A.10B.20C.30D.120【变式2】设(x -1)4(x +2)8=a 0x 12+a 1x 11+…+a 11x +a 12,则a 0+a 2+…+a 10+a 12=____.考点3 二项式定理中的赋值法的应用【典例3】二项式(2x -3y )9的展开式中,求:(1)二项式系数之和;(2)各项系数之和;(3)所有奇数项系数之和.【变式3】 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)|a 0|+|a 1|+|a 2|+…+|a 7|.考点4 二项式的和与积【典例4】在(1+2x )3(1-x )4的展开式中含x 项的系数为________.【变式4】在x ⎝ ⎛⎭⎪⎫x -2x 7的展开式中,x 4的系数是________(用数字作答).考点5 二项式展开式中的最值问题【典例5】已知⎝ ⎛⎭⎪⎫x +12 x n的展开式中前三项的系数成等差数列.(1)求 n 的值;(2)展开式中二项式系数最大的项; (3)展开式中系数最大的项.【变式5】(1)在2nx ⎛ ⎝的展开式中,只有第5项的二项式系数最大,则展开式中常数项是() A.-7 B.7 C.-28 D .28(2)已知二项式nx x )2(2-,(n ∈N *)的展开式中第5项的系数与第3项的系数的比是10:1,(1)求展开式中各项的系数和;(2)求展开式中含32x 的项;(3)求展开式中二项式系数最大的项.1.二项式⎝ ⎛⎭⎪⎫2x -1x 6的展开式中的常数项是( )A .20B .-20C .160D .-1602.若二项式⎝ ⎛⎭⎪⎫x -2x n的展开式中第5项是常数项,则正整数n 的值可能为( ).A .6B .10C .12D .153.⎠⎛0x (1-t)3dt 的展开式中x 的系数是( ) A .-1 B .1C .-4D .44.已知⎝ ⎛⎭⎪⎫x -a x 8的展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( ). A .28 B .38 C .1或38 D .1或285.设⎝⎛⎭⎪⎫5x -1x n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( ).A .-150B .150C .300D .-300 6.⎝⎛⎭⎪⎪⎫x +13x 2n 展开式的第6项系数最大,则其常数项为( ) A .120 B .252C .210D .45课后拓展案组全员必做题1 .(20xx 新课标Ⅱ)已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a ( )A .4-B .3-C .2-D .1- 2 .(20xx 新课标Ⅰ)设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )A .5B .6C .7D .8 3 .(20xx 大纲)()()8411+x y +的展开式中22x y 的系数是( )A .56B .84C .112D .168 4 .(20xx 上海春)10(1)x +的二项展开式中的一项是( )A .45xB .290xC .3120xD .4252x5 .(20xx 辽宁)使()3n x n n +⎛+∈ ⎝的展开式中含有常数项的最小的为N ( ) A .4 B .5 C .6 D .76 .(20xx 陕西)设函数61,00.,()x x f x x x ⎧⎛⎫-<⎪ ⎪=⎝≥⎭⎨⎪⎩ 则当x >0时, [()]f f x 表达式的展开式中常数项为( ) A .-20 B .20C .-15D .15 7.(20xx 年高考江西卷(理))(x 2-32x )5展开式中的常数项为( ) A .80 B .-80 C .40 D .-40组提高选做题1.(20xx 上海春季)36的所有正约数之和可按如下方法得到:因为2236=23⨯, 所以36的所有正约数之和为222222(133)(22323)(22323)++++⨯+⨯++⨯+⨯ 22(122)(133)91=++++=.参照上述方法,可求得2000的所有正约数之和为_______.2.(20xx 四川)二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)3.(20xx 天津)在6x⎛ ⎝ 的二项展开式中的常数项为______.参考答案1.B2.C3.B4.B5.0【典例1】(1)10;(2)454;(3)23454T x =,6638T =-;2945256T x -= 【变式1】(1)4;(2)5【典例2】(①)15;(②)B【变式2】.8【典例3】(1)512;(2)1-;(3)9512- 【变式3】(1)2-;(2)7132--;(3)7312-;(4)73 【典例4】2【变式4】84【典例5】(1)8;(2)25358T x =;(3)537T x =,7247T x = 【变式5】(1).B (2).(○1)1;(○2)3216x -;(○3)61120x -1.【答案】D【解析】二项式(2x -1x )6的展开式的通项是T r +1=C r 6·(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =C r 6·26-r ·(-1)r ·x 6-2r .令6-2r =0,得r =3,因此二项式(2x -1x)6的展开式中的常数项是C 36·26-3·(-1)3=-160. 2.【答案】C【解析】T r +1=C rn (x )n -r ⎝ ⎛⎭⎪⎫-2x r =(-2)r C r n 32n r x -,当r =4时,n -3r 2=0,又n ∈N *,∴n =12. 3. 【答案】B【解析】 ⎠⎛0x (1-t)3dt =()414x ⎡⎤--⎢⎥⎢⎥⎣⎦⎪⎪ x 0=()414x --+14,故这个展开式中x 的系数是 -()14C 14-=1. 4.【答案】C【解析】由题意知C 48·(-a )4=1120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38.5.【答案】B【解析】由已知条件4n -2n=240,解得n =4,T r +1=C r 4(5x )4-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r 54-r C r 4342r x -, 令4-3r 2=1,得r =2,T 3=150x . 6【答案】C【解析】 根据二项式系数的性质,得2n =10,故二项式⎝ ⎛⎭⎪⎪⎫x +13x 2n 的展开式的通项公式是T r +1=C r 10(x )10-r ·⎝ ⎛⎭⎪⎪⎫13x r =C r 10556r x -,根据题意5-56r =0,解得r =6,故所求的常数项等于C 610=C 410=210.组全员必做题 课后拓展案1.D2.B3.D4.C5.B6. A7.C组提高选做题1.48362.103.15。
高三数学一轮复习精品教案2:二项式定理(理)教学设计
![高三数学一轮复习精品教案2:二项式定理(理)教学设计](https://img.taocdn.com/s3/m/16463baff12d2af90342e65f.png)
10.7 二项式定理考纲传真1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.1.二项式定理(1)(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *). (2)第r +1项,T r +1=C r n an -r b r. (3)第r +1项的二项式系数为C r n . 2.二项式系数的性质(1)0≤k ≤n 时,C k n 与C n -k n 的关系是C k n =C n -k n .(2)二项式系数先增后减中间项最大且n 为偶数时第n2+1项的二项式系数最大,最大值为C n2n ;当n 为奇数时,第n +12项和n +32项的二项式系数最大,最大值为C n -12n 或C n +12n .(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.1.(人教A 版教材习题改编)(1+x )6的展开式中,二项式系数最大的项是( ) A .20x 3 B .15x 2 C .15x 4 D .x 6『解析』 二项展开式中间一项(第4项)的二项式系数最大,∴T 4=C 36x 3=20x 3.『答案』 A2.(2012·天津高考)在(2x 2-1x )5的二项展开式中,x 的系数为( )A .10B .-10C .40 D.-40『解析』 因为T r +1=C r 5(2x 2)5-r (-1x)r=C r 525-r x 10-2r(-1)r x -r =C r 525-r (-1)r x 10-3r,令10-3r =1,所以r =3,所以x 的系数为C 3525-3(-1)3=-40. 『答案』 D3.若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为( ) A .1 B .129 C .128 D .127『解析』 令x =1得a 0+a 1+…+a 7=128.令x =0得a 0=(-1)7=-1,∴a 1+a 2+a 3+…+a 7=129. 『答案』 B4.(2012·陕西高考)(a +x )5展开式中x 2的系数为10,则实数a 的值为________.『解析』 (a +x )5的展开式的通项公式为T r +1=C r 5a 5-r x r . 当r =2时,由题意知C 25a 3=10,∴a 3=1,∴a =1.『答案』 15.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n =________.『解析』 T r +1=C r n (3x )r =3r C r n x r . 由已知条件35C 5n =36C 6n ,即C 5n =3C 6n .n !5!(n -5)!=3n !6!(n -6)!,整理得n =7.『答案』 7(见学生用书第201页)通项公式及其应用已知在(3x -123x )n 的展开式中,第6项为常数项.(1)求含x 2的项的系数; (2)求展开式中所有的有理项.『思路点拨』 (1)写出通项T r +1,先求n ,再求含x 2的项的系数.(2)寻找使x 的指数为整数的r 值,从而确定有理项.『尝试解答』 (1)(3x -123x )n 的展开式的通项为T r +1=C r n x n -r 3(-12)r x -r 3=C r n (-12)rx n -2r3.因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.令n -2r 3=2,得r =12(n -6)=12×(10-6)=2, ∴含x 2的项的系数为C 210(-12)2=454. (2)根据通项公式,由题意10-2r 3∈Z ,且0≤r ≤10.令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k . ∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项和第9项为有理项,它们分别为C 210(-12)2x 2,C 510(-12)5,C 810(-12)8x -2.,1.解此类问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r );第二步是根据所求的指数,再求所求解的项.2.有理项是字母指数为整数的项.解此类问题必须合并通项公式中同一字母的指数,根据具体要求,令其为整数,再根据数的整除性来求解.(1)(2012·浙江高考)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.(2)设二项式(x -a x)6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,则a 的值是________.『解析』 (1)f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.(2)(x -a x)6展开式的通项T r +1=(-a )r C r 6x 6-32r , ∴A =(-a )2C 26,B =(-a )4C 46,由B =4A ,得(-a )4C 46=4(-a )2C 26,解之得a =±2.又a >0,所以a =2. 『答案』 (1)10 (2)2二项展开式的系数与二项式系数(1)(2013·厦门模拟)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3(2)(2012·大纲全国卷)若(x +1x )n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x2的系数为________.『思路点拨』 (1)先赋值求a 0及各项系数和,进而求得n 值,再运用二项式系数性质与通项公式求解.(2)根据二项式系数性质,由C 2n =C 6n ,确定n 的值,求出1x2的系数. 『尝试解答』 (1)∵(1+x )n =a 0+a 1x +a 2x 2+…+a n x n , 令x =0,得a 0=1.令x =1,则(1+1)n =a 0+a 1+a 2+…+a n =64,∴n =6, 又(1+x )6的展开式二项式系数最大项的系数最大,∴(1+x )6的展开式系数最大项为T 4=C 36x 3=20x 3. (2)由题意知,C 2n =C 6n ,∴n =8.∴T r +1=C r 8·x 8-r ·(1x )r =C r 8·x 8-2r , 当8-2r =-2时,r =5, ∴1x 2的系数为C 58=C 38=56. 『答案』 (1)B (2)56,1.第(1)题求解的关键在于赋值,求出a 0与n 的值;第(2)小题在求解过程中,常因把n的等量关系表示为C 3n =C 7n ,而求错n 的值.2.求解这类问题要注意:(1)区别二项式系数与展开式中项的系数,灵活利用二项式系数的性质.(2)根据题目特征,恰当赋特殊值代换.对于展开式中的系数和、隔项系数和、系数的绝对值和等问题,通常运用赋值法进行构造(构造出目标式).赋值时要注意根据目标式进行灵活的选择,常见的赋值方法是使字母因式的值为1,-1或目标式的值.(2013·合肥质检)设(x-1)21=a0+a1x+a2x2+…+a21x21,则(1)a10+a11=________;(2)a1+a2+…+a21=________.『解析』(1)由二项展开式知T r+1=C r21x21-r(-1)r,∴a10+a11=C1121(-1)11+C1021(-1)10=-C1121+C1021=-C1021+C1021=0.(2)令x=0,得a0=-1,令x=1得a0+a1+a2+…+a21=0,所以a1+a2+…+a21=1.『答案』(1)0(2)1二项式定理的应用(2012·湖北高考)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a=() A.0B.1C.11D.12『思路点拨』注意到52能被13整除,化51为52-1,从而运用二项式定理展开512012,由条件求a的值.『尝试解答』512 012+a=(52-1)2 012+a=C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011+C2 0122 012·(-1)2 012+a,∵C02 012·522 012-C12 012·522 011+…+C2 0112 012×52·(-1)2 011能被13整除.且512 012+a能被13整除,∴C2 0122 012·(-1)2 012+a=1+a也能被13整除.因此a可取值12.『答案』D,1.本题求解的关键在于将512 012变形为(52-1)2 012,使得展开式中的每一项与除数13建立联系.2.用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:(1)余数的范围,a=cr+b,其中余数b∈『0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;(2)二项式定理的逆用.1-90C110+902C210-903C310+…+(-1)k90k C k10+…+9010C1010除以88的余数是()A.-1B.1C.-87D.87『解析』1-90C110+902C210+…+(-1)k90k C k10+…+9010C1010=(1-90)10=8910=(88+1)10=8810+C110889+…+C91088+1∵前10项均能被88整除,∴余数是1.『答案』B一个定理二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*)揭示二项展开式的规律,一定牢记通项公式T r+1=C r n a n-r b r.一个防范切记二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n,而后者是字母外的部分.前者只与n和r有关,恒为正,后者还与a,b有关,可正可负.两种应用1.通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.2.展开式的应用:利用展开式(1)可求解与二项式系数有关的求值;(2)可证明不等式;(3)可证明整除问题(或求余数).三条性质1.对称性.2.增减性.3.各项二项式系数的和.(见学生用书第202页)从近两年的高考试题来看,求二项展开式中特定项及特定项的系数是考查的热点,题型为选择题或填空题,属容易题,在考查基本运算、基本概念的基础上注重考查方程思想、等价转化思想.预测2014年高考,求二项展开式的特定项和特定项的系数仍然是考查的重点,同时应注意二项式系数性质的应用.思想方法之十九 赋值法在二项展开式中的应用(2012·上海高考改编)(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .40 『解析』 在(x +a x )(2x -1x )5中,令x =1,得(1+a )(2-1)5=1+a =2,∴a =1.∵(2x -1x )5展开式的通项T r +1=C r 5(2x )5-r (-1x)r =C r 5·25-r (-1)r ·x 5-2r.令5-2r =1,得2r =4,即r =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80. 令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x 的系数为C 3525-3·(-1)3=-40. 所以(x +1x )(2x -1x )5展开式中的常数项为80-40=40.『答案』 D易错提示:(1)混淆各项系数的和与二项式系数和,难以运用赋值法正确求出a 的值. (2)对展开式中的常数项的来源构成分析不清,盲目把(x +a x )(2x -1x )5全部展开,运算繁琐,导致计算错误.防范措施:(1)二项式定理是一个恒等式,因此我们可以根据需要对变量x 进行赋值,从而得到关于参数的方程,求出参数的值.(2)展开式的常数项来源于:①“x +a x ”中的x 与(2x -1x )5展开式中含1x 的项相乘;②ax 与(2x-1x)5展开式中含x 的项相乘.1.(2013·烟台模拟)设(5x -1x)n的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中x 的系数为( )A .-150B .150C .300D .-300 『解析』 由已知条件4n -2n =240,解得n =4,T r +1=C r 4(5x )4-r (-1x)r =(-1)r 54-r C r 4x 4-3r 2, 令4-3r2=1,得r =2,T 3=150x . 『答案』 B2.(2012·安徽高考)(x 2+2)(1x 2-1)5的展开式的常数项是( )A .-3B .-2C .2D .3『解析』 二项式(1x 2-1)5展开式的通项为:T r +1=C r 5(1x 2)5-r·(-1)r =C r 5·x 2r -10·(-1)r . 当2r -10=-2, 即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0, 即r =5时,有2·C 55x 0·(-1)5=-2.∴展开式中的常数项为5-2=3,故选D. 『答案』 D。
高三数学一轮复习精品教案3:二项式定理(理)教学设计
![高三数学一轮复习精品教案3:二项式定理(理)教学设计](https://img.taocdn.com/s3/m/c51e7bfbbe23482fb5da4c62.png)
10.7 二项式定理1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.『梳理自测』一、二项式定理及特点1.(教材改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A .9 B .8 C .7 D .62.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .103.(教材改编)二项式⎝⎛⎭⎫x 3-1x 25的展开式中的常数项为( ) A .10 B .-10 C .-14 D .14 『答案』1.B 2.B 3.A◆以上题目主要考查了以下内容: (1)二项式定理(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n nb n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.其中的系数C r n (r =0,1,…,n )叫二项式系数.式中的C r n a n -r b r 叫二项展开式的通项,用T r +1表示,即通项T r +1=C r n an -r b r. (2)二项展开式形式上的特点 ①项数为n +1.②各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .③字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .④二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .二、二项式系数的性质1.若⎝⎛⎭⎫x -12n 的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A.132 B.164 C .-164 D.11282.若⎝⎛⎭⎫3x -1x n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为( ) A .-5 B .5 C .-405 D .405 『答案』1.B 2.C◆以上题目主要考查了以下内容:(1)对称性:与首末两端“等距离”的两个二项式系数相等.即C r n =C n -rn (r =0,1,…,n )(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项C n 2n 取得最大值;当n 是奇数时,中间两项C n -12n ,Cn +12n 取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n =2n ;C 0n +C 2n +C 4n +…=C 1n +C 3n+C 5n+…=2n -1. 『指点迷津』1.一个防范运用二项式定理一定要牢记通项T r +1=C r n an -r b r,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分,前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.2.一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.3.两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:①证明与二项式系数有关的等式;②证明不等式;③证明整除问题;④做近似计算等.考向一 二项展开式中的特定项或系数(1)(2013·高考安徽卷)若⎝⎛⎭⎪⎫x +a 3x 8的展开式中,x 4的系数为7,则实数a =________.(2)(2013·高考江西卷)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为( ) A .80 B .-80 C .40 D .-40『审题视点』 根据二项展开式的通项公式,令x 的次数为4,则为x 4的项,含x 的次数为0,则为常数项.『典例精讲』 (1)含x 4的项为C 38x 5⎝ ⎛⎭⎪⎫a 3x 3=C 38a 3x 4,∴C 38a 3=7,∴a =12. (2)设展开式的第r +1项为T r +1=C r 5·(x 2)5-r ·⎝⎛⎭⎫-2x 3r =C r 5·x 10-2r ·(-2)r ·x -3r =C r 5·(-2)r ·x 10-5r .若第r +1项为常数项,则10-5r =0,得r =2,即常数项T 3=C 25(-2)2=40. 『答案』 (1)12(2)C『类题通法』 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,含字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.1.(2014·浙江省温州市调研)(x -12x)6的展开式中的常数项是________.『解析』二项式(x -12x )6的展开式的通项公式为T r +1=C r 6(x )6-r (-12x )r =(-12)r C r 6x 3-3r2, ∴当r =2时,T r +1是常数项,此时T 3=154.『答案』154考向二 二项展开式的系数和问题在(2x -3y )10的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和.『审题视点』 分清二项式系数与项的系数,奇数项与偶数项,正确赋值.『典例精讲』 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和即为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210. (2)令x =y =1,各项系数和为 (2-3)10=(-1)10=1. (3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29. (4)令x =y =1,得到 a 0+a 1+a 2+…+a 10=1,① 令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②,得2(a 0+a 2+…+a 10)=1+510, ∴奇数项的系数和为1+5102;①-②,得2(a 1+a 3+…+a 9)=1-510, ∴偶数项的系数和为1-5102.『类题通法』 (1)对形如(ax +b )n 、(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1), 奇数项系数之和为a 0+a 2+a 4+…=f 1+f -12,偶数项系数之和为a 1+a 3+a 5+…=f 1-f -12.2.(2014·福建厦门模拟)设(1+x )n =a 0+a 1x +…+a n x n ,若a 1+a 2+…+a n =63,则展开式中系数最大的项是( )A .15x 2B .20x 3C .21x 3D .35x 3『解析』选B.令x =1,则(1+1)n =C 0n +C 1n +…+C n n =64, ∴n =6.故(1+x )6的展开式中最大项为T 4=C 36x 3=20x 3.考向三 二项式定理的综合应用(1)求证:1+2+22+…+25n -1(n ∈N *) 能被31整除;(2)求S =C 127+C 227+…+C 2727除以9的余数;(3)根据下列要求的精确度,求1.025的近似值.(精确到0.01). 『审题视点』 (1)(2)利用二项展开式寻求倍数关系. (3)根据展开式适当取舍.『典例精讲』 (1)证明:∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1 =(31+1)n -1=C 0n ×31n +C 1n ×31n -2+…+C n -1n ×31+C n n -1 =31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ), 显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.(3)1.025=(1+0.02)5=1+C 15×0.02+C 25×0.022+…+C 55×0.025≈1+5×0.02=1.10.『类题通法』 (1)利用二项式定理进行近似计算:当n 不很大,|x |比较小时,(1+x )n ≈1+nx .(2)利用二项式定理证明整除问题或求余数问题:在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都有除式的因式,要注意变形的技巧.(3)利用二项式定理证明不等式:由于(a +b )n 的展开式共有n +1项,故可以对某些项进行取舍来放缩,从而达到证明不等式的目的.3.(2012·高考湖北卷)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 『解析』选D.512 012+a =(52-1)2 012+a=C 02 012·522 012-C 12 012·522 011+…+C 2 0112 012×52× (-1)2 011+C 2 0122 012×(-1)2 012+a ∵C 02 012522 012-C 12 012522 011+…+C 2 0112 012×52×(-1)2 011 能被13整除,且512 012+a 能被13整除.∴C 2 0122 012(-1)2 012+a =1+a 也能被13整除, ∴a 可取值12.多次应用二项展开式通项公式搭配不全(2012·高考安徽卷)(x 2+2)⎝⎛⎭⎫1x 2-15的展开式的常数项是( )A .-3B .-2C .2D .3『正解』 利用二项展开式的通项求解. 二项式⎝⎛⎭⎫1x 2-15展开式的通项为: T r +1=C r 5⎝⎛⎭⎫1x 25-r·(-1)r =C r 5·x 2r -10·(-1)r . 当2r -10=-2,即r =4时,有x 2·C 45x -2·(-1)4=C 45×(-1)4=5;当2r -10=0,即r =5时,有2·C 55x 0·(-1)5=-2.∴展开式中的常数项为5-2=3,故选D. 『答案』 D『易错点』 (x 2+2)与⎝⎛⎭⎫1x 2-15的各因式的积为常数项,不只是2与(-1)的积,还有x 2与x-2的积也为常数.『警示』 求几个二项式积的展式中某项的系数或特定项时,一般要根据这几个二项式的结构特征进行分类搭配,分类时要抓住一个二项式逐项分类,分析其它二项式应满足的条件,然后再求解结果.1.(2013·高考重庆卷)使⎝⎛⎭⎫3x +1x x n(n ∈N +)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7『解析』选B.根据二项展开式的通项公式求解.T r +1=C r n (3x )n -r⎝⎛⎭⎫1x x r =C r n 3n -r xn -52r ,当T r +1是常数项时,n -52r =0,当r =2,n =5时成立.2.(2013·高考全国新课标卷)设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =( )A .5B .6C .7D .8『解析』选B.先根据二项展开式中二项式系数的特点确定系数的最大值,再利用组合数公式求解.(x +y )2m 展开式中二项式系数的最大值为C m 2m ,∴a =C m 2m .同理,b =C m +12m +1. ∵13a =7b ,∴13·C m 2m =7·C m +12m +1.∴13·2m !m !m !=7·2m +1!m +1!m !.∴m =6.3.(2013·高考四川卷)二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答)『解析』利用二项展开式的通项求解. (x +y )5展开式的通项是T r +1=C r 5x5-r y r , 令r =3得T 4=C 35x 2y 3=10x 2y 3,∴二项式(x +y )5展开式中含x 2y 3项的系数是10. 『答案』104.(2013·高考浙江卷)设二项式⎝⎛⎭⎪⎫x -13x 5的展开式中常数项为A ,则A =________. 『解析』写出二项展开式的通项T r +1,令通项中x 的指数为零,求出r ,即可求出A .T r +1=C r 5(x )5-r⎝⎛⎭⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-5r 6=0,得r =3,所以A =-C 35=-10. 『答案』-10。
2021年高考数学(理)一轮复习讲义 第10章 第3讲 二项式定理
![2021年高考数学(理)一轮复习讲义 第10章 第3讲 二项式定理](https://img.taocdn.com/s3/m/289754eff121dd36a22d8201.png)
第3讲二项式定理一、知识梳理1.二项式定理(1)定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*).(2)通项:第k+1项为T k+1=C k n a n-k b k.(3)二项式系数:二项展开式中各项的二项式系数为:C k n(k=0,1,2,…,n).2.二项式系数的性质常用结论1.两个常用公式(1)C0n+C1n+C2n+…+C n n=2n.(2)C0n+C2n+C4n+…=C1n+C3n+C5n+…=2n-1.2.二项展开式的三个重要特征(1)字母a的指数按降幂排列由n到0.(2)字母b的指数按升幂排列由0到n.(3)每一项字母a的指数与字母b的指数的和等于n.3.三个易错点(1)二项式定理中,通项公式T k +1=C k n a n -k b k是展开式的第k +1项,不是第k 项. (2)二项式系数与展开式中项的系数是两个不同的概念,在T k +1=C k n a n -k b k 中,C k n 是该项的二项式系数,该项的系数还与a ,b 有关.(3)二项式系数的最值与指数n 的奇偶性有关.当n 为偶数时,中间一项的二项式系数最大;当n 为奇数时,中间两项的二项式系数相等,且同时取得最大值.二、习题改编1.(选修2-3P31例2(1)改编)(1+2x )5的展开式中,x 2的系数为________.解析:T k +1=C k 5(2x )k =C k 52k x k ,当k =2时,x 2的系数为C 25·22=40.答案:402.(选修2-3P31例2(2)改编)若⎝⎛⎭⎫x +1x n展开式的二项式系数之和为64,则展开式的常数项为________.解析:二项式系数之和2n=64,所以n =6,T k +1=C k 6·x6-k ·⎝⎛⎭⎫1x k=C k 6x 6-2k ,当6-2k =0,即当k =3时为常数项,T 4=C 36=20.答案:203.(选修2-3P41B 组T5改编)若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.解析:令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.答案:8一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)(a +b )n 的展开式中的第r 项是C r n an -r b r.( ) (2)在二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)在(a +b )n 的展开式中,每一项的二项式系数与a ,b 无关.( )(4)通项T r +1=C r n an -r b r 中的a 和b 不能互换.( ) (5)(a +b )n 展开式中某项的系数与该项的二项式系数相同.( ) 答案:(1)× (2)× (3)√ (4)√ (5)×二、易错纠偏 常见误区|K(1)混淆“二项式系数”与“系数”致误;(2)配凑不当致误.1.在二项式⎝⎛⎭⎫x 2-2x n,的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________.解析:由题意得2n =32,所以n =5.令x =1,得各项系数的和为(1-2)5=-1. 答案:-12.已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=________.解析:因为(1+x )10=[2-(1-x )]10,所以其展开式的通项为T r +1=(-1)r 210-r ·C r 10(1-x )r,令r =8,得a 8=4C 810=180.答案:1803.(x +1)5(x -2)的展开式中x 2的系数为________.解析:(x +1)5(x -2)=x (x +1)5-2(x +1)5展开式中含有x 2的项为-20x 2+5x 2=-15x 2.故x 2的系数为-15.答案:-15求二项展开式的特定项或系数(师生共研)(1)在⎝⎛⎭⎫x -12x 5的展开式中,x 2的系数为________.(2)在二项式⎝⎛⎭⎫ax 2+1x 5的展开式中,若常数项为-10,则a =________.【解析】 (1)⎝⎛⎭⎫x -12x 5的展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫-12x r=⎝⎛⎭⎫-12rC r 5x 5-3r 2,令5-32r =2,得r =2,所以x 2的系数为C 25⎝⎛⎭⎫-122=52.(2)⎝⎛⎭⎫ax 2+1x 5的展开式的通项T r +1=C r 5(ax 2)5-r ×⎝⎛⎭⎫1x r=C r 5a 5-r x 10-5r 2,令10-5r 2=0,得r =4,所以C 45a5-4=-10,解得a =-2. 【答案】 (1)52(2)-2求二项展开式中的特定项的系数问题的步骤(1)利用通项将T k +1项写出并化简.(2)令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出k .(3)代回通项得所求.1.⎝⎛⎭⎫x 2-12x 6的展开式中,常数项是( ) A .-54B .54C .-1516D .1516解析:选D.T r +1=C r 6(x 2)6-r⎝⎛⎭⎫-12x r =⎝⎛⎭⎫-12rC r 6x12-3r ,令12-3r =0,解得r =4,所以常数项为⎝⎛⎭⎫-124C 46=1516. 2.⎝ ⎛⎭⎪⎪⎫3x -123x 10的展开式中所有的有理项为________. 解析:二项展开式的通项为T k +1=C k 10⎝⎛⎭⎫-12kx10-2k3,由题意10-2k3∈Z ,且0≤k ≤10,k∈N .令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r ,因为k ∈N ,所以r 应为偶数.所以r可取2,0,-2,即k 可取2,5,8,所以第3项,第6项与第9项为有理项,它们分别为454x 2,-638,45256x -2.答案:454x 2,-638,45256x -2二项式系数与各项系数和问题(师生共研)(1)在⎝⎛⎭⎫x +3x n的展开式中,各项系数和与二项式系数和之比为64∶1,则x 3的系数为( )A .15B .45C .135D .405(2)若(1-x )9=a 0+a 1x +a 2x 2+…+a 9x 9,则|a 1|+|a 2|+|a 3|+…+|a 9|=( ) A .1 B .513 C .512D .511【解析】 (1)由题意知4n 2n =64,得n =6,展开式的通项为T r +1=C r 6x 6-r ⎝⎛⎭⎫3x r =3r C r 6x 6-3r 2,令6-3r2=3,得r =2,则x 3的系数为32C 26=135.故选C. (2)令x =0,得a 0=1,令x =-1,得|a 1|+|a 2|+|a 3|+…+|a 9|=[1-(-1)]9-1=29-1=511.【答案】 (1)C (2)D“赋值法”普遍应用于恒等式,是一种处理与二项式相关问题的比较常用的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,只需令x =1即可.1.⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( )A .63x B .4x C .4x 6xD .4x或4x 6x 解析:选A.令x =1,可得⎝⎛⎭⎪⎫x +13x n的展开式中各项系数之和为2n ,即8<2n<32,解得n =4,故第3项的系数最大,所以展开式中系数最大的项是C 24(x )2⎝ ⎛⎭⎪⎫13x 2=63x . 2.若(1+x )(1-2x )8=a 0+a 1x +…+a 9x 9,x ∈R ,则a 1·2+a 2·22+…+a 9·29的值为( ) A .29 B .29-1 C .39D .39-1解析:选D.(1+x )(1-2x )8=a 0+a 1x +a 2x 2+…+a 9x 9,令x =0,得a 0=1;令x =2,得a 0+a 1·2+a 2·22+…+a 9·29=39,所以a 1·2+a 2·22+…+a 9·29=39-1.故选D.多项式的展开式问题(多维探究) 角度一 几个多项式的和的展开式问题在(1+x )+(1+x )2+(1+x )3+…+(1+x )11的展开式中,x 2项的系数是( )A .55B .66C .165D .220【解析】 展开式中x 2项的系数是C 22+C 23+C 24+…+C 211=C 33+C 23+C 24+…+C 211=C 34+C 24+…+C 211=…=C 312,所以x 2项的系数是C 312=220.故选D. 【答案】 D几个多项式和的展开式中的特定项(系数)问题的处理方法:先分别求出每一个多项式中的特定项,再合并.通常要用到方程或不等式的知识求解.角度二 几个多项式的积的展开式问题(1)(2019·高考全国卷Ⅲ)(1+2x 2)(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24(2)(2020·南昌模拟)已知(x -1)(ax +1)6的展开式中含x 2项的系数为0,则正实数a =________.【解析】 (1)展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)(ax +1)6的展开式中x 2项的系数为C 46a 2,x 项的系数为C 56a ,由(x -1)(ax +1)6的展开式中含x 2项的系数为0,可得-C 46a 2+C 56a =0,因为a 为正实数,所以15a =6,所以a =25. 【答案】 (1)A (2)25求解形如(a +b )m (c +d )n 的展开式问题的思路(1)若m ,n 中有一个比较小,可考虑把它展开,如(a +b )2·(c +d )n =(a 2+2ab +b 2)(c +d )n ,然后分别求解.(2)观察(a +b )(c +d )是否可以合并,如(1+x )5·(1-x )7=[(1+x )(1-x )]5(1-x )2=(1-x 2)5(1-x )2.(3)分别得到(a +b )m ,(c +d )n 的通项,综合考虑.角度三 三项展开式的定项问题(1)(x 2-x +1)10的展开式中x 3项的系数为( )A .-210B .210C .30D .-30(2)(x 2+x +y )5的展开式中x 5y 2的系数为( ) A .10 B .20 C .30D .60【解析】 (1)(x 2-x +1)10=[x 2-(x -1)]10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910x 2(x -1)9+C 1010(x -1)10,所以含x 3项的系数为:-C 910C 89+C 1010(-C 710)=-210.(2)(x 2+x +y )5的展开式的通项为T r +1=C r 5(x 2+x )5-r ·y r ,令r =2,则T 3=C 25(x 2+x )3y 2,又(x 2+x )3的展开式的通项为T k +1=C k 3(x 2)3-k ·x k =C k 3x 6-k ,令6-k =5,则k =1,所以(x 2+x +y )5的展开式中,x 5y 2的系数为C 25C 13=30,故选C.【答案】 (1)A (2)C三项展开式中的特定项(系数)问题的处理方法(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解.(2)将其中某两项看成一个整体,直接利用二项式定理展开,然后再分类考虑特定项产生的所有可能情形.1.已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n (n ∈N *),若a 0+a 1+…+a n =62,则log n 25等于________.解析:令x =1可得a 0+a 1+a 2+…+a n =2+22+23+ (2)=2(2n -1)2-1=2n +1-2=62,解得n =5,所以log n 25=2.答案:22.在⎝⎛⎭⎫x -1x (2x -1)6的展开式中,x 3的系数是_________________________________. (用数字作答)解析:由题意得,⎝⎛⎭⎫x -1x (2x -1)6的展开式中含x 3的项为x C 46(2x )2(-1)4+⎝⎛⎭⎫-1x C 26(2x )4(-1)2=-180x 3,所以展开式中x 3的系数为-180.答案:-1803.在⎝⎛⎭⎫2+x -x 2 0182 01712的展开式中,x 5项的系数为________. 解析:T r +1=C r 12(2+x )12-r ·⎝⎛⎭⎫-x 2 0182 017r,要出现x 5项,则r =0,T 1=(2+x )12,所以x 5项的系数为22C 1012=4C 1012=264.答案:264[基础题组练]1.⎝⎛⎭⎫2x 2-x 43的展开式中的常数项为( ) A .-3 2 B .3 2 C .6D .-6解析:选D.通项T r +1=C r 3⎝⎛⎭⎫2x 23-r(-x 4)r =C r 3(2)3-r ·(-1)r x -6+6r ,当-6+6r =0,即r =1时为常数项,T 2=-6,故选D.2.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数为( ) A .50 B .55 C .45D .60解析:选B.(1+x )5+(1+x )6+(1+x )7的展开式中x 4的系数是C 45+C 46+C 47=55.故选B. 3.(2020·四川成都实验外国语学校二诊)已知⎝⎛⎭⎪⎫x +33x n的展开式中,各项系数的和与其各项二项式系数的和之比为64,则n =( )A .4B .5C .6D .7解析:选C.二项式⎝ ⎛⎭⎪⎫x +33x n 的各项系数的和为(1+3)n =4n,二项式⎝ ⎛⎭⎪⎫x +33x n的各项二项式系数的和为2n,因为各项系数的和与其各项二项式系数的和之比为64,所以4n 2n =2n=64,n =6.故选C.4.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( ) A .-5 B .-15 C .-25D .25解析:选B.因为(1-x )5=(-x )5+5x 4+C 35(-x )3+…,所以在(1-x )5·(2x +1)的展开式中,含x 4项的系数为5-2C 35=-15.故选B.5.1+(1+x )+(1+x )2+…+(1+x )n 的展开式的各项系数之和为( ) A .2n -1 B .2n -1 C .2n +1-1D .2n解析:选C.令x =1,得1+2+22+…+2n =1×(2n +1-1)2-1=2n +1-1.6.(2020·湖南岳阳二模)将多项式a 6x 6+a 5x 5+…+a 1x +a 0分解因式得(x -2)(x +2)5,则a 5=( )A .8B .10C .12D .1解析:选A.(x -2)(x +2)5=(x 2-4)·(x +2)4,所以(x +2)4的展开式中x 3的系数为C 14·21=8,所以a 5=8.故选A.7.(x 2+2)⎝⎛⎭⎫1x -15展开式中的常数项是( )A .12B .-12C .8D .-8解析:选B.⎝⎛⎭⎫1x -15展开式的通项公式为T r +1=C r 5⎝⎛⎭⎫1x 5-r(-1)r =(-1)r C r 5xr -5,当r -5=-2或r -5=0,即r =3或r =5时,展开式的常数项是(-1)3C 35+2(-1)5C 55=-12.故选B.8.⎝⎛⎭⎫x +1x +15展开式中的常数项为( ) A .1 B .21 C .31D .51解析:选D.因为⎝⎛⎭⎫x +1x +15=⎣⎡⎦⎤(x +1)+1x 5=C 05(x +1)5+C 15(x +1)4·1x+C 25(x +1)3·⎝⎛⎭⎫1x 2+C 35(x +1)2·⎝⎛⎭⎫1x 3+C 45(x +1)1·⎝⎛⎭⎫1x 4+C 55⎝⎛⎭⎫1x 5. 所以⎝⎛⎭⎫x +1x +15展开式中的常数项为C 05·C 55·15+C 15·C 34·13+C 25·C 13·12=51.故选D. 9.已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( )A .1B .243C .121D .122解析:选B.令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B. 10.(2020·海口调研)若(x 2-a )⎝⎛⎭⎫x +1x 10的展开式中x 6的系数为30,则a 等于( ) A.13 B .12C .1D .2解析:选D.由题意得⎝⎛⎭⎫x +1x 10的展开式的通项公式是T k +1=C k 10·x 10-k ·⎝⎛⎭⎫1x k=C k 10x 10-2k ,⎝⎛⎭⎫x +1x 10的展开式中含x 4(当k =3时),x 6(当k =2时)项的系数分别为C 310,C 210,因此由题意得C 310-a C 210=120-45a =30,由此解得a =2,故选D.11.若(1+x +x 2)n =a 0+a 1x +a 2x 2+…+a 2n x 2n ,则a 0+a 2+a 4+…+a 2n 等于( ) A .2nB .3n -12C .2n +1D .3n +12解析:选D.设f (x )=(1+x +x 2)n , 则f (1)=3n =a 0+a 1+a 2+…+a 2n ,① f (-1)=1=a 0-a 1+a 2-a 3+…+a 2n ,②由①+②得2(a 0+a 2+a 4+…+a 2n )=f (1)+f (-1), 所以a 0+a 2+a 4+…+a 2n =f (1)+f (-1)2=3n +12.12.已知(x +2)9=a 0+a 1x +a 2x 2+…+a 9x 9,则(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2的值为( )A .39B .310C .311D .312解析:选D.对(x +2)9= a 0+a 1x +a 2x 2+…+a 9x 9两边同时求导,得9(x +2)8=a 1+2a 2x +3a 3x 2+…+8a 8x 7+9a 9x 8,令x =1,得a 1+2a 2+3a 3+…+8a 8+9a 9=310,令x =-1,得a 1-2a 2+3a 3-…-8a 8+9a 9=32.所以(a 1+3a 3+5a 5+7a 7+9a 9)2-(2a 2+4a 4+6a 6+8a 8)2=(a 1+2a 2+3a 3+…+8a 8+9a 9)(a 1-2a 2+3a 3-…-8a 8+9a 9)=312,故选D.13.(x y -y x )4的展开式中,x 3y 3项的系数为________.解析:二项展开式的通项是T k +1=C k 4(x y )4-k ·(-y x )k =(-1)k C k 4x 4-k 2y 2+k 2,令4-k 2=2+k 2=3,解得k =2,故展开式中x 3y 3的系数为(-1)2C 24=6. 答案:614.⎝⎛⎭⎫x 2+1x +25(x >0)的展开式中的常数项为________. 解析:⎝⎛⎭⎫x 2+1x +25(x >0)可化为⎝ ⎛⎭⎪⎫x 2+1x 10,因而T r +1=C r 10⎝⎛⎭⎫1210-r (x )10-2r ,令10-2r =0,则r =5,故展开式中的常数项为C 510·⎝⎛⎭⎫125=6322. 答案:6322 15.已知二项式⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的二项式系数之和为37,则n =________,展开式中的第五项为________. 解析:二项式⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的二项式系数之和为C 0n +C 1n +C 2n =1+n +n (n -1)2=37,则n =8,故展开式中的第五项为C 48·124·x =358x . 答案:8 358x 16.设m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m+1展开式的二项式系数的最大值为b .若13a =7b ,则m =________.解析:(x +y )2m 展开式中二项式系数的最大值为C m 2m ,所以a =C m 2m .同理,b =C m +12m +1. 因为13a =7b ,所以13·C m 2m =7·C m +12m +1.所以13·(2m )!m !m !=7·(2m +1)!(m +1)!m !. 所以m =6.答案:6[综合题组练]1.已知C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n =729,则C 1n +C 2n +…+C n n 的值等于( )A .64B .32C .63D .31解析:选C.因为C 0n -4C 1n +42C 2n -43C 3n +…+(-1)n 4n C n n=729,所以(1-4)n =36,所以n =6,因此C 1n +C 2n +…+C n n =2n -1=26-1=63,故选C.2.设a ∈Z ,且0≤a <13,若512 018+a 能被13整除,则a =( )A .0B .1C .11D .12解析:选D.512 018+a =(52-1)2 018+a =C 02 018522 018-C 12 018522 017+…+C 2 0172 018×52×(-1)2 017+C 2 0182 018×(-1)2 018+a .因为52能被13整除,所以只需C 2 0182 018×(-1)2 018+a 能被13整除,即a +1能被13整除,所以a =12.3.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈N *)是一个单调递增数列,则k 的最大值是________.解析:由二项式定理知,a n =C n -110(n =1,2,3,…,11).又(x +1)10展开式中二项式系数最大项是第6项,所以a 6=C 510,则k 的最大值为6.答案:64.设a =⎠⎛012x d x ,则二项式⎝⎛⎭⎫ax 2-1x 6的展开式中的常数项为________. 解析:a =⎠⎛012x d x =x 2⎪⎪⎪10=1,则二项式⎝⎛⎭⎫ax 2-1x 6=⎝⎛⎭⎫x 2-1x 6,其展开式的通项公式为T r +1=C r 6(x 2)6-r ·⎝⎛⎭⎫-1x r=(-1)r C r 6x 12-3r , 令12-3r =0,解得r =4.所以常数项为(-1)4C 46=15.答案:155.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7,求:(1)a 1+a 2+…+a 7;(2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解:令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1.①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)因为a 0=C 07=1,所以a 1+a 2+a 3+…+a 7=-2.(2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094. (3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093. (4)因为(1-2x )7的展开式中a 0,a 2,a 4,a 6大于零,而a 1,a 3,a 5,a 7小于零, 所以|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187.6.已知⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列.(1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.解:(1)由二项展开式知,前三项的系数分别为C 0n ,12C 1n ,14C 2n , 由已知得2×12C 1n =C 0n +14C 2n , 解得n =8(n =1舍去).(2)⎝ ⎛⎭⎪⎫x +124x 8的展开式的通项T r +1=C r 8(x )8-r ·⎝ ⎛⎭⎪⎫124x r =2-r C r 8x 4-3r 4 (r =0,1,…,8),要求有理项,则4-3r4必为整数,即r=0,4,8,共3项,这3项分别是T1=x4,T5=358x,T9=1256x2.(3)设第r+1项的系数为a r+1最大,则a r+1=2-r C r8,则a r+1a r=2-r C r82-(r-1)C r-18=9-r2r≥1,a r+1 a r+2=2-r C r82-(r+1)C r+18=2(r+1)8-r≥1,解得2≤r≤3.当r=2时,a3=2-2C28=7,当r=3时,a4=2-3C38=7,因此,第3项和第4项的系数最大,故系数最大的项为T3=7x52,T4=7x74.。
高三一轮复习导学案二项式定理
![高三一轮复习导学案二项式定理](https://img.taocdn.com/s3/m/fa9141383968011ca30091af.png)
第十二章 排列组合、二项式定理、概率(3)12.3 二项式定理考点诠释重点:理解二项式定理,熟记其展开式及通项;理解二项式系数的性质,并能应用其解决问题.难点:二项式系数与项的系数的区别和联系,灵活运用公式解题.典例精析题型一 二项展开式的通项公式及应用【例1】已知(x -124x)n的展开式中,前三项系数的绝对值依次成等差数列. (1)求证:展开式中没有常数项;(2)求展开式中所有的有理项.【思路分析】(1)根据二项式定理计算出前三项系数(用n 表示),列方程求n ,然后利用通项公式证明;(2)若T r +1是有理项,则必有16-3r 4∈Z ,从而求得r . 【解析】【方法归纳】(1)把握二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;(2)应用通项公式求二项展开式的特定项,如求某一项、含x 某次幂的项、常数项、有理项、系数最大的项等,一般是应用通项公式根据题意列方程,在求得n 或r 后,再求所需的项(要注意n 和r 的数值范围及大小关系);(3)注意区分展开式“第r +1项的二项式系数”与“第r +1项的系数”.【举一反三】1.若(x x +23x)n 的展开式的前3项系数和为129,则这个展开式中是否含有常数项、一次项?如果有,求出该项;如果没有,请说明理由.【解析】题型二 运用赋值法求值【例2】若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,求:(1)a 7+a 6+…+a 1; (2)a 7+a 5+a 3+a 1; (3)a 6+a 4+a 2+a 0.【思路分析】所求结果与各项系数有关,可以考虑用“特殊值法”,即“赋值法”解决.【解析】【方法归纳】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.【举一反三】2.设(2-3x )100=a 0+a 1x +a 2x 2+…+a 100x 100,求下列各式的值:(1)a 0; (2)a 1+a 3+a 5+…+a 99; (3)(a 0+a 2+a 4+…+a 100)2-(a 1+a 3+…+a 99)2.【解析】题型三 二项式定理的综合应用【例3】已知(x -2x 2)n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1. (1)求展开式中各项系数的和; (2)求展开式中含x 32的项;(3)求展开式中系数最大的项和二项式系数最大的项.【思路分析】(1)可利用“赋值法”求各项系数的和;(2)可利用展开式中的通项公式确定T k +1中k 的值;(3)可利用通项公式求出k 的取值范围,再确定项.【解析】【方法归纳】求展开式中系数最大的项,如求(a +bx )n (a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法,设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,由不等式组⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1解出k ,即可求得. 【举一反三】3.求0.9986的近似值,使误差小于0.001.【解析】体验高考(2011安徽)设(x -1)21=a 0+a 1x +a 2x 2+…+a 21x 21,则a 10+a 11=______.【举一反三】(2011湖北)(x -13x)18的展开式中含x 15的项的系数为 .(结果用数值表示) 【解析】。
人教A版高三数学(理科)一轮复习第10章第3节二项式定理教案
![人教A版高三数学(理科)一轮复习第10章第3节二项式定理教案](https://img.taocdn.com/s3/m/f163b829e518964bcf847ce3.png)
第三节二项式定理[考纲传真](教师用书独具)会用二项式定理解决与二项展开式有关的简单问题.(对应学生用书第173页)[基础知识填充]1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r+…+C n n b n(n∈N*);(2)通项公式:T r+1=C r n a n-r b r,它表示第r+1项;(3)二项式系数:二项展开式中各项的系数C0n,C1n,…,C n n.2.二项式系数的性质与(1)(a+b)n展开式的各二项式系数和:C0n+C1n+C2n+…+C n n=2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C0n+C2n+C4n +…=C1n+C3n+C5n+…=2n-1.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)C k n a n-k b k是(a+b)n的展开式中的第k项.()(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( )(4)若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则a 7+a 6+…+a 1的值为128.( )[解析] (1)错误.应为第k +1项.(2)错误.当a ,b 中包含数字时,系数最大的项不一定为中间一项或中间两项.(3)正确.二项式系数只与n 和项数有关.(4)错误.令x =1,可得a 7+a 6+…+a 1+a 0=27=128. [答案] (1)× (2)× (3)√ (4)×2.(教材改编)二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( ) A .240 B .60 C .192D .180A [二项式⎝ ⎛⎭⎪⎫2x +1x 26展开式的通项为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫1x 2r=26-r C r 6x 6-3r,令6-3r =0,得r =2,所以常数项为26-2C 26=16×6×52×1=240.] 3.已知(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 8等于( ) A .180 B .-180 C .45D .-45A [由题意得a 8=C 81022(-1)8=180.]4.(2017·山东高考)已知(1+3x )n 的展开式中含有x 2项的系数是54,则n =________.4 [(1+3x )n 的展开式的通项为T r +1=C r n (3x )r .令r =2,得T 3=9C 2n x 2.由题意得9C 2n =54,解得n =4.]5.在⎝ ⎛⎭⎪⎫x +2x 25的展开式中,x 2的系数是________,各项系数之和为________.(用数字作答)10 243 [x 2的系数为C 15×2=10;令x =1,得各项系数之和为(1+2)5=243.](对应学生用书第173页)◎角度1 求展开式中的某一项(2018·合肥二测)在⎝ ⎛⎭⎪⎫x -1x -14的展开式中,常数项为________.-5 [由题知,二项式展开式为C 04⎝ ⎛⎭⎪⎫x -1x 4·(-1)0+C 14⎝ ⎛⎭⎪⎫x -1x 3·(-1)+C 24⎝ ⎛⎭⎪⎫x -1x 2·(-1)2+C 34⎝ ⎛⎭⎪⎫x -1x ·(-1)3+C 44⎝ ⎛⎭⎪⎫x -1x 0·(-1)4,则常数项为C 04·C 24-C 24·C 12+C 44=6-12+1=-5.]◎角度2 求展开式中的项的系数或二项式系数(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( ) A .15 B .20 C .30D .35C [对于⎝ ⎛⎭⎪⎫1+1x 2(1+x )6,若要得到x 2项,可以在⎝ ⎛⎭⎪⎫1+1x 2中选取1,此时(1+x )6中要选取含x 2的项,则系数为C 26;当在⎝⎛⎭⎪⎫1+1x 2中选取1x 2时,(1+x )6中要选取含x 4的项,即系数为C 46,所以,展开式中x 2项的系数为C 26+C 46=30,故选C .] ◎角度3 由已知条件求n 的值或参数的值(2018·云南二检)在(x -2-1x )n 的二项展开式中,若第四项的系数为-7,则n =( )A .9B .8C .7D .6B [由题意,得C 3n ⎝ ⎛⎭⎪⎫-123=-7,解得n =8,故选B .] [规律方法] 求二项展开式中的特定项的方法求二项展开式的特定项问题,实质是考查通项T k +1=C k n an -k b k 的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(k =0,1,2,…,n ).(1)第m 项:此时k +1=m ,直接代入通项;(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程; (3)有理项:令通项中“变元”的幂指数为整数建立方程. 特定项的系数问题及相关参数值的求解等都可依据上述方法求解.(4)求特定项或特定项的系数要多从组合的角度求解,一般用通项公式太麻烦.[跟踪训练] (1)(2017·全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A .-80B .-40C .40D .80(2)在⎝ ⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( ) 【导学号:97190351】A .-7B .7C .-28D .28(3)(2018·西宁检测(一))若⎝ ⎛⎭⎪⎫x 2+a x n的展开式中,二项式系数和为64,所有项的系数和为729,则a 的值为________.(1)C (2)B (3)-4或2 [(1)因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40,x 3y 3=y ·(x 3y 2),其系数为C 25·23=80. 所以x 3y 3的系数为80-40=40.故选C .(2)由题意知n 2+1=5,解得n =8,⎝⎛⎭⎪⎪⎫x 2-13x 8的展开式的通项T k +1=C k 8⎝ ⎛⎭⎪⎫x 28-k⎝⎛⎭⎪⎪⎫-13x k=(-1)k 2k -8C k8x 8-43k.令8-4k3=0得k =6,则展开式中的常数项为(-1)626-8C 68=7.(3)由二项式系数和为64得2n =64,解得n =6.令x =1,得所有项的系数和为(1+a )6=729,解得a =2或a =-4.](1)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( )A .212B .211C .210D .29(2)(2015·全国卷Ⅱ)(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.(1)D (2)3 [(1)∵(1+x )n 的展开式中第4项与第8项的二项式系数相等,∴C 3n =C 7n ,解得n =10.从而C 010+C 110+C 210+…+C 1010=210,∴奇数项的二项式系数和为C 010+C 210+…+C 1010=29.(2)设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5. ①令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5. ②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.] [规律方法] 赋值法的应用(1)对形如(ax +b )n (a ,b ∈R )的式子求其展开式各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)一般地,对于多项式(a +bx )n =a 0+a 1x +a 2x 2+…+a n x n ,令g (x )=(a +bx )n ,则(a +bx )n 展开式中各项的系数的和为g (1),(a +bx )n 展开式中奇数项的系数和为12[g (1)+g (-1)], (a +bx )n 展开式中偶数项的系数和为12[g (1)-g (-1)].[跟踪训练] (1)(2018·合肥一检)已知(ax +b )6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b )6展开式所有项系数之和为( )A .-1B .1C .32D .64(2)(2018·杭州质检)若⎝ ⎛⎭⎪⎫2x -1x 2n的展开式中所有二项式系数和为64,则n =________;展开式中的常数项是________.(1)D (2)6 240 [(1)由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得⎩⎪⎨⎪⎧ a =1,b =-3或⎩⎪⎨⎪⎧a =-1,b =3,则(ax +b )6=(x -3)6,令x =1得展开式中所有项的系数和为(-2)6=64,故选D .(2)由⎝ ⎛⎭⎪⎫2x -1x 2n的展开式中所有二次项系数和为64,得2n =64,n =6,则展开式第r +1项是T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-1x 2r=C r 6·26-r ×(-1)r x 6-3r ,当r =2时为常数项,则常数项是C 26×24×(-1)2=15×16=240.](1)(2017·豫东名校模拟)设复数x =2i1-i(i 是虚数单位),则C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=( ) A .i B .-i C .-1+I D .-1-i(2)设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( ) A .0 B .1 C .11 D .12 (1)C (2)D [(1)x =2i 1-i=-1+i ,C 12 017x +C 22 017x 2+C 32 017x 3+…+C 2 0172 017x2 017=(1+x )2 017-1=i 2 017-1=-1+i. (2)512 012+a =(52-1)2 012+a =C 02 012·522 012-C 12012·522 011+…+C 2 0112 012·52·(-1)2 011+ C 2 0122 012·(-1)2 012+a , ∵C 02 012·522 012-C 12012·522 011+…+C 2 0112 012·52·(-1)2 011能被13整除. 且512 012+a 能被13整除,∴C 20122012·(-1)2 012+a =1+a 也能被13整除. 因此a 可取值12.][规律方法] 1.逆用二项式定理的关键根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路(1)观察除式与被除式间的关系.(2)将被除式拆成二项式.(3)余数是非负整数.(4)结合二项式定理得出结论.[跟踪训练] 1.028的近似值是________.(精确到小数点后三位)【导学号:97190352】1.172[1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.]。
高三数学一轮 10.3 二项式定理导学案 理 北师大版
![高三数学一轮 10.3 二项式定理导学案 理 北师大版](https://img.taocdn.com/s3/m/9267bf0ff242336c1eb95ec9.png)
学案65 二项式定理导学目标: 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.自主梳理1.二项式定理的有关概念(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *),这个公式叫做______________.①二项展开式:右边的多项式叫做(a +b )n的二项展开式. ②项数:二项展开式中共有________项.③二项式系数:在二项展开式中各项的系数________(k =______________)叫做二项式系数.④通项:在二项展开式中的________________叫做二项展开式的通项,用T k +1表示,即通项为展开式的第k +1项:T k +1=____________________.2.二项式系数的性质(1)对称性:与首末两端________的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项二项式系数________________取得最大值;当n 为奇数时,中间的两项二项式系数____________、________________________相等,且同时取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =______,C 0n +C 2n +C 4n +…+C 偶n =________,C 1n +C 3n +C 5n +…+C 奇n =________.自我检测1.(2011·福建)(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20 D .102.(2011·陕西)(4x -2-x )6(x ∈R )展开式中的常数项是( ) A .-20 B .-15 C .15 D .203.(x -2y )10的展开式中x 6y 4项的系数是( )A .840B .-840C .210D .-2104.(2010·四川)⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是______. 5.(2011·山东)若(x -a x2)6展开式的常数项为60,则常数a 的值为________.6.(2011·烟台期末)已知n 为正偶数,且⎝⎛⎭⎪⎫x 2-12x n的展开式中第4项的二项式系数最大,则第4项的系数是__________.(用数字作答)探究点一 二项展开式及通项公式的应用例1 已知在⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.变式迁移1 (2010·湖北)在(x+43y)20的展开式中,系数为有理数的项共有________项.探究点二二项式系数的性质及其应用例2 (1)求证:C1n+2C2n+3C3n+…+n C n n=n·2n-1;(2)求S=C127+C227+…+C2727除以9的余数.变式迁移2 (2011·上海卢湾区质量调研)求C22n+C42n+…+C2k2n+…+C2n2n的值.探究点三求系数最大项例3 已知f(x)=(3x2+3x2)n展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项;(2)求展开式中系数最大的项.变式迁移3 (1)在(x +y )n的展开式中,若第七项系数最大,则n 的值可能等于( ) A .13,14 B .14,15 C .12,13 D .11,12,13(2)已知⎝ ⎛⎭⎪⎫12+2x n,(ⅰ)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(ⅱ)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.1.二项式系数与项的系数是不同的,如(a +bx )n(a ,b ∈R )的展开式中,第r +1项的二项式系数是C r n ,而第r +1项的系数为C r n a n -r b r.2.通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数.在运用公式时要注意:C r n a n -r b r是第r +1项,而不是第r 项.3.在(a +b )n 的展开式中,令a =b =1,得C 0n +C 1n +…+C n n =2n;令a =1,b =-1,得C 0n -C 1n +C 2n -C 3n +…=0,∴C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1,这种由一般到特殊的方法是“赋值法”.4.二项式系数的性质有:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -rn .(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.5.二项式定理的一个重要作用是近似计算,当n 不是很大,|x |比较小时,(1+x )n≈1+nx .利用二项式定理还可以证明整除性问题或求余数问题,证题时要注意变形的技巧.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·山东实验中学模拟)在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( )A .3项B .4项C .5项D .6项2.(2011·重庆)(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于( )A .6B .7C .8D .9 3.(2011·黄山期末)在⎝⎛⎭⎪⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28 4.(2010·烟台高三一模)如果⎝⎛⎭⎪⎪⎫3x -13x 2n 的展开式中二项式系数之和为128,则展开式中1x3的系数是( )A .7B .-7C .21D .-215.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( ) A .74 B .121 C .-74 D .-121 二、填空题(每小题4分,共12分)6.(2011·湖北)(x -13x)18的展开式中含x 15的项的系数为__________.(结果用数值表示)7.(2011·济南高三模拟)已知a =⎠⎛0π(sin t +cos t )d t ,则⎝ ⎛⎭⎪⎫x -1ax 6的展开式中的常数项为________.8.⎝ ⎛⎭⎪⎫1+x +1x 210的展开式中的常数项是________.三、解答题(共38分)9.(12分)(1)设(3x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4. ①求a 0+a 1+a 2+a 3+a 4; ②求a 0+a 2+a 4; ③求a 1+a 2+a 3+a 4;(2)求证:32n +2-8n -9能被64整除(n ∈N *).10.(12分)利用二项式定理证明对一切n ∈N *,都有2≤⎝⎛⎭⎪⎫1+1n n <3.11.(14分)(2011·泰安模拟)已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含32x 的项;(3)求展开式中系数最大的项和二项式系数最大的项.学案65 二项式定理自主梳理1.(1)二项式定理 ②n +1 ③C k n 0,1,2,…,n ④C k n a n -k b kC k nan -k b k 2.(1)等距离 (2)2n n C 12n nC + 12n nC -(3)2n2n -12n -1自我检测1.B [(1+2x )5的第r +1项为T r +1=C r 5(2x )r =2r C r 5x r ,令r =2,得x 2的系数为22·C 25=40.]2.C [设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )r ·(-2-x )6-r ,即T r +1=C r6·(-1)6-r ·22rx ·2rx -6x =C r 6·(-1)6-r ·23rx -6x ,∴3rx -6x =0恒成立.∴r =2,∴T 3=C 26·(-1)4=15.∴选C.]3.A4.-160x5.4 解析 (x -a x2)6展开式的通项为T r +1=C r 6x6-r(-1)r ·(a )r ·x-2r=C r 6x6-3r(-1)r·(a )r.令6-3r =0,得r =2.故C 26(a )2=60,解得a =4.6.-52课堂活动区例1 解题导引 (1)通项T r +1=C r n a n -r b r 是(a +b )n的展开式的第r +1项,而不是第r项;二项式系数与项的系数是完全不同的两个概念,二项式系数是指C rn ,r =0,1,2,…,n ,与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分.(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项.解这种类型的问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解.若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致.解 (1)通项公式为T r +1=C r n3n r x-⎝ ⎛⎭⎪⎫-12r 3rx - =C r n⎝ ⎛⎭⎪⎫-12r23n r x-,因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2,∴所求的系数为C 210⎝ ⎛⎭⎪⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2r 3∈Z ,0≤r ≤10,r ∈N .令10-2r3=k (k ∈Z ),则10-2r =3k , 即r =5-32k ,∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C 210⎝ ⎛⎭⎪⎫-122x 2,C 510⎝ ⎛⎭⎪⎫-125,C 810⎝ ⎛⎭⎪⎫-128x -2. 变式迁移1 6解析 展开式的通项T r +1=C r 20·x 20-r·(43y )r=C r20·x20-r·y r·43r .由0≤r ≤20,r4∈Z 得r =0,4,8,12,16,20.所以系数为有理数的项共有6项.例2 解题导引 (1)在有关组合数的求和问题中,经常用到形如C 0n =C n n =C n +1n +1,C k n =C n -kn ,k C k n =n C k -1n -1等式子的变形技巧;(2)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式.求余数问题时,应明确被除式f (x )、除式g (x )[g (x )≠0]、商式q (x )与余式的关系及余式的范围.(1)证明 方法一 设S =C 1n +2C 2n +3C 3n +…+(n -1)·C n -1n +n C nn ,①∴S =n C n n +(n -1)C n -1n +(n -2)C n -2n +…+2C 2n +C 1n=n C 0n +(n -1)C 1n +(n -2)C 2n +…+2C n -2n +C n -1n ,②①+②得2S =n (C 0n +C 1n +C 2n +…+C n -1n +C n n )=n ·2n.∴S =n ·2n -1.原式得证.方法二 ∵k n C k n =k n ·n !k !n -k !=n -1!k -1!n -k !=C k -1n -1,∴k C k n =n C k -1n -1.∴左边=n C 0n -1+n C 1n -1+…+n C n -1n -1=n (C 0n -1+C 1n -1+…+C n -1n -1)=n ·2n -1=右边.(2)解 S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1 =C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2=9(C 09×98-C 19×97+…+C 89-1)+7, 显然上式括号内的数是正整数. 故S 被9除的余数为7.变式迁移2 解 (1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n 2n x 2n.令x =1得C 02n +C 12n +…+C 2n -12n +C 2n 2n =22n;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n2n =0.两式相加,再用C 02n =1,得C 22n +C 42n +…+C 2n 2n =22n 2-1=22n -1-1.例3 解题导引 (1)求二项式系数最大的项:如果n 是偶数,则中间一项[第⎝ ⎛⎭⎪⎫n2+1项]的二项式系数最大;如果n 是奇数,则中间两项[第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项]的二项式系数相等且最大;(2)求展开式系数最大的项:如求(a +bx )n(a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第r +1项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1解出r 来,即得系数最大的项.解 (1)令x =1,则二项式各项系数的和为f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n.由题意知,4n -2n=992.∴(2n )2-2n -992=0,∴(2n +31)(2n-32)=0, ∴2n =-31(舍),或2n=32,∴n =5.由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T 3=C 2523x 骣琪琪桫3(3x 2)2=90x 6, T 4=C 3523x 骣琪琪桫2(3x 2)3=270223x .(2)展开式的通项公式为T r +1=C r 53r·()2523r x +.假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1,∴⎩⎪⎨⎪⎧5!5-r !r !×3≥5!6-r !r -1!,5!5-r !r !≥5!4-r !r +1!×3.∴⎩⎪⎨⎪⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4. 变式迁移3 (1)D [(1)分三种情况:①若仅T 7系数最大,则共有13项,n =12;②若T 7与T 6系数相等且最大,则共有12项,n =11;③若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13,故选D.](2)解 (ⅰ)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∵n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70,当n =14时,展开式中二项式系数的最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432.(ⅱ)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0. ∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k124k≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4.∴k =10.∴展开式中系数最大的项为T 11, T 11=⎝ ⎛⎭⎪⎫1212C 1012410x 10=16 896x 10. 课后练习区 1.C2.B [(1+3x )n 的展开式中x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7.]3.B 4.C 5.D 6.17解析 二项展开式的通项为T r +1=C r 18x 18-r(-13x)r=(-1)r(13)r C r 183182rx-.令18-3r2=15,解得r =2.∴含x 15的项的系数为(-1)2(13)2C 218=17.7.-528.4 351解析 ⎝ ⎛⎭⎪⎫1+x +1x 210=⎣⎢⎡⎦⎥⎤1+x +1x 210=C 010(1+x )10+C 110(1+x )91x2+C 210(1+x )81x 4+C 310(1+x )71x 6+C 410(1+x )61x8+…,从第五项C 410(1+x )61x8起,后面各项不再出现常数项,前四项的常数项分别是C 010×C 010,C 110×C 29,C 210×C 48,C 310×C 67.故原三项展开式中常数项为 C 010C 010+C 110C 29+C 210C 48+C 310C 67=4 351. 9.(1)解 ①令x =1,得a 0+a 1+a 2+a 3+a 4=(3-1)4=16.(2分) ②令x =-1得,a 0-a 1+a 2-a 3+a 4=(-3-1)4=256,而由(1)知a 0+a 1+a 2+a 3+a 4=(3-1) 4=16, 两式相加,得a 0+a 2+a 4=136.(4分)③令x =0得a 0=(0-1)4=1,得a 1+a 2+a 3+a 4=a 0+a 1+a 2+a 3+a 4-a 0 =16-1=15.(6分)(2)证明 ∵32n +2-8n -9=32·32n-8n -9=9·9n -8n -9=9(8+1)n-8n -9=9(C 0n 8n +C 1n 8n -1+…+C n -1n ·8+C nn ·1)-8n -9 (8分)=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9=9×82×(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ], 显然括号内是正整数,∴原式能被64整除.(12分)10.证明 因为⎝ ⎛⎭⎪⎫1+1n n=C 0n +C 1n ·1n +C 2n ·⎝ ⎛⎭⎪⎫1n 2+C 3n ·⎝ ⎛⎭⎪⎫1n 3+…+C nn ·⎝ ⎛⎭⎪⎫1n n =1+1+12!·⎝ ⎛⎭⎪⎫n -1n +13!·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n +…+1n !·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n …⎝ ⎛⎭⎪⎫1n .(4分) 所以2≤⎝ ⎛⎭⎪⎫1+1n n<2+12!+13!+…+1n !(6分)<2+11·2+12·3+…+1n -1n=2+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =3-1n<3,(9分)仅当n =1时,⎝ ⎛⎭⎪⎫1+1n n=2;当n ≥2时,2<⎝ ⎛⎭⎪⎫1+1n n<3.(11分)故对一切n ∈N *,都有2≤⎝ ⎛⎭⎪⎫1+1n n <3.(12分)11.解 由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2,则有C 4n ·-24C 2n ·-22=101,化简得n 2-5n -24=0,解得n =8或n =-3(舍去).(2分)(1)令x =1得各项系数的和为(1-2)8=1.(4分)(2)通项公式T r +1=C r 8·(x )8-r·⎝ ⎛⎭⎪⎫-2x 2r=C r 8·(-2)r·82r x--2r ,令8-r 2-2r =32,则r =1.故展开式中含32x 的项为T 2=-1632x .(8分)(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r,C r +18·2r +1,若第r +1项的系数绝对值最大,则⎩⎪⎨⎪⎧C r -18·2r -1≤C r 8·2r ,C r +18·2r +1≤C r 8·2r, 解得5≤r ≤6.(12分) 又T 6的系数为负,∴系数最大的项为T 7=1 792x -11. 由n =8知第5项二项式系数最大.此时T 5=1 120x -6.(14分)。
高考数学一轮配套学案讲解:《二项式定理》(苏教版)
![高考数学一轮配套学案讲解:《二项式定理》(苏教版)](https://img.taocdn.com/s3/m/672f448908a1284ac9504343.png)
§10.3二项式定理1.二项式定理(a+b)n=C0n a n+C1n a n-1b1+…+C r n a n-r b r+…+C n n b n(n∈N*).这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C r n(r=0,1,2,…,n)叫做二项式系数.式中的C r n a n-r b r叫做二项展开式的通项,用T r+1表示,即展开式的第r+1项:T r+1=C r n a n-r b r.2.二项展开式形式上的特点(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.(4)二项式的系数从C 0n ,C 1n ,一直到C n -1n ,C n n .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即C m n =C n-mn.(2)增减性与最大值:二项式系数C r n,当r <n +12时,二项式系数是递增的;当r >n +12时,二项式系数是递减的.当n 是偶数时,那么其展开式中间一项12+n T 的二项式系数最大.当n 是奇数时,那么其展开式中间两项21+n T 和121++n T 的二项式系数相等且最大.(3)各二项式系数的和(a +b )n 的展开式的各个二项式系数的和等于2n ,即C 0n +C 1n +C 2n +…+C k n +…+C n n =2n . 二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 1n +C 3n +C 5n +…=C 0n +C 2n +C 4n+…=2n -1.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)C k n a n-k b k是二项展开式的第k项. (×)(2)二项展开式中,系数最大的项为中间一项或中间两项. (×)(3)(a+b)n的展开式中某一项的二项式系数与a,b无关. (√)(4)在(1-x)9的展开式中系数最大的项是第五、第六两项. (×) 2.(1+2x)5的展开式中,x2的系数等于________.答案40解析T r+1=C r n a n-r b r=C r515-r(2x)r=C r5×2r×x r,令r=2,则可得含x2项的系数为C25×22=40.3.在(x2-13x)n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.答案7解析由题意有n=8,T r+1=C r8(12)8-r(-1)r x8-43r,r=6时为常数项,常数项为7.4.已知C0n+2C1n+22C2n+23C3n+…+2n C n n=729,则C1n+C2n+C3n+…+C n n等于________.答案63解析逆用二项式定理得C0n+2C1n+22C2n+23C3n+…+2n C n n=(1+2)n=3n=729,即3n=36,所以n=6,所以C1n+C2n+C3n+…+C n n=26-C0n=64-1=63.5.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.答案0解析a10,a11分别是含x10和x11项的系数,所以a10=-C1121,a11=C1021,所以a10+a11=C1021-C1121=0.题型一求二项展开式的指定项或指定项系数例1 已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.思维启迪 先根据第6项为常数项利用通项公式求出n ,然后再求指定项. 解 (1)通项公式为 T r +1=C r n 3rn x- ⎝⎛⎭⎫-12r x -r 3=C r n ⎝⎛⎭⎫-12r 32rn x -.因为第6项为常数项,所以r =5时,n -2×53=0,即n =10.(2)令10-2r 3=2,得r =2,故含x 2的项的系数是C 210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2r 3∈Z0≤r ≤10r ∈N,令10-2r 3=m (m ∈Z ),则10-2r =3m ,r =5-32m ,∵r ∈N ,∴m 应为偶数.∴m 可取2,0,-2,即r 可取2,5,8, ∴第3项,第6项与第9项为有理项,它们分别为C 210⎝⎛⎭⎫-122x 2,C 510⎝⎛⎭⎫-125,C 810⎝⎛⎭⎫-128x -2.思维升华 求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.(1)(2013·江西改编)⎝⎛⎭⎫x 2-2x 35展开式中的常数项为________.(2)(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为________.答案 (1)40 (2)40解析 (1)T r +1=C r 5(x 2)5-r ⎝⎛⎭⎫-2x 3r =C r 5(-2)r x 10-5r , 令10-5r =0得r =2.∴常数项为T 3=C 25(-2)2=40. (2)令x =1得(1+a )(2-1)5=1+a =2,所以a =1.因此(x +1x )(2x -1x )5展开式中的常数项即为(2x -1x )5展开式中1x 的系数与x 的系数的和.(2x -1x)5展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r ·x -r =C r 525-r x 5-2r ·(-1)r . 令5-2r =1,得2r =4,即r =2,因此(2x -1x )5展开式中x 的系数为C 2525-2(-1)2=80.令5-2r =-1,得2r =6,即r =3,因此(2x -1x )5展开式中1x的系数为C 3525-3·(-1)3=-40.所以(x +1x )(2x -1x )5展开式中的常数项为80-40=40.题型二 二项式系数的和或各项系数的和的问题例2在(2x -3y )10的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.思维启迪 求二项式系数的和或各项系数的和的问题,常用赋值法求解. 解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和为a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C 010+C 110+…+C 1010=210.(2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C 010+C 210+…+C 1010=29, 偶数项的二项式系数和为C 110+C 310+…+C 910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1, ①令x =1,y =-1(或x =-1,y =1), 得a 0-a 1+a 2-a 3+…+a 10=510,②①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.思维升华 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.已知f (x )=(1+x )m +(1+2x )n (m ,n ∈N *)的展开式中x 的系数为11.(1)求x 2的系数取最小值时n 的值;(2)当x 2的系数取得最小值时,求f (x )展开式中x 的奇次幂项的系数之和.解 (1)由已知得C 1m +2C 1n =11,∴m +2n =11,x 2的系数为C 2m +22C 2n =m (m -1)2+2n (n -1) =m 2-m 2+(11-m )⎝ ⎛⎭⎪⎫11-m 2-1 =⎝⎛⎭⎫m -2142+35116. ∵m ∈N *,∴m =5时,x 2的系数取得最小值22,此时n =3. (2)由(1)知,当x 2的系数取得最小值时,m =5,n =3, ∴f (x )=(1+x )5+(1+2x )3. 设这时f (x )的展开式为f (x )=a 0+a 1x +a 2x 2+…+a 5x 5,令x =1,a 0+a 1+a 2+a 3+a 4+a 5=25+33, 令x =-1,a 0-a 1+a 2-a 3+a 4-a 5=-1, 两式相减得2(a 1+a 3+a 5)=60,故展开式中x 的奇次幂项的系数之和为30.题型三二项式定理的应用例3(1)已知2n+2·3n+5n-a能被25整除,求正整数a的最小值;(2)求1.028的近似值.(精确到小数点后三位)思维启迪(1)将已知式子按二项式定理展开,注意转化时和25的联系;(2)近似值计算只要看展开式中的项的大小即可.解(1)原式=4·6n+5n-a=4(5+1)n+5n-a=4(C0n5n+C1n5n-1+…+C n-2n52+C n-15+C n n)+5n-an=4(C0n5n+C1n5n-1+…+C n-2n52)+25n+4-a,显然正整数a的最小值为4.(2)1.028=(1+0.02)8≈C08+C18·0.02+C28·0.022+C38·0.023≈1.172.思维升华(1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项,而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(1)(2012·湖北改编)设a∈Z,且0≤a<13,若512 012+a能被13整除,则a等于________.(2)S=C127+C227+…+C2727除以9的余数为________.答案(1)12(2)7解析(1)512 012+a=(52-1)2 012+a=C02 012522 012-C12 012522 011+…+C2 011×52×(-1)2 011+2 012×(-1)2 012+a.C2 0122 012因为52能被13整除,所以只需C2 012×(-1)2 012+a能被13整除,2 012即a+1能被13整除,所以a=12.(2)S=C127+C227+…+C2727=227-1=89-1=(9-1)9-1=C09×99-C19×98+…+C89×9-C99-1=9(C09×98-C19×97+…+C89)-2.∵C09×98-C19×97+…+C89是整数,∴S被9除的余数为7.混淆二项展开式的系数与二项式系数致误典例:(14分)已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992.求在⎝⎛⎭⎫2x -1x 2n 的展开式中, (1)二项式系数最大的项; (2)系数的绝对值最大的项.易错分析 本题易将二项式系数和系数混淆,利用赋值来求二项式系数的和导致错误;另外,也要注意项与项的系数,系数的绝对值与系数的区别. 规范解答解 由题意知,22n -2n =992,即(2n -32)(2n +31)=0,∴2n =32,解得n =5.[2分] (1)由二项式系数的性质知,⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大, 即C 510=252.∴二项式系数最大的项为 T 6=C 510(2x )5⎝⎛⎭⎫-1x 5=-8 064.[8分] (2)设第k +1项的系数的绝对值最大,∴T k +1=C k 10·(2x )10-k ·⎝⎛⎭⎫-1x k =(-1)k C k 10·210-k ·x 10-2k , ∴⎩⎪⎨⎪⎧C k 10·210-k ≥C k -110·210-k +1,C k 10·210-k ≥C k +110·210-k -1,得⎩⎪⎨⎪⎧ C k 10≥2C k -1102C k 10≥C k +110,即⎩⎪⎨⎪⎧11-k ≥2k ,2(k +1)≥10-k ,解得83≤k ≤113,[12分]∵k ∈Z ,∴k =3.故系数的绝对值最大的项是第4项, T 4=-C 310·27·x 4=-15 360x 4.[14分] 温馨提醒 (1)本题重点考查了二项式的通项公式,二项式系数、项的系数以及项数和项的有关概念.(2)解题时要注意区别二项式系数和项的系数的不同;项数和项的不同.(3)本题的易错点是混淆项与项数,二项式系数和项的系数的区别.方法与技巧1.通项为T r+1=C r n a n-r b r是(a+b)n的展开式的第r+1项,而不是第r项,这里r=0,1,…,n.2.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.3.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.4.运用通项求展开式的一些特殊项,通常都是由题意列方程求出r,再求所需的某项;有时需先求n,计算时要注意n和r的取值范围及它们之间的大小关系.失误与防范1.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a,b有关,可正可负,二项式系数只与n有关,恒为正.2.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念.3.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1.4.在化简求值时,注意二项式定理的逆用,要用整体思想看待a、b.A 组 专项基础训练 (时间:40分钟)一、填空题1.(2012·天津改编)在⎝⎛⎭⎫2x 2-1x 5的二项展开式中,x 的系数为________. 答案 -40解析 因为T r +1=C r 5(2x 2)5-r ⎝⎛⎭⎫-1x r =C r 525-r x 10-2r (-1)r x -r =C r 525-r (-1)r x 10-3r , 令10-3r =1,得r =3,所以x 的系数为C 3525-3(-1)3=-40. 2.(1+3x )n (其中n ∈N 且n ≥6)的展开式中x 5与x 6的系数相等,则n 等于________. 答案 7解析 (1+3x )n 的展开式中含x 5的项为C 5n (3x )5=C 5n 35x 5,展开式中含x 6的项为C 6n 36x 6,由两项的系数相等得C 5n ·35=C 6n ·36,解得n =7. 3.(4x -2-x )6(x ∈R )展开式中的常数项是________. 答案 15解析 设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )6-r ·(-2-x )r =C r 6·(-1)r ·212x -2rx ·2-rx =C r 6·(-1)r ·212x -3rx ,∴12x -3rx =0恒成立.∴r =4, ∴T 5=C 46·(-1)4=15. 4.若在(x +1)4(ax -1)的展开式中,x 4的系数为15,则a 的值为________.答案 4解析 ∵(x +1)4(ax -1)=(x 4+4x 3+6x 2+4x +1)(ax -1), ∴x 4的系数为4a -1=15,∴a =4.5.若(1+x )+(1+x )2+…+(1+x )n =a 0+a 1(1-x )+a 2(1-x )2+…+a n (1-x )n ,则a 0-a 1+a 2-…+(-1)n a n 等于________. 答案 32(3n -1)解析 在展开式中,令x =2得3+32+33+…+3n =a 0-a 1+a 2-a 3+…+(-1)n a n , 即a 0-a 1+a 2-a 3+…+(-1)n a n =3(1-3n )1-3=32(3n -1).6.二项式(x +y )5的展开式中,含x 2y 3的项的系数是________.(用数字作答) 答案 10 解析T r +1=C r 5x5-r y r (r =0,1,2,3,4,5),由题意知⎩⎪⎨⎪⎧5-r =2r =3,∴含x 2y 3的系数为C 35=10.7.(2012·浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________. 答案 10解析 f (x )=x 5=(1+x -1)5,它的通项为T r +1=C r 5(1+x )5-r ·(-1)r , T 3=C 25(1+x )3(-1)2=10(1+x )3,∴a 3=10.8.(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________. 答案 0解析 ∵T r +1=C r 20(-21x )r =(-1)r·C r 20·2r x , ∴x 与x 9的系数分别为C 220与C 1820. 又∵C 220=C 1820,∴C 220-C 1820=0.二、解答题9.已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1. ① 令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37.②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=-1-372=-1 094.(3)(①+②)÷2,得a 0+a 2+a 4+a 6=-1+372=1 093.(4)方法一 ∵(1-2x )7展开式中,a 0、a 2、a 4、a 6大于零,而a 1、a 3、a 5、a 7小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7)=1 093-(-1 094)=2 187. 方法二 |a 0|+|a 1|+|a 2|+…+|a 7|,即(1+2x )7展开式中各项的系数和,令x =1, ∴|a 0|+|a 1|+|a 2|+…+|a 7|=37=2 187. 10.已知⎝⎛⎭⎫12+2x n , (1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.解 (1)∵C 4n +C 6n =2C 5n,∴n 2-21n +98=0. ∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝⎛⎭⎫12423=352, T 5的系数为C 47⎝⎛⎭⎫12324=70, 当n =14时,展开式中二项式系数最大的项是T 8. ∴T 8的系数为C 714⎝⎛⎭⎫12727=3 432.(2)∵C 0n +C 1n +C 2n=79,∴n 2+n -156=0.∴n =12或n =-13(舍去).设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C 1012·⎝⎛⎭⎫122·210·x 10=16 896x 10. B 组 专项能力提升 (时间:30分钟)1.若(x +a )2(1x -1)5的展开式中常数项为-1,则a 的值为________.答案 1或9解析 由于(x +a )2=x 2+2ax +a 2,而(1x -1)5的展开式通项为T r +1=(-1)r C r 5·x r -5,其中r =0,1,2,…,5.于是(1x -1)5的展开式中x -2的系数为(-1)3C 35=-10,x -1项的系数为(-1)4C 45=5,常数项为-1,因此(x +a )2(1x -1)5的展开式中常数项为1×(-10)+2a ×5+a 2×(-1)=-a 2+10a -10,依题意-a 2+10a -10=-1,解得a 2-10a +9=0,即a =1或a =9. 2.若(3x -1x )n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为________.答案 -405解析 令x =1得2n =32,所以n =5, 于是(3x -1x)5展开式的通项为T r +1=(-1)r C r 5(3x )5-r (1x )r =(-1)r C r 535-r x 5-2r , 令5-2r =3,得r =1,于是展开式中含x 3的项的系数为(-1)1C 1534=-405,故选C.3.从(4x +1x )20的展开式中任取一项,则取到有理项的概率为________.答案 27解析 (4x +1x)20的展开式通项为T r +1=C r 20(4x )20-r (1x)r =C r 20r x 435-,其中r =0,1,2,…,20. 而当r =0,4,8,12,16,20时,5-34r 为整数,对应的项为有理项,所以从(4x +1x )20的展开式中任取一项,则取到有理项的概率为P =621=27. 4.(x -y )10的展开式中,x 7y 3的系数与x 3y 7的系数之和等于________. 答案 -240解析 ∵T r +1=(-1)r C r 10x 10-r y r , ∴-C 310+(-C 710)=-2C 310=-240.5.在(1+x )3+(1+x )3+(1+3x )3的展开式中,x 的系数为________(用数字作答). 答案 7解析 由条件易知(1+x )3、(1+x )3、(1+3x )3展开式中x 的系数分别是C 13、C 23、C 33, 即所求系数是3+3+1=7.6.若(2-x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2的值为________. 答案 1解析 设f (x )=(2-x )10,则 (a 0+a 2+…+a 10)2-(a 1+a 3+…+a 9)2 =(a 0+a 1+…+a 10)(a 0-a 1+a 2-…-a 9+a 10) =f (1)f (-1)=(2-1)10(2+1)10=1. 7.设函数f (x ,y )=(1+my)x (m >0,y >0).(1)当m =3时,求f (6,y )的展开式中二项式系数最大的项;(2)若f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4,且a 3=32,求∑i =04a i ;(3)设n 是正整数,t 为正实数,实数t 满足f (n,1)=m n f (n ,t ),求证:f (2 010,1 000t )>7f (-2010,t ).(1)解 f (6,y )=(1+m y )6,故展开式中二项式系数最大的项是第4项T 4=C 36(3y )3=540y 3. (2)解 f (4,y )=a 0+a 1y +a 2y 2+a 3y 3+a 4y 4=(1+m y)4,a 3=C 34m 3=32,所以m =2. i =04a i =(1+21)4=81.(3)证明 由f (n,1)=m n f (n ,t ), 得(1+m )n=m n(1+m t )n =(m +m 2t)n ,即1+m =m +m 2t,m =t ,f (2 010,1 000t )=(1+m 1 000t)2 010=(1+11 000)2 010>1+C 12 01011 000+C 22 010(11 000)2+C 32 010(11 000)3+C 42 010(11 000)4>1+2+2+43+23=7.而f (-2 010,t )=(1+m t )-2 010=(1+1t )-2 010<1.故f (2 010,1 000t )>7f (-2 010,t ).。
2024届高考一轮复习数学教案(新人教B版):二项式定理
![2024届高考一轮复习数学教案(新人教B版):二项式定理](https://img.taocdn.com/s3/m/db11b2f06037ee06eff9aef8941ea76e58fa4a05.png)
§10.3二项式定理考试要求能用多项式运算法则和计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题.知识梳理1.二项式定理二项式定理(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *)二项展开式的通项T k +1=C k n an -k b k,它表示展开式的第k +1项二项式系数C k n (k =0,1,…,n )2.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.(2)增减性与最大值:当n 是偶数时,中间的一项2C nn取得最大值;当n 是奇数时,中间的两项12Cn n-与12Cn n+相等,且同时取得最大值.(3)各二项式系数的和:(a +b )n 的展开式的各二项式系数的和为C 0n +C 1n +C 2n +…+C n n =2n.常用结论1.C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.2.C m n +1=C m -1n +C m n .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)C k n an -k b k 是(a +b )n 的展开式中的第k 项.(×)(2)(a +b )n 的展开式中每一项的二项式系数与a ,b 无关.(√)(3)通项公式T k +1=C k n an -k b k 中的a 和b 不能互换.(√)(4)二项式的展开式中的系数最大项与二项式系数最大项是相同的.(×)教材改编题1.的展开式中x 2的系数等于()A .45B .20C .-30D .-90答案A解析因为展开式的通项为T k +1=()311010100221C C ()(1)k kk kk kkxxx -+⋅---=-,令-10+32k =2,得k =8,所以展开式中x 2的系数为(-1)8×C 810=45.2.已知C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =243,则C 1n +C 2n +C 3n +…+C n n 等于()A .31B .32C .15D .16答案A解析逆用二项式定理得C 0n +2C 1n +22C 2n +23C 3n +…+2n C n n =(1+2)n =243,即3n =35,所以n =5,所以C 1n +C 2n +C 3n +…+C n n =25-1=31.3.若的展开式中二项式系数之和为64,则展开式的常数项为________.答案20解析因为二项式系数之和为2n =64,所以n =6,则T k +1=C k 6·x6-k=C k 6x6-2k,当6-2k =0,即k =3时为常数项,T 4=C 36=20.题型一通项公式的应用命题点1形如(a +b )n (n ∈N *)的展开式的特定项例1(1)二项式的展开式中的常数项是()A .-45B .-10C .45D .65答案C解析由二项式定理得T k +1=C k -k(-x 2)k=55210(1)C k kk x--,令5k2-5=0得k =2,所以常数项为(-1)2C 210=45.(2)已知的展开式中x 5的系数为A ,x 2的系数为B ,若A +B =11,则a =__________.答案±1解析的展开式的通项为T k +1=C k 5x 5-k =(-a )k C k 5352k x.由5-32k =5,得k =0,由5-32=2,得k =2,所以A =C 05×(-a )0=1,B =C 25×(-a )2=10a 2,则由1+10a 2=11,解得a =±1.命题点2形如(a +b )m (c +d )n (m ,n ∈N *)的展开式问题例2(1)(1+x )8(1+y )4的展开式中x 2y 2的系数是()A .56B .84C .112D .168答案D解析在(1+x )8的展开式中含x 2的项为C 28x 2=28x 2,(1+y )4的展开式中含y 2的项为C 24y 2=6y 2,所以x 2y 2的系数为28×6=168.(2)在(2x +a 的展开式中,x 2的系数为-120,则该二项展开式中的常数项为()A .3204B .-160C .160D .-320答案D解析的展开式的通项为T k +1=C k 6·x 6-k =C k 6·2k ·x6-2k ,2xT k +1=C k 6·2k +1·x 7-2k,由k ∈N ,得7-2k ≠2,故不成立,aT k +1=a C k 6·2k ·x6-2k,令6-2k =2,解得k =2,则a C 26·22=60a =-120,解得a =-2,∵7-2k ≠0,在-2T k +1中,令6-2k =0,解得k =3,∴展开式中的常数项为-2C 36·23=-320.思维升华(1)求二项展开式中的特定项,一般是化简通项后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项即可.(2)对于几个多项式积的展开式中的特定项问题,一般可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏.跟踪训练1(1)(2022·新高考全国Ⅰx +y )8的展开式中x 2y 6的系数为________(用数字作答).答案-28解析(x +y )8展开式的通项为T k +1=C k 8x 8-k y k ,k =0,1,…,7,8.令k =6,得T 6+1=C 68x 2y 6;令k =5,得T 5+1=C 58x 3y 5x +y )8的展开式中x 2y 6的系数为C 68-C 58=-28.(2)在二项式(2+x )9的展开式中,常数项是________;系数为有理数的项的个数是________.答案1625解析由题意得,(2+x )9的通项公式为T k +1=C k 9(2)9-k ·x k(k =0,1,2,…,9).当k =0时,可得常数项为T 1=C 09(2)9=16 2.若展开式的系数为有理数,则k =1,3,5,7,9,有T 2,T 4,T 6,T 8,T 10,共5个.题型二二项式系数与项的系数问题命题点1二项式系数和与系数和例3(1)在x 的展开式中,各项系数和与二项式系数和之和为128,则()A .二项式系数和为32B .各项系数和为128C .常数项为-135D .常数项为135答案D解析令x =1,得各项系数和为2n ,又二项式系数和为2n ,则2×2n =128,得n =6,即二项式系数和为64,各项系数和也为64,故A ,B 不正确;x 的展开式的通项为T k +1=C k 6·(3x )6-k =C k 6·(-1)k 36-k ·362x ,令6-32k =0,得k =4,因此展开式中的常数项为T 5=C 46·(-1)4·32=135,故C 不正确,D 正确.(2)若(1+x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则a 2+a 6+a 8=________;a 1+2a 2+3a 3+…+10a 10=________.答案3005120解析①由已知得(1+x )10展开式的通项为T k +1=C k 10x k,所以展开式中每一项的系数即为其二项式系数.故a 2+a 6+a 8=C 210+C 610+C 810=300.②对原式两边求导得,10(1+x )9=a 1+2a 2x +3a 3x 2+…+10a 10x 9.令x =1,得a 1+2a 2+3a 3+…+10a 10=10×29=5120.命题点2系数与二项式系数的最值问题例4(多选)(2023·唐山模拟)下列关于2的展开式的说法中正确的是()A .常数项为-160B .第4项的系数最大C .第4项的二项式系数最大D .所有项的系数和为1答案ACD解析2展开式的通项为T k +1=C k 6-k·(-2x )k =(-2)k C k 6·x2k -6.对于A ,令2k -6=0,解得k =3,∴常数项为(-2)3C 36=-8×20=-160,A 正确;对于B ,由通项公式知,若要系数最大,k 所有可能的取值为0,2,4,6,∴T 1=x -6,T 3=4C 26x -2=60x -2,T 5=(-2)4C 46x 2=240x 2,T 7=(-2)6x 6=64x 6,∴展开式第5项的系数最大,B 错误;对于C ,展开式共有7项,得第4项的二项式系数最大,C 正确;对于D ,令x =1,则所有项的系数和为(1-2)6=1,D 正确.思维升华赋值法的应用一般地,对于多项式(a +bx )n =a 0+a 1x +a 2x 2+…+a n x n ,令g (x )=(a +bx )n ,则(a +bx )n 的展开式中各项的系数和为g (1),(a +bx )n 的展开式中奇数项的系数和为12[g (1)+g (-1)],(a +bx )n的展开式中偶数项的系数和为12[g (1)-g (-1)].跟踪训练2(1)(多选)对于2的展开式,下列说法正确的是()A .所有项的二项式系数和为64B .所有项的系数和为64C .常数项为1215D .系数最大的项为第3项答案ABC解析2的展开式中所有项的二项式系数和为26=64,故A 正确;在2中,令x =1,得(1-3)6=64,故B 正确;展开式的通项为T k +1=C k 6(x 2)6-k=(-3)k C k 6x12-3k (0≤k ≤6,k ∈N ),令12-3k =0,得k =4,所以常数项为(-3)4C 46=1215,故C 正确;由C 的分析可知第2,4,6项系数为负值,第1项系数为1,第3项系数为(-3)2C 26=135,第5项系数为(-3)4C 46=1215,第7项系数为(-3)6C 66=729,则系数最大的项为第5项,故D 不正确.(2)设(2+x )10=a 0+a 1x +a 2x 2+…+a 10x 10,则(a 0+a 2+a 4+…+a 10)2-(a 1+a 3+a 5+…+a 9)2的值为________.答案1解析令x =1有a 0+a 1+…+a 10=(2+1)10,令x =-1有a 0-a 1+a 2-…+a 10=(2-1)10,故(a 0+a 2+a 4+…+a 10)2-(a 1+a 3+a 5+…+a 9)2=(a 0+a 1+a 2+…+a 10)·(a 0-a 1+a 2-…+a 10)=(2+1)10(2-1)10=1.题型三二项式定理的综合应用例5(1)设a ∈Z ,且0≤a ≤13,若512023+a 能被13整除,则a 等于()A .0B .1C .11D .12答案B解析因为a ∈Z ,且0≤a ≤13,所以512023+a =(52-1)2023+a=C 020********-C 12023522022+C 22023522021-…+C 2022202352-C 20232023+a ,因为512023+a 能被13整除,所以-C 20232023+a =-1+a 能被13整除,结合选项,所以a =1.(2)利用二项式定理计算1.056,则其结果精确到0.01的近似值是()A.1.23B.1.24C.1.33D.1.34答案D解析 1.056=(1+0.05)6=C06+C16×0.05+C26×0.052+C36×0.053+…+C66×0.056=1+0.3+0.0375+0.0025+…+0.056≈1.34.思维升华二项式定理应用的题型及解法(1)在证明整除问题或求余数问题时要进行合理的变形,使被除式(数)展开后的每一项都含有除式的因式.(2)二项式定理的一个重要用途是做近似计算:当n不是很大,|x|比较小时,(1+x)n≈1+nx.跟踪训练3(1)设n为奇数,那么11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是()A.-3B.2C.10D.11答案C解析11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1=C0n·11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11+C n n-2=(11+1)n-2=12n-2=(13-1)n-2=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13+(-1)n·C n n-2,因为n为奇数,则上式=C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-3=[C0n·13n-C1n·13n-1+…+(-1)n-1·C n-1n·13-13]+10,所以11n+C1n·11n-1+C2n·11n-2+…+C n-1n·11-1除以13的余数是10.(2)0.996的计算结果精确到0.001的近似值是()A.0.940B.0.941C.0.942D.0.943答案B解析0.996=(1-0.01)6=C06×1-C16×0.01+C26×0.012-C36×0.013+…+C66×0.016=1-0.06+0.0015-0.00002+…+0.016≈0.941.课时精练2的展开式中x4的系数为()A .10B .20C .40D .80答案C解析由题意可得T k +1=C k 5·(x 2)5-k=(-1)k C k 5·2k ·x10-3k ,令10-3k =4,则k =2,所以所求系数为(-1)2C 25·22=40.2.(多选)若2的展开式中的常数项为1516,则实数a 的值可能为()A .2 B.12C .-2D .-12答案AC 解析2的展开式的通项为T k +1=C k 6(x 2)6-k=Cx 12-3k ,令12-3k =0,得k =4.故C46=1516,即=116,解得a =±2.3.在(x +3)的展开式中,常数项为()A .-152 B.152C .-52D.52答案A 解析原式=+,①而的通项公式为T k +1C k 6x 6-2k .当6-2k =-1时,k =72∉Z ,故①式中的前一项不会出现常数项;当6-2k=0,即k =3时,可得①式中的后一项即为所求,此时原式常数项为3×C 36=-152.4.在的展开式中,x 的指数是整数的项数是()A .2B .3C .4D.5答案D解析因为的展开式的通项公式为T k +1=C k 24(x )24-=512624C kkx -,所以当k=0,6,12,18,24时,x 的指数是整数,故x 的指数是整数的有5项.5.在二项式(1-2x )n 的展开式中,偶数项的二项式系数之和为128,则展开式的中间项的系数为()A .-960B .960C .1120D .1680答案C解析根据题意,奇数项的二项式系数之和也为128,所以在(1-2x )n 的展开式中,二项式系数之和为256,即2n =256,得n =8,则(1-2x )8的展开式的中间项为第5项,且T 5=C 48(-2)4x 4=1120x 4,即展开式的中间项的系数为1120.6.设a =3n +C 1n 3n -1+C 2n 3n -2+…+C n -1n 3,则当n =2023时,a 除以15所得余数为()A .3B .4C .7D .8答案A解析∵C 0n 3n +C 1n 3n -1+C 2n 3n -2+…+C n -1n 3+C n n 30=(3+1)n =4n,∴a =4n -1,当n =2023时,a =42023-1=4×161011-1=4×[(15+1)1011-1]+3,而(15+1)1011-1=C 010********+C 11011151010+…+C 1010101115,故此时a 除以15所得余数为3.7.(多选)在二项式的展开式中,正确的说法是()A .常数项是第3项B .各项的系数和是164C .第4项二项式系数最大D .奇数项二项式系数和为32答案BCD解析二项式的展开式通项为T k +1=C k 6·(3x )6-k=62361C 2kkk x ⎛⎫⋅⋅ ⎪⎝⎭--.对于A 选项,令6-2k3=0,可得k =3,故常数项是第4项,A 错误;对于B 选项,各项的系数和是=164,B 正确;对于C 选项,展开式共7项,故第4项二项式系数最大,C 正确;对于D 选项,奇数项二项式系数和为25=32,D 正确.8.(多选)(2023·沧州模拟)已知(1-2x )2023=a 0+a 1x +a 2x 2+…+a 2023x 2023,则()A .展开式中所有项的二项式系数和为22023B .展开式中系数最大项为第1350项C .a 1+a 3+a 5+…+a 2023=32023-12D.a 12+a 222+a 323+…+a 202322023=-1答案AD解析易知(1-2x )2023的展开式中所有项的二项式系数和为22023,故A 正确;由二项式通项,知T k +1=C k 2023(-2x )k =(-2)k C k 2023x k ,所以第1350项的系数为(-2)1349C 13492023<0,所以第1350项不是系数最大项,故B 错误;当x =1时,有a 0+a 1+a 2+…+a 2023=-1,①当x =-1时,有a 0-a 1+a 2-a 3+…+a 2022-a 2023=32023,②①-②,可得a 1+a 3+a 5+…+a 2023=-1+320232,故C 错误;当x =0时,a 0=1,当x =12时,a 0+a 12+a 222+a 323+…+a 202322023=0,所以a 12+a 222+a 323+…+a 202322023=-a 0=-1,故D 正确.9.若x 5=a 0+a 1(x -2)+a 2(x -2)2+…+a 5(x -2)5,则a 1=________,a 1+a 2+…+a 5=________.答案80211解析因为x 5=[2+(x -2)]5,则a 1=C 15·24=80.令x =3,得a 0+a 1+a 2+…+a 5=35=243;令x =2,得a 0=25=32,故a 1+a 2+…+a 5=243-32=211.10.(1+2x )n 的展开式中第6项与第7项的系数相等,展开式中二项式系数最大的项为________;系数最大的项为________________.答案1120x 41792x 5和1792x 6解析T 6=C 5n (2x )5,T 7=C 6n (2x )6,依题意有C 5n ·25=C 6n ·26,得n =8.∴在(1+2x )8的展开式中,二项式系数最大的项为T 5=C 48·(2x )4=1120x 4,设第k +1k 8·2k ≥C k -18·2k -1,k 8·2k ≥C k +18·2k +1,解得5≤k ≤6.又k ∈N ,∴k =5或k =6,∴系数最大的项为T 6=1792x 5,T 7=1792x 6.11.(x +y -2z )5的展开式中,xy 2z 2的系数是()A .120B .-120C .60D .30答案A解析由题意知(x +y -2z )5=[(x +y )-2z ]5,展开式的第k +1项为C k 5(x +y )5-k(-2z )k ,令k =2,可得第3项为(-2)2C 25(x +y )3z 2,(x +y )3的展开式的第m +1项为C m 3x 3-m y m ,令m =2,可得第3项为C 23xy 2,所以(x +y -2z )5的展开式中,xy 2z 2的系数是(-2)2C 25C 23=120.12.(2023·浙江名校联盟联考)设(x -1)(2+x )3=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 1=________,2a 2+3a 3+4a 4=________.答案-431解析因为x ·C 03·23·x 0-C 13·22·x 1=-4x ,所以a 1=-4,对所给等式,两边对x 求导,可得(2+x )3+3(x -1)(2+x )2=a 1+2a 2x +3a 3x 2+4a 4x 3,令x =1,得27=a 1+2a 2+3a 3+4a 4,所以2a 2+3a 3+4a 4=31.13.若(2x +1)n =a 0+a 1x +a 2x 2+…+a n x n 的展开式中的各项系数和为243,则a 1+2a 2+…+na n 等于()A .405B .810C .243D .64答案B解析(2x +1)n =a 0+a 1x +a 2x 2+…+a n x n ,两边求导得2n (2x +1)n -1=a 1+2a 2x +…+na n x n -1.令x =1,则2n ×3n -1=a 1+2a 2+…+na n .又因为(2x +1)n 的展开式中各项系数和为243,令x =1,可得3n =243,解得n =5.所以a 1+2a 2+…+na n =2×5×34=810.14.已知S n 是数列{a n }的前n 项和,若(1-2x )2023=b 0+b 1x +b 2x 2+…+b 2023x 2023,数列{a n }的首项a 1=b 12+b 222+…+b 202322023,a n +1=S n ·S n +1,则S 2023等于()A .-12023B.12023C .2023D .-2023答案A 解析令x =12,得-2023=b 0+b 12+b 222+…+b 202322023=0.令x =0,得b 0=1,所以a 1=b 12+b 222+…+b 202322023=-1.由a n +1=S n ·S n +1=S n +1-S n ,得S n +1-S n S n S n +1=1S n -1S n +1=1,所以1S n +1-1S n =-1,是首项为1S 1=-1,公差为-1的等差数列,所以1S n=-1+(n -1)·(-1)=-n ,所以S n =-1n ,所以S 2023=-12023.。
2014届高考理科数学第一轮复习导学案60
![2014届高考理科数学第一轮复习导学案60](https://img.taocdn.com/s3/m/ffe558e65fbfc77da269b128.png)
学案62 二项式定理导学目标: 1.能用计数原理证明二项式定理.2.会用二项式定理解决与二项展开式有关的简单问题.自主梳理1.二项式定理的有关概念(1)二项式定理:(a +b )n =C 0n a n +C 1n a n -1b 1+…+C r n a n -r b r +…+C nn b n (n ∈N *),这个公式叫做__________.①二项展开式:右边的多项式叫做(a +b )n 的二项展开式. ②项数:二项展开式中共有________项.③二项式系数:在二项展开式中各项的系数__________(r =____________)叫做二项式系数.④通项:在二项展开式中的____________________叫做二项展开式的通项,用T r +1表示,即通项为展开式的第r +1项:T r +1=____________________________.2.二项式系数的性质(1)C m n =C n -mn; (2)C m n +C m -1n =C m n +1;(3)当r <n -12时,______________________;当r >n -12时,C r +1n <C rn ; (4)当n 是偶数时,中间的一项二项式系数________________________________取得最大值;当n 为奇数时,中间的两项二项式系数______________________________、__________________________相等,且同时取得最大值;(5)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =______,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=______.自我检测 1.(2011·福建改编)(1+2x )5的展开式中,x 2的系数等于________. 2.(2011·陕西改编)(4x -2-x )6(x ∈R )展开式中的常数项是________.3.(2010·四川)⎝⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是______.4.(2011·山东)若(x -a x 2)6展开式的常数项为60,则常数a 的值为________.5.已知n 为正偶数,且⎝ ⎛⎭⎪⎫x 2-12x n的展开式中第4项的二项式系数最大,则第4项的系数是______.(用数字作答)探究点一 二项展开式及通项公式的应用例1 已知在⎝ ⎛⎭⎪⎫3x -123x n的展开式中,第6项为常数项.(1)求n ;(2)求含x 2的项的系数;(3)求展开式中所有的有理项.变式迁移1 (2010·湖北)在(x +43y )20的展开式中,系数为有理数的项共有________项.探究点二 二项式系数的性质及其应用例2 (1)求证:C 1n +2C 2n +3C 3n +…+n C n n=n ·2n -1; (2)求S =C 127+C 227+…+C 2727除以9的余数.变式迁移2 (2010·上海卢湾区质量调研)求C 22n +C 42n +…+C 2k2n+…+C 2n2n 的值.探究点三 求系数最大项 例3 已知f (x )=(3x 2+3x 2)n 展开式中各项的系数和比各项的二项式系数和大992.(1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.变式迁移3 (1)在(x +y )n 的展开式中,若第七项系数最大,则n 的值可能等于________.(2)已知⎝ ⎛⎭⎪⎫12+2x n,(ⅰ)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数的最大项的系数;(ⅱ)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.1.二项式系数与项的系数是不同的,如(a +bx )n (a ,b ∈R )的展开式中,第r +1项的二项式系数是C r n ,而第r +1项的系数为C r n a n -r b r .2.通项公式主要用于求二项式的指数,求满足条件的项或系数,求展开式的某一项或系数.在运用公式时要注意:C r n a n -r b r是第r +1项,而不是第r 项.3.在(a +b )n 的展开式中,令a =b =1,得C 0n +C 1n +…+C n n =2n;令a =1,b =-1,得C 0n -C 1n +C 2n -C 3n +…=0,∴C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n+…=2n -1,这种由一般到特殊的方法是“赋值法”. 4.二项式系数的性质有:(1)在二项展开式中,与首末两端“等距离”的两项的二项式系数相等,即C 0n =C n n ,C 1n =C n -1n ,C 2n =C n -2n ,…,C r n =C n -rn .(2)如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.5.二项式定理的一个重要作用是近似计算,当n 不是很大,|x |比较小时,(1+x )n ≈1+nx .利用二项式定理还可以证明整除性问题或求余数问题,证题时要注意变形的技巧.(满分:90分)一、填空题(每小题6分,共48分)1.(2010·山东实验中学模拟)在⎝⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有________项.2.设(x 2+1)(2x +1)9=a 0+a 1(x +2)+a 2(x +2)2+…+a 11(x +2)11,则a 0+a 1+a 2+…+a 11的值为________.3.在⎝⎛⎭⎪⎪⎫x2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是________.4.(2010·烟台高三一模)如果⎝ ⎛⎭⎪⎪⎫3x -13x 2n的展开式中二项式系数之和为128,则展开式中1x 3的系数是________.5.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是________.6.(2011·湖北)(x -13x)18的展开式中含x 15的项的系数为________.(结果用数值表示)7.(2010·济南高三一模)(x -12x )6的展开式中的常数项为________.8.⎝ ⎛⎭⎪⎫1+x +1x 210的展开式中的常数项是________. 二、解答题(共42分)9.(14分)(1)设(3x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4. ①求a 0+a 1+a 2+a 3+a 4; ②求a 0+a 2+a 4; ③求a 1+a 2+a 3+a 4;(2)求证:32n +2-8n -9能被64整除(n ∈N *).10.(14分)利用二项式定理证明对一切n ∈N *,都有2≤⎝ ⎛⎭⎪⎫1+1n n <3.11.(14分)已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含x 32的项;(3)求展开式中系数最大的项和二项式系数最大的项.学案62 二项式定理答案自主梳理1.(1)二项式定理 ②n +1 ③C r n 0,1,2,…,n ④C r n an -r b rC r n a n -r b r 2.(3)C r n <C r +1n (4)C n 2n C n +12n C n -12n (5)2n 2n -1 自我检测 1.40解析 (1+2x )5的第r +1项为T r +1=C r 5(2x )r =2r C r 5x r,令r =2,得x 2的系数为22·C 25=40.2.15解析 设展开式的常数项是第r +1项,则T r +1=C r 6·(4x )r ·(-2-x )6-r ,即T r +1=C r 6·(-1)6-r ·22rx ·2rx -6x =C r 6·(-1)6-r ·23rx -6x ,∴3rx -6x =0恒成立.∴r =2,∴T 3=C 26·(-1)4=15. 3.-160x 4.4解析 (x -a x 2)6展开式的通项为T r +1=C r 6x 6-r(-1)r ·(a )r ·x -2r =C r 6x6-3r (-1)r ·(a )r . 令6-3r =0,得r =2.故C 26(a )2=60,解得a =4.5.-52解析 n 为正偶数,且第4项二项式系数最大,故展开式共7项,n =6,第4项系数为C 36⎝ ⎛⎭⎪⎫-123=-52.课堂活动区例1 解题导引 (1)通项T r +1=C r n an -r b r是(a +b )n 的展开式的第r +1项,而不是第r 项;二项式系数与项的系数是完全不同的两个概念,二项式系数是指C r n ,r =0,1,2,…,n ,与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分.(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项.解这种类型的问题必须合并通项公式中同一字母的指数,根据具体要求,令其属于整数,再根据数的整除性来求解.若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致.解 (1)通项公式为T r +1=C r n x n -r 3⎝ ⎛⎭⎪⎫-12r x -r 3 =C r n ⎝ ⎛⎭⎪⎫-12r x n -2r 3, 因为第6项为常数项,所以r =5时,有n -2r3=0, 即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2,∴所求的系数为C 210⎝ ⎛⎭⎪⎫-122=454. (3)根据通项公式,由题意得⎩⎪⎨⎪⎧10-2r3∈Z ,0≤r ≤10,r ∈N .令10-2r3=k (k ∈Z ),则10-2r =3k ,即r =5-32k ,∵r ∈N ,∴k 应为偶数. ∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C 210⎝ ⎛⎭⎪⎫-122x 2,C 510⎝ ⎛⎭⎪⎫-125,C 810⎝ ⎛⎭⎪⎫-128x -2.变式迁移1 6解析 展开式的通项T r +1=C r 20·x 20-r ·(43y )r =C r 20·x 20-r ·y r ·3r 4. 由0≤r ≤20,r4∈Z 得r =0,4,8,12,16,20. 所以系数为有理数的项共有6项.例2 解题导引 (1)在有关组合数的求和问题中,经常用到形如C 0n =C n n =C n +1n +1,C k n =C n -k n ,k C k n =n C k -1n -1等式子的变形技巧;(2)利用二项式定理解决整除问题时,关键是进行合理地变形构造二项式.求余数问题时,应明确被除式f (x )、除式g (x )[g (x )≠0]、商式q (x )与余式的关系及余式的范围.(1)证明 方法一 设S =C 1n +2C 2n +3C 3n +…+(n -1)·C n -1n +n C nn , ①∴S =n C n n +(n -1)C n -1n +(n -2)C n -2n +…+2C 2n +C 1n=n C 0n +(n -1)C 1n +(n -2)C 2n +…+2C n -2n +C n -1n , ②①+②得2S =n (C 0n +C 1n +C 2n +…+C n -1n +C nn )=n ·2n . ∴S =n ·2n -1.原式得证.方法二 ∵k n C k n=kn ·n !k !(n -k )!=(n -1)!(k -1)!(n -k )!=C k -1n -1,∴k C k n =n C k -1n -1. ∴左边=n C 0n -1+n C 1n -1+…+n C n -1n -1=n (C 0n -1+C 1n -1+…+C n -1n -1) =n ·2n -1=右边.(2)解 S =C 127+C 227+…+C 2727=227-1 =89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2=9(C 09×98-C 19×97+…+C 89-1)+7, 显然上式括号内的数是正整数. 故S 被9除的余数为7.变式迁移2 解 (1+x )2n =C 02n +C 12n x +C 22n x 2+C 32n x 3+…+C 2n2n x 2n .令x =1得C 02n +C 12n +…+C 2n -12n +C 2n 2n =22n;再令x =-1得C 02n -C 12n +C 22n -…+(-1)r C r 2n +…-C 2n -12n +C 2n2n =0.两式相加,再用C 02n =1,得C 22n +C 42n +…+C 2n2n =22n 2-1=22n -1-1.例3 解题导引 (1)求二项式系数最大的项:如果n 是偶数,则中间一项[第⎝ ⎛⎭⎪⎫n 2+1项]的二项式系数最大;如果n 是奇数,则中间两项[第n +12项与第⎝ ⎛⎭⎪⎫n +12+1项]的二项式系数相等且最大;(2)求展开式系数最大的项:如求(a +bx )n (a ,b ∈R )的展开式中系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第r +1项系数最大,应用⎩⎪⎨⎪⎧A r ≥A r -1A r ≥A r +1解出r 来,即得系数最大的项. 解 (1)令x =1,则二项式各项系数的和为 f (1)=(1+3)n =4n ,又展开式中各项的二项式系数之和为2n . 由题意知,4n -2n =992.∴(2n )2-2n -992=0,∴(2n +31)(2n -32)=0, ∴2n =-31(舍),或2n =32,∴n =5.由于n =5为奇数,所以展开式中二项式系数最大的项为中间两项,它们分别是T 3=C 25⎝ ⎛⎭⎪⎫x 233(3x 2)2=90x 6,T 4=C 35⎝ ⎛⎭⎪⎫x 232(3x 2)3=270x 223.(2)展开式的通项公式为T r +1=C r 53r ·x 23(5+2r ). 假设T r +1项系数最大,则有⎩⎪⎨⎪⎧C r 53r ≥C r -15·3r -1,C r 53r ≥C r +15·3r +1, ∴⎩⎪⎨⎪⎧5!(5-r )!r !×3≥5!(6-r )!(r -1)!,5!(5-r )!r !≥5!(4-r )!(r +1)!×3.∴⎩⎨⎧3r ≥16-r ,15-r ≥3r +1.∴72≤r ≤92,∵r ∈N ,∴r =4.故展开式中系数最大的项为T 5=405x 263. 变式迁移3 11,12,13(1)解析 分三种情况:①若仅T 7系数最大,则共有13项,n =12;②若T 7与T 6系数相等且最大,则共有12项,n =11;③若T 7与T 8系数相等且最大,则共有14项,n =13,所以n 的值可能等于11,12,13.(2)解 (ⅰ)∵C 4n +C 6n =2C 5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C 37⎝ ⎛⎭⎪⎫12423=352,T 5的系数为C 47⎝ ⎛⎭⎪⎫12324=70,当n =14时,展开式中二项式系数的最大的项是T 8.∴T 8的系数为C 714⎝ ⎛⎭⎪⎫12727=3 432.(ⅱ)∵C 0n +C 1n +C 2n =79,∴n 2+n -156=0. ∴n =12或n =-13(舍去). 设T k +1项的系数最大, ∵⎝ ⎛⎭⎪⎫12+2x 12=⎝ ⎛⎭⎪⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1.∴9.4≤k ≤10.4. ∴k =10.∴展开式中系数最大的项为T 11,T 11=⎝ ⎛⎭⎪⎫1212C 1012410x 10=16 896x 10.课后练习区1.5 2.-2 3.7 4.21 5.-121解析 (1-x )5中x 3的系数为-C 35=-10,(1-x )6中x 3的系数为-C 36=-20,(1-x )7中x 3的系数为-C 37=-35,(1-x )8中x 3的系数为-C 38=-56.所以原式中x 3的系数为-10-20-35-56=-121.6.17解析 二项展开式的通项为T r +1=C r 18x 18-r (-13x)r =(-1)r (13)r C r18x 18-3r 2.令18-3r 2=15,解得r =2.∴含x 15的项的系数为(-1)2(13)2C 218=17.7.-52解析 T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-12r ·x -r =⎝ ⎛⎭⎪⎫-12r C r 6·x 6-2r , 令6-2r =0,得r =3.∴常数项为T 3+1=⎝ ⎛⎭⎪⎫-123C 36=-52. 8.4 351解析 ⎝ ⎛⎭⎪⎫1+x +1x 210=⎣⎢⎡⎦⎥⎤(1+x )+1x 210 =C 010(1+x )10+C 110(1+x )91x 2+C 210(1+x )81x 4+C 310(1+x )71x 6+C 410(1+x )61x 8+…,从第五项C 410(1+x )61x 8起,后面各项不再出现常数项,前四项的常数项分别是C 010×C 010,C 110×C 29,C 210×C 48,C 310×C 67.故原三项展开式中常数项为C 010C 010+C 110C 29+C 210C 48+C 310C 67=4 351.9.解 (1)①令x =1,得a 0+a 1+a 2+a 3+a 4=(3-1)4=16. (3分)②令x =-1得,a 0-a 1+a 2-a 3+a 4=(-3-1)4=256,而由(1)知a 0+a 1+a 2+a 3+a 4=(3-1)4=16,两式相加,得a 0+a 2+a 4=136. (6分)③令x =0得a 0=(0-1)4=1,得a 1+a 2+a 3+a 4=a 0+a 1+a 2+a 3+a 4-a 0=16-1=15. (9分)(2)证明 ∵32n +2-8n -9=32·32n -8n -9=9·9n -8n -9=9(8+1)n -8n -9=9(C 0n 8n +C 1n 8n -1+…+C n -1n ·8+C n n ·1)-8n -9 (12分)=9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9 =9×82×(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ],显然括号内是正整数,∴原式能被64整除. (14分)10.证明 因为⎝ ⎛⎭⎪⎫1+1n n =C 0n +C 1n ·1n +C 2n ·⎝ ⎛⎭⎪⎫1n 2+C 3n ·⎝ ⎛⎭⎪⎫1n 3+…+C n n ·⎝ ⎛⎭⎪⎫1n n =1+1+12!·⎝ ⎛⎭⎪⎫n -1n +13!·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n +…+1n !·⎝ ⎛⎭⎪⎫n -1n ⎝ ⎛⎭⎪⎫n -2n …⎝ ⎛⎭⎪⎫1n . (4分) 所以2≤⎝ ⎛⎭⎪⎫1+1n n <2+12!+13!+…+1n !(7分) <2+11·2+12·3+…+1(n -1)n=2+⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =3-1n <3, (10分)仅当n =1时,⎝ ⎛⎭⎪⎫1+1n n =2; (12分) 当n ≥2时,2<⎝⎛⎭⎪⎫1+1n n <3. 故对一切n ∈N *,都有2≤⎝ ⎛⎭⎪⎫1+1n n <3. (14分) 11.解 由题意知,第五项系数为C 4n ·(-2)4,第三项的系数为C 2n ·(-2)2, 则有C 4n ·(-2)4C 2n ·(-2)2=101, 化简得n 2-5n -24=0,解得n =8或n =-3(舍去). (2分)(1)令x =1得各项系数的和为(1-2)8=1. (4分)(2)通项公式T r +1=C r 8·(x )8-r ·⎝ ⎛⎭⎪⎫-2x 2r =C r 8·(-2)r ·x 8-r 2-2r ,令8-r 2-2r =32,则r =1.故展开式中含x 32的项为T 2=-16x 32. (8分)(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r ,C r +18·2r +1,若第r +1项的系数绝对值最大, 则⎩⎪⎨⎪⎧C r -18·2r -1≤C r 8·2r ,C r +18·2r +1≤C r 8·2r , 解得5≤r ≤6. (12分) 又T 6的系数为负,∴系数最大的项为T 7=1 792x -11.由n =8知第5项二项式系数最大.此时T 5=1 120x -6.(14分)。
高考数学一轮复习第10章第3讲二项式定理课件理
![高考数学一轮复习第10章第3讲二项式定理课件理](https://img.taocdn.com/s3/m/08ec68e1c1c708a1284a44c5.png)
题型 二 二项式系数的性质或各项系数的和 1.(1-3x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则 a1+a2+a3+a4+a5= ________. 答案 -33
答案
解析 令 x=1 得(-2)5=a0+a1+a2+a3+a4+a5=-32. 令 x=0 得,1=a0; 所以 a1+a2+a3+a4+a5=-33.
(3)设第 r+1 项的系数为 ar+1 最大,则 ar+1=2-rCr8,
则ar+1= ar
2-2r--1rCCr8r8-1=92-r r≥1,
aarr+ +12=2-2r+-1rCCr8r8+1=28r-+r1≥1,
答案
解得 2≤r≤3. 当 r=2 时,a3=2-2C28=7,当 r=3 时,a4=2-3C38=7, 因此,第 3 项和第 4 项的系数最大, 故系数最大的项为
(2)
x+ 1 4
8
的展开式的通项
Tr+1=Cr8(
1 x)8-r· 4
4-34r
r=2-rCr8x
(r
2 x
2 x
=0,1,…,8),
答案
要求有理项,则 4-34r必为整数,即 r=0,4,8,共 3 项,这 3 项分别是 T1
=x4,T5=385x,T9=2516x2.
解析
2.(2018·九江模拟)已知
x+
1 4
n
的展开式中,前三项的系数成等差
2 x
数列.
(1)求 n;
(2)求展开式中的有理项;
(3)求展开式中系数最的系数分别为 C0n,12C1n,14C2n,
由已知得 2×12C1n=C0n+14C2n,解得 n=8(n=1 舍去).
一轮复习教学案1102:二项式定理
![一轮复习教学案1102:二项式定理](https://img.taocdn.com/s3/m/500132de360cba1aa811da79.png)
一轮复习教学案1102:二项式定理知识回顾:1、二项式定理:)()(1110*--∈+++++=+N n b C b a C b a C a C b a n n n r r n r n n n n nn 。
2、几个基本概念:(1)二项展开式:右边的多项式叫做n b a )(+的二项展开式。
(2)项数:二项展开式中共有1+n 项。
(3)二项式系数:),,2,1,0(n r C r n =叫做二项展开式中第1+r 项的二项式系数。
(4)通项:展开式的第1+r 项,即),,1,0(1n r b a C T r r n r n r ==-+。
4、二项式系数的性质:(1)对称性:在二项展开式中,与首末两端等距离的任意两项的二项式系数相等,即m n n m n C C -=。
(2)增减性与最值:二项式系数先增后减且在中间取得最大值,当n 是偶数时,中间一项(第2n +1项)取得最大值2n n C ;当n 是奇数时,中间两项(第21+n 、23+n 项)同时取得最大值21-n n C =21+n n C 。
(3)二项式系数的和:n n n k n n n n C C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++。
(4)奇数项的二项式系数的和等于偶数项的二项式系数和,即:131202......-=++=++n n n n n C C C C 。
典题分析:例1.求4)13(x x -的展开式。
例2.已知9)2(x x a -的展开式中3x 的系数为49,求常数a 的值。
例3.求103)1(x x -展开式中的常数项。
例4.求 92)21(xx -展开式中9x 的系数。
例5.求(103)1x x -的展开式的中间项;巩固练习:1、在(1+x)n 的展开式中,第9项为( )A.C 9n x 9B. C 8n x 8C. C 9n x 9-nD. C 8n x8-n 2、在(1-26x)n 展开式中,第5项的二项式系数与第7项的二项式系数相等,则n 为( ) A.8 B.9 C.10 D.113、在(X -X 1)10展开式中系数最大的项是( )A.第5、7项B.第6项C.第5、6项D.第6、7项 课外作业:1.《相约在高校》P168 巩固练习1-10。
高三数学教案《二项式定理》
![高三数学教案《二项式定理》](https://img.taocdn.com/s3/m/92bfde8568dc5022aaea998fcc22bcd126ff422b.png)
高三数学教案《二项式定理》高三数学教案《二项式定理》二项式定理说课稿高三第一阶段复习,也称“知识篇”。
在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。
在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。
对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。
(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。
(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。
2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。
二、学校情况与学生分析(1)我校是一所镇普通高中,学生的.基础不好,记忆力较差,反应速度慢,普遍感到数学难学。
但大部分学生想考大学,主观上有学好数学的愿望。
(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。
课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。
三、教学目标复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。
根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10.3二项式定理1.二项式定理________________________________________________________________________ 这个公式所表示的定理叫做二项式定理,右边的多项式叫做(a+b)n的二项展开式,其中的系数C k n(k=0,1,2,…,n)叫做____________.式中的______________叫做二项展开式的________,用T k+1表示,即展开式的第________项;T k+1=____________. 2.二项展开式形式上的特点(1)项数为________.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为________.(3)字母a按________排列,从第一项开始,次数由n逐项减1直到零;字母b按________排列,从第一项起,次数由零逐项增1直到n.,________.(4)二项式的系数从________,C1n,一直到C n-1n3.二项式系数的性质.(1)对称性:与首末两端“__________”的两个二项式系数相等,即C m n=C n-mn(2)增减性与最大值:二项式系数C k n,当k<________时,二项式系数是递增的;当k>________时,二项式系数是递减的.当n是偶数时,________________取得最大值.当n是奇数时,中间两项____________和____________相等,且同时取得最大值.(3)各二项式系数的和(a+b)n的展开式的各个二项式系数的和等于2n,;_________________________=2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即________________________=________________________=__________.[难点正本疑点清源]1.二项式的项数与项(1)二项式的展开式共有n+1项,C k n a n-k b k是第k+1项.即k+1是项数,C k n a n-k b k是项.(2)通项是T k+1=C k n a n-k b k (k=0,1,2,…,n).其中含有T k+1,a,b,n,k五个元素,只要知道其中四个即可求第五个元素.2.二项式系数与展开式项的系数的异同在T k +1=C k n a n -k b k中,C k n 就是该项的二项式系数,它与a ,b 的值无关;T k +1项的系数指化简后除字母以外的数,如a =2x ,b =3y ,T k +1=C k n 2n -k ·3k x n -k y k ,其中C k n 2n -k 3k 就是T k +1项的系数.1.(x -2y )7的展开式中第3项的二项式系数是________.2.(2011·广东)x ⎝⎛⎭⎫x -2x 7的展开式中,x 4的系数是________.(用数字作答) 3.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为________.4.(2011·山东)若(x -ax2)6展开式的常数项为60,则常数a 的值为________.5.若⎝⎛⎭⎫3x -1x n 展开式中各项系数之和为32,则该展开式中含x 3的项的系数为 ( ) A .-5B .5C .-405D .405题型一 求展开式中的特定项或特定项的系数例1 在二项式⎝ ⎛⎭⎪⎫x +124x n的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.探究提高 求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k +1,代回通项公式即可.已知在⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项.题型二 二项式系数和或各项的系数和的问题 例2 在(2x -3y )10的展开式中,求: (1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项系数和与偶数项系数和; (5)x 的奇次项系数和与x 的偶次项系数和.探究提高 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n 、(ax 2+bx +c )m (a 、b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可. (2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.已知等式(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+a 10(x +1)10,其中a i (i =0,1,2,…,10)为实常数.求:(1)∑10n =1a n 的值;(2)∑10n =1na n 的值. 题型三 二项式定理的应用例3 (1)求证:1+2+22+…+25n -1 (n ∈N *)能被31整除;(2)求S =C127+C227+…+C2727除以9的余数.探究提高 利用二项式定理解决整除问题时,基本思路是:要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般将被除式化为含有相关除式的二项式,然后再展开,此时常用“配凑法”、“消去法”结合有关整除知识来处理.求证:(1)32n +2-8n -9能被64整除(n ∈N *);(2)3n >(n +2)·2n -1 (n ∈N *,n >2).12.混淆二项展开式的项与项数以及二项式系数与项的系数致误 试题:(12分)已知(x -2x 2)n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含x 32的项;(3)求展开式中系数最大的项和二项式系数最大的项. 学生错解展示审题视角 (1)审条件,构建关于n 的方程求n .(2)审要求,可利用“赋值法”求各项系数之和;利用通项公式确定含x 32的项数;确定系数最大的项数和二项式系数最大项的项数,再求项. 规范解答解 由题意知,第五项系数为C4n ·(-2)4,第三项的系数为C2n ·(-2)2,则有C4n ·(-2)4C2n ·(-2)2=101,化简得n 2-5n -24=0,[4分]解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式T r +1=C r 8·(x )8-r ·⎝⎛⎭⎫-2x 2r =C r 8·(-2)r ·x 8-r2-2r ,令8-r 2-2r =32,则r =1,故展开式中含x 32的项为T 2=-16x 32.[8分](3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r -1,C r 8·2r ,C r +18·2r +1,若第r +1项的系数绝对值最大, 则⎩⎪⎨⎪⎧C r -18·2r -1≤C r 8·2r ,C r +18·2r +1≤C r 8·2r,解得5≤r ≤6. 又T 6的系数为负,∴系数最大的项为T 7=1 792x-11.由n =8知第五项二项式系数最大,此时T 5=1 120x -6. [12分]批阅笔记 (1)本题重点考查了二项式的通项公式,二项式系数、项的系数以及项数和项的有关概念.(2)解题时要注意区别二项式系数和项的系数的不同;项数和项的不同. (3)本题的易错点是混淆项与项数,二项式系数和项的系数的区别.方法与技巧1.通项公式最常用,是解题的基础.2.对三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为集项、配方、因式分解,集项时要注意结合的合理性和简捷性.3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对k 的限制;求有理项时要注意到指数及项数的整数性.4.性质1是组合数公式C k n =C n -k n 的再现,性质2是从函数的角度研究二项式系数的单调性,性质3是利用赋值法得出的二项展开式中所有二项式系数的和.5.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.6.二项式定理体现了二项式的正整数幂的展开式的指数、项数、二项式系数等方面的内在联系,涉及到二项展开式中的项和系数的综合问题,只需运用通项公式和二项式系数的性质对条件进行逐个分析,对于与组合数有关的和的问题,赋值法是常用且重要的方法,同时注意二项式定理的逆用.失误与防范1.要把“二项式系数的和”与“各项系数和”,“奇(偶)数项系数和与奇(偶)次项系数和”严格地区别开来.2.根据通项公式时常用到根式与幂指数的互化,学生易出错.3.通项公式是第k+1项而不是第k项.课时规范训练(时间:60分钟)A 组 专项基础训练题组 一、选择题1.(2011·天津)在⎝⎛⎭⎪⎫x 2-2x 6的二项展开式中,x 2的系数为 ( )A .-154 B.154C .-38 D.382.若二项式⎝⎛⎭⎫x -2x n 的展开式中第5项是常数项,则自然数n 的值为 ( ) A .6B .10C .12D .153.在⎝ ⎛⎭⎪⎫x 2-13x n的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .7C .-28D .28二、填空题4.(2011·大纲全国)(1-x )20的二项展开式中,x 的系数与x 9的系数之差为________. 5. ⎝⎛⎭⎫ax -1x 8的展开式中x 2的系数为70,则a =________.6.若(2x +3)3=a 0+a 1(x +2)+a 2(x +2)2+a 3(x +2)3,则a 0+a 1+2a 2+3a 3=________. 7.在(x +43y )20的展开式中,系数为有理数的项共有________项. 三、解答题8.已知(3x +x 2)2n 的展开式的二项式系数和比(3x -1)n 的展开式的二项式系数和大992,求⎝⎛⎭⎫2x -1x 2n 的展开式中: (1)二项式系数最大的项; (2)系数的绝对值最大的项. B 组 专项能力提升题组 一、选择题1.(2011·课标全国)(x +a x )(2x -1x)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .402.在(1-x )5+(1-x )6+(1-x )7+(1-x )8的展开式中,含x 3的项的系数是( )A .74B .121C .-74D .-1213.在(x 2+3x +2)5展开式中x 的系数为( )A .160B .240C .360D .800二、填空题4.(2010·辽宁)(1+x +x 2)(x -1x )6的展开式中的常数项为________.5.已知(1+x +x 2)⎝⎛⎭⎫x +1x 3n 的展开式中没有常数项,n ∈N *,且2≤n ≤8,则n =________. 6.若a 4(x +1)4+a 3(x +1)3+a 2(x +1)2+a 1(x +1)+a 0=x 4,则a 3-a 2+a 1=______. 7.(2011·湖南)对于n ∈N *,将n 表示为n =a 0×2k +a 1×2k -1+a 2×2k -2+…+a k -1×21+a k ×20,当i =0时,a i =1,当1≤i ≤k 时,a i 为0或1.记I (n )为上述表示中a i 为0的个数(例如:1=1×20,4=1×22+0×21+0×20,故I (1)=0,I (4)=2),则(1)I (12)=______;(2)12712n =∑I (n )=______.三、解答题8.已知⎝⎛⎭⎫12+2x n,(1)若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数;(2)若展开式前三项的二项式系数和等于79,求展开式中系数最大的项.答案要点梳理1.(a +b )n =C 0n a n +C 1n a n -1b 1+…+C k n a n -k b k +…+C n n b n (n ∈N *) 二项式系数 C k n an -k b k通项 k +1 C k n an -k b k2.(1)n +1 (2)n (3)降幂 升幂(4)C 0n C n n3.(1)等距离 (2)n +12 n +12 中间的一项C n 2 C n -12 C n +12(3)C 0n +C 1n +C 2n +...+C k n +...+C n n C 1n +C 3n +C 5n +... C 0n +C 2n +C 4n + (2)n -1基础自测1.C27 2.84 3.8 4.4 5.C 题型分类·深度剖析例1 解 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n 2=1+18n (n -1),解得n =8或n =1(不合题意,舍去),∴T k +1=C k 8x 8-k 2⎝ ⎛⎭⎪⎫124x k=C k 82-k x 4-34k , 当4-34k ∈Z 时,T k +1为有理项,∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2.∵n =8,∴展开式中共9项,中间一项即第5项的二项式系数最大且为T 5=358x .变式训练1 解 (1)通项为T r +1=C rnxn -r 3⎝⎛⎭⎫-12r x -r3=C rn ⎝⎛⎭⎫-12r x n -2r 3.因为第6项为常数项,所以r =5时,有n -2r3=0,即n =10.(2)令n -2r 3=2,得r =12(n -6)=12×(10-6)=2,∴所求的系数为C210⎝⎛⎭⎫-122=454. (3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2r 3∈Z ,0≤r ≤10,r ∈N .令10-2r 3=k (k ∈Z ),则10-2r =3k ,即r =5-32k .∵r ∈N ,∴k 应为偶数.∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为C210⎝⎛⎭⎫-122x 2,C510⎝⎛⎭⎫-125,C810⎝⎛⎭⎫-128x -2. 例2 解 设(2x -3y )10=a 0x 10+a 1x 9y +a 2x 8y 2+…+a 10y 10,(*)各项系数和即为a 0+a 1+…+a 10,奇数项系数和为a 0+a 2+…+a 10,偶数项系数和为a 1+a 3+a 5+…+a 9,x 的奇次项系数和为a 1+a 3+a 5+…+a 9,x 的偶次项系数和a 0+a 2+a 4+…+a 10.由于(*)是恒等式,故可用“赋值法”求出相关的系数和. (1)二项式系数的和为C010+C110+…+C1010=210. (2)令x =y =1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C010+C210+…+C1010=29, 偶数项的二项式系数和为C110+C310+…+C910=29.(4)令x =y =1,得到a 0+a 1+a 2+…+a 10=1, ① 令x =1,y =-1(或x =-1,y =1),得a 0-a 1+a 2-a 3+…+a 10=510, ② ①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项的系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510,∴偶数项的系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.变式训练2 解 (1)∵(x 2+2x +2)5=a 0+a 1(x +1)+a 2(x +1)2+…+a 9(x +1)9+ a 10(x +1)10,∴令x =0,则a 0+a 1+a 2+…+a 9+a 10=25=32;令 x =-1,则a 0=1,即∑10n =1a n =31. (2)∵(x 2+2x +2)5=[1+(x +1)2]5=C05×15+C15(x +1)2+C25(x +1)4+C35(x +1)6+C45(x +1)8+C55(x +1)10 =a 0+a 1(x +1)+a 2(x +1)2+…+a 10(x +1)10,∴a 0=C05,a 1=a 3=a 5=a 7=a 9=0,a 2=C15,a 4=C25,a 6=C35,a 8=C45,a 10=C55.∴∑10n =1na n =a 1+2a 2+3a 3+…+10a 10 =2C15+4C25+6C35+8C45+10C55 =10C15+10C25+10C55 =50+100+10=160.例3 (1)证明 ∵1+2+22+…+25n -1=25n -12-1=25n -1=32n -1=(31+1)n -1=C0n ×31n +C1n ×31n -1+…+C n -1n ×31+C nn -1=31(C0n ×31n -1+C1n ×31n -2+…+C n -1n ),显然C0n ×31n -1+C1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除.(2)解 S =C127+C227+…+C2727=227-1=89-1 =(9-1)9-1=C09×99-C19×98+…+C89×9-C99-1 =9(C09×98-C19×97+…+C89)-2. ∵C09×98-C19×97+…+C89是正整数, ∴S 被9除的余数为7.变式训练3 证明 (1)∵32n +2-8n -9=32·32n -8n -9=9·9n -8n -9=9(8+1)n -8n -9=9(C 0n 8n +C 1n 8n -1+…+C n -1n ·8+C n n ·1)-8n -9 =9(8n +C 1n 8n -1+…+C n -2n 82)+9·8n +9-8n -9 =9×82(8n -2+C 1n ·8n -3+…+C n -2n )+64n=64[9(8n -2+C 1n 8n -3+…+C n -2n )+n ],显然括号内是正整数,∴原式能被64整除. (2)利用二项式定理对3n =(2+1)n 展开证明.因为n ∈N *,且n >2,所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C n -1n ·2+1≥2n +n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1, 故3n >(n +2)·2n -1.课时规范训练 A 组1.C 2.C 3.B 4.0 5.±1 6.5 7.68.解 根据二项式系数的性质,列方程求解n .系数绝对值最大问题需要列不等式组求解. 由题意知,22n -2n =992,即(2n -32)(2n +31)=0. ∴2n =32,解得n =5.(1)由二项式系数的性质知,⎝⎛⎭⎫2x -1x 10的展开式中第6项的二项式系数最大. 即T 6=C510·(2x )5·⎝⎛⎭⎫-1x 5=-8 064. (2)设第r +1项的系数的绝对值最大, ∴T r +1=C r 10·(2x )10-r ·⎝⎛⎫-1x r =(-1)r C r 10·210-r ·x 10-2r ,∴⎩⎪⎨⎪⎧C r 10·210-r ≥C r -110·210-r +1C r 10·210-r ≥C r +110·210-r -1, 得⎩⎪⎨⎪⎧ C r 10≥2C r -1102C r 10≥C r +110, 即⎩⎪⎨⎪⎧11-r ≥2r 2(r +1)≥10-r ,解得83≤r ≤113.∵r ∈Z ,∴r =3.故系数的绝对值最大的项是第4项,T 4=-C310·27·x 4=-15 360x 4.B 组1.D 2.D 3.B 4.-5 5.5 6.-14 7.2 1 0938.解 (1)∵C4n +C6n =2C5n ,∴n 2-21n +98=0.∴n =7或n =14,当n =7时,展开式中二项式系数最大的项是T 4和T 5.∴T 4的系数为C37⎝⎛⎭⎫12423=352, T 5的系数为C47⎝⎛⎭⎫12324=70,当n =14时,展开式中二项式系数最大的项是T 8.∴T 8的系数为C714⎝⎛⎭⎫12727=3 432.(2)∵C0n +C1n +C2n =79,∴n 2+n -156=0. ∴n =12或n =-13(舍去).设T k +1项的系数最大, ∵⎝⎛⎭⎫12+2x 12=⎝⎛⎭⎫1212(1+4x )12, ∴⎩⎪⎨⎪⎧C k 124k ≥C k -1124k -1,C k 124k ≥C k +1124k +1. ∴9.4≤k ≤10.4,∴k =10.∴展开式中系数最大的项为T 11,T 11=C1012·⎝⎛⎭⎫122·210·x 10=16 896x 10.。