4-4两角和与差的三角函数

合集下载

(完整版)两角和与差的正弦、余弦、正切公式及变形

(完整版)两角和与差的正弦、余弦、正切公式及变形

两角和与差的正弦、余弦、正切公式及变形1.两角和与差的正弦、余弦、正切公式 (1)公式①cos(α-β)=cos_αcos_β+sin_αsin_β(C (α-β)) ②cos(α+β)=cos_αcos_β-sin_αsin_β(C (α+β)) ③sin(α-β)=sin_αcos_β-cos_αsin_β(S (α-β)) ④sin(α+β)=sin_αcos_β+cos_αsin_β(S (α+β)) ⑤tan(α-β)=tan α-tan β1+tan αtan β(T (α-β))⑥tan(α+β)=tan α+tan β1-tan αtan β(T (α+β))(2)公式变形①tan α+tan β=tan(α+β)(1-tan αtan β). ②tan α-tan β=tan(α-β)(1+tan αtan β). 2.二倍角公式 (1)公式①sin 2α=2sin_αcos_α,②cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α, ③tan 2α=2tan α1-tan 2α.(2)公式变形①cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;②1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin )4(πα±.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)两角和与差的正弦、余弦公式中的角α,β是任意的.(√) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (3)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)(4)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.(×)(5)二倍角的正弦、余弦、正切公式的适用范围是任意角.(×) (6)存在角α,使得sin 2α=2sin α成立.(√) (7)若α+β=π4,则(1+tan α)(1+tan β)=2.(√)(8)不存在实数α,β,使得cos(α+β)=sin α+cos β.(×) (9)存在实数α,使tan 2α=2tan α.(√) (10)y =1-2cos 2x 的x 无意义.(×)考点一 三角函数式的给角求值命题点1.已知非特殊角求函数式的值2.已知含参数的角化简函数或求值[例1] (1)求值:1+cos 20°2sin 20°-sin 10°)5tan 5tan 1(0-; 解:原式=2cos 210°2×2sin 10°cos 10°-sin 10°)5cos 5sin 5sin 5cos (0000- =cos 10°2sin 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2⎝ ⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32. (2)化简:sin 2α·sin 2β+cos 2α·cos 2β-12cos 2α·cos 2β. 解:法一:(复角→单角,从“角”入手)原式=sin 2α·sin 2β+cos 2α·cos 2β-12·(2cos 2α-1)·(2cos 2β-1) =sin 2α·sin 2β+cos 2α·cos 2β-12·(4cos 2α·cos 2β-2cos 2α-2cos 2β+1)=sin 2α·sin 2β-cos 2α·cos 2β+cos 2α+cos 2β-12 =sin 2α·sin 2β+cos 2α·sin 2β+cos 2β-12 =sin 2β+cos 2β-12=1-12=12. 法二:(从“名”入手,异名化同名)原式=sin 2α·sin 2β+(1-sin 2α)·cos 2β-12cos 2α·cos 2β=cos 2β-sin 2α(cos 2β-sin 2β)-12cos 2α·cos 2β=cos 2β-sin 2α·cos 2β-12cos 2α·cos 2β=cos 2β-cos 2β·)2cos 21(sin 2αα+=1+cos 2β2-cos 2β·⎣⎢⎡⎦⎥⎤sin 2α+12(1-2sin 2α) =1+cos 2β2-12cos 2β=12.法三:(从“幂”入手,利用降幂公式先降次) 原式=1-cos 2α2·1-cos 2β2+1+cos 2α2·1+cos 2β2-12cos 2α·cos 2β =14(1+cos 2α·cos 2β-cos 2α-cos 2β)+14(1+cos 2α·cos 2β+cos 2α+cos 2β)-12·cos 2α·cos 2β=12.[方法引航] 给角求值问题往往给出的角是非特殊角,求值时要注意:(1)观察角,分析角之间的差异,巧用诱导公式或拆分.(2)观察名,尽可能使函数统一名称.(3)观察结构,利用公式,整体化简.1.求值sin 50°(1+3tan 10°).解:sin 50°(1+3tan 10°)=sin 50°(1+tan 60°·tan 10°) =sin 50°·cos 60°cos 10°+sin 60°sin 10°cos 60°cos 10°=sin 50°·cos (60°-10°)cos 60°cos 10°=2sin 50°cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.2.在△ABC 中,已知三个内角A ,B ,C 成等差数列,则tan A 2+tan C 2+3tan A 2tan C2的值为________.解析:因为三个内角A ,B ,C 成等差数列,且A +B +C =π, 所以A +C =2π3,A +C 2=π3,tan A +C 2=3, 所以tan A 2+tan C 2+3tan A 2tan C2 =tan )22(C A +)2tan 2tan 1(CA -+3tan A 2tan C 2 =3)2tan 2tan1(CA -+3tan A 2tan C 2= 3. 考点二 三角函数式的给值求值[例2] (1)(2016·高考全国丙卷)若tan θ=-13,则cos 2θ=( ) A .-45 B .-15 C.15 D.45解析:法一:cos 2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=45.故选D. 法二:由tan θ=-13,可得sin θ=±110,因而cos 2θ=1-2sin 2θ=45.答案:D(2)已知tan )4(πα+=12,且-π2<α<0,则)4cos(2sin sin 22πααα-+等于( )A .-255B .-3510C .-31010 D.255 解析:由tan )4(πα+=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-1010. 故)4cos(2sin sin 22πααα-+=2sin α(sin α+cos α)22(sin α+cos α)=22sin α=-255.答案:A(3)已知α∈)2,0(π,且2sin 2α-sin α·cos α-3cos 2α=0,则12cos 2sin )4sin(+++ααπα=________.解析:2sin 2α-sin αcos α-3cos 2α=0则(2sin α-3cos α)(sin α+cos α)=0, 由于α∈)2,0(π,sin α+cos α≠0, 则2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴12cos 2sin )4sin(+++ααπα=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268.答案:268[方法引航] 三角函数的给值求值,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍”的关系或“互余互补”的关系.(3)已知三角函数时,先化简三角函数式,再利用整体代入求值.1.在本例(1)中,已知条件不变,求tan )6(θπ+的值.解:tan )6(θπ+=tan π6+tan θ1-tan π6tan θ=33-131+33×13=53-613.2.在本例(1)中,已知条件不变,求2sin 2θ-sin θcos θ-3cos 2θ的值. 解:原式=2sin 2θ-sin θcos θ-3cos 2θsin 2θ+cos 2θ=2tan 2θ-tan θ-3tan 2θ+1=2×⎝ ⎛⎭⎪⎫-132+13-3⎝ ⎛⎭⎪⎫-132+1=-115.3.已知cos )2(απ-+sin )32(απ-=235,则cos )32(πα+=________.解析:由cos )2(απ-+sin )32(απ-=235,得sin α+sin 2π3cos α-cos 23πsin α=235∴32sin α+32cos α=235, 即3sin )6(πα+=235,∴sin )6(πα+=25,因此cos )32(πα+=1-2sin 2)6(πα+=1-2×2)52(=1725.答案:1725考点三 已知三角函数式的值求角[例3] (1)已知cos α=17,cos(α-β)=1314,0<β<α<π2,则β=________. 解析:∵cos α=17,0<α<π2.∴sin α=437.又cos(α-β)=1314,且0<β<α<π2.∴0<α-β<π2,则sin(α-β)=3314. 则cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=497×14=12,由于0<β<π2,所以β=π3.答案:π3(2)已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan[(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2)31(1312-⨯=34>0,∴0<2α<π2,∴tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34+171-34×17=1. ∵tan β=-17<0,∴π2<β<π,-π<2α-β<0,∴2α-β=-34π. 答案:-34π[方法引航] 1.解决给值求角问题应遵循的原则 (1)已知正切函数值,选正切函数.(2)已知正、余弦函数值,选正弦函数或余弦函数,且①若角的范围是)2,0(π,选正、余弦皆可;②若角的范围是(0,π),选余弦较好;③若角的范围是)2,2(ππ-,选正弦较好. 2.解给值求角问题的一般步骤 (1)求角的某一个三角函数值. (2)确定角的范围.(3)根据角的范围写出所求的角.1.设α,β为钝角,且sin α=55,cos β=-31010,则α+β的值为( ) A.3π4 B.5π4 C.7π4 D.5π4或7π4 解析:选C.∵α,β为钝角,sin α=55,cos β=-31010, ∴cos α=-255,sin β=1010,∴cos(α+β)=cos αcos β-sin αsin β=22>0.又α+β∈(π,2π),∴α+β∈)2,23(ππ,∴α+β=7π4. 2.已知tan α=-13,cos β=55,α∈),2(ππ,β∈)2,0(π,求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈)2,0(π,得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1. ∵α∈),2(ππ,β∈)2,0(π,∴π2<α+β<3π2,∴α+β=5π4.[方法探究]三角恒等变换在化简、求值、证明中的综合应用三角恒等变换要重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.[典例] 某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: (1)sin 213°+cos 217°-sin 13°cos 17°; (2)sin 215°+cos 215°-sin 15°cos 15°; (3)sin 218°+cos 212°-sin 18°cos 12°; (4)sin 2(-18°)+cos 248°-sin(-18°)cos 48°; (5)sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解] (Ⅰ)选择(2)式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (Ⅱ)法一:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin α·cos α-12sin 2α=34sin 2α+34cos 2α=34.法二:三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34. 证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=1-cos 2α2+1+cos (60°-2α)2-sin α(cos 30°cos α+sin30°sin α)=12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α=12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α)=1-14cos 2α-14+14cos 2α=34.[高考真题体验]1.(2016·高考全国甲卷)若cos )4(απ-=35,则sin 2α=( )A.725B.15 C .-15 D .-725解析:选D.因为cos )4(απ-=cos π4cos α+sin π4sin α=22(sin α+cos α)=35,所以sin α+cos α=325,所以1+sin 2α=1825,所以sin 2α=-725,故选D. 2.(2016·高考全国丙卷)若tan α=34,则cos 2α+2sin 2α=( ) A.6425 B.4825 C .1 D.1625 解析:选A.法一:由tan α=sin αcos α=34,cos 2α+sin 2α=1,得⎩⎪⎨⎪⎧sin α=35cos α=45或⎩⎪⎨⎪⎧sin α=-35cos α=-45,则sin 2α=2sin αcos α=2425,则cos 2α+2sin 2α=1625+4825=6425. 法二:cos 2α+2sin 2α=cos 2α+4sin αcos αcos 2α+sin 2α=1+4tan α1+tan 2α=1+31+916=6425. 3.(2015·高考课标全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( ) A .-32 B.32C .-12 D.12解析:选D.sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12.4.(2014·高考课标全国卷Ⅰ)设α∈)2,0(π,β∈)2,0(π,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2解析:选 B.由条件得sin αcos α=1+sin βcos β,即sin αcos β=cos α(1+sin β),sin(α-β)=cos α=sin )2(απ-,因为-π2<α-β<π2,0<π2-α<π2,所以α-β=π2-α,所以2α-β=π2,故选B.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________. 解析:由sin α+2cos α=0,得tan α=-2.所以2sin αcos α-cos 2α=2sin αcos α-cos 2αsin 2α+cos 2α=2tan α-1tan 2α+1=-4-14+1=-1.答案:-16.(2016·高考四川卷)cos 2π8-sin 2π8=________.解析:由二倍角公式,得cos 2π8-sin 2π8=cos )82(π⨯=22.答案:22课时规范训练 A 组 基础演练1.tan 15°+1tan 15°=( )A .2B .2+3C .4 D.433 解析:选C.法一:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15° =1cos 15°sin 15°=2sin 30°=4.法二:tan 15°+1tan 15°=1-cos 30°sin 30°+1sin 30°1+cos 30°=1-cos 30°sin 30°+1+cos 30°sin 30°=2sin 30°=4.2.2cos 10°-sin 20°sin 70°的值是( ) A.12 B.32 C. 3 D. 2解析:选C.原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°·cos 20°+sin 30°·sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.3.已知θ∈(0,π),且sin )4(πθ-=210,则tan 2θ=( ) A.43 B.34 C .-247 D.247解析:选C.由sin )4(πθ-=210,得22(sin θ-cos θ)=210,所以sin θ-cos θ=15. 解方程组⎩⎪⎨⎪⎧ sin θ-cos θ=15sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧ sin θ=45cos θ=35或⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45.因为θ∈(0,π),所以sin θ>0,所以⎩⎪⎨⎪⎧ sin θ=-35cos θ=-45不合题意,舍去,所以tan θ=43,所以tan 2θ=2tan θ1-tan 2θ=2×431-⎝ ⎛⎭⎪⎫432=-247,故选C. 4.若θ∈]2,4[ππ,sin 2θ=378,则sin θ等于( ) A.35 B.45 C.74 D.34解析:选D.由sin 2θ=387和sin 2θ+cos 2θ=1得(sin θ+cos θ)2=378+1=2)473(+,又θ∈]2,4[ππ,∴sin θ+cos θ=3+74. 同理,sin θ-cos θ=3-74,∴sin θ=34.5.已知sin 2(α+γ)=n sin 2β,则tan (α+β+γ)tan (α-β+γ)的值为( ) A.n -1n +1 B.n n +1 C.n n -1 D.n +1n -1解析:选D.由已知可得sin[(α+β+γ)+(α-β+γ)]=n sin[(α+β+γ)-(α-β+γ)],则sin(α+β+γ)·cos(α-β+γ)+cos(α+β+γ)sin(α-β+γ)=n [sin(α+β+γ)cos(α-β+γ)-cos(α+β+γ)sin(α-β+γ)],即(n +1)cos(α+β+γ)sin(α-β+γ)=(n -1)sin(α+β+γ)cos(α-β+γ),所以tan (α+β+γ)tan (α-β+γ)=n +1n -1,故选D. 6.若sin )2(θπ+=35,则cos 2θ=________. 解析:∵sin )2(θπ+=cos θ=35,∴cos 2θ=2cos 2θ-1=2×2)53(-1=-725. 答案:-7257.若点P (cos α,sin α)在直线y =-2x 上,则sin 2α+2cos 2α=________.解析:∵点P (cos α,sin α)在直线y =-2x 上∴sin α=-2cos α,于是sin 2α+2cos 2α=2sin αcos α+2(2cos 2α-1)=-4cos 2α+4cos 2α-2=-2.答案:-28.设sin 2α=-sin α,α∈),2(ππ,则tan 2α的值是________. 解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.∵α∈),2(ππ,sin α≠0,∴cos α=-12.又∵α∈),2(ππ,∴α=23π, ∴tan 2α=tan 43π=tan )3(ππ+=tan π3= 3. 答案: 39.化简:(1+sin θ+cos θ)⎝ ⎛⎭⎪⎫sin θ2-cos θ22+2cos θ(0<θ<π). 解:由θ∈(0,π),得0<θ2<π2,∴cos θ2>0, ∴2+2cos θ=4cos 2θ2=2cos θ2.又(1+sin θ+cos θ))2cos 2(sin θθ-=)2cos 2)(sin 2cos 22cos 2sin 2(2θθθθθ-+ =2cos θ2)2cos 2(sin 22θθ- =-2cos θ2cos θ.故原式=-2cos θ2cos θ2cos θ2=-cos θ. 10.已知α∈),2(ππ,且sin α2+cos α2=62. (1)求cos α的值;(2)若sin(α-β)=-35,β∈),2(ππ,求cos β的值. 解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-32.(2)因为π2<α<π,π2<β<π,所以-π<-β<-π2,故-π2<α-β<π2.又sin(α-β)=-35,得cos(α-β)=45.cos β=cos[α-(α-β)=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×)53(-=-43+310. B 组 能力突破 1.已知sin α+cos α=22,则1-2sin 2)4(απ-=( )A.12B.32 C .-12 D .-32解析:选C.由sin α+cos α=22,得1+2sin αcos α=12,∴sin 2α=-12.因此1-2sin 2)4(απ-=cos2)4(απ-=sin 2α=-12. 2.已知f (x )=2tan x -2sin 2x 2-1sin x 2cos x 2,则f )12(π的值为( )A .43 B.833 C .4 D .8解析:选D.∵f (x )=2)sin cos cos sin (2)sin cos (tan xx x x x x x +⨯=+=2×1cos x ·sin x =4sin 2x , ∴f )12(π=4sin π6=8. 3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( )A.5π12B.π3C.π4D.π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010.又sin α=55,∴cos α=255,∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×)1010(-=22. ∴β=π4.4.若tan α=lg(10a ),tan β=lg 1a ,且α+β=π4,则实数a 的值为________.解析:tan α+tan β=lg(10a )+lg 1a =lg 10=1,∵α+β=π4,所以tan π4=tan(α+β)=tan α+tan β1-tan αtan β=11-tan αtan β, ∴tan αtan β=0,则有tan α=lg(10a )=0或tan β=lg 1a =0.所以10a =1或1a =1,即a =110或1.答案:110或15.已知tan(π+α)=-13,tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-.(1)求tan(α+β)的值;(2)求tan β的值.解:(1)∵tan(π+α)=-13,∴tan α=-13.∵tan(α+β)=ααααπ2sincos10cos4)2(2sin22-+-=sin 2α+4cos2α10cos2α-sin 2α=2sin αcos α+4cos2α10cos2α-2sin αcos α=2cosα(sin α+2cos α)2cos α(5cos α-sin α)=sin α+2cos α5cos α-sin α=tan α+25-tan α=-13+25-⎝⎛⎭⎪⎫-13=516.(2)tan β=tan[(α+β)-α]=tan(α+β)-tan α1+tan(α+β)tan α=516+131-516×13=3143.。

两角和与差的正弦余弦和正切公式

两角和与差的正弦余弦和正切公式

利用三角函数的倍角公式推导
总结词
通过三角函数的倍角公式,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的倍角公式指出,对于任意角度α, sin(2α)、cos(2α)和tan(2α)的值可以通过
sin(α)、cos(α)、tan(α)的函数关系来表达。 利用这个公式,我们可以推导出两角和与差
总结词
通过三角函数的减法定理,我们可以推导出 两角和与差的正弦、余弦和正切公式。
详细描述
三角函数的减法定理指出,对于任意角度α、 β,sin(α-β)、cos(α-β)和tan(α-β)的值可 以通过sin(α)、cos(α)、sin(β)、cos(β)、 tan(α)和tan(β)的函数关系来表达。利用这 个定理,我们可以推导出两角和与差的正弦、 余弦和正切公式。
地理学问题
在地理学中,很多问题涉及到地 球的自转、公转等角度计算,如 时差、太阳高度角等,利用三角 函数公式可以方便地计算。
经济学问题
在经济学中,很多问题涉及到利 率、汇率等与角度相关的问题, 利用三角函数公式可以方便地描 述这些变化规律。
04
三角函数公式的扩展
利用三角函数的和差化积公式扩展
总结词
利用三角函数的积化和差公式扩展
总结词
利用三角函数的积化和差公式,可以将两角和与差的 正弦、余弦和正切公式进行扩展,得到更一般化的公 式形式。
详细描述
三角函数的积化和差公式可以将两个角度的正弦或余 弦的乘积转化为其他角度的正弦、余弦和正切的和或 差的形式,从而扩展了原有的公式。例如,利用积化 和差公式,可以将两角和的余弦表示为单个角度余弦 的函数,进一步推导得到更一般化的公式。
VS
详细描述

三角函数专题2:两角和与差的正弦、余弦和正切公式

三角函数专题2:两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式考点要求(1)和与差的三角函数公式①会用向量的数量积推导出两角差的余弦公式.②能利用两角差的余弦公式导出两角差的正弦、正切公式. (2)二倍角的三角函数公式①能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.②利用两角和的公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 一 两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin_αcos_β±cos_αsin_β. (2)cos(α±β)=cos_αcos_β∓sin_αsin_β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.公式的变形 公式T (α±β)的变形:(1)tan α+tan β=tan(α+β)(1-tan_αtan_β). (2)tan α-tan β=tan(α-β)(1+tan_αtan_β). 3.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin_αcos_α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α. 4.公式C 2α的变形(1)sin 2α=12(1-cos 2α).(2)cos 2α=12(1+cos 2α).5.公式的逆用(1)1±sin 2α=(sin α±cos α)2. (2)sin α±cos α=2sin ⎝⎛⎭⎪⎫α±π4. 二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.题型一 给角求值1.(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32 C .-12 D.12解析:原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=12.答案:D 2.2cos 10°sin 70°-tan 20°=( )A. 3B.3-12 C .1 D.32解析:利用三角函数公式求解.2cos 10°sin 70°-tan 20°=2cos 10°cos 20°-sin 20°cos 20°=2cos 30°-20°-sin 20°cos 20°=2⎝ ⎛⎭⎪⎫32cos 20°+12sin 20°-sin 20°cos 20°=3,故选A.答案:A题型二 给值求值问题1. (1)(2015·高考重庆卷)若tan α=13,tan(α+β)=12,则tan β=( )A.17B.16C.57D.56[解析] tan(α+β)=tan α+tan β1-tan αtan β=13+tan β1-13tan β=12,解得tan β=17.[答案] A2.(2016·贵阳一模)已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79B.13 C .-13 D .-79[解析] 法一:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=79,∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79.法二:∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3+α=13, ∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=2cos 2⎝ ⎛⎭⎪⎫π3+α-1=29-1=-79.[答案] D3.已知sin 2α=13,则cos 2⎝⎛⎭⎪⎫α-π4=( )A .-13B .-23 C.13 D.23解析:∵cos 2⎝ ⎛⎭⎪⎫α-π4=1+cos ⎝ ⎛⎭⎪⎫2α-π22=1+sin 2α2,∴cos 2⎝⎛⎭⎪⎫α-π4=23.答案:D4.已知α为第二象限角,cos α=-35,则tan 2α的值为( )A.2425 B.247 C .-247 D .-2425解析:因为α为第二象限角, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-352=45, 所以tan α=sin αcos α=-43,tan 2α=2tan α1-tan 2α=2·⎝ ⎛⎭⎪⎫-431-⎝ ⎛⎭⎪⎫-432=247.题型三 三角函数式的化简1.化简(0<θ<π).【解析】因为0<θ<π,所以0<θ2<π2,所以原式===-cos θ.【点拨】先从角度统一入手,将θ化成θ2,然后再观察结构特征,如此题中sin2θ2-cos2θ2=-cos θ. 2.化简2cos4x -2cos2x +122tan(π4-x)sin2(π4+x).θθθθθ cos 22)2cos 2 )(sin cos sin 1(+-++2cos 2)2cos 2 )(sin 2 cos 22 cos 2 sin 2(22θθθθθθ-+2cos 2)2cos 2 (sin 2 sin 222θθθθ-【解析】原式=12(2cos2x -1)22tan(π4-x)cos2(π4-x)=cos22x 4cos(π4-x)sin(π4-x)=cos22x 2sin(π2-2x)=12cos 2x.3. 三角函数式的求值【例2】已知sin x 2-2cos x2=0.(1)求tan x 的值; (2)求cos 2x2cos(π4+x)sin x的值.【解析】(1)由sin x 2-2cos x 2=0⇒tan x2=2,所以tan x ==2×21-22=-43.(2)原式=cos2x -sin2x 2(22cos x -22sin x)sin x [=(cos x -sin x)(cos x +sin x)(cos x -sin x)sin x =cos x +sin x sin x =1tan x +1=(-34)+1=14.【变式训练2】2cos 5°-sin 25°sin 65°= .【解析】原式=2cos(30°-25°)-sin 25°cos 25°=3cos 25°cos 25°= 3.4.已知f(x)=1-x ,θ∈(3π4,π),则f(sin 2θ)+f(-sin 2θ)= .【解析】f(sin 2θ)+f(-si n 2θ)=1-sin 2θ+1+sin 2θ=(sin θ-cos θ)2+(sin θ+cos θ)2=|sin θ-co s θ|+|sin θ+cos θ|.因为θ∈(3π4,π),所以sin θ-cos θ>0,sin θ+cos θ<0.所以|sin θ-cos θ|+|sin θ+cos θ|=sin θ-cos θ-sin θ-cos θ=-2cos θ.题型四 三角函数式的简单应用问题1.】已知-π2<x <0且sin x +cos x =15,求:(1)sin x -cos x 的值;(2)sin3(π2-x)+cos3(π2+x)的值.【解析】(1)由已知得2sin xcos x =-2425,且sin x <0<cos x ,所以sin x -cos x =-(sin x -cos x)2=-1-2sin xcos x =-1+2425=-75. (2)sin3(π2-x)+cos3(π2+x )=cos3x -sin3x =(cos x -sin x)(cos2x +cos xsin x +s in2x)2tan 12tan 22xx=75×(1-1225)=91125. 【点拨】求形如sin x ±cos x 的值,一般先平方后利用基本关系式,再求sin x ±cos x 取值符号. 2.化简1-cos4α-sin4α1-cos6α-sin6α.【解析】原式=1-[(cos2α+sin2α)2-2sin2αcos2α]1-[(cos2α+sin2α)(cos4α+sin4α-sin2αcos2α)]=2sin2αcos2α1-[(cos2α+sin2α)2-3sin2αcos2α]=23.总结提高1.两角和与差的三角函数公式以及倍角公式等是三角函数恒等变形的主要工具. (1)它能够解答三类基本题型:求值题,化简题,证明题; (2)对公式会“正用”、“逆用”、“变形使用”;(3)掌握角的演变规律,如“2α=(α+β)+(α-β)”等.2.通过运用公式,实现对函数式中角的形式、升幂、降幂、和与差、函数名称的转化,以达到求解的目的,在运用公式时,注意公式成立的条件.题组 基础能力提升1、已知cos α=k ,k ∈R ,α∈⎝ ⎛⎭⎪⎫π2,π,则sin(π+α)=( ) A .-1-k 2B .1-k 2C .±1-k 2D .-k【答案】A【解析】由cos α=k ,α∈⎝⎛⎭⎪⎫π2,π得sin α=1-k 2,∴sin(π+α)=-sin α=-1-k 2.故选A.2、已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B .3715 C.3720D .1315【答案】D【解析】.∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315.故选D.3、已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ=( )A .-π6B .-π3C .π6D .π3【答案】D【解析】∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3. ∵|θ|<π2,∴θ=π3.4、已知x ∈⎝ ⎛⎭⎪⎫-π2,0,cos x =45,则tan x 的值为( )A.34 B .-34C.43 D .-43【答案】B【解析】因为x ∈⎝ ⎛⎭⎪⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34.故选B.5、已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α=( )A.2 23B .-223C .13D .-13【答案】D【解析】∵cos ⎝ ⎛⎭⎪⎫π4+α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4-α=-sin ⎝ ⎛⎭⎪⎫α-π4=-13. 6、若sin ⎝ ⎛⎭⎪⎫π2+θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】B【解析】∵sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0,所以θ是第二象限角,故选B.7、已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( ) A .150° B .135° C .300° D .60°【答案】C【解析】因为sin 150°=12>0,cos 150°=-32<0,所以角α终边上一点的坐标为⎝ ⎛⎭⎪⎫12,-32,所以该点在第四象限,由三角函数的定义得sin α=-32,又0°≤α<360°,所以角α的值是300°,故选C. 8、已知sin α=55,则sin 4α-cos 4α的值为( ) A .-15B .-35C .15D .35【答案】B9.已知cos ⎝ ⎛⎭⎪⎫π2+α=35,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则tan α=( )A.43 B.34 C .-34D .±34解析:因为cos ⎝ ⎛⎭⎪⎫π2+α=35,所以sin α=-35,显然α在第三象限,所以cos α=-45,故tan α=34.答案:B10.已知α为锐角,且2tan(π-α)-3cos ⎝ ⎛⎭⎪⎫π2+β+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377C.31010D.13解析:由已知可得-2tan α+3sin β+5=0,tan α-6sin β=1,解得tan α=3,故sin α=31010.答案:C11.(2015·枣庄模拟)已知cos α=15,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α的值为( )A .2 6B .-2 6C .-612D.612解析:cos ⎝ ⎛⎭⎪⎫π2+αtan α+πcos -αtan α=-sin αtan αsin α=-cos αsin α,∵cos α=15,-π2<α<0,∴sin α=-265,原式=612.答案:D12.已知2tan α·sin α=3,-π2<α<0,则sin α=( )A.32B .-32C.12 D .-12解析:由2tan α·sin α=3,得2sin 2αcos α=3,即2cos 2α+3cos α-2=0,又-π2<α<0,解得cos α=12(cos α=-2舍去),故sin α=-32.答案:B13.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限14、现有如下命题:①若点P (a ,2a )(a ≠0)为角α终边上一点,则sin α=255;②同时满足sin α=12,cos α=32的角有且仅有一个;③设tan α=12且π<α<3π2,则sin α=-55;④设cos(sin θ)·tan(cos θ)>0(θ为象限角),则θ在第一象限. 则其中正确的命题是________.(将正确命题的序号填在横线上) 【答案】③【解析】①中,当α在第三象限时,sin α=-255,故①错误;②中,同时满足sin α=12,cos α=32的角为α=2k π+π6(k ∈Z),有无数个,故②错误;③正确;④θ可能在第一象限或第四象限,故④错误.综上选③.15、已知sin x +3cos x 3cos x -sin x =5,则sin x cos x +cos 2x =________.【答案】35.【解析】由已知,得tan x +33-tan x=5,解得tan x =2,所以sin x cos x +cos 2x =sin x cos x +cos 2x sin 2x +cos 2x =tan x +1tan 2x +1=2+122+1=35. 16、已知在△ABC 中,tan A =-512,则cos A =________.【答案】-1213【解析】∵在△ABC 中,tan A =-512,∴A 为钝角,cos A <0.由sin A cos A =-512,sin 2A +cos 2A =1,可得cos A=-1213.17、若sin θ,cos θ是方程4x 2+2mx +m =0的两根,则m 的值为________. 【答案】1- 5【解析】由题意知:sin θ+cos θ=-m 2,sin θcos θ=m4,又(sin θ+cos θ)2=1+2sin θcos θ,∴m 24=1+m2,解得:m =1±5,又Δ=4m 2-16m ≥0,∴m ≤0或m ≥4,∴m =1- 5. 18、若sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,则sin αcos α的值等于________.【答案】-25【解析】由sin(π-α)=-2sin ⎝ ⎛⎭⎪⎫π2+α,可得sin α=-2cos α,则tan α=-2,所以sin α cos α=tan α1+tan 2α=-25. 19.(2015·高考广东卷)已知tan α=2.(1)求tan ⎝⎛⎭⎪⎫α+π4的值;(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎪⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2×1=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α-1-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.20、已知f (α)=sin π-αcos 2π-αtan ⎝⎛⎭⎪⎫-α+3π2tan ⎝ ⎛⎭⎪⎫π2+α·sin -π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值.【答案】(1) -cos α (2)265【解析】(1)f (α)=sin α·cos α·tan ⎝ ⎛⎭⎪⎫-α+3π2-2πtan ⎝ ⎛⎭⎪⎫π2+α·sin α=sin α·cos α·⎣⎢⎡⎦⎥⎤-tan ⎝ ⎛⎭⎪⎫π2+αtan ⎝ ⎛⎭⎪⎫π2+α·sin α=-cosα.(2)∵cos ⎝ ⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15,又α是第三象限角,∴cos α=-1-sin 2α=-2 65.故f (α)=265.。

必修四数学 第3讲教师版 两角和与差的三角函数公式

必修四数学 第3讲教师版     两角和与差的三角函数公式

课题:两角和与差的三角函数公式个性化教学辅导教案第3讲两角和与差的三角函数公式1.两角和与差的正弦、余弦和正切公式(1)sin(α±β)=sin αcos β±cos αsin β;(2)cos(α∓β)=cos_αcos_β±sin αsin_β;(3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式(1)sin 2α=2sin_αcos__α.(2)cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α.(3)tan 2α=2tan α1-tan2α.3.有关公式的逆用、变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β).(2)cos2α=1+cos 2α2,sin2α=1-cos 2α2.(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4.4.函数f (α)=a sin α+b cos α(a ,b 为常数),=a 2+b 2sin(α+φ) ⎝ ⎛⎭⎪⎫其中tan φ=b a=a 2+b 2·cos(α-φ) ⎝ ⎛⎭⎪⎫其中tan φ=a b .三个变化1.变角:通过对角的拆分尽可能化为同角、特殊角、已知角的和与差,其手法通常是“配凑”.2.变名:通过变换尽可能减少函数种类,降低次数,减少项数,其手法通常有“切化弦”“升幂与降幂”等. 3.变式:根据式子的结构特征进行变形,使其更简化、更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”“逆用变形用公式”“通分与约分”“分解与组合”“配方与平方”等.1.(必修4 P 127练习T 2改编)已知cos α=-35,α是第三象限角,则cos ⎝⎛⎭⎫π4+α为( ) A.210B .-210C.7210 D .-7210解析:选A.∵cos α=-35,α是第三象限的角,∴sin α=-1-cos 2α=-1-⎝⎛⎭⎫-352=-45,∴cos ⎝⎛⎭⎫π4+α=cos π4cos α-sin π4sin α =22×⎝⎛⎭⎫-35-22×⎝⎛⎭⎫-45=210. 2.(必修4 P 130例4(1)改编)化简cos 18°cos 42°-cos 72°·sin 42°的值为( ) A.32B .12C .-12D .-32解析:选B.法一:原式=cos 18°cos 42°-sin 18°·sin 42° =cos(18°+42°)=cos 60°=12.法二:原式=sin 72°cos 42°-cos 72°sin 42° =sin(72°-42°)=sin 30°=12.3.(必修4 P 135练习T 2改编)已知sin(α-k π)=35(k ∈Z ),则cos 2α的值为( )A.725B .-725C.1625D .-1625解析:选A.由sin(α-k π)=35(k ∈Z )得sin α=±35.∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫±352=1-1825=725.故选A.4.(必修4 P 138A 组T 19(4)改编)11-tan 15°-11+tan 15°=________.解析:原式=2tan 15°(1-tan 15°)(1+tan 15°)=2tan 15°1-tan 215°=tan 30°=33. 答案:335.(必修4 P 137A 组T 10改编)tan α,tan β是方程6x 2-5x +1=0的两个实数根.α,β均为锐角,则α+β=________. 解析:由题意知tan α+tan β=56,tan αtan β=16,∴tan(α+β )=tan α+tan β1-tan αtan β=561-16=1.∵α,β∈⎝⎛⎭⎫0,π2.∴α+β∈(0,π),∴α+β=π4. 答案:π4两角和与差公式的应用(2015·高考四川卷)sin 15°+sin 75°的值是________. [解析] 法一:sin 15°+sin 75°=sin 15°+cos 15° =2(22sin 15°+22cos 15°) =2(sin 15°cos 45°+cos 15°sin 45°) =2sin 60°=2×32=62. 法二:sin 15°+sin 75° =sin(45°-30°)+sin(45°+30°) =2sin 45°cos 30°=2×22×32=62. [答案]62用两角和与差的三角函数公式直接求三角函数值时,只需在α±β中知道α,β的三角函数值,用公式展开后直接代入求值即可.两角和与差的正弦、余弦、正切公式 扫一扫 进入 精品微课1.已知α∈⎝⎛⎭⎫π,32π,且cos α=-45,则tan ⎝⎛⎭⎫π4-α等于( ) A .7 B .17C .-17D .-7解析:选B.因α∈⎝⎛⎭⎫π,32π,且cos α=-45, 所以sin α<0,即sin α=-35,所以tan α=34.所以tan ⎝⎛⎭⎫π4-α=1-tan α1+tan α=1-341+34=17.2.已知α∈⎝⎛⎭⎫0,π2,tan α=12,则sin ⎝⎛⎭⎫2α+π3=________. 解析:tan 2α=2tan α1-tan 2α=2×121-⎝⎛⎭⎫122=43. ∵α∈⎝⎛⎭⎫0,π2,2α∈(0,π),tan 2α=43>0, ∴2α∈⎝⎛⎭⎫0,π2,∴sin 2α=45,cos 2α=35, ∴sin ⎝⎛⎭⎫2α+π3=sin 2α·cos π3+cos 2α·sin π3=45×12+35×32=4+3310. 答案:4+3310两角和与差公式的逆向应用(2015·高考全国卷Ⅰ)sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32B .32C .-12D .12[解析] sin 20°cos 10°-cos 160°sin 10° =sin 20°cos 10°+cos 20°sin 10° =sin(20°+10°)=sin 30°=12,故选D.[答案] D两角和与差的三角函数的公式的逆向应用,注意两点:①角的统一;②三角函数名称的对应.1.sin 68°sin 67°-sin 23°cos 68°的值为( ) A .-22B .22C .32D .1解析:选B.原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 2.cos 15°+sin 15°cos 15°-sin 15°的值为( )A.33B . 3C .-33D .- 3解析:选B.原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.3.sin(65°-x )cos(x -20°)+cos(65°-x )cos(110°-x )的值为( ) A.2 B .22 C .12D .32解析:选 B.原式=sin(65°-x )cos(x -20°)+cos(65°-x )·cos[90°-(x -20°)]=sin(65°-x )·cos(x -20°)+cos(65°-x )sin(x -20°)=sin[(65°-x )+(x -20°)]=sin 45°=22.利用两角和与差公式求角度设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan α=1+sin βcos β,则( ) A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2[解析] 由tan α=1+sin βcos β得sin αcos α=1+sin βcos β,即sin αcos β=cos α+cos αsin β, ∴sin(α-β)=cos α=sin ⎝⎛⎭⎫π2-α. ∵α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2, ∴α-β∈⎝⎛⎭⎫-π2,π2,π2-α∈⎝⎛⎭⎫0,π2, ∴由sin(α-β)=sin ⎝⎛⎭⎫π2-α,得α-β=π2-α, ∴2α-β=π2.[答案] B利用两角和与差的三角函数公式求角度,需要注意:①根据基本关系和公式求出需要求的角的三角函数值;②确定所求角的范围,求出对应的角度.1.已知α,β均为锐角,(1+tan α)(1+tan β)=2,则α+β为( ) A.π6B .π4C .π3D .3π4解析:选B.由(1+tan α)(1+tan β)=2得 tan α+tan β=1-tan αtan β,∴tan(α+β)=tan α+tan β1-tan αtan β=1-tan αtan β1-tan αtan β=1.∵0<α,β<π2,∴0<α+β<π,∴α+β=π4.2.设α,β均为锐角,且cos(α+β)=sin(α-β),则α的值为( ) A.π6B .π3C .π4D .5π12解析:选C.由cos(α+β)=sin(α-β),得cos αcos β-sin αsin β=sin αcos β-cos αsin β, 即cos α(cos β+sin β)=sin α(cos β+sin β), 因为β为锐角,所以cos β+sin β≠0,所以cos α=sin α, 所以tan α=1.∴α=π4,故选C.3.已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则角β等于( ) A.5π12B .π3C .π4D .π6解析:选C.∵α、β均为锐角,∴-π2<α-β<π2.又sin(α-β)=-1010,∴cos(α-β)=31010. 又sin α=55,∴cos α=255, ∴sin β=sin[α-(α-β)] =sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. ∴β=π4.故选C.二倍角公式及其应用(2015·高考广东卷)已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4 =2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.利用二倍角公式求三角函数值时,应注意:①cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α的选择应用; ②高次化简求值时,用cos 2α=1+cos 2α2,sin 2α=1-cos2α2降次; ③注意用恒等式(sin α±cos α)2=1±sin 2α等价转化.1.已知sin 2α=23,则cos 2⎝⎛⎭⎫α+π4等于( ) A.16B .13C .12D .23=45×22+35×22=7210. 答案:7210一、选择题1.(必修4 P 69A 组T 8(3)改编)已知tan α=3,则(sin α-cos α)2等于( )A.35B .25C .75D .85解析:选B.∵tan α=3,∴(sin α-cos α)2=1-2sin αcos α=1-2sin α cos αsin 2α+cos 2α=1-2tan αtan 2 α+1=1-610=25. 2.(必修4 P 146A 组T 8(3)改编)化简sin 3αsin α-2cos 2α等于( ) A .sin αB .cos αC .1D .0 解析:选C.sin 3αsin α-2cos 2α =sin 2αcos α+cos 2αsin αsin α-2cos 2α =2cos 2α+cos 2α-2cos 2α=2cos 2α-(2cos 2α-1)=1.3.(必修4 P 143A 组T 2(2)改编)已知sin(α+β)=12,sin(α-β)=13,若tan α=m tan β,则m 的值为( ) A .3B .4C .5D .6解析:选C.由sin(α+β)=12,sin(α-β)=13, ∴sin αcos β=512,cos αsin β=112, ∴tan α=5tan β,∴m =5,故选C.二、填空题4.(必修4 P 137A 组T 5改编)已知sin(30°+α)=35,60°<α<150°,则cos(2α+150°)=________. 解析:设30°+α=t ,∴90°<t <180°,∵sin t =35, ∴cos t =-45, ∴cos(2α+150°)=cos[2(t -30°)+150°]=cos(2t +90°)=-sin 2t =-2sin t cos t =2425. 答案:2425三、解答题5.(必修4 P 125~126内文改编)用向量法证明cos(α-β)=cos αcos β+sin αsin β.证明:如图,在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α,β,它们的终边与单位圆O 的交点分别为A ,B .则OA →=(cos α,sin α),OB →=(cos β,sin β).由向量数量积的坐标表示,有OA →·OB →=(cos α,sin α)·(cos β,sin β)=cos αcos β+sin αsin β.设OA →与OB →的夹角为θ,则OA →·OB →=|OA →|·|OB →|cos θ=cos θ=cos αcos β+sin αsin β.另一方面,由图(1)可知,α=2k π+β+θ;由图(2)可知,α=2k π+β-θ.于是α-β=2k π±θ,k ∈Z .所以cos(α-β)=cos θ.则cos(α-β)=cos αcos β+sin αsin β.一、选择题1.计算1-2sin 222.5°的结果等于( )。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。

在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。

本文将从公式的定义、推导及应用方面进行详细解析。

一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。

两角和与差公式

两角和与差公式

两角和与差公式
“两角和与差公式”,指的是一种用来求解两个角度之和或差的公式,又称为角和差公式。

它是在三角函数理论中比较重要的一部分,也是数学中最常用的公式之一。

两角和与差公式的概念来源于三角函数的一般性公式:sin(A+B) = sin A * cos B + cos A * sin B。

此外,任何夹角的和与差可以用相应的三角函数表示,因此可以用上述公式求出两个角度之和或差。

除了sin(A+B) = sin A * cos B + cos A * sin B,还有cos(A+B) = cos A * cos B - sin A * sin B和
tan(A+B) = (tan A + tan B)/(1-tan A * tan B)。

首先,我们来看一下cos(A+B) = cos A * cos B - sin A * sin B,其中A、B都是夹角,那么这个公式就是说,当两个角度A、B相加时,新的夹角的余弦值等于A、B 夹角的余弦值相乘再减去A、B夹角的正弦值相乘的结果。

同样的,tan(A+B) = (tan A + tan B)/(1-tan A * tan B),其中A、B都是夹角,那么这个公式就是说,当两个角度A、B相加时,新的夹角的正切值等于A、B夹角的正切值相加再除以1减去A、B夹角的正切值相乘的结果。

总之,两角和与差公式是根据三角函数的一般性公式得出的,它能够方便快捷地求出两个角度之和或差,是数
学中最常用的公式之一,也是三角函数理论中比较重要的一部分。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;(3)公式S (α-β):sin(α-β)=sin αcos β-cos αsin β;(4)公式S (α+β):sin(α+β)=sin αcos β+cos αsin β;(5)公式T (α-β):tan(α-β)=tan α-tan β1+tan αtan β; (6)公式T (α+β):tan(α+β)=tan α+tan β1-tan αtan β. 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)32sin α+12cos α=sin ⎝⎛⎭⎫α+π3.( × ) 教材改编题1.若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4等于( ) A .-210 B.210C .-7210 D.7210答案 C解析 ∵α是第三象限角,∴sin α=-1-cos 2α=-35, ∴sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 2.计算:sin 108°cos 42°-cos 72°sin 42°= . 答案 12解析 原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12. 3.若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.题型一 两角和与差的三角函数公式例1 (1)(2022·包头模拟)已知cos α+cos ⎝⎛⎭⎫α-π3=1,则cos ⎝⎛⎭⎫α-π6等于() A.13 B.12C.22D.33 答案 D解析 ∵cos α+cos ⎝⎛⎭⎫α-π3=1,∴cos α+12cos α+32sin α=32cos α+32sin α=3⎝⎛⎭⎫32cos α+12sin α=3cos ⎝⎛⎭⎫α-π6=1,∴cos ⎝⎛⎭⎫α-π6=33.(2)化简:①sin x +3cos x = .答案 2sin ⎝⎛⎭⎫x +π3解析 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x=2sin ⎝⎛⎭⎫x +π3. ②24sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x = .答案 22sin ⎝⎛⎭⎫7π12-x解析 原式=22⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x=22sin ⎝⎛⎭⎫π4-x +π3 =22sin ⎝⎛⎭⎫7π12-x . 教师备选1.(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝⎛⎭⎫θ+π3 =sin ⎝⎛⎭⎫θ+π6-π6+sin ⎝⎛⎭⎫θ+π6+π6 =sin ⎝⎛⎭⎫θ+π6cos π6-cos ⎝⎛⎭⎫θ+π6sin π6+sin ⎝⎛⎭⎫θ+π6cos π6+cos ⎝⎛⎭⎫θ+π6sin π6=2sin ⎝⎛⎭⎫θ+π6cos π6=3sin ⎝⎛⎭⎫θ+π6=1. 所以sin ⎝⎛⎭⎫θ+π6=33. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112答案 A解析 ∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45,tan α=-34, 又tan(π-β)=12, ∴tan β=-12, ∴tan(α-β)=tan α-tan β1+tan α·tan β=-34+121+⎝⎛⎭⎫-34×⎝⎛⎭⎫-12=-211. 思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)函数y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4的最小值为( ) A. 2B .-2C .- 2 D. 3答案 C解析 y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4 =sin 2x cos π4+cos 2x sin π4+sin 2x cos π4-cos 2x sin π4=2sin 2x . ∴y 的最小值为- 2.(2)已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 答案 -33 解析 因为cos ⎝⎛⎭⎫α+π6=32cos α-12sin α=3cos α,所以-sin α=3cos α,故tan α=-3, 所以tan(α+β)=tan α+tan β1-tan αtan β=-3+331+3×33 =-2332=-33.题型二 两角和与差的三角函数公式的逆用与变形例2 (1)(多选)已知α,β,γ∈⎝⎛⎭⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是( ) A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案 AD解析 由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴cos(β-α)=12,即选项A 正确,B 错误;∵γ∈⎝⎛⎭⎫0,π2,∴sin γ=sin β-sin α>0,∴β>α,而α,β∈⎝⎛⎭⎫0,π2,∴0<β-α<π2,∴β-α=π3,即选项D 正确,C 错误.(2)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14 B.13C.12 D.53答案 B解析 ∵C =120°,∴tan C =- 3.∵A +B =π-C ,∴tan(A +B )=-tan C .∴tan(A +B )=3,tan A +tan B =3(1-tan A tan B ),又∵tan A +tan B =233,∴tan A tan B =13.延伸探究 若将本例(2)的条件改为tan A tan B =tan A +tan B +1,则C 等于() A .45° B .135°C .150°D .30°答案 A解析 在△ABC 中,因为tan A tan B =tan A +tan B +1, 所以tan(A +B )=tan A +tan B1-tan A tan B =-1=-tan C , 所以tan C =1,所以C =45°.教师备选1.若α+β=-3π4,则(1+tan α)(1+tan β)= . 答案 2解析 tan ⎝⎛⎭⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β, 所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12, ∴sin(α+β)=-12. 思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力. 跟踪训练2 (1)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b答案 D 解析 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°) =22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x 在x ∈⎣⎡⎦⎤0,π2上单调递增, 所以sin 13°>sin 12°>sin 11°,所以a >c >b .(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .答案 4解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4. 题型三 角的变换问题例3 (1)已知α,β∈⎝⎛⎭⎫π3,5π6,若sin ⎝⎛⎭⎫α+π6=45,cos ⎝⎛⎭⎫β-5π6=513,则sin(α-β)的值为( ) A.1665B.3365C.5665D.6365答案 A解析 由题意可得α+π6∈⎝⎛⎭⎫π2,π, β-5π6∈⎝⎛⎭⎫-π2,0, 所以cos ⎝⎛⎭⎫α+π6=-35, sin ⎝⎛⎭⎫β-5π6=-1213, 所以sin(α-β)=-sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-⎝⎛⎭⎫β-5π6 =-45×513+⎝⎛⎭⎫-35×⎝⎛⎭⎫-1213 =1665. (2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .答案 -1 12解析 ∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3) =-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=12.教师备选(2022·华中师范大学第一附属中学月考)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=43, tan α=sin αcos α, 所以sin α=43cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos 2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43, 所以tan 2α=2tan α1-tan 2α=-247, 因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β) =-211. 思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等.跟踪训练3 (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= . 答案 π4 解析 因为α,β均为锐角, 所以-π2<α-β<π2. 又sin(α-β)=-1010, 所以cos(α-β)=31010. 又sin α=55, 所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4. (2)已知0<α<π2<β<π,tan α=43,cos(β-α)=210,则sin α= ,cos β= . 答案 45 -22解析 因为0<α<π2,且tan α=43, 所以sin α=45,cos α=35, 由0<α<π2<β<π, 则0<β-α<π,又因为cos(β-α)=210, 则sin(β-α)=7210, 所以cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =210×35-7210×45=-22. 课时精练1.(2022·北京模拟)tan 105°等于( )A .2- 3B .-2- 3C.3-2 D .- 3答案 B解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)=4+23-2=-2- 3.2.已知点P (x ,22)是角α终边上一点,且cos α=-13,则cos ⎝⎛⎭⎫π6+α等于() A .-3+226 B.3+226C.3-226D.22-36答案 A解析 因为点P (x ,22)是角α终边上一点,则有cos α=x x 2+(22)2=x x 2+8,而cos α=-13,于是得x x 2+8=-13,解得x =-1,则sin α=22x 2+8=223,因此,cos ⎝⎛⎭⎫π6+α=cos π6cos α-sin π6sin α=32×⎝⎛⎭⎫-13-12×223=-3+226,所以cos ⎝⎛⎭⎫π6+α=-3+226.3.sin 10°1-3tan 10°等于( )A .1 B.14C.12 D.32 答案 B解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10° =2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.4.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于() A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010, 且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010 =22, 又0<α+β<π,故α+β=π4. 5.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A ,方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24,A 错误. 对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12,C 正确.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12,D 正确. 6.(多选)已知cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,以下判断正确的是( ) A .sin 2α=1213B .cos(α-β)=19565C .cos αcos β=8565D .tan αtan β=118答案 AC解析 因为cos(α+β)=-55, cos 2α=-513,其中α,β为锐角, 所以sin 2α=1-cos 22α=1213,故A 正确; 因为sin(α+β)=255, 所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝⎛⎭⎫-513×⎝⎛⎭⎫-55+1213×255=29565,故B 错误; cos αcos β=12[cos(α+β)+cos(α-β)] =12⎝⎛⎭⎫-55+29565=8565, 故C 正确;sin αsin β=12[cos(α-β)-cos(α+β)] =12⎣⎡⎦⎤29565-⎝⎛⎭⎫-55=21565, 所以tan αtan β=218,故D 错误. 7.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4= . 答案 -5665解析 因为α,β∈⎝⎛⎭⎫3π4,π,所以3π2<α+β<2π, π2<β-π4<3π4, 因为sin(α+β)=-35, sin ⎝⎛⎭⎫β-π4=1213, 所以cos(α+β)=45, cos ⎝⎛⎭⎫β-π4=-513, 所以cos ⎝⎛⎭⎫α+π4 =cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 9.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解 ∵0<β<π2<α<π, ∴-π4<α2-β<π2, π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53,sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459, ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. 10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050.11.已知cos ⎝⎛⎭⎫π2-α=2cos(π-α),则tan ⎝⎛⎭⎫π4+α等于( ) A .-3 B.13C .-13D .3答案 C解析 由cos ⎝⎛⎭⎫π2-α=2cos(π-α)得sin α=-2cos α,即tan α=-2,∴tan ⎝⎛⎭⎫π4+α=tan π4+tan α1-tan π4tan α =1-21-1×(-2)=-13. 12.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6 C .f (x )=sin x 2+cos x 2的最大值为2 D .tan 12°+tan 33°+tan 12°tan 33°=1答案 AD解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B , 315sin x +35cos x =65⎝⎛⎭⎫32sin x +12cos x =65sin ⎝⎛⎭⎫x +π6,故B 错误; 对于C ,f (x )=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 所以f (x )的最大值为2,故C 错误;对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.13.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β= .答案 -3π4解析 依题意有⎩⎪⎨⎪⎧ tan α+tan β=-3a ,tan α·tan β=3a +1, 所以tan(α+β)=tan α+tan β1-tan α·tan β =-3a 1-(3a +1)=1. 又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0, 所以tan α<0且tan β<0,所以-π2<α<0且-π2<β<0, 即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4. 14.(2022·阜阳模拟)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=π2, ∴⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π) =cos α+sin α=2sin ⎝⎛⎭⎫α+π4. ∵π2≤α≤π, ∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝⎛⎭⎫α+π4≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].15.(2022·河北五校联考)已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( ) A.π3 B.π6 C.π4 D.π8 答案 B解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y=2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y=2tan y 1+3tan 2y =21tan y+3tan y ≤33, 当且仅当tan y =33时等号成立, 由于f (x )=tan x 在x ∈⎝⎛⎭⎫0,π2上单调递增, 又x ,y ∈⎝⎛⎭⎫0,π2, 则x -y 的最大值为π6. 16.如图,在平面直角坐标系Oxy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B 两点,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM=55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解 (1)由题意知,|OA |=|OM |=1,因为S △OAM =12|OA |·|OM |sin α=55, 所以sin α=255, 又α为锐角,所以cos α=55. 因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210, 所以sin β=210,cos β=-7210, 所以cos(α-β)=cos αcos β+sin αsin β=55×⎝⎛⎭⎫-7210+255×210=-1010. (2)因为sin α=255,cos α=55, cos(α-β)=-1010, sin(α-β)=sin αcos β-cos αsin β=255×⎝⎛⎭⎫-7210-55×210=-31010, 所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22, 因为α为锐角,sin α=255>22, 所以α∈⎝⎛⎭⎫π4,π2,所以2α∈⎝⎛⎭⎫π2,π, 又β∈⎝⎛⎭⎫π2,π, 所以2α-β∈⎝⎛⎭⎫-π2,π2,所以2α-β=-π4.。

高中数学两角和与差的正弦、余弦、正切公式课件

高中数学两角和与差的正弦、余弦、正切公式课件

Thanks.
小结:
1.掌握C ( ) , C( ) 公式的推导,小心
它们的差别与联系;
2.注意角的拆分与组合,如:
( ) , 2 ( ) ,
2 ( ) ( ),
2 ( ) ( ),
( − ) = − .
公式五

( − ) = ,


( − ) = .

公式六

( + ) = ,
2

( + ) = − .
2
3.两点间的距离公式
平面上任取两点A(x 1 , y1 ), B(x 2 , y 2 )
2
2
sin cos cos sin
两角差的正弦公式
两角和的正弦公式:sin( ) sin cos cos sin
两角差的正弦公式:sin( ) sin cos cos sin
法一:
sin( )
sin[ ( )]
A(x 1 , y 1 )
y
| y1 y 2 |
B(x 2 , y 2 )
| x1 x 2 |
0
x
2
2
AB (x1 x2 ) (y 1 y 2 )
02
两角和与差的余弦公式
终边
两角差的余弦公式
y
P1 (cos , sin )
终边
A1 (cos , sin )源自,
2
2
2
3.注意整体代换思想的应用.


2
;

1
④ cos

两角和与差及二倍角三角函数公式

两角和与差及二倍角三角函数公式
解。
05 公式的应用举例
在三角形中的应用
已知两边及夹角求第三边
求三角形的面积
利用两角和与差的余弦公式,结合三 角形的边长和角度关系,可以求出第 三边的长度。
在已知三角形的三边长度时,可以利 用海伦公式结合两角和与差的三角函 数公式求出三角形的面积。
判断三角形的形状
通过比较三角形的三个内角的余弦值, 可以判断三角形的形状(锐角、直角 或钝角^circ - 45^circ) = cos30^circcos45^circ + sin30^circsin45^circ = frac{sqrt{3}}{2} times frac{sqrt{2}}{2} + frac{1}{2} times frac{sqrt{2}}{2} = frac{sqrt{6} + sqrt{2}}{4}$。
二倍角公式允许我们将一个 角的二倍角的三角函数表达 式化简为单角的三角函数表 达式,这在解决一些特定问 题时非常有用,如求某些特 殊角的三角函数值或证明某 些恒等式。
公式在三角恒等 式证明中的应用
两角和与差及二倍角公式在 三角恒等式的证明中扮演着 重要角色。通过使用这些公 式,我们可以将复杂的三角 函数表达式化简为更简单的 形式,从而更容易地证明恒 等式。
04 公式推导与证明
两角和与差公式的推导
利用三角函数的和差化积公式, 将两角和与差的三角函数表达式 转化为单个角的三角函数表达式。
通过三角函数的加减变换,得到 两角和与差的正弦、余弦公式。
结合三角函数的周期性,将公式 扩展到任意角。
二倍角公式的推导
利用三角函数的倍角公式,将 二倍角的三角函数表达式转化 为单个角的三角函数表达式。
三角函数的性质

《两角和与差的正弦、余弦、正切公式》三角函数PPT

《两角和与差的正弦、余弦、正切公式》三角函数PPT
何选择公式,选择哪一个公式会更好.需要说明的是,(4)运用到了切
化弦,将特殊值 化为tan 60°等,为此可以熟记一些常见的特殊角
的函数值,如1=sin 90°=cos 0°=tan 45°, =tan
3 60°等.
2.公式的推广:本例第(5)小题所得结论可以推广到一般情形:若
π
A+B= ,则(1+tan A)(1+tan B)=2;若(1+tan A)(1+tan B)=2,则
(4)sin 15°+cos 15°= 2 sin 60°.(
)
答案:(1)× (2)× (3)√ (4)√
)
课前篇
自主预习




三、两角和与差的正切公式
1.(1)求tan 15°的值.
提示:(1)∵sin 15°=sin(45°-30°)=sin 45°cos 30°-cos 45°sin
6- 2
2sin50°cos10°+2sin10°cos50°
×
cos10°
cos10°
2cos 10°
=2 2(sin 50°cos 10°+sin 10°cos 50°)
=
=2 2sin(50°+10°)=2 2 × 3 = 6.
2
1
(2)原式=sin(α+β)cos α-2[sin(α+α+β)-sin(α+β-α)]=sin(α+β)cos
(2)sin(α-β)=sin αcos β-cos αsin β.
课前篇
自主预习




3.判断正误
(1)sin(α-β)=sin αcos α-cos βsin β.(

两角和与差的三角函数

两角和与差的三角函数

§1 两角和与差的三角函数知识梳理1.两角和与差的余弦公式(1)公式:cos(α-β)=cos αcos β+sin αsin β;cos(α+β)=cos αcos β-sin αsin β.(2)理解和记忆:①上述公式中的α、β都是任意角.②和差角的余弦公式不能按分配律展开,即cos(a±β)≠cos α±cos β.③公式使用时不仅要会正用,还要能够逆用公式,在很多时候,逆用更能简洁地处理问题.如由cos50°cos20°+sin50°sin20°能迅速地想到cos50°cos20°+sin50°sin20°=cos(50°-20°)= cos30°=21. ④第一章中所学的部分诱导公式可通过本节公式验证.⑤记忆:公式右端的两部分为同名三角函数积,连接符号与左边角的连接符号相反.2.两角和与差的正弦公式(1)公式:sin(α+β)=sin αcos β+cos αsin β;sin(α-β)=sin αcos β-cos αsin β.(2)理解和记忆:①上面公式中的α、β均为任意角.②与和差角的余弦公式一样,公式对分配律不成立,即sin(α±β)≠sin α±sin β.③和差公式是诱导公式的推广,诱导公式是和差公式的特例.如sin(2π-α)=sin2πcos α-cos2πsin α=0×cos α-1×sin α=-sin α.当α或β中有一个角是2π的整数倍时,通常使用诱导公式较为方便. ④使用公式时不仅要会正用,还要能够逆用公式,如化简sin(α+β)cos β-cos(α+β)sin β,不要将sin(α+β)和cos(α+β)展开,而采用整体思想,进行如下变形:sin(α+β)cos β-cos(α+β)sin β=sin [(α+β)-β]=sin α,这也体现了数学中的整体原则.⑤记忆时要与两角和与差的余弦公式区别开来,两角和与差的余弦公式的右端的两部分为同名三角函数积,连接符号与左边的连接符号相反;两角和与差的正弦公式的右端的两部分为异名三角函数积,连接符号与左边的连接符号相同.3.两角和与差的正切(1)公式:tan(α+β)=βαβαtan tan 1tan tan -+;tan(α-β)=βαβαtan tan 1tan tan +-. (2)理解和记忆:①公式成立的条件:α≠k π+2π,β≠k π+2π,α+β≠k π+2π或α-β≠k π+2π,以上k∈Z .当tan α、tan β、tan(α±β)不存在时,可以改用诱导公式解决.②两角和与差的正切同样不仅可以正用,而且可以逆用、变形用,逆用和变形用都是化简三角恒等式的重要手段,如tan α+tan β=tan(α+β)(1-tan αtan β)就可以解决诸如tan25°+tan20°+tan25°tan20°的问题.所以在处理问题时要注意观察式子的特点,巧妙运用公式或其变形,使变换过程简单明了.③与和差角的弦函数公式一样,公式对分配律不成立,即tan(α+β)≠tan α+tan β. 知识导学要学好本节有必要复习任意角的三角函数和平面向量的数量积;本节的重点是公式的应用,难点是公式的变形应用;在学习过程中,要善于应用联系的观点看待问题.难疑突破1.形如函数f (x)=asinx+bcosx(ab≠0)的最值是什么?剖析:受思维定势的影响,总是认为y=sinx 和y=cosx 的最大值都是1,它们的最小值都是-1,则函数f(x)的最大值是|a|+|b|,最小值是 -|a|-|b|,其实不然.其突破口是分析y=sinx 和y=cosx 取最值时,自变量x 取值情况.当x=2k π+2π (k∈Z )时,y=sinx 取最大值1,当x=2k π-2π (k∈Z )时,y=sinx 取最小值-1;当x=2k π(k∈Z )时,y=cosx 取最大值1,当x=2k π+π(k∈Z )时,y=cosx 取最小值-1;由此看y=sinx 取最值时,y=cosx=0,而y=cosx 取最值时,y=sinx=0.所以y=sinx 和y=cosx 不能同时取最值,因此这样求最值是错误的.求形如函数f(x)=asinx+bcosx(ab≠0)的最值,常用方法是化归为求y=Asin(ωx+φ)+b 的最值.例如:求函数f(x)=2sinx-32cosx ,x∈R 的最值.可将函数解析式化为y=Asin(ωx+φ)后,再求最值. f(x)=2sinx-32cosx =4(21sinx-23cosx) =4(sinxcos3π-cosxsin 3π) =4sin(x-3π), ∴函数f(x)的最大值是4,最小值是-4.很明显函数f(x)的最大值不是2±32,最小值不是-2-32.下面讨论函数f(x)=asinx+bcosx(ab≠0),x∈R 的最值. f(x)=asinx+bcosx=22b a +(22b a a+sinx+22b a b +cosx), ∵(22b a a+)2+(22b a b +)2=1, ∴可设cos θ=22b a a +,sin θ=22b a b +,则tan θ=ab (θ又称为辅助角). ∴f(x)= 22b a + (sinxcos θ+cosxsin θ)= 22b a +sin(x+θ).∴当x∈R 时, f(x)的最大值是22b a +,最小值是-22b a +.特别是当a b =±1,±3,±33时,θ是特殊角,此时θ常取4π,3π,6π. 对于形如y=asinx+bcosx(ab≠0)的式子引入辅助角化归为y=Asin(x+θ)的形式,可进行三角函数的化简,求周期、最值等,这是高考和模拟的必考内容之一.例如:2006江苏南京一模,7 若函数f(x)=sinax+cosax(a >0)的最小正周期为1,则它的图像的一个对称中心为( ) A.(8π-,0) B.(0,0) C.(-81,0) D.(81,0) 思路分析:化为y=Asin(ωx+θ)形式,再讨论其对称中心.f(x)=sinax+cosax=2sin(ax+4π)(a >0), ∴T=a π2=1.∴a=2π.∴f(x)=2sin(2πx+4π)(a >0).又∵f(x)与x 的交点是其对称中心,经验证仅有(-81,0)是函数f(x)的对称中心. 答案:C3.2 两角和与差的三角函数课堂导学三点剖析1.两角和与差的三角函数公式的简单运用【例1】 若sin α=55,sin β=1010且α、β是锐角,求α+β的值. 思路分析:可先求出α+β的某种三角函数值,然后再确定α+β的值.解:∵α、β是锐角,∴cos α=552)55(12=-,cos β=10103)1010(12=-. ∴sin(α+β)=sin αcos β+cos αsin β=22. 又∵sin α=55<21,sin β=1010<21, ∴0°<α<30°,0°<β<30°.∴0°<α+β<60°.∴α+β=45°.各个击破类题演练 1计算sin33°cos27°+sin57°cos63°的值.解析:原式=sin33°cos27°+cos33°sin27°=sin(33°+27°)=sin60°=23, 或:原式=cos57°cos27°+sin57°sin27°=cos(57°-27°)=cos30°=23. 变式提升 1sin163°sin223°+sin253°sin313°=___________.解析:原式=sin(180°-17°)·sin(180°+43°)+sin(270°-17°)+sin(270°+43°) =-sin17°sin43°+cos17°cos43° =cos(17°+43°)=cos60°=21. 答案:21 2.两角差的余弦公式的运用【例2】 已知cos(α+β)=31,cos(α-β)=51,求tan αtan β的值. 思路分析:题目中要求的是单角α与 β的函数值,所以自然要想到用和差公式分解,然后用商式求解. 解:由⎪⎪⎩⎪⎪⎨⎧=+=-⎪⎪⎩⎪⎪⎨⎧=-=+)2.(51sin sin cos cos )1(,31sin sin cos cos .51)cos(,31)cos(βαβαβαβαβαβα得 ①+②得cos αcos β=154, ②-①得sin αsin β=151-, ∴tan αtan β=βαβαcos cos sin sin =41-. 友情提示在利用两角和差公式的同时,运用同角三角函数关系,把不同类型的公式放在一起使用是本章题目的特点.类题演练 2设a∈(0,2π),若sin α=53,则2cos(α+4π)等于( ) A.57 B.51 C.57- D.-51 解析:∵α∈(0,2π),sin α=53,∴cos α=54, 又2cos(α+4π)=2(cos α·cos 4π-sin α·sin 4π) =cos α-sin α=51. 答案:B变式提升 2已知α、β为锐角,且cos α=71,cos(α+β)=1411-,求β的值. 解析:∵α是锐角,cos α=71,∴sin α=734)71(12=-. ∵α、β均为锐角,∴0<α+β<π.又cos(α+β)=1411-,∴sin(α+β)=1435)1411(12=--. ∴cos β=cos [(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=(1411-)·71+7341435∙=21. 又∵β为锐角,∴β=3π. 3.两角和与差的三角函数的变式应用【例3】 已知α,β∈(-2π,2π),tan α,tan β是一元二次方程x 2+33x+4=0的两根,求 α+β.思路分析:由根与系数关系可得tan α+tan β、tan αtan β,因此可先求tan(α+β).解:由题意知tan α+tan β=-33,tan αtan β=4,①∴tan(α+β)=3tan tan 1tan tan =-+βαβα. 又∵α,β∈(-2π,2π) 且由①知α∈(-2π,0),β∈(-2π,0), ∴α+β∈(-π,0).∴α+β=32π-. 类题演练 3计算tan10°+tan50°+3tan10°tan50°的值.解析:原式=tan(10°+50°)(1-tan10°tan50°)+3tan10°tan50° =3(1-tan10°tan50°)+3tan10°tan50°=3.变式提升 3求值:tan10°tan20°+tan20°tan60°+tan60°tan10°.解析:原式=tan10°tan20°+3(tan10°+tan20°)=tan10°tan20°+3tan30°(1-tan10°tan20°)=1.。

第四章 三角函数与三角形4-4两角和与差的三角函数

第四章  三角函数与三角形4-4两角和与差的三角函数

二、解题技巧 在三角函数的化简、求值与证明中,常常对条件和结 论进行恰当变换,以满足应用公式的条件.常见的有: 角的变换, 注意拆角、 拼角技巧(如 α=(α+β)-β=(α α+β α-β α-β -β)+β,(α+β)+(α-β)=2α,β= - , = 2 2 2
β α α+ - +β,75° =45° +30° 等等); 2 2


重点难点 重点:掌握两角和、两角差、二倍角公式, 并运用这些公式化简三角函数式,求某些角 的三角函数值,证明三角恒等式等. 难点:了解各公式间的内在联系,熟练地掌 握这些公式的正用、逆用以及某些公式变形 后的应用.

知识归纳 1.在两角和与差的公式中,以公式C(α±β)为 最基本,其推导过程应熟练掌握.教材用平 面向量对C(α-β)进行了推导,类似地也可以 用平面向量方法推证C(α+β).下面用对称和 两点间的距离公式给出C(α+β)的推证过程, 望细心体会其思路方法.

答案:A
2 π (理)(2010· 南充市模拟)已知 tan(α+β)= ,tan(β- ) 5 4 1+tanα 1 = ,则 等于( 4 1-tanα 1 A. 6 13 C. 22 13 B. 18 3 D. 22 )
π 1+tanα π 解析: =tan4+α=tan[(α+β)-(β- )] 4 1-tanα
如右图,点 P1,P2,P3,P4 的坐标分 别为 P1(1,0),P2(cosα,sinα), P3(cos(α+β),sin(α+β)),P4 (cos(-β),sin(-β)),由 P1P3=P2P4 及 两点间距离公式得[cos(α+β)-1]2 +sin2(α + β) = [cos( - β) - cosα]2 + [sin( - β) - sinα]2 , 整 理 得 cos(α + β) = cosαcosβ - sinαsinβ,本公式中 α,β 对任意角都成立. 也可以先用此法导出 C(α-β).

两角和与差的正弦、余弦和正切

两角和与差的正弦、余弦和正切

§4.5 两角和与差的正弦、余弦和正切1.cos(α-β)=cos αcos β+sin αsin β (Cα-β)cos(α+β)= (Cα+β)sin(α-β)= (Sα-β)sin(α+β)= (Sα+β)tan(α-β)= (Tα-β)tan(α+β)= (Tα+β)前面4个公式对任意的α,β都成立,而后面两个公式成立的条件是α≠kπ+,β≠kπ+,k∈Z,且α+β≠kπ+(Tα+β需满足),α-β≠kπ+(Tα-β需满足)k∈Z时成立,否则是不成立的.当tan α、tan β或tan(α±β)的值不存在时,不能使用公式Tα±β处理有关问题,应改用诱导公式或其它方法来解.2.二倍角公式sin 2α=______________;cos 2α=________________=____________=______________;tan 2α=______________.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如Tα±β可变形为:tan α±tan β=______________________,tan αtan β=________________=________________.4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=______________或f(α)=________________,其中φ可由a,b的值唯一确定.[难点正本 疑点清源]1.正确理解并掌握和、差角公式间的关系理解并掌握和、差角公式间的关系对掌握公式十分有效.如cos(α-β)=cos αcos β+sin αsin β可用向量推导,cos(α+β)只需转化为cos[α-(-β)]利用上述公式和诱导公式即可.2.辩证地看待和角与差角为了灵活应用和、差角公式,可以对角进行适当的拆分变换:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·,=-等.1.化简:sin 200°cos 140°-cos 160°sin 40°=________________________________.2.已知sin(α+β)=,sin(α-β)=-,则的值为________.3.函数f(x)=2sin x(sin x+cos x)的单调增区间为______________________.4.设sin(+θ)=,则sin 2θ等于 ( )A.-B.-C.D.5.若sin=,则cos的值为 ( )A. B.- C. D.-题型一 三角函数式的化简求值问题例1 (1)化简: (0<θ<π);(2)求值:-sin 10°.探究提高 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:①化为特殊角的三角函数值;②化为正、负相消的项,消去求值;③化分子、分母出现公约数进行约分求值.(1)化简:·;(2)求值:[2sin 50°+sin 10°(1+tan 10°)]·.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<<α<π,且cos=-,sin=,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值.探究提高 (1)注意变角-=,可先求cos 或sin 的值.(2)先由tan α=tan[(α-β)+β],求tan α的值,再求tan 2α的值,这种方法的优点是可确定2α的取值范围.(3)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.(4)解这类问题的一般步骤为:①求角的某一个三角函数值;②确定角的范围;③根据角的范围写出所求的角.(2011·广东)已知函数f(x)=2sin,x∈R.(1)求f的值;(2)设α,β∈,f=,f(3β+2π)=,求cos(α+β)的值.题型三 三角变换的简单应用例3 已知f(x)=sin2x-2sin·sin.(1)若tan α=2,求f(α)的值;(2)若x∈,求f(x)的取值范围.探究提高 (1)将f(x)化简是解题的关键,本题中巧妙运用“1”的代换技巧,将sin 2α,cos 2α化为正切tan α,为第(1)问铺平道路.(2)把形如y=a sin x+b cos x化为y=sin(x+φ),可进一步研究函数的周期、单调性、最值与对称性.(2010·天津)已知函数f(x)=2sin x cos x+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[,],求cos 2x0的值. 6.构造辅助角逆用和角公式解题试题:(14分)已知函数f(x)=2cos x cos-sin2x+sin x cos x.(1)求f(x)的最小正周期;(2)当α∈[0,π]时,若f(α)=1,求α的值.审题视角 (1)在f(x)的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、降幂等转化方法.(2)当f(x)=a sin x +b cos x的形式时,可考虑辅助角公式.规范解答解 (1)因为f(x)=2cos x cos-sin2x+sin x cos x=cos2x+sin x cos x-sin2x+sin x cos x [4分]=cos 2x+sin 2x=2sin,所以最小正周期T=π. [8分] (2)由f(α)=1,得2sin=1,又α∈[0,π],所以2α+∈, [12分]所以2α+=或2α+=,故α=或α=. [14分]第一步:将f(x)化为a sin x+b cos x的形式.第二步:构造:f(x)=(sin x·+cos x·).第三步:和角公式逆用f(x)=sin(x+φ)(其中φ为辅助角).第四步:利用f(x)=sin(x+φ)研究三角函数的性质.第五步:反思回顾.查看关键点、易错点和解题规范.批阅笔记 (1)在本题的解法中,运用了二倍角的正、余弦公式,还引入了辅助角,技巧性较强.值得强调的是:辅助角公式a sin α+b cos α=sin(α+φ)(其中tan φ=),或a sin α+b cos α= cos(α-φ) (其中tan φ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)本题的易错点是想不到引入辅助角或引入错误.在定义域大于周期的区间上求最值时,辅助角的值一般不用具体确定.方法与技巧1.巧用公式变形:和差角公式变形:tan x±tan y=tan(x±y)·(1∓tan x·tan y);倍角公式变形:降幂公式cos2α=,sin2α=;配方变形:1±sin α=2,1+cos α=2cos2,1-cos α=2sin2.2.利用辅助角公式求最值、单调区间、周期.y=a sin α+b cos α=sin(α+φ)(其中tan φ=)有:≥|y|.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.§4.5 两角和与差的正弦、余弦和正切(时间:60分钟)A组 专项基础训练题组一、选择题1.已知sin α=,则cos(π-2α)等于 ( )A.-B.-C.D.2.(2011·福建)若α∈,且sin2α+cos 2α=,则tan α的值等于( )A. B. C. D.3.(2011·浙江)若0<α<,-<β<0,cos=,cos=,则cos等于 ( )A. B.- C. D.-二、填空题4.(2011·江苏)已知tan=2,则的值为____________.5.函数f(x)=2cos2x+sin 2x的最小值是____________.6.sin α=,cos β=,其中α,β∈,则α+β=____________.三、解答题7.已知A、B均为钝角且sin A=,sin B=,求A+B的值.8.已知函数f(x)=cos+2sin·sin,求函数f(x)在区间上的最大值与最小值.B组 专项能力提升题组一、选择题1.已知锐角α满足cos 2α=cos,则sin 2α等于 ( )A. B.- C. D.-2.若将函数y=A cos·sin (A>0,ω>0)的图象向左平移个单位后得到的图象关于原点对称,则ω的值可能为 ( )A.2B.3C.4D.53.已知tan(α+β)=,tan=,那么tan等于 ( )A. B. C. D.二、填空题4.化简:sin2x+2sin x cos x+3cos2x=____________.5.=____________.6.已知cos=,α∈,则=____________.三、解答题7.已知cos α=,cos(α-β)=,且0<β<α<,(1)求tan 2α的值;(2)求β.8.设函数f(x)=cos+sin2x.(1)求函数f(x)的最大值;(2)设A,B,C为△ABC的三个内角,若cos B=,f=-,且C为锐角,求sin A.答案要点梳理1.cos αcos β-sin αsin β sin αcos β-cos αsin β sin αcos β+cos αsin β 2.2sin αcos α cos2α-sin2α 2cos2α-11-2sin2α 3.tan(α±β)(1∓tan αtan β) 1--14. sin(α+φ) cos(α-φ)基础自测1. 2. 3. (k∈Z)4.A5.D题型分类·深度剖析例1 解 (1)原式===.因为0<θ<π,所以0<<,所以cos >0,所以原式=-cos θ.(2)原式=-sin 10°=-sin 10°·=-sin 10°·.=-2cos 10°=====.变式训练1 (1) (2)例2 解 (1)∵0<β<<α<π,∴-<-β<,<α-<π,∴cos==,sin==,∴cos =cos=coscos+sin·sin=×+×=,∴cos(α+β)=2cos2-1=2×-1=-.(2)∵tan α=tan[(α-β)+β]===>0,∴0<α<,又∵tan 2α===>0,∴0<2α<,∴tan(2α-β)===1.∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-.变式训练2 (1) (2)例3 解 (1)f(x)=(sin2x+sin x cos x)+2sin·cos =+sin 2x+sin=+(sin 2x-cos 2x)+cos 2x=(sin 2x+cos 2x)+.由tan α=2,得sin 2α===.cos 2α===-.所以,f(α)=(sin 2α+cos 2α)+=.(2)由(1)得f(x)=(sin 2x+cos 2x)+=sin+.由x∈,得≤2x+≤π.∴-≤sin≤1,0≤f(x)≤,所以f(x)的取值范围是.变式训练3 (1)最小正周期为π,最大值为2,最小值为-1(2)课时规范训练A组1.B2.D3.C4.5.1-6.7.8.解 由题意,得f(x)=cos+2sin·sin=cos 2x+sin 2x+(sin x-cos x)(sin x+cos x)=cos 2x+sin 2x+sin2x-cos2x=cos 2x+sin 2x-cos 2x=sin,又x∈,所以2x-∈.又f(x)=sin在区间上单调递增,在区间上单调递减,所以当x=时,f(x)取得最大值1.又f=-<f=,所以当x=-时,f(x)取得最小值-.故函数f(x)在区间上的最大值与最小值分别为1与-. B组1.A2.D3.C4.sin+25.-46.7.解 (1)由cos α=,0<α<,得sin α===,∴tan α==×=4.于是tan 2α===-.(2)由0<β<α<,得0<α-β<.又∵cos(α-β)=,∴sin(α-β)===.由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.∴β=.8.解 (1)f(x)=cos 2x cos -sin 2x sin +=cos 2x-sin 2x+-cos 2x=-sin 2x.所以,当2x=-+2kπ,k∈Z,即x=-+kπ (k∈Z)时,f(x)取得最大值,f(x)max=.(2)由f=-,即-sin C=-,解得sin C=,又C为锐角,所以C=.由cos B=求得sin B=.因此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=×+×=.。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

归纳与技巧:两角和与差的正弦、余弦和正切公式基础知识归纳1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.基础题必做1. 若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-37解题方法归纳1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用 典题导入[例1] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665.解题方法归纳两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2) 已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] 已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.解题方法归纳运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1) 已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换 典题导入[例3] (1) 若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2) 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250解题方法归纳1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.以题试法3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1. 设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2. 已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. 已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π. 5. 设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7. 满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129. 已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12. 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45.又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425. 又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1. 已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; 解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。

第四章 三角函数与三角形4-4两角和与差的三角函数

第四章  三角函数与三角形4-4两角和与差的三角函数

第4章 第4节一、选择题1.在△ABC 中,若cos A =45,cos B =513,则cos C 的值是( )A.1665B.5665C.1665或5665D .-1665[答案] A[解析] 在△ABC 中,0<A <π,0<B <π,cos A =45,cos B =513,∴sin A =35,sin B =1213,所以cos C =cos[π-(A +B )]=-cos(A +B ) =sin A ·sin B -cos A ·cos B =35×1213-45×513=1665,故选A. 2.(2010·烟台中英文学校质检)sin75°cos30°-sin15°sin150°的值为( ) A .1B.12C.22D.32[答案] C[解析] sin75°cos30°-sin15°sin150°=sin75°cos30°-cos75°sin30°=sin(75°-30°)=sin45°=22. 3.(2010·吉林省质检)对于函数f (x )=sin x +cos x ,下列命题中正确的是( ) A .∀x ∈R ,f (x )< 2 B .∃x ∈R ,f (x )< 2 C .∀x ∈R ,f (x )> 2D .∃x ∈R ,f (x )> 2[答案] B[解析] ∵f (x )=2sin ⎝⎛⎭⎫x +π4≤2,∴不存在x ∈R 使f (x )>2且存在x ∈R ,使f (x )=2,故A 、C 、D 均错.4.(文)(2010·北京东城区)在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( ) A .30°B .45°C .60°D .120°[答案] D[解析] ∵△ABC 中,B =30°,∴C =150°-A , ∴sin A =3sin(150°-A )=32cos A +32sin A , ∴tan A =-3,∴A =120°.(理)已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( ) A.5π12B.π3C.π4D.π6[答案] C[解析] ∵α、β均为锐角,∴-π2<α-β<π2,∴cos(α-β)=1-sin 2(α-β)=31010∴sin α=55,∴cos α=1-⎝⎛⎭⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C.5.(文)(2010·广东惠州一中)函数y =sin ⎝⎛⎭⎫π3-2x +sin2x 的最小正周期是( ) A.π2B .πC .2πD .4π[答案] B [解析] y =32cos2x -12x +sin2x =sin ⎝⎛⎭⎫2x +π3,∴周期T =π.(理)函数f (x )=(3sin x -4cos x )·cos x 的最大值为( ) A .5 B.92C.12D.52[答案] C[解析] f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(2010·温州中学)已知向量a =(sin75°,-cos75°),b =(-cos15°,sin15°),则|a -b |的值为( )A .0B .1 C. 2D .2[答案] D[解析] ∵|a -b |2=(sin75°+cos15°)2+(-cos75°-sin15°)2=2+2sin75°cos15°+2cos75°sin15°=2+2sin90°=4,∴|a -b |=2.(理)(2010·鞍山一中)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( )A.17B .-17C.27D .-27[答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝⎛⎭⎫0,π2,∴sin α=35,∴tan α=34,∴tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=-17.7.(文)(2010·河南许昌调研)已知sin β=35(π2β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2D.825[答案] C[解析] ∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2. (理)(2010·杭州模拟)已知sin x -sin y =-23,cos x -cos y =23,且x ,y 为锐角,则tan(x -y )=( )A.2145B .-2145C .±2145D .±51428[答案] B[解析] 两式平方相加得:cos(x -y )=59,∵x 、y 为锐角,sin x -sin y <0,∴x <y ,∴sin(x -y )=-1-cos 2(x -y )=-2149∴tan(x -y )=sin (x -y )cos (x -y )=-2145.8.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1C. 3D .不存在[答案] B[解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan αtan ⎝⎛⎭⎫π4-α,∵π4-α,β∈⎝⎛⎭⎫-π2,π2且y =tan x 在⎝⎛⎭⎫-π2,π2上是单调增函数, ∴β=π4-α,∴α+β=π4tan(α+β)=tan π4=1.9.(2010·全国新课标理,9)若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-2[答案] A[解析] ∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sin α2cos α2=cos α2+sinα2cos α2-sinα2=⎝⎛⎭⎫cos α2+sin α22⎝⎛⎭⎫cos α2sin α2⎝⎛⎭⎫cos α2+sin α2=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12,故选A.[点评] 本题解题思路广阔,由cos α可求sin α,也可求sin α2及cos α2,从而求出tan α2.也可以利用和角公式将待求式变形为tan ⎝⎛⎭⎫π4+α2,再用诱导公式和二倍角公式等等.10.(2011·浙江五校联考)在△ABC 中,已知tan A +B2=sin C ,给出以下四个论断:①tan Atan B=1; ②1<sin A +sin B ≤2; ③sin 2A +cos 2B =1; ④cos 2A +cos 2B =sin 2C . 其中正确的是( ) A .①③B .②③C .①④D .②④[答案] D[解析] 因为在三角形中A +B =π-C ,所以tan A +B 2=tan π-C 2=cot C 2=cosC 2sin C2,而sin C=2sin C 2cos C 2∵tan A +B 2sin C ,∴cosC2sin C 2=2sin C 2cos C 2.因为0<C <π,∴cos C 2≠0,sin C 2>0,故sin 2C 2=12,∴sin C 2=22,∴C =π2,A +B =π2,∴sin A +sin B =sin A +cos A =2sin ⎝⎛⎭⎫A +π4∈(1,2],排除A 、C ; cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故选D. 二、填空题11.(2010·哈三中)已知tan ⎝⎛⎭⎫α+π6=12,tan ⎝⎛⎭⎫β-7π6=13,则tan(α+β)=________. [答案] 1[解析] tan(α+β)=tan(α+β-π) =tan[(α+π6)+(β-7π6)]=12+131-12×13=1.12.(2010·重庆南开中学)已知等差数列{a n }满足:a 1005=4π3,则tan(a 1+a 2009)=________.[答案] - 3[解析] 由等差数列的性质知,tan(a 1+a 2009)=tan(2a 1005)=tan 8π3=tan ⎝⎛⎭⎫-π3=- 3.13.(2010·山师大附中模考)若tan(x +y )=35,tan(y -π3)=13则tan(x +π3)的值是________.[答案] 29[解析] tan(x +π3)=tan[(x +y )-(y -π3)]=tan (x +y )-tan (y -π3)1+tan (x +y )·tan (y -π3)=35-131+35×13=29.14.(2010·上海奉贤区调研)已知α,β∈(0,π2),且tan α·tan β<1,比较α+β与π2的大小,用“<”连接起来为________.[答案] α+β<π2[解析] ∵tan α·tan β<1,α,β∈⎝⎛⎭⎫0,π2, ∴sin α·sin βcos α·cos β<1,∴sin α·sin β<cos α·cos β,∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2.三、解答题15.(2010·福建福州市)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且满足(2a -c )cos B =b cos C .(1)求角B 的大小;(2)若|BA →-BC →|=2,求△ABC 的面积的最大值. [解析] (1)在△ABC 中,∵(2a -c )cos B =b cos C , 根据正弦定理有(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin(C +B ),即2sin A cos B =sin A . ∵sin A >0,∴cos B =12,又∵B ∈(0,π),∴B =π3.(2)∵|BA →-BC →|=2,∴|CA →|=2,即b =2.根据余弦定理b 2=a 2+c 2-2ac cos B ,有4=a 2+c 2-ac . ∵a 2+c 2≥2ac (当且仅当a =c 时取“=”号),∴4=a 2+c 2-ac ≥2ac -ac =ac ,即ac ≤4,∴△ABC 的面积S =12ac sin B =34ac ≤3,即当a =b =c =2时,△ABC 的面积的最大值为 3.16.(文)(2010·北京延庆县模考)已知函数f (x )=sin ⎝⎛⎭⎫2x +π6+sin ⎝⎛2x -π6-2cos 2x .(1)求函数f (x )的值域及最小正周期; (2)求函数y =f (x )的单调增区间. [解析] (1)f (x )=32sin2x +12cos2x +32sin2x -12cos2x -(cos2x +1) =2⎝⎛⎭⎫32sin2x -12cos2x -1=2sin ⎝⎛⎭⎫2x -π6-1.由-1≤sin ⎝⎛⎭⎫2x -π6≤1得,-3≤2sin ⎝⎛⎭⎫2x -π6-1≤1.可知函数f (x )的值域为[-3,1]. 且函数f (x )的最小正周期为π.(2)由2k π-π2≤2x -π6≤2k π+π2(k ∈Z )解得,k π-π6≤x ≤k π+π3(k ∈Z ).所以y =f (x )的单调增区间为[k π-π6,k π+π3](k ∈Z ).(理)(2010·辽宁锦州)已知△ABC 中,|AC |=1,∠ABC =120°,∠BAC =θ,记f (θ)=AB →·BC →, (1)求f (θ)关于θ的表达式; (2)求f (θ)的值域.[解析] (1)由正弦定理有: |BC |sin θ=1sin120°=|AB |sin (60°-θ), ∴|BC |=sin θsin120°,|AB |=sin (60°-θ)sin120°∴f (θ)=AB →·BC →=|AB →|·|BC →|cos(180°-∠ABC ) =23sin θ·sin(60°-θ) =23(32cos θ-12sin θ)sin θ=13sin(2θ+π6)-16 (0<θ<π3) (2)∵0<θ<π3,∴π6<2θ+π6<5π6,∴12<sin(2θ+π6)≤1, ∴0<f (θ)≤16f (θ)的值域为(0,16].17.(文)(2010·湖北黄冈)如图,平面四边形ABCD 中,AB =13,三角形ABC 的面积为S △ABC =25,cos ∠DAC =35,AB →·AC →=120.(1)求BC 的长; (2)cos ∠BAD 的值. [解析] (1)由S △ABC =25得, 12|AC →||AB →|·sin ∠CAB =25 由AC →·AB →=120得,|AC →|·|AB →|·cos ∠CAB =120,以上两式相除得, tan ∠CAB =512,∴sin ∠CAB =513,cos ∠CAB =1213, ∴|AC →||AB →|=130,又∵|AB →|=13,∴|AC →|=10, 在△ABC 中,由余弦定理得,|BC →|2=102+132-2×10×13×1213=29,∴|BC →|=29,即BC =29(2)∵cos ∠DAC =35,∴sin ∠DAC =45,∴cos ∠BAD =cos(∠BAC +∠CAD ) =cos ∠BAC ·cos ∠CAD -sin ∠BAC sin ∠CAD =1213×35-513×45=1665. (理)(2010·江西新余一中)已知函数f (x )=sin x 2+2cos 2x4.(1)求函数f (x )的最小正周期;(2)在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c ,若(2a -c )cos B =b cos C ,求f (A )的取值范围.[解析] (1)f (x )=sin x 2+⎝⎛⎭⎫2cos 2x4-1+1=sin x 2+cos x 2+1=2sin ⎝⎛⎭⎫x 2+π4+1∴f (x )的最小正周期为T =4π. (2)由(2a -c )cos B =b cos C 得, (2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B =sin(B +C )=sin A ,∵sin A ≠0,∴ocs B =12,∴B =π3,∴A +C =2π3,又∵f (A )=2sin ⎝⎛A 2+π4+1,∴0<A <2π3,∴π4<A 2+π4<7π12, 又∵sin π4<sin 7π12,∴22<sin ⎝⎛⎭⎫A 2+π4≤1, ∴2<f (A )≤2+1.。

【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式

【高中数学】两角和与差的正弦、余弦和正切公式及二倍角公式

两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β),β,α±β≠π2+k π,k ∈两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α≠k π+π2且α≠k π2+π4,k ∈二倍角是相对的,例如,α2是α43α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φsin φ=b a 2+b 2,cos φ考点一三角函数公式的直接应用[典例](1)已知sin α=35,αtan β=-12,则tan(α-β)的值为()A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin (π-α)=13,且π2≤α≤π,则sin 2α的值为()A .-229B .-429C.229D.429[解析](1)因为sin α=35,α所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×=-429.[答案](1)A(2)B[解题技法]应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.[题组训练]1.已知sin α=13+cos α,且α,则cos 2α()A .-23B.23C .-13D.13解析:选A因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2α=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且αsin α________.解析:因为sin α=45,且αα所以cos α=-1-sin 2α=-=-35.因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以αsin 2αcos π3+cos 2αsin π3=-24+7350.答案:-24+7350考点二三角函数公式的逆用与变形用[典例](1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解析](1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°=3.[答案](1)-12(2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin αsin α2±cos ;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32,3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是()A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知sin α=435,则________.解析:由sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,∴3sin =435,即=45.答案:453.化简sin sin sin 2α的结果是________.解析:sin 2α=1-12cos ααsin 2α=1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三角的变换与名的变换考法(一)三角公式中角的变换[典例](2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点-35,-若角β满足sin(α+β)=513,则cos β的值为________.[解析]由角α的终边过点-35,-得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-5665或cos β=1665.[答案]-5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=考法(二)三角公式中名的变换[典例](2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值;(2)求tan(α-β)的值.[解](1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α.因为sin 2α+cos 2α=1,所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55,所以α+β所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2.因为tan α=43,所以tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法]三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos ()A.12B.13C.14D.15解析:选C由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos =1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若=7210A sin A 的值为()A.35B.45C.35或45D.34解析:选B ∵A A +π4∈∴=-210,∴sin A =-π4=cos π4-sin π4=45.3.已知sin α=-45,α∈3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=()A.613B.136C .-613D .-136解析:选A ∵sin α=-45,α∈3π2,2π,∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos[(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=()A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +1,则cos 2x =()A .-89B .-79C.79D .-725解析:选C 因为2sin x +1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若=-33,则cos α=()A .-223B .±223C .-1D .±1解析:选C cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos =-1.4.tan 18°+tan 12°+33tan 18°tan 12°=()A.3B.2C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33.5.若α3cos 2α=sin 2α的值为()A .-118B.118C .-1718D.1718解析:选C由3cos 2α=3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos ()A .-13B.13C .-23D.23解析:选Dcos =12+12sin 2α=12+12×13=23.7.已知=12,α-π2,cos________.解析:由已知得cos α=12,sin α=-32,所以=12cos α+32sin α=-12.答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若=16,则tan α=________.解析:tan α=+π4=tanπ41-tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-111.已知tan α=2.(1)求tan(2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:=tan α+tan π41-tan αtan π4=2+11-2=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β,∴-π2<α-β<π2.又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×=91050.B 级1.(2019·广东五校联考)若4cos(2π-θ),|θ|<π2,则tan2θ=________.解析:∵4cos(2π-θ),∴cos θsin θ=4cos θ,又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157.答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,=35,则________.解析:因为A ,B 均为锐角,cos(A +B )=-2425,=35,所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,=-45,可得cos (A +B )=-2425×+725×35=117125.答案:1171253.(2019·石家庄质检)已知函数f (x )=x ∈R.(1)求f(2)若cos θ=45,θf θ解:(1)-π4+=-12.(2)θθ-π3+θ=22(sin 2θ-cos 2θ).因为cos θ=45,θsin θ=35,所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以θ=22(sin 2θ-cos 2θ)=22×=17250.。

高考数学总复习 4-4 两角和与差的三角函数但因为测试 新人教B版

高考数学总复习 4-4 两角和与差的三角函数但因为测试 新人教B版

高考数学总复习 4-4 两角和与差的三角函数但因为测试 新人教B 版1.(文)(2011·银川三模)已知sin θ=45,且sin θ-cos θ>1,则sin2θ=( )A .-2425B .-1225C .-45D.2425[答案] A[解析] 由题意可知cos θ=-35,所以sin2θ=2sin θcos θ=-2425,故选择A.(理)(2011·潍坊月考)若sin(π6-α)=13,则cos(2π3+2α)的值为( )A.13 B .-13C.79 D .-79[答案] D[解析] cos(2π3+2α)=2cos 2(π3+α)-1=2co s 2[π2-(π6-α)]-1=2sin 2(π6-α)-1=2×(13)2-1=-79.2.(文)(2011·北京东城区期末)在△ABC 中,C =120°,t an A +tan B =233,则tan A tan B的值为( )A.14B.13C.12D.53 [答案] B[解析] ∵C =120°,∴A +B =60°, ∴tan(A +B )=tan A +tan B 1-tan A tan B =3,∵tan A +tan B =233,∴tan A tan B =13.(理)已知sin α=35,α为第二象限角,且tan(α+β)=1,则tan β的值是( )A .-7B .7C .-34D.34[答案] B[解析] 由sin α=35,α为第二象限角,得cos α=-45,则tan α=-34.∴tan β=tan[(α+β)-α]=α+β-tan α1+α+βα=1+341+⎝⎛⎭⎫-34=7.3.(文)已知0<α<π2<β<π,cos α=35,sin(α+β)=-35,则cos β的值为( )A .-1B .-1或-725C .-2425D .±2425[答案] C[解析] ∵0<α<π2,π2<β<π,∴π2<α+β<3π2,∴sin α=45,cos(α+β)=-45,∴cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =⎝⎛⎭⎫-45 · 35+⎝⎛⎭⎫-35 · 45=-2425,故选C. (理)(2010·河南许昌调研)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[答案] C[解析] ∵sin β=35,π2<β<π,∴cos β=-45,∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2.4.(2011·温州月考)已知向量a =(sin(α+π6),1),b =(4,4cos α-3),若a ⊥b ,则sin(α+4π3)等于( ) A .- 34B .-14C.34D.14[答案] B[解析] a ·b =4sin ⎝⎛⎭⎫α+π6+4cos α- 3 =23sin α+6cos α-3=43sin ⎝⎛⎭⎫α+π3-3=0, ∴sin(α+π3)=14.∴sin(α+4π3)=-sin ⎝⎛⎭⎫α+π3=-14,故选B. 5.函数f (x )=(3sin x -4cos x )·cos x 的最大值为( ) A .5 B.92 C.12 D.52[答案] C[解析] f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(2011·合肥质检)将函数y =sin(2x +π3)的图象上各点向右平移π6个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图象的一条对称轴是( )A .x =π8B .x =π6C .x =π3D .x =π2[答案] A[解析]∴x =k π4+π8,令k =0得x =π8.(理)(2011·皖南八校联考)已知f (x )=sin(ωx +π3)(ω>0)的图象与y =-1的图象的相邻两交点间的距离为π,要得到y =f (x )的图象,只需把y =cos2x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移5π12个单位D .向右平移5π12个单位[答案] B[解析] f (x )的图象与直线y =-1相邻两交点之间的距离就是f (x )的周期,∴2πω=π,∴ω=2,∴f (x )=sin(2x +π3)=cos[π2-(2x +π3)]=cos(π6-2x )=cos(2x -π6)=cos2(x -π12)故只须把y =cos2x 的图象的右平移π12个单位,即可得到f (x )的图象.7.已知tan α、tan β是关于x 的一元二次方程x 2-3x +2=0的两实根,则α+βα-β=________.[答案] 1 [解析] 因为α+βα-β=sin αcos β+cos αsin βcos αcos β+sin αsin β=tan α+tan β1+tan αtan β;∵tan α,tan β为方程的两根,∴⎩⎪⎨⎪⎧tan α+tan β=3tan α·tan β=2,∴α+βα-β=31+2=1. 8.(2010·上海奉贤区调研)已知α,β∈(0,π2),且tan α·tan β<1,比较α+β与π2的大小,用“<”连接起来为________.[答案] α+β<π2[解析] ∵tan α·tan β<1,α,β∈⎝⎛⎭⎫0,π2, ∴sin α·sin βcos α·cos β<1,∴sin α·sin β<cos α·cos β,∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2.9.(文)函数y =cos(π3-2x )+sin(π2-2x )的最小正周期为________.[答案] π[解析] y =cos π3cos2x +sin π3sin2x +cos2x=32cos2x +32sin2x =3(32cos2x +12sin2x ) =3sin(2x +π3),∴T =π.(理)函数y =cos(x +20°)+sin(x -10°)的最大值为________. [答案] 1[解析] y =cos x cos20°-sin x sin20°+sin x cos10°-cos x sin10° =(cos10°-sin20°)·sin x +(cos20°-sin10°)cos x =a 2+b 2sin(x +φ).这里a =cos10°-sin20°,b =cos20°-sin10°, tan φ=cos20°-sin10°cos10°-sin20°∵a 2+b 2=(cos10°-sin20°)2+(cos20°-sin10°)2 =2-2sin20°cos10°-2co s20°sin10° =2-2sin30°=1. ∴最大值为a 2+b 2=1.10.(文)(2010·北京顺义一中月考)设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R).且f (x )的最小正周期是2π.(1)求ω的值;(2)如果f (x )在区间[-π3,5π6]上的最小值为3,求a 的值.[解析] (1)f (x )=32cos2ωx +12sin2ωx +32+a =sin ⎝⎛⎭⎫2ωx +π3+32+a 依题意得2π2ω=2π⇒ω=12(2)由(1)知,f (x )=sin ⎝⎛⎭⎫x +π3+32+a . 又当x ∈[-π3,5π6]时,x +π3∈[0,7π6],故-12≤sin ⎝⎛⎭⎫x +π3≤1,从而f (x )在区间[-π3,5π6]上的最小值为-12+32+a =3,故a =3+12.(理)(2011·日照模拟)设函数f (x )=cos(πx 4-π3)-cos πx4.(1)求f (x )的最小正周期;(2)设g (x )=f (-2-x );当x ∈[0,2]时,求函数y =g (x )的最大值.[解析] (1)f (x )=cos π4x cos π3+sin π4x sin π3-cos πx 4=32sin π4x -12cos π4x =sin(π4x -π6).故f (x )的最小正周期为T =2ππ4=8.(2)由题设条件得g (x )=f (-2-x )=sin[π4(-2-x )-π6]=sin[-π2-π4x -π6]=-cos(π4x +π6).当0≤x ≤2时,π6≤π4x +π6≤2π3,设t =π4x +π6,则y =-cos t ,在[π6,2π3]上是增函数,因此y=g (x )在区间[0,2]上的最大值为g (x )max =-cos 2π3=12.11.(文)(2010·温州中学)已知向量a =(sin75°,-cos75°),b =(-cos15°,sin15°),则|a -b |的值为( )A .0B .1 C. 2 D .2 [答案] D[解析] ∵|a -b |2=(sin75°+cos15°)2+(-cos75°-sin15°)2=2+2si n75°cos15°+2cos75°sin15°=2+2sin90°=4,∴|a -b |=2.(理)(2010·鞍山一中)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( )A.17 B .-17 C.27 D .-27 [答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝⎛⎭⎫0,π2,∴sin α=35, ∴tan α=34,∴tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=-17. 12.(文)(2010·北京东城区)在△ABC 中,如果sin A =3sin C ,B =30°,那么角A 等于( ) A .30° B .45° C .60° D .120° [答案] D[解析] ∵△ABC 中,B =30°,∴C =150°-A , ∴sin A =3sin(150°-A )=32cos A +32sin A , ∴tan A =-3,∴A =120°.(理)(2011·北京四中测试)实数a ,b 均不为零,若a sin α+b cos αa cos α-b sin α=tan β,且β-α=π6,则ba =( )A. 3B.33C .-3D .-33[答案] B[解析] ∵tan β=a sin α+b cos αa cos α-b sin α=tan α+ba 1-αb a ,令tan φ=b a ,∵β-α=π6,∴tan(α+π6)=tan(α+φ),∴α+φ=α+π6+k π(k ∈Z),∴tan φ=33.[点评] 如果考虑到所给条件式对任意β、α都成立,可直接取特值检验选出答案,令α=0,β=π6,则b a =33.13.(文)已知sin(2α-β)=35,sin β=-1213,且α∈(π2,π),β∈(-π2,0),则sin α=________.[答案]3130130[解析] ∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2,π<2α-β<5π2,而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45.又-π2<β<0且sin β=-1213,∴cos β=513,∴cos2α=cos[(2α-β)+β] =cos(2α-β)cos β-sin(2α-β)sin β =45×513-35×(-1213)=5665. 又cos2α=1-2sin 2α,∴sin 2α=9130.又α∈(π2,π),∴sin α=3130130.(理)求值:2cos10°-sin20°cos20°=________.[答案]3[解析] 原式=--sin20°cos20°=2cos30°cos20°+2sin30°sin20°-sin20°cos20°=3cos20°+sin20°-sin20°cos20°= 3.14.(2011·珠海模拟)已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值. [解析] ∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010,∴cos(A +B )=cos A cos B -sin A sin B =-255×(-31010)-55×1010=22,又∵π2<A <π,π2<B <π,∴π<A +B <2π,∴A +B =7π4.15.(文)(2011·成都二诊)已知函数f (x )=2sin x cos(x +π6)-cos2x +m .(1)求函数f (x )的最小正周期;(2)当x ∈[-π4,π4]时,函数f (x )的最小值为-3,求实数m 的值.[解析] (1)∵f (x )=2sin x cos(x +π6)-cos2x +m=2sin x (32cos x -12sin x )-cos2x +m =3sin x cos x -sin 2x -cos2x +m =32sin2x -1-cos2x 2-cos2x +m =32sin2x -12cos2x -12+m =sin(2x -π6)-12+m .∴f (x )的最小正周期T =2π2=π.(2)∵-π4≤x ≤π4,∴-π2≤2x ≤π2,∴-2π3≤2x -π6≤π3.∴-1≤s in(2x -π6)≤32.∴ f (x )的最小值为-1-12+m .由已知,有-1-12+m =-3.∴m =-32.(理)(2011·晋中一模)已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.[解析] (1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈(0,π2),∴cos2α=1-sin 22α=35,∴tan2α=sin2αcos2α=43.(2)∵β∈(π4,π2),β-π4∈(0,π4),∴cos(β-π4)=45,于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425.又sin2(β-π4)=-cos2β,∴cos2β=-2425.又2β∈(π2,π),∴sin2β=725.又cos 2α=1+cos2α2=45,∴cos α=255,sin α=55(α∈(0,π4)).∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.1.(2011·安徽合肥市质检)已知sin(α+π4)=14,则sin2α的值为( )A.78B.158C .-158D .-78[答案] D[解析] 由已知得sin α+cos α=24,两边平方得1+2sin αcos α=18,即sin2α=-78,故选D.2.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1 C. 3 D .不存在 [答案] B[解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ⎝⎛⎭⎫π4-α, ∵π4-α,β∈⎝⎛⎭⎫-π2,π2且y =tan x 在⎝⎛⎭⎫-π2,π2上是单调增函数, ∴β=π4-α,∴α+β=π4,∴tan(α+β)=tan π4=1.3.已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6[答案] C[解析] ∵α、β均为锐角,∴-π2<α-β<π2, ∴cos(α-β)=1-sin 2α-β=31010, ∴sin α=55,∴cos α=1-⎝⎛⎭⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C. 4.(2011·浙江五校联考)在△ABC 中,已知tan A +B 2=sin C ,给出以下四个论断: ①tan A tan B =1; ②1<sin A +sin B ≤2;③sin 2A +cos 2B =1;④cos 2A +cos 2B =sin 2C .其中正确的是( )A .①③B .②③C .①④D .②④[答案] D[解析] 因为在三角形中A +B =π-C ,所以tan A +B 2=tan π-C 2=cot C 2=cos C 2sin C 2,而sin C =2sin C 2cos C 2, ∵tan A +B 2=sin C ,∴cos C 2sin C 2=2sin C 2cos C 2.因为0<C <π,∴cos C 2≠0,sin C 2>0,故sin 2C 2=12, ∴sin C 2=22,∴C =π2,A +B =π2, ∴sin A +sin B =sin A +cos A =2sin ⎝⎛⎭⎫A +π4∈(1,2],排除A 、C ; cos 2A +cos 2B =cos 2A +sin 2A =1=sin 2C ,故选D.5.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,求2α-β的值. [分析] 由α=(α-β)+β结合已知条件可求得tan α,再由二倍角公式可得tan2α,进一步可求得tan(2α-β),关键是讨论2α-β的范围,由tan β的值可限定β的取值范围,由tan α,tan2α及tan(α-β)的值可限定α的取值范围,由此可得2α-β的取值范围.[解析] ∵tan α=tan[(α-β)+β] =α-β+tan β1-α-ββ=12-171+12×17=13>0, ∴0<α<π2, 又∵tan2α=2tan α1-tan 2α=2×131-132=34>0, ∴0<2α<π2, ∴tan(2α-β)=tan2α-tan β1+tan2αtan β=34+171-34×17=1. ∵tan β=-17<0, ∴π2<β<π,-π<2α-β<0,∴2α-β=-3π4. [点评] 三角函数的给值求值(角)问题,常常要讨论角的范围,要注意发掘已知条件中限制角的范围的条件,求值时通常要在某一个单调区间内进行.。

两角和与差的三角函数公式应用

两角和与差的三角函数公式应用

两角和与差的三角函数公式应用首先,我们来介绍两角和的公式:1. 正弦两角和公式:sin(x + y) = sin(x) * cos(y) + cos(x) * sin(y)这个公式可以用来求解两个角的正弦的和。

例如,求解sin(π/6 + π/4)的值。

根据公式,sin(π/6 + π/4) = sin(π/6) * cos(π/4) +cos(π/6) * sin(π/4) = (1/2) * (√2/2) + (√3/2) * (√2/2) = (√2 + √6)/42. 余弦两角和公式:cos(x + y) = cos(x) * cos(y) - sin(x) * sin(y)这个公式可以用来求解两个角的余弦的和。

例如,求解cos(π/3 + π/6)的值。

根据公式,cos(π/3 + π/6) = cos(π/3) * cos(π/6) -sin(π/3) * sin(π/6) = (√3/2) * (√3/2) - (1/2) * (1/2) = 3/43. 正切两角和公式:tan(x + y) = (tan(x) + tan(y)) / (1 - tan(x) * tan(y))这个公式可以用来求解两个角的正切的和。

例如,求解tan(π/4 + π/6)的值。

根据公式,tan(π/4 + π/6) = (tan(π/4) + tan(π/6)) / (1 - tan(π/4) * tan(π/6)) = (1 + (1/√3)) / (1 - 1/√3) = (√3 + 1) / (√3 - 1)接下来,我们来介绍两角差的公式:1. 正弦两角差公式:sin(x - y) = sin(x) * cos(y) - cos(x) * sin(y)这个公式可以用来求解两个角的正弦的差。

例如,求解sin(π/3 - π/6)的值。

根据公式,sin(π/3 - π/6) = sin(π/3) * cos(π/6) -cos(π/3) * sin(π/6) = (√3/2) * (√3/2) - (1/2) * (1/2) = (√3 - 1) / 22. 余弦两角差公式:cos(x - y) = cos(x) * cos(y) + sin(x) * sin(y)这个公式可以用来求解两个角的余弦的差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4-4两角和与差的三角函数基础巩固强化1.(2011·银川三模)已知sin θ=45,且sin θ-cos θ>1,则sin2θ=( ) A .- 2425 B .-1225 C .-45 D.2425[答案] A[解析] 由题意可知cos θ=-35, 所以sin2θ=2sin θcos θ=-2425,故选择A.2.(文)(2011·北京东城区期末)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14B.13C.12D.53 [答案] B[解析] ∵C =120°,∴A +B =60°, ∴tan(A +B )=tan A +tan B 1-tan A tan B =3,∵tan A +tan B =233,∴tan A tan B =13.(理)已知sin α=35,α为第二象限角,且tan(α+β)=1,则tan β的值是( )A .-7B .7C .-34D.34[解析] 由sin α=35,α为第二象限角,得cos α=-45, 则tan α=-34.∴tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=1+341+⎝ ⎛⎭⎪⎫-34=7.3.(文)已知0<α<π2<β<π,cos α=35,sin(α+β)=-35,则cos β的值为( )A .-1B .-1或-725 C .-2425 D .±2425[答案] C[解析] ∵0<α<π2,π2<β<π,∴π2<α+β<3π2, ∴sin α=45,cos(α+β)=-45,∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=⎝ ⎛⎭⎪⎫-45·35+⎝ ⎛⎭⎪⎫-35·45=-2425,故选C. (理)已知sin β=35(π2<β<π),且sin(α+β)=cos α,则tan(α+β)=( )A .1B .2C .-2 D.825[解析] ∵sin β=35,π2<β<π,∴cos β=-45, ∴sin(α+β)=cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-45cos(α+β)+35sin(α+β),∴25sin(α+β)=-45cos(α+β),∴tan(α+β)=-2.4.已知实数a ,b 均不为零,a sin2+b cos2a cos2-b sin2=tan β,且β-2=π6,则ba =( )A. 3B.33 C .- 3 D .-33[答案] B[解析] tan β=tan(2+π6)=tan2+331-33tan2=a sin2+b cos2a cos2-b sin2=a tan2+b a -b tan2,所以a =1,b =33,故b a =33.5.函数f (x )=(3sin x -4cos x )·cos x 的最大值为( ) A .5 B.92 C.12 D.52 [答案] C[解析] f (x )=(3sin x -4cos x )cos x =3sin x cos x -4cos 2x =32sin2x -2cos2x -2=52sin(2x -θ)-2,其中tan θ=43, 所以f (x )的最大值是52-2=12.故选C.6.(文)(2011·合肥质检)将函数y =sin(2x +π3)的图象上各点向右平移π6个单位,再把每一点的横坐标缩短到原来的一半,纵坐标保持不变,所得函数图象的一条对称轴是( )A .x =π8 B .x =π6 C .x =π3 D .x =π2[答案] A[解析] y =sin(2x +π3)y =sin2xy =sin4x ,其对称轴方程为4x =k π+π2,k ∈Z ,∴x =k π4+π8,令k =0得x =π8.(理)(2013·陕西师大附中上学期一模)函数f (x )=A sin(ωx +φ)(其中A >0,|φ|<π2)的图象如图所示,为了得到函数g (x )=sin2x 的图象,则只需将f (x )的图象( )A .向右平移π6个长度单位 B .向右平移π12个长度单位 C .向左平移π6个长度单位 D .向左平移π12个长度单位 [答案] A[解析] 由图可知A =1,T 4=7π12-π3=π4,∴T =π, ∴2πω=π,∴ω=2, ∴f (x )=sin(2x +φ),将(7π12,-1)代入得sin(7π6+φ)=-1,∴7π6+φ=3π2+2k π,k ∈Z ,∴φ=2k π+π3,k ∈Z . ∵|φ|<π2,∴φ=π3,∴f (x )=sin(2x +π3),将f (x )的图象向右平移π6个单位可得,sin[2(x -π6)+π3]=sin2x ,故选A.7.函数f (x )=a sin x -b cos x 的图象的一条对称轴是直线x =π4,则直线ax -by +c =0的倾斜角的大小为________.[答案] 3π4(或135°)[解析] f (x )的图象的对称轴过其最高点或最低点,∴f (π4)=±a 2+b 2,∴a -b 2=±a 2+b 2,解得a +b =0.∴直线ax-by +c =0的斜率k =ab =-1,∴直线ax -by +c =0的倾斜角为135°(或3π4).8.下列命题:①存在α、β∈R ,使tan(α+β)=tan α+tan β;②存在φ∈R ,使f (x )=cos(3x +φ)为奇函数;③对任意α,β∈(0,π2),若tan α·tan β<1,则α+β<π2;④△ABC 中,sin A >sin B 的充要条件是A >B .其中真命题的序号是________.[答案] ①②③④[解析] ①α=0,β=π3时,原式成立; ②φ=π2时,f (x )为奇函数; ③∵tan α·tan β<1,α,β∈⎝⎛⎭⎪⎫0,π2,∴sin α·sin βcos α·cos β<1,∴sin α·sin β<cos α·cos β, ∴cos(α+β)>0,∵α+β∈(0,π),∴α+β<π2;④在△ABC 中,A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 为△ABC 外接圆的半径).9.(文)函数y =cos(π3-2x )+sin(π2-2x )的最小正周期为________.[答案] π[解析] y =cos π3cos2x +sin π3sin2x +cos2x =32cos2x +32sin2x =3(32cos2x +12sin2x ) =3sin(2x +π3),∴T =π.(理)函数y =cos(x +20°)+sin(x -10°)的最大值为________. [答案] 1[解析] y =cos x cos20°-sin x sin20°+sin x cos10°-cos x sin10° =(cos10°-sin20°)·sin x +(cos20°-sin10°)cos x =a 2+b 2sin(x +φ).这里a =cos10°-sin20°,b =cos20°-sin10°, tan φ=cos20°-sin10°cos10°-sin20°∵a 2+b 2=(cos10°-sin20°)2+(cos20°-sin10°)2 =2-2sin20°cos10°-2cos20°sin10°=2-2sin30°=1. ∴最大值为a 2+b 2=1.10.(文)设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的最小正周期是2π.(1)求ω的值;(2)如果f (x )在区间[-π3,5π6]上的最小值为3,求a 的值. [解析] (1)f (x )=32cos2ωx +12sin2ωx +32+a =sin ⎝ ⎛⎭⎪⎫2ωx +π3+32+a ,依题意得2π2ω=2π⇒ω=12.(2)由(1)知,f (x )=sin ⎝ ⎛⎭⎪⎫x +π3+32+a .又当x ∈[-π3,5π6]时,x +π3∈[0,7π6],故-12≤sin ⎝⎛⎭⎪⎫x +π3≤1,从而f (x )在区间[-π3,5π6]上的最小值为-12+32+a =3,故a =3+12.(理)(2011·日照模拟)设函数f (x )=cos(πx 4-π3)-cos πx4. (1)求f (x )的最小正周期;(2)设g (x )=f (-2-x );当x ∈[0,2]时,求函数y =g (x )的最大值. [解析] (1)f (x )=cos π4x cos π3+sin π4x sin π3-cos πx 4=32sin π4x -12cos π4x =sin(π4x -π6).故f (x )的最小正周期为T =2ππ4=8.(2)由题设条件得g (x )=f (-2-x )=sin[π4(-2-x )-π6]=sin[-π2-π4x -π6]=-cos(π4x +π6).当0≤x ≤2时,π6≤π4x +π6≤2π3,设t =π4x +π6,则y =-cos t ,在[π6,2π3]上是增函数,因此y =g (x )在区间[0,2]上的最大值为g (x )max =-cos 2π3=12.能力拓展提升11.(文)(2012·河南六市联考)已知函数y =f (x )=3sin(π6+x )+cos(π6+x ),则函数f (x )应满足( )A .函数y =f (x )在[-5π6,π6]上递增,且有一个对称中心(π6,0) B .函数y =f (x )在[-3π4,π6]上递增,且有一个对称中心(-π3,0) C .函数y =f (x )在[-5π6,π6]上递减,且有一个对称中心(-π3,0) D .函数y =f (x )在[-3π4,π6]上递减,且有一个对称中心(π6,0) [答案] B[解析] f (x )=3sin(π6+x )+cos(π6+x )=2sin(π6+x +π6)=2sin(x +π3),故选B.(理)已知a =(sin α,1-4cos2α),b =(1,3sin α-2),α∈⎝ ⎛⎭⎪⎫0,π2,若a ∥b ,则tan ⎝ ⎛⎭⎪⎫α-π4=( )A.17 B .-17 C.27 D .-27 [答案] B[解析] ∵a ∥b ,∴1-4cos2α=sin α(3sin α-2), ∴5sin 2α+2sin α-3=0,∴sin α=35或sin α=-1,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α=35,∴tan α=34,∴tan ⎝ ⎛⎭⎪⎫α-π4=tan α-11+tan α=-17.12.(文)设动直线x =a 与函数f (x )=2sin 2(π4+x )和g (x )=3cos2x的图象分别交于M ,N 两点,则|MN |的最大值为( )A. 2B. 3 C .2 D .3 [答案] D[解析] 易知|MN |=|f (a )-g (a )| =|2sin 2(π4+a )-3cos2a |=|1-cos(π2+2a )-3cos2a |=|1+2sin(2a -π3)|≤3,即最大值是3.(理)(2012·东北三校联考)设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β=( )A.2525B.255C.2525或255D.55或525[答案] A[解析] 依题意得sin α=1-cos 2α=255,cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π,cos α>cos(α+β),因为45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)·sin α=-45×55+35×255=2525,选A.13.已知sin(2α-β)=35,sin β=-1213,且α∈(π2,π),β∈(-π2,0),则sin α=________.[答案] 3130130[解析] ∵π2<α<π,∴π<2α<2π.又-π2<β<0,∴0<-β<π2,π<2α-β<5π2, 而sin(2α-β)=35>0,∴2π<2α-β<5π2,cos(2α-β)=45. 又-π2<β<0且sin β=-1213,∴cos β=513, ∴cos2α=cos[(2α-β)+β] =cos(2α-β)cos β-sin(2α-β)sin β =45×513-35×(-1213)=5665.又cos2α=1-2sin 2α,∴sin 2α=9130. 又α∈(π2,π),∴sin α=3130130. 14.求值:2cos10°-sin20°cos20°=________. [答案]3[解析] 原式=2cos (30°-20°)-sin20°cos20° =2cos30°cos20°+2sin30°sin20°-sin20°cos20° =3cos20°+sin20°-sin20°cos20°= 3. 15.(文)(2011·珠海模拟)已知A 、B 均为钝角且sin A =55,sin B =1010,求A +B 的值.[解析] ∵A 、B 均为钝角且sin A =55,sin B =1010, ∴cos A =-1-sin 2A =-25=-255,cos B =-1-sin 2B =-310=-31010, ∴cos(A +B )=cos A cos B -sin A sin B =-255×(-31010)-55×1010=22, 又∵π2<A <π,π2<B <π, ∴π<A +B <2π,∴A +B =7π4.(理)(2011·成都二诊)已知函数f (x )=2sin x cos(x +π6)-cos2x +m . (1)求函数f (x )的最小正周期;(2)当x ∈[-π4,π4]时,函数f (x )的最小值为-3,求实数m 的值. [解析] (1)∵f (x )=2sin x cos(x +π6)-cos2x +m =2sin x (32cos x -12sin x )-cos2x +m =3sin x cos x -sin 2x -cos2x +m =32sin2x -1-cos2x 2-cos2x +m =32sin2x -12cos2x -12+m =sin(2x -π6)-12+m .∴f (x )的最小正周期T =2π2=π.(2)∵-π4≤x ≤π4,∴-π2≤2x ≤π2,∴-2π3≤2x -π6≤π3,∴-1≤sin(2x -π6)≤32, ∴ f (x )的最小值为-1-12+m .由已知,有-1-12+m =-3.∴m =-32.16.(文)(2011·晋中一模)已知sin α+cos α=355,α∈(0,π4),sin(β-π4)=35,β∈(π4,π2).(1)求sin2α和tan2α的值; (2)求cos(α+2β)的值.[解析] (1)由题意得(sin α+cos α)2=95,即1+sin2α=95,∴sin2α=45.又2α∈(0,π2),∴cos2α=1-sin 22α=35, ∴tan2α=sin2αcos2α=43.(2)∵β∈(π4,π2),β-π4∈(0,π4), ∴cos(β-π4)=45,于是sin2(β-π4)=2sin(β-π4)cos(β-π4)=2425. 又sin2(β-π4)=-cos2β,∴cos2β=-2425. 又2β∈(π2,π),∴sin2β=725.又cos 2α=1+cos2α2=45, ∴cos α=255,sin α=55(α∈(0,π4)). ∴cos(α+2β)=cos αcos2β-sin αsin2β =255×(-2425)-55×725=-11525.(理)已知0<α<π2,π2<β<π,且tan α2=12,sin(α+β)=513. (1)求cos α和cos β的值; (2)求tan α-β2的值.[解析] (1)∵tan α2=12,∴tan α=2tan α21-tan 2α2=43,∴sin α=43cos α,代入sin 2α+cos 2α=1中消去sin α得,cos 2α=925,∵0<α<π2,∴cos α=35,∴sin α=45,∵π2<α+β<3π2,sin(α+β)=513>0,∴π2<α+β<π,∴cos(α+β)=-1-sin 2(α+β)=-1213,∴cos β=cos[(α+β)-α] =cos(α+β)cos α+sin(α+β)sin α =-1213×35+513×45=-1665. ∴cos α和cos β的值依次为35和-1665.(2)由(1)知cos β=-1665,又已知π2<β<π, ∴sin β=6365,∴tan β=-6316.∴2tan β21-tan 2β2=-6316, ∵π2<β<π,∴tan β2>0,∴tan β2=97, ∴tan α-β2=tan α2-tan β21+tan α2·tan β2=12-971+12×97=-1123.1.方程x 2cos2012°-y 2sin2012°=1所表示的曲线为( ) A .焦点在x 轴上的椭圆 B .焦点在y 轴上的椭圆 C .焦点在x 轴上的双曲线 D .焦点在y 轴上的双曲线 [答案] D[解析] cos2012°=cos(5×360°+212°)=cos212°=-cos32°=-sin58°<0,而sin2012°=sin(5×360°+212°)=sin212°=-sin32°<0,所以该曲线为焦点在y 轴上的双曲线.2.已知α、β均为锐角,且tan β=cos α-sin αcos α+sin α,则tan(α+β)的值为( )A .-1B .1 C. 3 D .不存在 [答案] B[解析] tan β=cos α-sin αcos α+sin α=1-tan α1+tan α=tan ⎝ ⎛⎭⎪⎫π4-α,∵π4-α,β∈⎝ ⎛⎭⎪⎫-π2,π2且y =tan x 在⎝ ⎛⎭⎪⎫-π2,π2上是单调增函数, ∴β=π4-α,∴α+β=π4,∴tan(α+β)=tan π4=1.3.已知sin α=55,sin(α-β)=-1010,α、β均为锐角,则β等于( )A.5π12B.π3C.π4D.π6 [答案] C[解析] ∵α、β均为锐角,∴-π2<α-β<π2, ∴cos(α-β)=1-sin 2(α-β)=31010,∴sin α=55,∴cos α=1-⎝ ⎛⎭⎪⎫552=255. ∴sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=22. ∵0<β<π2,∴β=π4,故选C.4.(2012·重庆文)设函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,-π<φ≤π)在x =π6处取得最大值2,其图象与x 轴的相邻两个交点的距离为π2.(1)求f (x )的解析式;(2)求函数g (x )=6cos 4x -sin 2x -1f (x +π6)的值域.[分析] (1)由周期为π求出ω,代入点(π6,2),由φ范围求出φ,A .(2)分子化同名,即sin 2x 用1-cos 2x 代换,分母用诱导公式和二倍角公式.[解析] (1)由题设条件知f (x )的周期T =π, 即2πω=π,解得ω=2,因为f (x )在x =π6处取得最大值2,所以A =2,从而sin(2×π6+φ)=1,所以2×π6+φ=π2+2k π,k ∈Z , 又由-π<φ≤π,得φ=π6,故f (x )的解析式为f (x )=2sin(2x +π6). (2)g (x )=6cos 4x -sin 2x -12sin (2x +π2)=6cos 4x +cos 2x -22cos2x=(2cos 2x -1)(3cos 2x +2)2(2cos 2x -1)=32cos 2x +1(cos 2x ≠12). 因cos 2x ∈[0,1],且cos 2≠12.故g (x )的值域为[1,74)∪(74,52].[点评] 本题考查了三角函数的周期、最值、同角基本关系式、二倍角公式等.在解三角恒等变换(化简)题时的方法有:异名化同名,异角化同角,降幂化同次等.。

相关文档
最新文档