【最新】人教版八年级数学上册《整式的乘法2》导学案
八年级数学上册141整式的乘法1414整式的乘法2教案新人教版
![八年级数学上册141整式的乘法1414整式的乘法2教案新人教版](https://img.taocdn.com/s3/m/f1de039efe4733687f21aa96.png)
课题:14.1.4整式的乘法(2)——单项式乘以多项式教学目标:理解单项式与多项式相乘的法则,并能运用法则进行运算.重点:单项式与多项式相乘的运算法则及其应用.难点:灵活地进行单项式与多项式相乘的运算.教学流程:一、知识回顾1.说一说单项式乘以单项式的计算法则?答案:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.计算3223232(1)(5)3;(2)().a b c a b x y xy -⋅⋅-解: 32253322658(1)=(53)()()15;(2)=.a ab bc a b c x y x y x y -⨯⋅⋅⋅⋅⋅=-⋅=原式原式 2二、探究 问题:为了扩大绿地面积,要把街心花园的一块长pm,宽bm 的长方形绿地,向两边分别加宽am 和cm,你能用几种方法表示扩大后的绿地面积?答案:方法(1):p( a+b+c )方法(2):pa+pb+pc指出:这两个式子表示同一个量,所以p( a+b+c )=pa+pb+pc追问:你能根据分配律得到这个等式吗?问题2:如何计算:32(42)x x x y ⋅+ 呢?解: 33324(42)42(24)()(22)()82224x x y x x yx x x x x x x y x x y⋅+=⋅+⋅=⨯⨯⋅=++⋅追问:你能得到多项式乘以多项式的方法吗?归纳:单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.练习:1.计算2x(3x 2+1)的结果是( )A.5x 3+2xB.6x 3+1C.6x 3+2xD.6x 2+2x答案:C2.下列计算正确的是( )A.(-4x)(2x 2+3x -1)=-8x 3-12x 2-4xB.(6xy 2-4x 2y)·3xy =6xy 2-12x 3y 2C.(-x)(2x +x 2-1)=-x 3-2x 2+1D.(-3x 2y)(-2xy +3yz +1)=6x 3y 2-9x 2y 2z -3x 2y答案:D3.计算: 2221(1)(4)(31);(2)(2)32x x ab ab ab -+-⋅ 解: 22232(1)(4)(31)(4)(3)(4)1124x x x x x x x -+=--⨯=--+22232221(2)(2)32211(2)32213ab ab ab ab ab ab ab a b a b +-⋅=⋅-⋅=- 三、应用提高设n 为自然数,试说明n(2n +1)-2n(n -1)的值一定是3的倍数.解:n(2n +1)-2n(n -1)=2n 2+n -2n 2+2n=3n ,∵n 是自然数,∴3n 是3的倍数,即n(2n +1)-2n(n -1)的值一定是3的倍数.四、体验收获今天我们学习了哪些知识?1.说一说单项式与多项式相乘的运算法则?2.在计算中应注意哪些问题?五、达标测评1.计算x(2x -1)-x 2(2-x)的结果是( )A .-x 3-xB .x 3-xC .-x 2-1D .x 3-1答案:B2.长方体的长、宽、高分别是4x -3,x 和2x ,它的体积等于__________.答案:8x 3-6x 23.计算:22()()(1)2324((2))()3.32xy x xy y a a a ---;+-+解:222232232(1)(2)(324)(2)3(2)(2)(2)(4)648(2)(3)3(2)336xy x xy y xy x xy xy xy y x y x y xy a a a a a a =⋅+⋅+⋅==+-----------+++-+4.先化简,再求值:3a(a 2-2a +1)-2a 2(a -3),其中a =2.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14六、布置作业教材100页练习题第1、2题.2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.下列图形中,中心对称图形有( )A .1个B .2个C .3D .4个2.如图,一次函数y kx b =+的图象经过A 、B 两点,则不等式0kx b +<的解集是( )A .1x >B .01x <<C .1x <D .0x <3.已知点A(a +b ,4)与点B(-2,a -b)关于原点对称,则a 2-b 2等于( )A .8B .-8C .5D .-54.在Rt △ABC 中,∠C =90°,AC =4,AB =5,则cosA 的值是( )A .35B .43C .34D .455.禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为( )A .1.02×10﹣7mB .10.2×10﹣7mC .1.02×10﹣6mD .1.0×10﹣8m 6.下列数据中不能作为直角三角形的三边长的是( )A .13 2B .7,24,25C .111,,345. D .1237.下列多项式中,不能..因式分解的是( ) A .ab a - B .29a - C .2+2+5a a D .2441a a ++ 8.如图,A 、B 是曲线()30y x x=>上的点,经过A 、B 两点向x 轴、y 轴作垂线段,若S 1=阴影,则S 1+S 2的值为( )A .3B .4C .5D .69.关于直线l:y=kx+k(k≠0),下列说法不正确的是( )A .点(0,k)在l 上B .l 经过定点(-1,0)C .当k>0时,y 随x 的增大而增大D .l 经过第一、二、三象限10.已知一个正多边形的每个外角等于60,则这个正多边形是( )A .正五边形B .正六边形C .正七边形D .正八边形二、填空题11.如图,在ABC ∆中,AD 是BC 边上的中线,F 是AD 上一点,且:1:4AF FD =连结CF ,并延长交AB 于点E ,则:AE EB =_________.12.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试90分,作业95分,课堂参与92分,则他的数学期末成绩为_____.13.矩形、菱形和正方形的对角线都具有的性质是_____.14.如图,正方形OABC 的边OA ,OC 在坐标轴上,矩形CDEF 的边CD 在CB 上,且5CD=3CB ,边CF 在轴上,且CF=2OC-3,反比例函数y=k x(k>0)的图象经过点B,E ,则点E 的坐标是____15.如图,正方形ABCD 的边长为2,MN ∥BC 分别交AB 、CD 于点M 、N ,在MN 上任取两点P 、Q ,那么图中阴影部分的面积是_____.16.有7个数由小到大依次排列,其平均数是38,如果这组数的前4个数的平均数是33,后4个数的平均数是42,则这7个数的中位数是 .17.当分式21x x 有意义时,x 的取值范围是__________. 三、解答题18.某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元. (1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案? (3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?19.(6分)如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F.(1)求证:△AEF ≌△DEB;(2)求证:四边形ADCF 是菱形.20.(6分)如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将纸片沿AD 折叠,直角边AC恰好落在斜边上,且与AE重合,求△BDE的面积.21.(6分)已知:一次函数的图像经过点A(-1,2)和点B(0,4).(1)求这个一次函数的表达式;(2)请你画出平面直角坐标系,并作出本题中的一次函数的图像.22.(8分)某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.求改进设备后平均每天耗煤多少吨?23.(8分)水果店张阿姨以每斤2元的价格购进某种水果若干斤,然后以每斤4元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出20斤,为保证每天至少售出260斤,张阿姨决定降价销售.(1)若将这种水果每斤的售价降低x元,则每天的销售量是斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,张阿姨需将每斤的售价降低多少元?24.(10分)计算:(1483121224;(2)(-1)101+(π-3)0+-112⎛⎫⎪⎝⎭2(1-2)25.(10分)如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕EF分别与AB、DC交于点E和点F,点B的对应点为B′.(1)证明:AE=CF;(2)若AD=12,DC=18,求DF的长.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】绕一个点旋转180度后所得的图形与原图形完全重合的图形叫做中心对称图形作出判断.【详解】等边三角形不是中心对称图形;平行四边形是中心对称图形;圆是中心对称图形;等腰梯形不是中心对称图形.故选:B.【点睛】此题考查中心对称图形,解题关键在于识别图形2.A【解析】【分析】由图象可知:B(1,0),且当x>1时,y<0,即可得到不等式kx+b<0的解集是x>1,即可得出选项.【详解】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:B (1,0),根据图象当x >1时,y <0,即:不等式kx+b <0的解集是x >1.故选:A .【点睛】本题主要考查对一次函数与一元一次不等式的关系,一次函数的图象等知识点的理解和掌握,能根据图象进行说理是解此题的关键,用的数学思想是数形结合思想.3.B【解析】【分析】直接利用关于原点对称点的性质得出a+b ,a-b 的值,进而得出答案.【详解】∵点A (a+b ,4)与点B (-2,a-b )关于原点对称,24a b a b +⎧⎨--⎩==, ∴a 2-b 2=(a+b )(a-b )=2×(-4)=-1.故选B .【点睛】考查了关于原点对称点的性质,正确应用平方差公式是解题关键.4.D【解析】【分析】根据余弦的定义计算即可.【详解】解:如图,在Rt △ABC 中,4cos 5ACA AB ==,故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键.5.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000102m =1.02×10﹣7m ; 故选A .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A.22212+=,符合勾股定理的逆定理,故不符合题意;B. 72+242=252,符合勾股定理的逆定理,故不符合题意;C.222111()()()453+≠,不符合勾股定理的逆定理,故符合题意;D.2221+=,符合勾股定理的逆定理,故不符合题意. 故选:C .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.C【解析】【分析】直接利用公式法以及提取公因式分解因式进而判断即可.【详解】解:A、ab-a=a(b-1),能够分解因式,故此选项不合题意;B、a2-9=(a+3)(a-3),能够分解因式,故此选项不合题意;C、a2+2a+5,不能因式分解,故本选项符合题意;D、4a2+4a+1=(2a+1)2,能够分解因式,故此选项不合题意;故选:C.【点睛】此题主要考查了提取公因法以及公式法分解因式,正确应用公式法分解因式是解题关键.8.B【解析】【分析】首先根据反比例函数kyx=中k的几何意义,可知S矩形ACOD=S矩形BEOF=|k|=3,又S阴影=1,则S1=S矩形ACOD -S阴影=2,S2=S矩形BEOF-S阴影=2,从而求出S1+S2的值.【详解】解:∵A、B是曲线3yx=上的点,经过A、B两点向x轴、y轴作垂线段,∴S矩形ACOD=S矩形BEOF=3,又∵S阴影=1,∴S1=S2=3-1=2,∴S1+S2=1.故选:B .【点睛】 主要考查了反比例函数k y x中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.9.D【解析】A .当x =0时,y =k ,即点(0,k )在l 上,故此选项正确;B .当x =﹣1时,y =﹣k +k =0,此选项正确;C .当k >0时,y 随x 的增大而增大,此选项正确;D .不能确定l 经过第一、二、三象限,此选项错误;故选D .10.B【解析】分析:根据多边形的外角和为360°即可得出答案.详解:360°÷60°=6,即六边形,故选B . 点睛:本题主要考查的是正多边形的外角和定理,属于基础题型.多边形的内角和定理为(n -2)×180°,多边形的外角和为360°.二、填空题11.1:8.【解析】【分析】先过点D 作GD ∥EC 交AB 于G ,由平行线分线段成比例可得BG=GE ,再根据GD ∥EC ,得出AE=4EG ,最后根据AE :EB=4EG :2EG ,即可得出答案. 【详解】过点D 作GD ∥EC 交AB 于G ,∵AD 是BC 边上中线, ∴1BG BD GE DC==,即BG=GE , 又∵GD ∥EC , ∴14AE AF EG FD ==, ∴AE=4EG , ∴AE :EB=4EG :2EG=1:8. 故答案为:1:8.【点睛】本题主要考查了平行线分线段成比例定理,用到的知识点是平行线分线段成比例定理,关键是求出AE 、EB 、EG 之间的关系.12.92【解析】【分析】因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【详解】 解:小明的数学期末成绩为903952925325⨯+⨯+⨯++ =92(分), 故答案为:92分.【点睛】本题考查加权平均数的概念.平均数等于所有数据的和除以数据的个数.13.对角线互相平分【解析】【分析】先逐一分析出矩形、菱形、正方形的对角的性质,再综合考虑矩形、菱形、正方形对角线的共同性质.【详解】解:因为矩形的对角线互相平分且相等,菱形的对角线互相平分且垂直且平分每一组对角,正方形的对角线具有矩形和菱形所有的性质,所有矩形、菱形和正方形的对角线都具有的性质是对角线互相平分.故答案为对角线互相平分.【点睛】本题主要考查了矩形、菱形、正方形的性质,解题的关键是熟知三者对角线的性质.14.2715204⎛⎫ ⎪⎝⎭, 【解析】【分析】设正方形OABC 的边0A=a ,可知OA=OC=AB=CB=a ,所以点B 的坐标为(aa),推出反比例函数解析式的k=a 2,再由CF=2OC-3,可知CF=2a-3,推出点的坐标为(231a a - ,3a-3),根据5CD=3CB ,可求出点E 的坐标【详解】由题意可设:正方形OABC 的边OA=a∴OA= OC=AB= CB∴点B 的坐标为(a,a),即k=a 2CF=2OC-3∴CF=2a-3∵OF=OC+CF=a+2a-3=3a-3∴点E 的纵坐标为3a-3将3a-3代入反比例函数解析式y=2a x 中,可得点E 的横坐标为231a a - ∵四边形CDEF 为矩形,∴CD=EF=231a a - 5CD=3CB2531a a -=3a,可求得:a=94将a=94,代入点E 的坐标为(231a a - ,3a-3),可得:E 的坐标为2715204⎛⎫ ⎪⎝⎭, 故答案为:2715204⎛⎫ ⎪⎝⎭, 【点睛】本题考查了反比例函数图像上点的坐标特征,正方形矩形的性质,熟知在反比例函数的题目中利用设点法找等量关系解方程是解题关键15.1【解析】【分析】阴影部分的面积等于正方形的面积减去AQD ∆和BCP ∆的面积和.而两个三角形等底即为正方形的边长,它们的高的和等于正方形的边长,得出阴影部分的面积=正方形面积的一半即可.【详解】解:由图知,阴影部分的面积等于正方形的面积减去AQD ∆和BCP ∆的面积.而点P 到BC 的距离与点Q 到AD 的距离的和等于正方形的边长,即AQD ∆和BCP ∆的面积的和等于正方形的面积的一半, 故阴影部分的面积21222=⨯=. 故答案为:1.【点睛】本题考查正方形的性质,正方形的面积,三角形的面积公式灵活运用,注意图形的特点. 16.34【解析】试题解析:解:设这7个数的中位数是x , 根据题意可得:433442387x ⨯+⨯-=, 解方程可得:x =34.考点:中位数、平均数点评:本题主要考查了平均数和中位数.把一组数据按照从小到大的顺序或从大到小的顺序排列,最中间的一个或两个数的平均数叫做这组数据的中位数.17.12x ≠【解析】【分析】 分式21x x -有意义的条件为210x -≠,即可求得x 的范围. 【详解】根据题意得:210x -≠, 解得:12x ≠. 答案为:12x ≠【点睛】本题考查了分式有意义的条件,熟练掌握分母不为0是解题的关键.三、解答题18.(1)购买1块电子白板需要15000元,一台笔记本电脑需要4000元(2)有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元【解析】【分析】(1)设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案.(2)设购买购买电子白板a 块,则购买笔记本电脑(396﹣a )台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可.(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.【详解】(1)设购买1块电子白板需要x 元,一台笔记本电脑需要y 元,由题意得:x=3y+3000{4x+5y=80000,解得:x=15000{y=4000. 答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买购买电子白板a 块,则购买笔记本电脑(396﹣a )台,由题意得:()396a 3a {270000015000a+4000396a -≤≤-,解得:599a 10111≤≤. ∵a 为整数,∴a=99,100,101,则电脑依次买:297,296,295.∴该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块.(3)设购买笔记本电脑数为z 台,购买笔记本电脑和电子白板的总费用为W 元,则W=4000z+15000(396﹣z )=﹣11000z+5940000,∵W 随z 的增大而减小,∴当z=297时,W 有最小值=2673000(元)∴当购买笔记本电脑297台、购买电子白板99块时,最省钱,共需费用2673000元. 19. (1)见解析;(2)见解析.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;【详解】证明:(1)∵AF ∥BC∴∠AFE =∠DBE∵E 是AD 中点,∴AE =DE在△AEF 和DEB 中AFE DBE AEF DEB AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS )(2)在Rt△ABC中,D是BC的中点,所以,AD=BD=CD又AF∥DB,且AF=DB,所以,AF∥DC,且AF=DC,所以,四边形ADCF是菱形.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键.20.6【解析】【分析】由勾股定理可求AB的长,由折叠的性质可得AC=AE=6cm,∠DEB=90°,由勾股定理可求DE 的长,由三角形的面积公式可求解.【详解】解:∵AC=6cm,BC=8cm,∴22226810AB AC BC,∵将纸片沿AD折叠,直角边AC恰好落在斜边上,且与AE重合,∴AC=AE=6cm,∠DEB=90°∴BE=10-6=4cm设CD=DE=x,则在Rt△DEB中,2224(8)x x+=-,解得:3x=,即DE=3.∴△BDE的面积为:1346 2⨯⨯=.【点睛】本题考查了翻折变换,勾股定理,三角形面积公式,熟练掌握折叠的性质是本题的关键. 21.(1)24y x =+;(2)见解析【解析】【分析】(1)设一次函数解析式为y kx b =+,将A ,B 坐标代入求出k ,b 的值,即可得解析式; (2)建立坐标系,找到A ,B 两点的位置,再连线即可.【详解】(1)设一次函数解析式为y kx b =+,将A(-1,2)和点B(0,4)代入得:24k b b -+=⎧⎨=⎩解得24k b =⎧⎨=⎩,∴一次函数解析式为24y x =+(2)如图所示,【点睛】本题考查求一次函数解析式与作图,熟练掌握待定系数法求函数解析式是解题的关键. 22.改进设备后平均每天耗煤1.5吨.【解析】【分析】设改进后评价每天x 吨,根据题意列出分式方程即可求解.【详解】解:设改进后评价每天x 吨,4545101052x x x-+=+, 解得x=1.5.经检验,x=1.5是此分式方程的解.故 故改进设备后平均每天耗煤1.5吨. 【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系进行求解. 23.(1)100+200x ;(2)1. 【解析】试题分析:(1)销售量=原来销售量﹣下降销售量,列式即可得到结论; (2)根据销售量×每斤利润=总利润列出方程求解即可得到结论. 试题解析:(1)将这种水果每斤的售价降低x 元,则每天的销售量是100+0.1x×20=100+200x 斤; (2)根据题意得:(42)(100200)300x x --+=,解得:x=12或x=1,∵每天至少售出260斤,∴100+200x≥260,∴x≥0.8,∴x=1. 答:张阿姨需将每斤的售价降低1元.考点:1.一元二次方程的应用;2.销售问题;3.综合题.24.(1)4(2)3 【解析】 【分析】根据二次根式的性质化简,再合并同类二次根式即可.根据乘方、0指数幂、负整数指数幂及二次根式的性质化简后,再合并即可. 【详解】44==(2)(-1)101+(π-3)0+-112⎛⎫ ⎪⎝⎭)11213-++-=【点睛】本题考查的是二次根式的性质及实数的运算,掌握二次根式的性质及乘方、0指数幂、负整数指数幂是关键.25.(1)见解析;(2)5. 【解析】 【分析】(1)根据折叠的性质以及矩形的性质,运用ASA 即可判定△ADF ≌△AB′E ;(2)先设FA=FC=x ,则DF=DC-FC=18-x ,根据Rt △ADF 中,AD 2+DF 2=AF 2,即可得出方程122+(18-x )2=x 2,解得x=1.所在DF=18-1=5. 【详解】(1)证明:∵四边形ABCD 是矩形, ∴∠D=∠C=∠B′=90°,AD=CB=AB′, ∵∠DAF+∠EAF=90°,∠B′AE+∠EAF=90°, ∴∠DAF=∠B′AE , 在△ADF 和△AB′E 中,'''D B AD AB DAF B AE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△AB′E (ASA ). ∴AE=CF ;(2)解:由折叠性质得FA=FC , 设FA=FC=x ,则DF=DC-FC=18-x , 在Rt △ADF 中,AD 2+DF 2=AF 2, ∴122+(18-x )2=x 2. 解得x=1. ∴DF=18-1=5 【点睛】本题属于折叠问题,主要考查了全等三角形的判定与性质,勾股定理以的运用,解决问题的关键是:设相关线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.2019-2020学年初二下学期期末数学模拟试卷一、选择题(每题只有一个答案正确)1.如图,在矩形ABCD 中,E 为AD 的中点,∠BED 的平分线交BC 于点F ,若AB=3,BC=8,则FC 的长度为( )A .6B .5C .4D .32.如图,在中,,则的度数为( )A .B .C .D .3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是( ) A .测量对角线,看是否互相平分 B .测量两组对边,看是否分别相等 C .测量对角线,看是否相等D .测量对角线的交点到四个顶点的距离,看是否都相等4.如图,A ,B ,C 三点在正方形网格线的交点处,若将ACB ∆绕点A 逆时针旋转得到AC B ''∆,则C '点的坐标为( )A .51,2⎛⎫⎪⎝⎭B .81,3⎛⎫ ⎪⎝⎭C .(1,12)D .(1,32)-5.若实数a ,b ,c 满足a b c 0++=,且a b c <<,则函数y cx a =+的图象一定不经过()A .第四象限B .第三象限C .第二象限D .第一象限6.如图,在△OAB 中,∠AOB=55°,将△OAB 在平面内绕点O 顺时针旋转到△OA′B′ 的位置,使得BB′∥AO,则旋转角的度数为( )A .125°B .70°C .55°D .15°7.以下列各组数为三角形的边长,能构成直角三角形的是( ) A .1,2,3B .1,1,2C .2,4,5D .6,7,88.已知()11P 3,y -,()22P 2,y 是一次函数y x 1=--的图象上的两个点,则1y ,2y 的大小关系是( ) A .12y y =B .12y y <C .12y y >D .不能确定9.在平面直角坐标系中,点(1,2)P -位于( ) A .第一象限B .第二象限C .第三象限D .第四象限10.下列选项中的图形,不属于中心对称图形的是( )A .B .C .D .二、填空题11.如图,已知△ABC 中,AB=AC ,AD 平分∠BAC,E 是AB 的中点,若AC=6,则DE 的长为 _____________12.如图,在平行四边形ABCD 中,点F 在AD 上,5,11,AF cm BF cm FBD CBD ==∠=∠,点E 是BC 的中点,若点P 以1厘米/秒的速度从A 点出发,沿AD 向点F 运动;点Q 同时以2厘米/秒的速度从C 点出发,沿CB 向点B 运动,点P 运动到F 停止运动,点Q 也同时停止运动,当点P 运动时间是_____秒时,以点P Q E F 、、、为顶点的四边形是平行四边形.13.如图,在△ABC 中,D ,E ,F ,分别时AB ,BC ,AC ,的中点,若平移△ADF 平移,则图中能与它重合的三角形是 .(写出一个即可)14.若m 是2的小数部分,则22m m +的值是__________.15.如图,已知二次函数y =ax 2+bx+c 的图象经过点A (3,0),对称轴为直线x =1,则点B 的坐标是_____.16.一种盛饮料的圆柱形杯子(如图),测得它的内部底面半径为2.5 cm ,高为12 cm ,吸管放进杯子里,杯口外面至少要露出5.2 cm ,则吸管的长度至少为_______cm .172的矩形纸片ABCD 进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是2(每一次的折痕如下图中的虚线所示).已知AB=1,则第3次操作后所得到的其中一个矩形纸片的周长是 ;第2016次操作后所得到的其中一个矩形纸片的周长是 .三、解答题18.如图所示,四边形ABCD 是平行四边形,AC 、BD 交于点O ,∠1=∠1.(1)求证:四边形ABCD 是矩形;(1)若∠BOC =110°,AB =4cm ,求四边形ABCD 的面积.19.(6分)解下列不等式,并把解集表示在数轴上.(1) 41133x x --> (2) 213(1)132x x +-≥+20.(6分)正方形ABCD 中,点E 是BD 上一点,过点E 作EF AE ⊥交射线CB 于点F ,连结CE .(1)已知点F 在线段BC 上. ①若AB BE =,求DAE ∠度数; ②求证:CE EF =.(2)已知正方形边长为2,且2BC BF =,请直接写出线段DE 的长.21.(6分)小东拿着一根长竹竿进一个宽为5米的矩形城门,他先横着拿但进不去;又竖起来拿,结果竹竿比城门还高1米,当他把竹竿左右斜着拿时,两端刚好顶着城门的对角,问竹竿长多少米?22.(8分)如图所示的是小聪课后自主学习的一道题,参照小聪的解题思路,回答下列问题: 若22228160m mn n n -+-+=,求m 、n 的值.. 小聪的解答:∵22228160m mn n n -+-+=, ∴()()22228160m mn nnn -++-+=,∴22()(4)0m n n +--=,而22()0,(4)0m n n --,∴22()0,(4)0m n n -=-=,∴4,4n m ==.(1)22440a b a +-+=,求a 和b 的值.(2)已知ABC 的三边长a 、b 、c 满足2222220a b c ab bc ++--=,关于此三角形的形状有以下命题:①它是等边三角形;②它是等腰三角形;③它是直角三角形.其中是真命题的有_____.(填序号)23.(8分)为迎接4月23日的世界读书日,某书店制定了活动计划,如表是活动计划的部分信息:(1)杨经理查看计划时发现:A 类图书的标价是B 类图书标价的1.5倍.若顾客用540元购买图书,能单独购买A 类图书的数量恰好比单独购买B 类图书的数量少10本.请求出A 、B 两类图书的标价.(2)经市场调查后,杨经理发现他们高估了“读书日”对图书销售的影响,便调整了销售方案:A 类图书每本按标价降低a 元(0<<3a )销售,B 类图书价格不变.那么书店应如何进货才能获得最大利润.24.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界).捐款额(元)频数百分比x< 3 7.5%510x<7 17.5%1015x< a b1520x<10 25%2025x< 6 15%2530总计100%(1)填空:a=________,b=________.(2)补全频数分布直方图.x<的学生人数.(3)该校有2000名学生估计这次活动中爱心捐款额在152525.(10分)在西安市争创全国教育强市的宏伟目标指引下,高新一中初中新校区在今年如期建成.在校园建设过程中,规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%,求广场中间小路的宽.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】根据矩形点的性质可得AD∥BC,AD=BC,再求出AE的长度,再根据勾股定理列式求出BE的长,然后根据角平分线的定义求出∠BEF=∠DEF,根据两直线平行,内错角相等求出∠BFE=∠DEF,再求出BEF=∠BFE,根据等角对等边可得BE=BF,然后根据FC=BC-BF代入数据计算即可得解.【详解】解:在矩形ABCD中,AD∥BC,AD=BC=8,∵E为AD的中点,∴AE=12AD=12×8=4,在Rt△ABE中,5BE==,∵EF是∠BED的角平分线,∴∠BEF=∠DEF,∵AD∥BC,∴∠BFE=∠DEF,∴BEF=∠BFE,∴BE=BF,∴FC=BC-BF=8-5=1.故选:D.【点睛】本题考查了矩形的性质,勾股定理的应用,两直线平行,内错角相等的性质,等角对等边的性质,熟记各性质是解题的关键.2.C【解析】【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=110°,【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.3.D【解析】【分析】根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.【详解】解:A、对角线是否相互平分,能判定平行四边形,故本选项错误;B、两组对边是否分别相等,能判定平行四边形,故本选项错误;C、对角线相等的四边形不一定是矩形,不能判定形状,故本选项错误;D、根据对角线相等且互相平分四边形是矩形,可知量出对角线的交点到四个顶点的距离,看是否相等,可判断是否是矩形.故本选项正确.故选:D.【点睛】本题考查的是矩形的判定定理,牢记矩形的判定方法是解答本题的关键,难度较小.4.C【解析】【分析】根据旋转的性质可得AC=AC′,求出AC的长,得到C′的纵坐标,再根据点A的横坐标可得结果. 【详解】解:如图,=由于旋转,∴AC′=,∵A(1,1),∴C′(1+1),故选C.。
新人教版八年级数学上册第14章整式的乘除与因式分解第2节乘法公式(第2课时)导学案
![新人教版八年级数学上册第14章整式的乘除与因式分解第2节乘法公式(第2课时)导学案](https://img.taocdn.com/s3/m/da48e8d60740be1e640e9a1b.png)
新人教版八年级数学上册第14章整式的乘除与因式分解第2节乘法公式(第2课时)导学案学习目标:1.理解两数和的平方的公式,掌握公式的结构特征,并熟练地应用公式进行计算.2.经历探索两数和的平方公式的过程,进一步发展学生的符号感和推理能力.3.培养学生探索能力和概括能力,体会数形结合的思想.学习重点:对两数和的平方公式的理解,熟练完全平方公式进行简单的计算.学习难点:对公式的理解,包括它的推导过程,结构特点,语言表述及其几何解释.学习过程:一.自主学习(1)两数和乘以这两数的差的公式是什么?(2)口述多项式乘以多项式法则.(3)计算(2x-1)(3x-4)(5x+3)(5x-3)二.合作探究1.情景问题:有一位老人非常喜欢孩子,每当有孩子到他家做客时,老人都要拿出糖果来招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块糖,来三个,就给每人三块……(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?(2)第二天有b个女孩一起去了老人家,老人一共给了这些孩子多少块糖?(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?2.自主总结出公式,导出:(a+b)2=a2+2ab+b2这就是说,两数和的平方,等于它们的平方和加上它们乘积的2倍用面积法检验公式:先观察右图,再用等式表示下图中图形面积的运算.3拼图导出:(a+b )2=a 2+2ab+b 2你能根据图1,谈一谈(a+b )2=a 2+2ab+b 2吗?(a -b )2=a 2-2ab+b 2你能根据图2,谈一谈(a -b )2=a 2-2ab+b 2吗?4.写出公式.(1)(a +b )2 (2)(a - b )25.提高:可将(a -b )看成是[a +(-b)],就将减法统一成加法,即:()()2222222)()(2][b ab a b b a a b a b a +-=-+-+=-+=-, ()2222b ab a b a +-=-在今后的计算中可直接应用.(1) ()22y x +-(2)()252b a -- (3)三.随堂练习1.计算:⑴(2a +3b )2; ⑵(2a +2b )22.计算:(1)(a -b )2; (2)(2x -3y )2221⎪⎪⎭⎫ ⎝⎛--x3. 课本P 110练习1,2 四.盘点提升1.判断正误:(1)(b-4a )2=b 2-16a 2.( ) (2)(12a+b )2=14a 2+ab+b 2.( )(3)(4m-n )2=16m 2-4mn+n 2.( ) (4)(-a-b )2=a 2-2ab+b 2.( )2.在下列各式中,计算正确的是( )A .(2m-n )2=4m 2-n 2B .(5x-2y)2=25x 2-10xy+4y2C .(-a-1)2=-a 2-2a-1D (-a 2-0.3ab)2=a 4+0.6a 3b+0.09a 2b 23. 利用完全平方公式进行简便计算:(1)1022 (2)1992 (3)(x +2)2-(x -2)24.计算:⑴22()()()x y x y x y -++ ⑵()()()()221211513-+-+-+m m m m5.已知()(),4,722=-=+b a b a 求22b a +和ab 的值。
人教新课标八年级上第15.1整式的乘法(2)学案
![人教新课标八年级上第15.1整式的乘法(2)学案](https://img.taocdn.com/s3/m/0d967b8d804d2b160a4ec094.png)
八年级下册数学讲学稿(2)内容:整式的乘法(2)审核:八年级数学组学习目标:1. 理解整式乘法运算的算理,体会乘法运算的算理,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力。
2. 会进行单项式与多项式的乘法运算。
3. 培养学生有条理的思考及有逻辑的思维能力和语言表达能力。
重点和难点:重点:单项式与多项式相乘的法则。
难点:单项式的系数的符号是负时的情况。
学前准备:1.___________________________________________ 同底数幕的乘法法则.幕的乘方的法则___________________________________ 。
积的乘方的法则__________________________ 。
(用字母表示)1•乘法对加法的分配律________________________ 。
(用字母表示)2. ____________________________ (3a3b4) • (—2ab3c2)=_____________ ; (—6a2b2) • (4b3c)二______________3.(-2a2b3)• (—3a)= ________________ ; (2X 104) (8 x 108)探究活动:1•小明的妈妈承包了一块宽为米的长方形基地,准备在这块地上种四种不同的蔬菜,你能用几种方法来表示这块地的面积?2•如下图所示,(1)用两个直角三角形组成一个新的三角形,它的面积是多少?(2)原来的两个直角三角形的面积和多少?a c a c(4) 我们学习了单项式与单项式相乘,你知道探究活动中的两个问题是关于什么相乘的运算?(5) 你知道这种运算的运算法则吗?试着写下来。
(5) (2x 2)3 — 6x 3(x 3 + 2x 2 + x) 通过上面的解题,你知道单项式与多项式相乘应注意那些问题?计算:(1) x (x 2— xy + y 2)-y(x 2 + xy + y 2) (2) (2x 2)3— 6x 3(x 3 + 2x 2 + x)⑶ 12 x 2 y 2 [3y n —1 — 2xy n + 1+( — 1)888] 考考你:若n 为自然数,试说明n (2n+1) -2n (n - 1)的值一定是3的倍数。
新人教版八年级数学上册《14.1整式的乘法》复习导学案
![新人教版八年级数学上册《14.1整式的乘法》复习导学案](https://img.taocdn.com/s3/m/7212d8ff3169a4517623a327.png)
新人教版八年级数学上册《14.1整式的乘法》复习导学案学习目标:1.掌握幂的运算性质和整式乘法法则并进行运算。
2.经历幂的运算性质和整式乘法法则的复习过程,体会转化、数形结合的数学思想方法,培养良好的学习习惯,增强学习的兴趣。
学习重点:幂的运算性质和整式乘法法则。
学习难点:幂的运算性质和整式乘法法则之间的联系。
导学流程:【知识回顾温故知新】问题1.请同学们回忆,幂的运算有哪些?字母表达式为:a m·a n=幂的运算字母表达式为:(a m)n=字母表达式为:(ab)n=注:上述前两个字母表达式中,-m、n有什么要求吗?针对训练:计算:(1)x·x²= (2)y5·y4·y3= (3)a m2·a2= (4)(a2)3= (5)(-x5)3= (6)(-y3)2= (7)(2a)3= (8)(-2x3)4= (9)(-3m2)3= 问题2.观察下面三个图形,请同学们用代数式分别表示它们的面积。
3a 3b b2a a 3 a 3归纳:运算法则:整式的乘法字母表达式为:a(m+n)=字母表达式为:(a+b) (m+n)=针对训练:错题医院:(1)(31xy2)·(9x2y)2= (2)4xy(3x²y-2x+1)= (3)(a3)5-a3·a5= (4)(x-2y)(x+y)= 问题3.整式的除法分为哪几类呢?同底数幂相除:字母表达式为:a m÷a n=整式的除法 a0= (a 0)单项式相除:法则为多项式除以单项式:法则为注:上述的字母表达式中,a、m、n有什么要求吗?针对训练:计算:n(1)x 4y ²÷7x 3y= (2)-5a 5b 3c ÷15a 4b=(3)(12a 3-6a ²+3a)÷3a= (4)(-32)0=【感悟变化 熟练运用】比一比,看谁做的又快又准! 1. 计算:(-21x m y )3(-4xy ²)²2. 先化简,再求值。
最新人教版初中八年级数学上册第十四章《整式的乘法》精品教案 (2)
![最新人教版初中八年级数学上册第十四章《整式的乘法》精品教案 (2)](https://img.taocdn.com/s3/m/9ef14fced1f34693daef3e81.png)
42
6
3 x2 y( - 4xy2)- 1 xy2( - 4xy2)- 5 y3( - 4xy2)
4
2
6
-3x3 y3 2x2 y4 10 xy5. 3
本题源自《教材帮》
随堂练习 2
计算: (1) (3a+1)(a-2) ;
解:(1) (3a+1)(a-2) = 3a∙a+3a∙(-2)+1∙a+ 1∙(-2) = 3a2-6a+a-2 = 3a2-5a-2 ;
课后作业
1.完成教科书课后练习中的1、2题。 2.完成练习册本课时的习题作业。
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。希望我的文档能 够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能 提出你的宝贵意见,促进我们共同成长,共同进步。每一个文档都花费了我大量 心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最 大的欣慰。如果您觉得有改进之处,请您留言,后期一定会优化。
法则:一般地,单项式与多项式相乘,就是单项式去乘多项式的每一项,再把 所得的积相加. 式子表示:p(a+b+c)=pa+pb+pc(p,a,b,c都是单项式).
多项式中的每一项都包括它前面的符号,根据去括号的法则,积的符 号由单项式的符号与多项式的符号共同决定.
新知探究
单项式与多项式相乘的步骤: (1) 利用乘法分配律,转化为单项式乘以单项式; (2) 将单项式与单项式相乘的结果相加.
随堂练习 1
计算:(1) (4a-b)(-2b)2 ;
解:(1) (4a-b)(-2b)2 = (4a-b)∙4b2 = 4a∙4b2+(-b)∙4b2 = 16ab2-4b3 ;
人教版八年级数学上册《整式的乘法》导学案
![人教版八年级数学上册《整式的乘法》导学案](https://img.taocdn.com/s3/m/496bc90cc77da26924c5b065.png)
《整式的乘法》学习目标⒈ 学生对教材的三个部分:同底数幂的乘法,幂的乘方,积的乘方有一个正确的理解,并能够正确的运用.⒉ 学生在已有的知识基础上,自主探索,获得幂的运算的各种感性认识,进而在理性上获得运算法则.⒊ 培养良好的数学构建思想和辨析能力和一定的思维批判性. 学习重点:理解三个运算法则.学习难点:正确使用三个幂的运算法则.学习过程:一.预习与新知:⑴叙述幂的运算法则?(三个)⑵谈谈这三个幂运算的联系与区别?二.课堂展示:⑴计算:()()1032222x x x x −−⋅−⋅−(请同学们填充运算依据) 解:原式=()106222x x x x −−⋅⋅− ( ) =106222x x −++ ( ) =10102x x − ( ) =10x − ( ) ⑵下列计算是否有错,错在那里?请改正.①()22xy xy = ②()442123y x xy = ③()623497x x =− ④33234327x x −=⎪⎭⎫ ⎝⎛− ⑤2045x x x =⋅ ⑥()523x x =⑶计算:()()323223y x y x ⋅三.随堂练习:⑴计算:①33+⋅n x x ②3254⎪⎭⎫ ⎝⎛−y x ③ ()n c ab 233− ④()()[]322223x x −−⑵下列各式中错误的是( )(A )32x x x =⋅− (B )()623x x =− (C )1055m m m =⋅(D )()32p p p =⋅− ⑶3221⎪⎭⎫ ⎝⎛−y x 的计算结果是( ) (A )3621y x −(B )3661y x − (C )3681y x − (D )3681y x ⑷若811x x x m m =+−则m 的值为( )(A )4 (B )2 (C )8 (D )10C 组⒈计算:⑴432a a a a ⋅⋅ ⑵()()()256x x x −⋅−⋅− ⑶()[]32a −− ⑷()[]3223xy − ⑸()[]3241x x −⋅−− ⑹()()431212+⋅+x x⒉一个正方形的边长增加了3厘米,它的面积就增加39平方厘米,求这个正方形的边长?⒊阅读题:已知:52=m 求:m 32和m +32解:()125522333===m m405822233=⨯=⨯=+m m⒋已知:73=n 求:n 43和n +43⒌找简便方法计算:⑴()1011005.02⨯ ⑵22532⨯⨯ ⑶424532⨯⨯⒍已知:2=m a ,3=n b 求:n m b a 32+的值四.小结与反思。
整式的乘法全章导学案
![整式的乘法全章导学案](https://img.taocdn.com/s3/m/8c15df4c6edb6f1aff001f83.png)
整式的乘法全章导学案 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】第四节 整式的乘法(一)【学习目标】1.经历探索整式乘法运算法则的过程,发展观察,归纳,猜想,验证等能力。
2.会进行单项式与单项式的乘法运算。
3.培养同学们的语言表达能力,逻辑思维能力。
【学习方法】自主探究与合作交流【学习重点】单项式与单项式的乘法运算。
【学习难点】单项式乘法法则有关系数和指数在计算中的不同规定。
【教学资源】多媒体、投影仪 模块一 预习反馈 一.学习准备 1.复习幂的运算性质(1)同底数幂相乘,_____不变,______相加.()()+=⋅a a a n m (m,n 是正整数)(2)幂的乘方,______不变,______相乘.()a a n m =)((m,n 是正整数) (3)积的乘方等于积中各因数乘方的______.()()b a ab n =)( (n 是正整数) (4)同底数幂相除,_____不变,指数_____. ()()-=÷a a a n m2.计算下列各题:(1)(-a 5)5 (2) (-a 2b )3 (3) (-2a )2(-3a 2)3 (4) (-y n )2 y n -1 二.解读教材(自主学习)1. 七年级三班举办新年才艺展示,小明的作品是用同样大小的纸精心制作的两幅剪贴画,如右图所示,第一幅画的画面大小与纸的大小相同,第二幅画的画面白.在纸的上、下方各留有 x 81米的空(1) 第一幅画的画面面积是_______平方米;第二幅是_________平方米。
(2) 若把图中的改为mx ,其他不变,则第一幅画的画面面积又是_______平方米;第二幅又是_________平方米。
2.想一想:(1)3a 2b ·2 ab 3和(xyz )·y 2z 又等于什么你是怎样计算的 (2)如何进行单项式乘单项式的运算归纳:单项式乘以单项式法则:单项式与单项式相乘,把它们的______、________分别相乘,其余字母连同它的______不变,作为积的_________。
人教版-数学-八年级上册-14.1.4 《整式的乘法(2)》 教案
![人教版-数学-八年级上册-14.1.4 《整式的乘法(2)》 教案](https://img.taocdn.com/s3/m/c307a79e0722192e4536f6cf.png)
师生共同得出: 可以把 看成一个整体,利用乘法分配律把多项式与多项式相乘的问题转化成了单项式与多项式相乘的的问题,再利用单项式与多项式的相乘法则得到 ,进而继续用单项式与多项式相乘法则得到
.
师:最后就可以得到:
.
学生在回答了两个问题后,也可以让学生根据前面获得的经验继续说说 和 是怎么计算得到的.
3.灵活运用多项式乘多项式的运算法则进行计算.
(二)学习重点
多项式与多项式相乘的法则的理解及其运用.
(三)学习难点
探索多项式与多项式相乘的法则,灵活地进行整式的乘法运算.
二、教学设计
(一)课前设计
1.预习任务
多项式与多项式相乘的法则:
多项式与多项式相乘,先把一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
学生先独立思考,再小组讨论,可以得出以下四种方法:
方法一:(合成一个整体看) .
方法二:(看作两个长方形之和) 或 .
方法三:(分成四个部分看) .
所以,就可以得到:
或者 .
问题2:观察方法一,这是一个多项式与多项式相乘的式子,怎样进行多项式与多项式的乘法运算呢?多项式与多项式的乘法运算能否转化成前面学习的单项式与多项式的乘法运算呢?带着这些问题来学习今天的新课!
(1)多项式与多项式相乘的法则的理解,三个法则的灵活运用;
(2)学习和运用法则过程中,渗透了转化、整体、数形结合等数学思想.
【答案】
【设计意图】在化简求值和解方程及解不等式的计算中,巩固多项式与多项式相乘的法则.
●活动3(探究型例题)
例4 某零件如图所示(上、下宽度相同,左、右宽度相同),
(1)求图中空白部分面积;
(2)求图中阴影部分的面积.
八级数学上册14.1整式的乘法教案新版新人教版 (2)
![八级数学上册14.1整式的乘法教案新版新人教版 (2)](https://img.taocdn.com/s3/m/ec1baefd360cba1aa811da96.png)
14.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重点难点1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15•×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示.计算过程:105×102=(10×10×10×10×10)×(10×10)=10×10×10×10×10×10×10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( ); (2)53×54=_____________=5( ); (3)(-3)7×(-3)6=___________________=(-3)( ); (4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a ·a=?请同学们想一想.【学生总结】a ·a=()()()()m a a m n aa aa a a a a a a a +=个n个个=a m+n 这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104;(2)a ·a 3;(3)a ·a 3·a 5;(4)x ·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方,提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究,目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习. 【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本P96练习题.【探研时空】。
2019-2020学年八年级数学上册 14.1.4 整式的乘法(2)导学案(新版)新人教版.doc
![2019-2020学年八年级数学上册 14.1.4 整式的乘法(2)导学案(新版)新人教版.doc](https://img.taocdn.com/s3/m/fc875e1e3169a4517623a30b.png)
2019-2020学年八年级数学上册 14.1.4 整式的乘法(2)导学案(新版)新人教版 学习目标:1、在具体的情境中,了解单项式与多项式相乘的意义;2、理解单项式与多项式的乘法法则,会用它进行简单的计算.一、学前准备:(预习案)1、单项式与单项式的乘法运算法则?2、计算:(1)()()x x 425.02-∙- (2)()()23105108.2⨯⨯⨯(3)()()2223xy x∙- (4)()()22323221yz x y x xyz -∙-∙二、自主学习:(探究案)问题:三个连锁店以相同的价格m (单位:元/瓶)销售某种商品,它们在一个月内的销售量(单位:瓶)分别是a ,b ,c ,你能用不同的方法计算它们在这个月内销售这种商品的总收入吗?(用两种方法解决问题)第一种方法:____________________________ 第二种方法:____________________________思考:上面两种方法的结果相同吗?如果相同,请用学过的知识说明理由.单项式乘多项式的法则: _________________________________________________ _________________________________________________ 例1 计算:(1)()()1342+-x x (2)ab ab ab 212322∙⎪⎭⎫⎝⎛-1、计算:(1)3a (5a-2b) (2)(x-3y)(-6x)2、化简:x(x-1)+2x(x+1)-3x(2x-5)1、若42-=ab ,则()__________52=--b b a ab .2、要使()()4238x x ax x -∙-+的运算结果中不含6x 的项,则a=_______.3、()222322y x y x xy y x +-的结果中最高的次数是( )A. 10次B. 4次C. 6次D. 8次4、()c x bx x x x ax +++=++106543232成立,则a 、b 、c 的值分别是()A. a=2,b=4,c=1B. a=2,b=4,c=2C. a=2,b=8,c=0D. a=2,b=8,c=1课后小结:通过本节课的学习,你有哪些收获?姓名:_____________ 分数:____________测试案1、计算下列各式的值:(1)()()a a a 2322-∙- (2)()22293631b ab a b a +-∙-(3)()()x x x 36522-∙-- (4)()⎪⎭⎫ ⎝⎛---22125x y x y xy2、化简求值:()()()1333222----++a a a a a a a ,其中3-=a .。
人教版八年级数学上册导学案 14.1.4 整式的乘法(2)
![人教版八年级数学上册导学案 14.1.4 整式的乘法(2)](https://img.taocdn.com/s3/m/d2c49fb54693daef5ef73db1.png)
14.1.4 整式的乘法(2)1.了解单项式与多项式的乘法法则.2.运用单项式与多项式的乘法法则计算.重点:单项式与多项式的乘法法则.难点:灵活运用单项式与多项式的乘法法则计算.一、自学指导自学1:自学课本P99-100页“例5”,理解单项式与多项式乘法的法则,完成下列填空.(5分钟)乘法的分配律:m(a +b +c)=ma +mb +mc . 总结归纳:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P100页练习题1,2.2.计算:(1)-5x(2x 3-x -3);(2)2x(32x 3-3x +1); (3)(-2a 3)(4ab 3-2ab 2);(4)(-3m -1)·(-2m)2.解:(1)-5x(2x 3-x -3)=-5x·2x 3+5x·x +5x ×3=-10x 4+3x 2+15x ;(2)2x(32x 3-3x +1)=2x·32x 3-2x·3x +2x·1=3x 4-6x 2+2x ; (3)(-2a 3)(4ab 3-2ab 2)=-2a 3·4ab 3+2a 3·2ab 2=-8a 4b 3+4a 4b 2;(4)(-3m -1)·(-2m)2=(-3m -1)·4m 2=-3m·4m 2-1×4m 2=-12m 3-4m 2.3.要使x(x +a)+3x -2b =x 2+5x +4成立,则a =2,b =-2.4.长方体的长、宽、高分别为4x -3,x 和2x ,它的体积为8x 3-6x 2.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1 解方程:8x(5-x)=17-2x(4x -3).解:40x -8x 2=17-8x 2+6x ,34x =17,x =12. 探究2 先化简,再求值:x 2(3-x)+x(x 2-2x)+1,其中x = 3.解:x 2(3-x)+x(x 2-2x)+1=3x 2-x 3+x 3-2x 2+1=x 2+1,当x =3时,原式=(3)2+1=3+1=4.点拨精讲:所谓的化简即去括号、合并同类项.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.解方程:2x(7-2x)+5x(8-x)=3x(5-3x)-39解:14x-4x2+40x-5x2=15x-9x2-39,39x=-39,x=-1.2.求下图所示的物体的体积.(单位:cm)解:x·3x·(5x+2)+2x·x·(5x+2)=3x2·(5x+2)+2x2·(5x+2)=25x3+10x2.答:物体的体积为(25x3+10x2) cm3.3.x为何值时,3(x2-2x+1)与x(3x-4)的差等于5?解:依题意,得3(x2-2x+1)-x(3x-4)=5,3x2-6x+3-3x2+4x=5,-2x=2,x=-1,答:当x=-1时,3(x2-2x+1)与x(3x-4)的差等于5.(3分钟)单项式与多项式相乘:理论依据是乘法的分配律;单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同;计算时都要注意符号问题,多项式中每一项都包括它的符号,同时要注意单项式的符号.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)。
八年级数学上册 整式的乘法教案2 (新版)新人教版
![八年级数学上册 整式的乘法教案2 (新版)新人教版](https://img.taocdn.com/s3/m/005c4cc0b307e87100f69606.png)
整式的乘法 教学目标:知识与技能1、在具体情境中了解多项式与单项式的相乘的意义;2、理解多项式与单项式相乘的运算法则;3、会进行多项式与单项式的乘法运算。
过程与方法 1、经历探索多项式与单项式相乘的乘法法则的过程,体会乘法分配律的作用以及“整体”和“转化”的数学思想;2、通过对乘法法则的探索,归纳与描述,发展有条理思考的能力和语言表达能力;情感、态度与价值观 在探究乘法法则的过程中,体会“整体”和“转化”的思想,体验学习和把握数学问题的方法,树立学好数学的信心,培养学习数学的兴趣。
教学重点:多项式的乘法法则及其应用。
教学难点:探索多项式的乘法法则,灵活地进行整式的乘法运算。
教学过程:一、复习引入:1、复习单项式乘以多项式的法则:计算:)1(2)1(x x -- )9()1944)(2(2x x x -⋅-- ][)1(3)4(3)3(2+-+--x x x x x2、问题引入:求各个图示给出的矩形的面积。
学生活动:图(1)所示的矩形面积为m(a+n)=ma+mn图(2)所示的矩形面积为b(a+n)=ba+bn图(3)所示的矩形面积为(m+b)(a +n)二、探索多项式乘以单项式的运算法则:师生互动:呈接上问,另一方面,图(3)所示的矩形面积是图(1)、(2)所示矩形面积之和。
所以有:)()())((n a b n a m n a b m +++=++学生小结:这是多项式乘以单项式,这一过程,可以看成是把第二个多项式看成一个整体,用第一个多项式里各项分别去乘以第二个多项式。
教师启发学生用数学式子或用自己的语言归纳、描述多项式乘以多项式的运算法则。
如: nc nb na mc mb ma c b a n c b a m c b a n m +++++=+++++=+++)()())((利用乘法分配律,用一个多项式里的各项分别去乘以另一个多项式里的每一项,再把所得的积相加。
三、过手训练:1、例1、计算:)6.0)(1)(1(x x --))(2)(2(y x y x -+2))(3(y x -2)32)(4(+-x)2)(1()3)(2)(5(-+-++y x y x解:(写出完整解答)师生点评:(1)、用一个多项式的每一项乘遍另一个多项式的每一项,不要漏乘,在没有合并同类项之前,两个多项式相乘展开后的项数应是原来两个多项式项数之积。
人教版-数学-八年级上册-配套导学案:整式的乘法(2课时)
![人教版-数学-八年级上册-配套导学案:整式的乘法(2课时)](https://img.taocdn.com/s3/m/a2e5bcf6f7ec4afe04a1dfde.png)
八年级数学配套导学案:整式的乘法(2课时)‘、一、学习目标:探索并了解单项式与单项式、单项式与多项式和多项式与多项式相乘的法则,并运用它们进行运算. 二、教学过程:1、引入 2、预习报告三、例题:计算(1)(1)2a 2·(3a 2-5b) (2)ab ab ab 21)232(2•-) (3)(-4x 2) ·(3x+1)四、基础练习:课本146面练习综合练习:)34232()25-(2y xy xy xy +-• )227(6)5)(3-(2222y xy x y x xy -+已知,3,2==b a 求)232()(32222a ab a ab ab ab b a ab -+--+的值拓展练习:若(-5a m+1b 2n-1)(2a n b m )=-10a 4b 4,则m-n 的值解不等式:12)23()1(222-〉+--+x x x x x x 预习收获:预习困惑:15.1.4整式的乘法(3课时)一、学习目标:探索并了解单项式与单项式、单项式与多项式和多项式与多项式相乘的法则,并运用它们进行运算. 二、教学过程:1、引入 2、预习报告三、例题:计算(1)(1))32)(2(22y xy x y x -+- (2))65)(52(2+-+x x x (x+y)2四、基础练习: )y x y -y)(x (x y)-8y)(x -(x 2)1)(x (3x 22++++ 课本148面练习综合练习:先化简,再求值:1、(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-62、)32)(12()1)(1(3)3)(2(-+--+++-x x x x x x ,其中x=54拓展练习:1、一块长m 米,宽n 米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?2、求证:对于任意自然数n ,)2)(3()5(+--+n n n n 的值都能被6整除。
人教初中数学八上 《整式的乘法(第2课时)》教案 (公开课获奖)
![人教初中数学八上 《整式的乘法(第2课时)》教案 (公开课获奖)](https://img.taocdn.com/s3/m/31e392c467ec102de3bd89b4.png)
14.1.4 整式的乘法(2)设计意图 (四)提出问题:教学目标 同底数幂的除法的运算法则及其原理和应用,发展有条理的思考及表达能力.培养探索讨论、归纳总结的方法.教学重点 课时分配1课时班 级教学过程设计意图 (一)创设情境,感知新知1. 问题:一种数码照片的文件大小是28K ,一个存储量为26M (1M=210K )的移动存储器能存储多少张这样的数码照片?2. 分析问题:移动器的存储量单位与文件大小的单位不一致,所以要先统一单位.移动存储器的容量为26×210=216K .所以它能存储这种数码照片的数量为216÷28.【1】3. 问题迁移:由同底数幂相乘可得:1688222=⨯,所以根据除法的意义216÷28=284.感知新知:这就是我们本节需要研究的内容:同底数幂的除法【2】(二)学生动手,得到公式 1.计算:(1)( )·28=216(2)( )·53=55(3)( )·105=107(4)( )·a 3=a 6【3】2.再计算: (1)216÷28=( ) (2)55÷53=( )(3)107÷105=( ) (4)a 6÷a 3=( ) 3.提问:上述运算能否发现商与除数、被除数有什么关系?【4】4.分析:同底数幂相除,底数没有改变,商的指数应该等于被除数的指数减去除数的指数.【5】5.得到公式:同底数幂相除,•底数不变,指数相减.即:a m ÷a n =a m-n .(0≠a )【6】6.提问:指数n m ,之间是否有大小关系?【m ,n 都是正整数,并且m>n 】【7】(三)巩固练习例:(1)x 8÷x 2(2)a 4÷a (3)(ab )5÷(ab )2练习:教科书练习11.提问:在公式要求 m ,n 都是正整数,并且m>n ,但如果m=n 或m<nn 呢?2.实例研究:计算:32÷32 103÷103 a m ÷a m(a≠0)【1】3.得到结论:由除法可得:32÷32=1 103÷103=1 a m ÷a m=1(a≠0)利用a m ÷a n =a m-n的方法计算. 32÷32=32-2=30 103÷103=103-3=100 a m ÷a m =a m-m =a 0(a≠0)这样可以总结得a 0=1(a≠0)【2】于是规定:a 0=1(a≠0) 即:任何不等于0的数的0次幂都等于1.【3】4. 最终结论:同底数幂相除:a m ÷a n =a m-n(a≠0,m 、n 都是正整数,且m≥n).【4】 (一) 加强训练1.计算:35)()(c c -÷- 23)()(y x y x m +÷++ 3210)(x x x ÷-÷ 2.若1)32(0=-b a 成立,则b a ,满足什么条件? 3.若4910,4710==y x,则y x -210等于? 4.若0)52(-+y x 无意义,且1023=+y x ,求y x ,的值(六)小结:利用除法的意义及乘、除互逆的运算,揭示了同底数幂的除法的运算规律,并能运用运算法则解决简单的计算问题作业板书设计 §14.1.4 同底数幂的除法 一、a m ·a n =a m+n(m 、n 是正整数) 二、同底数幂的除法运算法则:同底数幂相除,底数不变,指数相减.即:a m ÷a n =a m-n(a≠0,m 、n 都是正整数且m≥n)规定:a 0=1 (a≠0) 三、计算教学反思预习要点教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.D CA BD CABDC A B(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,D C A B12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.E DC A B P教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
③a(b+c) ④2x(-3x +4)
你能 用语言总结一 下做法吗?
3计算
①(-4x) (3x+1) ②( ab -2ab)· ab
③(x-3y)(-6x)④x(x-1)+2x(x+1)-3x(2x-5)
二、问题探究
对于单项式乘以多项式的乘法法则你是怎样理解的,3题出现问题的根源何在?计算单项式乘以多项式Байду номын сангаас
的一般思路是怎样的?
书写等级:
测评得分:
新人教版八年级数学上册《整式 的乘法2》导学案
主备人
审核
八年级数学组
审批
授课人
授课
时间
班级
姓名
小组
课题
整式的乘法2
课型
综合课
课时
1
三、反馈提升
①x (x-1)-x(x +x-1),其中x=
②(x -1)(x+1)
四、达标运用
1 (4a- b )(-2b)
2 2x (x- )
3 5ab(2a-b+0.2)
4 (2a - a- )(-9a)
五、总结反思
课堂记录
或学法指导
学习
目标
1记住单项式乘以多项式的乘法法则
2会对单项式乘以多项式进行运算
学习
重点
单项式乘以多项式
学习
难点
正确理解并运用法则
学习过程:
一、自主学习
1①3x ·5x ②4y· (-2xy )
③(-2x) ·4x ④(-2a) (-2a)
2计算