100测评网高三数学复习4月25(理)

合集下载

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题PDF版含解析

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题PDF版含解析

河南省普高联考2022-2023学年高三下学期测评(四)理科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合,,则( ){24}A xx =<<∣{(6)(3)0}B x x x =--≥∣A .B .C .D .2A B∈ 3A B∈⋂4A B∈ 5A B∈ 2.若复数z 的共轭复数为,且,则z 的虚部为( )z (2i)35i z z -+=-+A .B .C .D .22i-2i2-3.已知等比数列的前n 项和为,且,,则( ){}n a n S 123nn S m =⨯-m ∈R 4S =A .B .5C .D .1331732234.塔是一种在亚洲常见的,有着特定的形式和风格的中国传统建筑.最初是供奉或收藏佛骨、佛像、佛经、僧人遗体等的高耸型点式建筑,称“佛塔”.如图,为测量某塔的总高度AB ,选取与塔底B 在同一水平面内的两个测量基点C 与D ,现测得,,米,在C 点测得塔顶A 的仰角为60°,则塔的总30BCD ∠=︒45BDC ∠=︒30CD =高度约为( ))1.4≈ 1.7≈A .13米B .24米C .39米D .45米5.函数的大致图象是( )3sin ||x xy x -=A .B .C .D.6.某学校为落实“双减”政策,在课后服务时间开展了“绘画、书法、围棋、舞蹈、武术”五项兴趣拓展活动,小明计划从这五项活动中选择三项,则书法、舞蹈这两项活动至多有一项被选中的概率为( )A .B .C .D .0.90.70.60.37.记不等式组的解集为D ,现有下面四个命题:30,10,30x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,;,;1:(,)p x y D ∀∈280x y -+≥2:(,)p x y D ∃∈240x y -+>,;,.3:(,)p x y D ∀∈30x y ++>4:(,)p x y D ∃∈330x y +-≤其中真命题的个数是( )A .1B .2C .3D .48.已知抛物线的焦点为F ,过点F 的直线与抛物线交于点A ,B ,与2:2(0)C x py p =>抛物线的准线交于点M ,且点A 位于第一象限,F 恰好为AM 的中点,,AF BM λ=()λ∈R 则( )λ=A .B .CD32439.任意写出一个正整数,并且按照以下的规律进行变换:如果是个奇数,则下一m m 步变成,如果是个偶数,则下一步变成,无论是怎样一个数字,最终必31+m m 12m m 进入循环圈,这就是数学史上著名的“冰雹猜想”.它可以表示为数列1421→→→(为正整数),,若,则的所有可能{}1:n a a m =m 131,1,2n n n n n a a a a a ++⎧⎪=⎨⎪⎩当为奇数时当为偶数时72a =m 取值之和为( )A .B .C .D .18819019220110.在菱形ABCD 中,,,AC 与BD 的交点为G ,点M ,N 分别在线段5AB =6AC =AD ,CD 上,且,,将沿MN 折叠到,使13AM MD =13CN ND =MND MND '△的外接球的表面积为( )GD '=D ABC '-A .B .C .D .1203π16627π16289π840π11.设双曲线的左、右焦点分别为,,B 为双曲线E 上:E 22221x y a b-=(0,0)a b >>1F 2F 在第一象限内的点,线段与双曲线E 相交于另一点A ,AB 的中点为M ,且1F B ,若,则双曲线E 的离心率为( )2F M AB ⊥1230AF F ∠=︒AB .2C D 12.已知,,,其中e 为自然对数的底数,则( )0.618e 1a =-ln1.618b =tan 0.618c =A .B .c a b >>a b c >>C .D .b a c>>a c b>>二、填空题13.二项式的展开式中的系数为________.523x x ⎛⎫+ ⎪⎝⎭4x 14.如图,在矩形ABCD 中,,AC 与BD 的交点为M ,N 为边AB 上任22AB BC ==意点(包含端点),则的最大值为________.MB DN ⋅15.圆与x 轴交于A ,B 两点(A 在B 的左侧),点N 满足22:280M x y x ++-=,直线与圆M 和点N 的轨迹同时相切,则直线l 的斜率为||2||NA NB =:(0)l y kx m k =+>________.16.先将函数的图象向左平移个单位长度,再将所得图象上所有点的横()cos f x x =2π3坐标变为原来的,纵坐标不变,所得图象与函数的图象关于x 轴对称,1(0)ωω>()g x 若函数在上恰有两个零点,且在上单调递增,则的取值范围是()g x 2π0,3⎡⎤⎢⎥⎣⎦ππ,1212⎡⎤-⎢⎥⎣⎦ω________.三、解答题17.在中,角A ,B ,C 的对边分别为a ,b ,c .ABC cos )sin b a C c A -=(1)求A ;(2)若D 在线段AC 上,且,求BD 的最小值.ABC 13AD AC =18.如图,在四棱锥中,底面ABCD 是平行四边形,,M ABCD -4AB =AD =,点M 在底面ABCD 上的射影为CD 的中点O ,E 为线段AD MC ==45ADC ∠︒上的点(含端点).(1)若E 为线段AD 的中点,证明:平面平面MAD ;MOE ⊥(2)若,求二面角的余弦值.3AE DE =D ME O --19.某公司为了解年营销费用x (单位:万元)对年销售量y (单位:万件)的影响,统计了近5年的年营销费用和年销售量,得到的散点图如图所示,对i x (1,2,3,4,5)i y i =数据进行初步处理后,得到一些统计量的值如下表所示.51ii u=∑51ii v=∑()()51iii u u v v =--∑()521ii u u =-∑16.1026.020.40 1.60表中,,,.已知可以作为年销售量y 关ln i i u x =ln i i v y =5115i i u u ==∑5115i i v v ==∑b y a x =⋅于年营销费用x 的回归方程.(1)求y 关于x 的回归方程;(2)若公司每件产品的销售利润为4元,固定成本为每年120万元,用所求的回归方程估计该公司每年投入多少营销费用,才能使得该产品一年的收益达到最大?(收益销售=利润营销费用固定成本)--参考数据:.4.399e 81≈139≈参考公式:对于一组数据,其回归直线的斜率和截()()()1122,,,,,,n n u v u v u v v u αβ=+距的最小二乘估计分别为,.()()()`121ˆniii ni i u u v v u u β==--=-∑∑ˆˆv u αβ=-20.已知椭圆的右焦点为F ,离心率为,且点在㮋圆上.2222:1(0)x y C a b a b+=>>1231,2⎛⎫ ⎪⎝⎭(1)求椭圆C 的标准方程;(2)过右焦点F 且斜率不为0的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为Q ,经过坐标原点O 和点Q 的直线m 与椭圆C 交于M ,N 两点,求四边形AMBN 的面积的取值范围.21.已知函数.()2cos sin ()f x mx mx x x m =--∈R (1)当时,求在点处的切线方程;1m =()f x ()()π,πf (2)当时,,求实数m 的取值范围.0x >()0f x >22.在直角坐标系中,直线l 的参数方程为其中t 为参数,以坐标原点为xOy 1,1,x t y t =+⎧⎨=-⎩极点,x 轴非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为,其中为参数.2|sin |2|cos |ρθθ=+θ(1)求直线l 的普通方程和曲线C 的直角坐标方程,并画出曲线C 的简图(无需写出作图过程);(2)直线与曲线C 相交于A ,B 两点,且的值.:m θα=π0,2α⎛⎫⎡⎤∈ ⎪⎢⎥⎣⎦⎝⎭||AB =α23.已知函数的最小值为m .()2|1||1|4f x x x =++--(1)在直角坐标系中画出的图象,并求出m 的值;()y f x =(2)a ,b ,c 均为正数,且,求的最小值.1a b c m ++=-+222a b c b c a++参考答案:1.B【分析】根据二次不等式解法求出集合B ,求出及,根据元素和集合的关系即A B ⋂A B ⋃可逐项判断.【详解】由题可知或,则,或{6B xx =≥∣3}x ≤{23}A B x x ⋂=<≤∣{4A B x x ⋃=<∣,依据选项可知B 正确.6}x ≥故选:B .2.D【分析】先根据条件求出复数,然后可得虚部.z 【详解】设复数,a ,,则,i z a b =+b ∈R i (2i)(i)a b a b +-+-()(3)i a b b a =-++-35i =-+即,解得,则,故z 的虚部为2.()335a b b a -+=-⎧⎨-=⎩12a b =⎧⎨=⎩12z i =+故选:D .3.B【分析】先根据的定义依次求出,再由等比数列的定义即可得到关于的关系式,n S 123,,a a a m 解之即可得出答案.【详解】因为,123nn S m =⨯-当时,,1n =1123a S m ==-当时,,则,2n =21243m a S a =+=-223a =当时,,则,3n =312383a m a a S +=+-=343a =因为是等比数列,所以,则,{}n a 322a q a ==2113a a q ==所以,解得,2133m -=13m =则,11233n n S =⨯-则.45S =故选:B.4.C【分析】在Rt △ABC 根据∠ACB 的正切得AB 与BC 的关系,在△BCD 中利用正弦定理列式即可求解.【详解】设,则,AB m=tan 60m BC ==︒在中,,由正弦定理得,BCD △105CBD ∠=︒sin105sin 45CD BC=︒︒因为,()sin105sin 4560︒=︒+︒sin 45cos 60cos 45sin 60=︒︒+︒︒=代入数据,解得(米),90m =-9030 1.739≈-⨯=故选:C .5.A【分析】先判断函数的奇偶性即可排除选项;再利用特殊值即可排除选项,进而求解.B,D C 【详解】函数的定义域为,3sin ()xx xy f x -==(,0)(0,)-∞+∞ 且,3sin()3sin ()()x x x xf x x x f x-----+-===-所以是奇函数,图象关于原点对称,排除选项,()f x B,D 只需研究的图象,当时,,则,排除选项.0x >π6x =πππ33sin 06662-=-<π06f ⎛⎫< ⎪⎝⎭C 故选:.A 6.B【分析】方法一:根据排列组合结合分类加法法则得出答案;方法二:先求出“书法、舞蹈这两项活动都被选中”的概率,即可根据对立事件的概率求法得出答案.【详解】方法一:“书法、舞蹈这两项活动至多有一项被选中”分两种情况:①都没有被选中,有种情况;②两项活动只有一项被选中,有种情况,33C 1223C C 则所求概率为,故选B .31232335C C C 70.7C 10P +===方法二:“书法、舞蹈这两项活动至多有一项被选中”的对立事件是“书法、舞蹈这两项活动都被选中”,故所求概率为,123235C C 710.7C 10P =-==故选:B .7.C【分析】作出不等式组所表示的区域,再逐项的作出对应直线,观察所作直线与可行域的关系,再利用存在命题与全称命题的概念进行判断即可求解.【详解】不等式组的解集D 表示的可行域如图中阴影部分所示,依据图(1)知命题为真1p 命题,依据图(2)知命题为真命题,2p 依据图(3)知命题为假命题,依据图(4)知命题为真命题.所以真命题有3个,3p 4p故选:C .8.A【分析】过点A ,B 分别作准线的垂线,垂足分别为N ,E ,根据抛物线的定义,又F 恰好为AM 的中点,可得到比例,进一步推导得到的值.||||AF BM λ【详解】如图,过点A ,B 分别作准线的垂线,垂足分别为N ,E ,根据抛物线的定义得,,||||AF AN =||||BF BE =因为F 为AM 的中点,所以,又||||||||1||||||AF BF BM BF BM BM BM +==+||||||||BF BE BM BM ==,所以,所以.||||1||||2AN AF AM AM ==||||1311||||22AF BF BM BM =+=+=32λ=故选:A 9.B【分析】列举出的可能情况,可得出的所有可能取值,1234567a a a a a a a →→→→→→m 相加即可得解.【详解】由题意,的可能情况有:1234567a a a a a a a →→→→→→①;②;2142142→→→→→→16842142→→→→→→③;④;2010516842→→→→→→310516842→→→→→→⑤;⑥;128643216842→→→→→→21643216842→→→→→→所以,的可能取值集合为,的所有可能取值之和为m {}2,16,20,3,128,21m .21620312821190+++++=故选:B.10.B【分析】设MN 与BD 的交点为H ,连接,证明平面ABC .设的外接圆圆D H 'D G '⊥ABC 心为,的外接圆圆心为,过,分别作平面ABC ,平面的垂线,设1O AD C ' 2O 1O 2O AD C '两垂线交于点O ,则O 是三棱锥外接球的球心,先求出,再求出三棱锥D ABC '-12,r r 的外接球的半径即得解.D ABC '-R 【详解】如图所示,因为,,13AM MD =13CN ND =所以,设MN 与BD 的交点为H ,连接,//MN AC 'D H 因为,,所以,则,,5AD CD AB ===3GA GC ==4DG =1GH =3DH =所以.又,则.又,3D H '=GD '=222D G GH D H ''+=D G GH '⊥D G AC '⊥,平面ABC ,故平面ABC .AC HG G ⋂=AC HG ⊂,D G '⊥设的外接圆圆心为,的外接圆圆心为,过,分别作平面ABC ,平ABC 1O AD C ' 2O 1O 2O 面的垂线,设两垂线交于点O ,则O 是三棱锥外接球的球心,且四边形AD C 'D ABC '-为矩形.设的外接圆半径为,在中,由,解得12O OO G ABC 1r ABC ()2221143r r -+=,同理可得的外接圆半径的1258r =AD C ' 2r =2GO =D ABC '-外接球半径为R ,则,则三棱锥的外接球的表面22212R O A GO =+6252627646464=+=D ABC '-积.26274π16S R π==故选:B .11.D【分析】连结连接、.设,根据双曲线的定义可推得,即2AF 2BF 2AF =2BF m =||4AB a =.进而在直角三角形中,根据勾股定理可得.结合已知条件,即可2m a =2F 得出,从而得出离心率.222c a =【详解】如图,连接、.2AF 2BF 因为M 为AB 的中点,,所以.2F M AB ⊥22AF BF =设,2AF =2BF m =因为,所以.212AF AF a -=12AF m a =-又因为,所以,122B F B F a -=1BF =2m a +则.11||4AB BF AF a =-=因为M 为AB 的中点,所以,则.||||2AM BM a ==1F M m =设,在中,122FF c =12Rt F F M △2F在中,2Rt AF M△2F ,整理可得,所以.=22222m a c =+2F 当时,,则,1230AF F ∠=︒12sin AF F ∠=212FMF F =12=222c a =所以离心率为ce a==故选:D .12.D【分析】构造函数,,利用导数判断其单调性即可判断的大()1tan x f x x =--e π04x <<,a c 小;,可构造函数判断与的大小,ln1.618ln(10.618)b ==+()ln(1)h x x x =+-ln1.618b =0.618构造函数判断与的大小,从而可判断的大小.()tan k x x x =-0.618tan 0.618,b c 【详解】令,,()1tan xf x x =--e e cos cos sin cos x x x xx--=π04x <<令,()e cos x g x x =-cos sin x x -则,()(sin cos )e x g x x x '=-+sin cos x x +-()e 1(cos sin )xx x =--当时,,则在上单调递增,π04x <<()0g x '>()g x 0,4π⎛⎫⎪⎝⎭又,所以当时,,又,所以在上恒(0)110g =-=04x π<<()0g x >cos 0x >()0f x >0,4π⎛⎫⎪⎝⎭成立,又,所以,即.00.6184π<<(0.618)0f >a c >令,则,()ln(1)h x x x =+-1()111x h x x x -=-=++'当时,,所以在上单调递减,02x π<<()0h x '<()h x 0,2π⎛⎫⎪⎝⎭所以当时,,即.02x π<<()(0)0h x h <=ln(1)x x +<令,则,在上单调递减,()tan k x x x =-21()10cos k x x '=-≤()k x 0,2π⎛⎫⎪⎝⎭所以当时,,即,02x π<<()(0)0k x k <=tan x x <所以在上恒成立.ln(1)tan x x x +<<0,2π⎛⎫⎪⎝⎭令,则,所以.0.618x =ln(0.6181)0.618tan 0.618+<<c b >综上所述,.a c b >>故选:D .【点睛】构造函数比较大小主要方法有:1.通过找中间值比较大小,要比较的两个或者三个数之间没有明显的联系,这个时候我们就可以通过引入一个常数作为过渡变量,把要比较的数和中间变量比较大小,从而找到他们之间的大小;2.通过构造函数比较大小,要比较大小的几个数之间可以看成某个函数对应的函数值,我们只要构造出函数,然后找到这个函数的单调性,就可以通过自变量的大小关系,进而找到要比较的数的大小关系.有些时候构造的函数还需要通过放缩法进一步缩小范围.13.90【分析】由二项式展开式通项公式可求.【详解】由题知,当时,,故的系数为90.()52153C rrrr T xx -+⎛⎫= ⎪⎝⎭1035C 3r r rx -=⋅⋅2r =4390T x =4x 故答案为:90.14.##522.5【分析】以点A 为坐标原点,,的方向为x 轴,y 轴正方向建立平面直角坐标系,写ABAD 出对应点的坐标,设,根据平面向量数量积的坐标运算即可求解.(,0)N m (02)m ≤≤【详解】以点A 为坐标原点,,的方向为x 轴,y 轴正方向,建立平面直角坐标系,ABAD 则,,,设,11,2M ⎛⎫⎪⎝⎭(2,0)B (0,1)D (,0)N m (02)m ≤≤所以,,则,11,2MB ⎛⎫=- ⎪⎝⎭ (,1)DN m =- MB DN ⋅= 12m +因为,所以,即的最大值为.02m ≤≤1522MB DN ≤⋅≤ MB DN ⋅ 52故答案为:.5215【分析】求出A 、B 坐标,设N (x ,y ),求出N 的轨迹圆E 的方程,作出图象,利用圆的公切线的几何性质即可求其斜率.【详解】对于圆,令,得,解得或,22:280M x y x ++-=0y =2280x x +-=4x =-2x =则,.()4,0A -()2,0B 设,∵,∴,(,)N x y 2NANB=2NA NB =,整理得,=22(4)16x y -+=则点N 的轨迹是圆心为,半径为的圆.()4,0E 4R =又圆M 的方程为,则圆M 的圆心为,半径为.22(1)9x y ++=(1,0)-3r =∵,∴两圆相交,434(1)43-<--<+设直线l 与圆M 和点N 轨迹圆E 切点分别为C ,D ,连接CM ,DE ,过M 作DE 的垂线,垂足为点F ,则四边形CDFM 为矩形,∵,,∴5ME =431EF DE DF R CM =-=-=-=MF =则tan FME ∠则两圆公切线CD 的斜率即为直线FM16.11,44⎡⎤⎢⎥⎣⎦【分析】先根据题目的要求平移伸缩对称变换得到的解析式,然后结合函数在()g x 2π0,3⎡⎤⎢⎥⎣⎦上恰有两个零点以及在上单调递增,列出不等式组,即可求得本题答案.ππ,1212⎡⎤-⎢⎥⎣⎦【详解】函数的图象向左平移个单位长度,得到的图象,()f x 2π32πcos 3y x ⎛⎫=+ ⎪⎝⎭再将图象上所有点的横坐标变为原来的,纵坐标不变,得到的图象,因1ω2πcos 3y x ω⎛⎫=+ ⎪⎝⎭为函数的图象与的图象关于x 轴对称,()g x 2πcos 3y x ω⎛⎫=+ ⎪⎝⎭所以,2π()cos 3g x x ω⎛⎫=-+ ⎪⎝⎭2ππsin 32x ω⎛⎫=+-= ⎪⎝⎭πsin 6x ω⎛⎫+ ⎪⎝⎭因为,所以,20π3x ≤≤ππ2ππ6636x ωω≤+≤+又因为在恰有2个零点,且,,π()sin 6g x x ω⎛⎫=+ ⎪⎝⎭2π0,3⎡⎤⎢⎥⎣⎦()sin π0k =Z k ∈所以,解得,2π2ππ3π36ω≤+<1117<44ω≤令,,得,,令,22πππ2π2π262k x k ω-+≤+≤+2k ∈Z 222π2π2ππ33k k x ωωωω-+≤≤+2k ∈Z 20k =得在上单调递增,所以,()g x 2ππ,33ωω⎡⎤-⎢⎥⎣⎦ππ,1212⎡⎤-⎢⎥⎣⎦2ππ,33ωω⎡⎤⊆-⎢⎥⎣⎦所以,又,解得.2ππ312ππ312ωω⎧-≤-⎪⎪⎨⎪≥⎪⎩0ω>04ω<≤综上所述,,故的取值范围是.1144ω≤≤ω11,44⎡⎤⎢⎥⎣⎦故答案为:11,44⎡⎤⎢⎥⎣⎦17.(1);π3A =【分析】(1)根据正弦定理,结合三角恒等变换化简可推得tan A =(2)由已知可推得.在中,由余弦定理可推得,然后根据9bc =ABD △2221193c bbc BD =+-基本不等式,即可得出BD 的最小值.【详解】(1,sin cos )sin sin B A CC A -=又,πA B C ++=]sin()sin cossin sin A C A C C A +-=.sin A C sin sin C A =又,则.sin 0C >sin A A =tan A =因为,所以.(0,π)A ∈π3A =(2)由(1)知,则的面积为.π3A =ABC 1πsin 23S bc ===9bc =在中,,ABD △13AD b =由余弦定理得2222cos BD AB AD AB AD A =+-⋅2211π2cos933c b c b =+-⨯⨯⨯,221193c b bc =+-≥13bc 133bc ==当且仅当,即2219c b =b =c =所以BD 18.(1)证明见解析【分析】(1)在△ADO 中,利用勾股定理证明ED ⊥EO ,再结合ED ⊥MO 即可证明平面MOE ,AD ⊥从而可证明平面平面MAD ;MOE ⊥(2)连接OA ,证明,以O 为坐标原点,建立空间直角坐标系,利用空间向量即可DO OA ⊥求解二面角的余弦值.【详解】(1)∵平面ABCD ,平面ABCD ,∴.AD ⊂MO ⊥MO AD ⊥∵O 为线段CD 的中点,E 为线段AD 的中点,∴,2DO =DE =∵,由余弦定理得,=45ADC ∠︒2222222EO =+-⨯=则,则.222EO DE DO +=DE EO ⊥∵,平面MOE ,∴平面MOE ,MO EO O ⋂=,MO EO ⊂AD ⊥又∵平面MAD ,∴平面平面MAD .AD ⊂MOE ⊥(2)连接OA ,由(1)知当E 为线段AD 的中点时,AE DE EO ===则A 、O 、D 三点在以AD 为直径的圆上,故.DO OA ⊥故以O 为原点,建立如图所示的空间直角坐标系,又,MC =2MO =∴,,,.(0,0,0)O (2,0,0)D (0,2,0)A (0,0,2)M 又,则,3AE DE =13,,022E ⎛⎫⎪⎝⎭∴,,,.(0,0,2)OM = (2,0,2)DM =- (2,2,0)DA =-13,,022OE ⎛⎫= ⎪⎝⎭设平面MAD 的法向量为,则解得()111,,m x y z = 1111220220DM m x z DA m x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,,1111x z x y =⎧⎨=⎩,,取,则平面MAD 的一个法向量为.11x =(1,1,1)m =设平面MEO 的法向量为,则解得()222,,x n y z = 2221302220OE n x y OM n z ⎧⋅=+=⎪⎨⎪⋅==⎩,,22230x y z =-⎧⎨=⎩,,取,则平面MEO 的一个法向量为.23x =(3,1,0)n =-则,cos m n m n m n ⋅⋅===⋅则二面角D ME O --19.(1)1481y x =(2)该公司每年投入351万元营销费用时,该产品一年的收益达到最大【分析】(1)根据题目要求可知,y 关于x 的回归方程为非线性的,设,可得b y a x =⋅,代入已知条件所给的数据,计算即可.(2)列出年收益与营销费用的关系式,ln ln ln y a b x =+通过求导来求得最值.【详解】(1)由得,,令,,,则b y a x =⋅ln ln()ln ln b y a x a b x =⋅=+ln u x =ln v y =lnc a =.v c bu =+由表中数据可得,,()()()515210.4ˆ0.251.6iii ii u u v v bu u ==--===-∑∑则,所以.26.0216.1ˆˆ0.25 4.39955cv bu =-=-⨯=ˆ 4.3990.25v u =+即,因为,所以,ˆln 4.3990.25ln y x =+14.3994ln e x ⎛⎫=⋅ ⎪⎝⎭ 4.399e 81≈14ˆ81y x =故所求的回归方程为.1481y x =(2)设年收益为W 万元,则,144120324120W y x x x =--=--对求导,得,()W f x =34'()811f x x -=-令,解得,348110x --=132433519x =≈⨯=当时,,单调递增,当时,,单调递减,(0,351)x ∈'()0f x >()f x (351,)x ∈+∞'()0f x <()f x 因此,当时W 有最大值,即该公司每年投入351万元营销费用时,该产品一年的收351x =益达到最大.20.(1);22143xy +=(2).[6,【分析】(1)由题得到关于的方程,解方程即得解;,,a b c (2)设直线l 的方程为,联立椭圆C 的方程得到韦达定理,设线段AB 的中点为1x ky =+,求出它的坐标,求出、点M ,N 到直线l 的距离,再化简求出()00,Q x y ||AB 12,d d 即得解.S =【详解】(1)设椭圆右焦点的坐标为,则,即,(,0)(0)c c >12c a =2a c =又,则,222a b c =+223b c =因为点在椭圆上,31,2⎛⎫ ⎪⎝⎭所以,即,解得,221914a b +=2213144c c +=1c =则,C 的标准方程为.2a =b =22143x y +=(2)由(1)知,因为直线l 的斜率不为0,所以可设直线l 的方程为,(1,0)F 1x ky =+代入椭圆C 的方程,消去x 化简得,22143x y +=()2234690k y ky ++-=设,,则,.()11,A x y ()22,B x y 122634ky y k -+=+122934y y k -=+设线段AB 的中点为,则,,()00,Q x y 12023234y y k y k +-==+200231134k x ky k -=+=++2434k =+即,则直线m 的方程为,2243,3434k Q k k -⎛⎫ ⎪++⎝⎭34k y x =-代入椭圆C 的方程可得,x =M.N⎛ ⎝||AB =-=,=()2212134k k +=+点M ,N 到直线l 的距离分别为1d 2d 则四边形AMBN 的面积为1211||||22S AB d AB d =⨯⨯+⨯⨯()121|2ABd d =⨯⨯+∣1||2AB =⨯⨯因为点M ,N 在直线l 的两侧,所以1|2S AB =⨯1||2AB ⨯⨯1||2AB ⨯()221211234k k +=⨯+=,==因为,所以2110344k <≤+6S ≤<因此,四边形AMBN 的面积的取值范围为.[6,21.(1)4πy x =-(2)[1,)+∞【分析】(1)由导数法求切线;(2)法一:对m 分类讨论,由导数法研究函数单调性及符号即可判断,其中时,由作1m ≥差法说明,将问题转化为判断的符号;()2cos sin f x x x x x ≥--()2cos sin g x x x x x =--法二:不等式等价为,由导数法研究图象性质,由数形结合判sin 2cos xmx x >-sin ()2cos x g x x=-断范围.【详解】(1)因为,所以,()2cos sin f x x x x x =--()22cos sin f x x x x '=-+因为,,所以切线方程为,即.()π4f '=()π3πf =()3π4πy x -=-4y x π=-(2)方法一:i.若,1m ≥由,2cos sin (2cos sin )mx mx x x x x x x -----2(1)(1)cos m x m x x =---(1)(2cos )0m x x =--≥可得,()2cos sin f x x x x x ≥--设,则,()2cos sin g x x x x x =--()22cos sin g x x x x '=-+当时,,所以单调递增,则;(0,]x π∈()0g x '>()g x ()(0)0g x g >=当时,,所以,(,)x ∈π+∞()(1cos )(sin )0g x x x x x =-+->()0g x >所以恒成立,符合题意;()0f x >ii.若,,0m ≤()2cos sin f x mx mx x x =--(1cos )sin mx x mx x =-+-当时,,不合题意.π0,2x ⎛⎫∈ ⎪⎝⎭()0f x <iii.若,,01m <<()2(1)cos sin f x m m x mx x '=-++设,则,()()h x f x '=()(21)sin cos h x m x mx x '=++当时,,所以在上单调递增,π0,2x ⎛⎫∈ ⎪⎝⎭()0h x '>()f x 'π0,2⎛⎫ ⎪⎝⎭因为,,所以存在,使得,ππ2022f m ⎛⎫⎛⎫=+> ⎪ ⎪⎝⎭⎝⎭'(0)0f '<0π0,2x ⎛⎫∈ ⎪⎝⎭()00f x '=当时,,则在上单调递减,,不合题意.()00,x x ∈()0f x '<()f x ()00,x ()(0)0f x f <=综上所述,m 的取值范围为.[1,)+∞方法二:由题知当时,,即,0m >2cos sin 0mx mx x x -->(2cos )sin mx x x ->因为,所以.2cos 0x ->sin 2cos xmx x>-设,因为,所以为周期函数,且周期为.sin ()2cos x g x x=-(2)()g x g x π+=()g x 2π,22cos (2cos )sin ()(2cos )x x x g x x --'=-22cos 1(2cos )x x -=-令,则或,,()0g x '=π2π3x k =+5π2π3x k =+k ∈Z 所以当,时,,则单调递增;ππ2π,2π33x k k ⎛⎫∈-++ ⎪⎝⎭k ∈Z ()0g x '>()g x 当,时,,则单调递减.π5π2,2π33x k k π⎛⎫∈++ ⎪⎝⎭k ∈Z ()0g x '<()g x 当时,令,则,则单调递减,0,3x π⎛⎫∈ ⎪⎝⎭()()h x g x '=32sin (1cos )()0(2cos )x x h x x -+'=<-()()h x g x '=∴.()(0)1g x g ''<=当时,直线与曲线相切,如图,1m =y mx =()y g x =根据图象可知,要使,只需,故实数m 的取值范围为.sin 2cos x mx x>-m 1≥[1,)+∞【点睛】恒成立问题,一般可通过分离参数法,转化为由导数法研究不含参部分的最值;或者对参数分类讨论,由导数法分别说明.22.(1),,作图见解析;20x y +-=222||2||0x y x y +--=(2)或.π12α=5π12α=【分析】(1)消去参数,即可得出直线的普通方程.根据公式即可求得曲线C 的直角坐标方t 程.然后根据方程作图即可;(2)设点A 位于第一象限,由图象集合已知条件可推出,2sin 2cos A ραα=+.由.然后根据的范围,即可得出2sin 2cos B ραα=+||AB =πsin 4α⎛⎫+= ⎪⎝⎭αα的值.【详解】(1)将直线的参数方程消去t ,得普通方程为.20x y +-=曲线C 的极坐标方程为,即,2|sin |2|cos |ρθθ=+22|sin |2|cos |ρρθρθ=+又,,,所以曲线C 的直角坐标方程为222x y ρ=+cos x ρθ=sin y ρθ=.222||2||0x y x y +--=则曲线C的简图如图所示.(2)不妨设点A 位于第一象限,结合图形和直线可知,:0,2m πθαα⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭,,2sin 2cos A ραα=+2sin(π)2cos(π)B ραα=-+-+2sin 2cos αα=+则,||4sin 4cos A B AB ρραα=+=+π4α⎛⎫=+= ⎪⎝⎭所以.πsin 4α⎛⎫+ ⎪⎝⎭又,所以,π0,2α⎡⎤∈⎢⎥⎣⎦ππ3π,444α+∈⎡⎤⎢⎥⎣⎦则或,所以或.ππ43α+=π2π43α+=π12α=5π12α=23.(1)作图见解析,2m =-(2)3【分析】(1)写出f (x )解析式,按照一次函数图象画法即可画出图象,根据图象即可求出最小值m ;(2)利用基本不等式得,,,三式相加即可求得22a b a b+≥22b c b c +≥22c a c a +≥222a b c b c a ++的最小值.【详解】(1)由题知()35,1,1,11,33,1,x x f x x x x x --≤-⎧⎪=--<<⎨⎪-≥⎩描点,,,,连线得的图象如图所示.(2,1)-(1,2)--(1,0)(2,3)()y f x =通过图象可知,当时,函数的最小值为,即.=1x -()y f x =2-2m =-(2)由(1)知,,2m =-13a b c m ++=-+=,,,22a b a b+≥22b c b c +≥22c a c a +≥三个式子相加得,当且仅当时等式成立,2223a b c a b c b c a++≥++=1a b c ===∴的最小值为3.222a b c b c a++。

高三数学复习(理):第4讲 数列求和

高三数学复习(理):第4讲 数列求和

第4讲 数列求和[学生用书P119]1.基本数列求和的方法(1)等差数列求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d . (2)等比数列求和公式:S n =⎩⎨⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.(4)倒序相加法如果一个数列的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.常用结论1.一些常见数列的前n 项和公式(1)1+2+3+4+…+n=n(n+1)2.(2)1+3+5+7+…+(2n-1)=n2.(3)2+4+6+8+…+2n=n2+n. 2.常用的裂项公式(1)1n(n+1)=1n-1n+1.(2)1(2n-1)(2n+1)=12⎝⎛⎭⎪⎫12n-1-12n+1.(3)1n+n+1=n+1-n.(4)(-1)n2n+1n(n+1)=(-1)n⎝⎛⎭⎪⎫1n+1n+1.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)当n≥2时,1n2-1=1n-1-1n+1.()(2)利用倒序相加法可求得sin21°+sin22°+sin23°+…+sin288°+sin289°=44.5.()(3)若S n=a+2a2+3a3+…+na n,当a≠0,且a≠1时,求S n的值可用错位相减法求得.()答案:(1)×(2)√(3)√二、易错纠偏常见误区|K(1)并项求和时不能准确分组;(2)用错位相减法求和时易出现符号错误,不能准确“错项对齐”.1.数列{a n}的前n项和为S n,已知S n=1-2+3-4+…+(-1)n-1·n,则S17=()A.9 B.8C.17 D.16解析:选A.S17=1-2+3-4+5-6+…+15-16+17=1+(-2+3)+(-4+5)+(-6+7)+…+(-14+15)+(-16+17)=1+1+1+…+1=9.2.已知数列{a n}的前n项和为S n且a n=n·2n,则S n=________.解析:S n=1×2+2×22+3×23+…+n×2n,①所以2S n=1×22+2×23+3×24+…+n×2n+1,②①-②得-S n=2+22+23+…+2n-n×2n+1=2×(1-2n)1-2-n×2n+1,所以S n=(n-1)2n+1+2.答案:(n-1)2n+1+2[学生用书P120]分组转化求和(师生共研)已知等差数列{a n}的前n项和为S n,且满足关于x的不等式a1x2-S2x +2<0的解集为(1,2).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=a2n+2a n-1,求数列{b n}的前n项和T n.【解】(1)设等差数列{a n}的公差为d,因为关于x的不等式a1x2-S2x+2<0的解集为(1,2),所以S2a1=1+2=3,得a1=d,又易知2a1=2,所以a1=1,d=1.所以数列{a n}的通项公式为a n=n.(2)由(1)可得,a2n=2n,2a n=2n.因为b n =a 2n +2a n -1, 所以b n =2n -1+2n ,所以数列{b n }的前n 项和T n =(1+3+5+…+2n -1)+(2+22+23+…+2n )=n (1+2n -1)2+2(1-2n )1-2=n 2+2n +1-2.分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和;(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.1.若数列{a n }是2,2+22,2+22+23,…,2+22+23+…+2n ,…,则数列{a n }的前n 项和S n =________.解析:a n =2+22+23+…+2n =2-2n +11-2=2n +1-2,所以S n =(22+23+24+…+2n +1)-(2+2+2+…+2) =22-2n +21-2-2n =2n +2-4-2n .答案:2n +2-4-2n2.已知数列{a n }的前n 项和S n =n 2+n2,n ∈N *. (1)求数列{a n }的通项公式;(2)设b n =2an +(-1)n a n ,求数列{b n }的前n 项和T n .解:(1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n , 故b n =2n +(-1)n n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ]=2n +1-2+n -12-n=2n +1-n 2-52.所以T n =⎩⎪⎨⎪⎧2n +1+n2-2,n 为偶数,2n +1-n 2-52,n 为奇数.错位相减法求和(师生共研)(2021·西安五校联考)已知等差数列{a n }满足a 2=5,a 4+a 5=a 3+13.设正项等比数列{b n }的前n 项和为S n ,且b 2b 4=81,S 3=13.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n b n ,数列{c n }的前n 项和为T n ,求T n .【解】 (1)设{a n }的公差为d ,因为a 2=5,a 4+a 5=a 3+13,所以5+2d +5+3d =5+d +13,解得d =2. 又a 2=5,所以a n =a 2+(n -2)·d =2n +1.设{b n }的公比为q ,因为b 2b 4=81,所以b 23=81,b 3=9,即b 1q 2=9.①又S 3=13,所以b 1(1-q 3)1-q =13,即b 1(1+q +q 2)=13,②①除以②,得b 1q 2b 1(1+q +q 2)=913,化简得4q 2-9q -9=0,因为q >0,所以q =3, 所以b n =b 3q n -3=9×3n -3=3n -1. (2)因为c n =a n b n =(2n +1)·3n -1,所以T n =3×30+5×31+7×32+…+(2n +1)·3n -1,③ 3T n =3×31+5×32+7×33+…+(2n +1)·3n ,④③-④,得-2T n =3+2(31+32+…+3n -1)-(2n +1)·3n , 所以-2T n =3+2×3(3n -1-1)3-1-(2n +1)·3n =-2n ·3n ,所以T n =n ·3n .运用错位相减法求和的关键:一是判断模型,即判断数列{a n },{b n }一个为等差数列,一个为等比数列;二是错位相减;三是注意符号,相减时要注意最后一项的符号.(2020·安徽省部分重点学校联考)已知等比数列{a n }的各项均为正数,S n 为等比数列{a n }的前n 项和,且9S 2=5,a 3=427.(1)若S n <t 恒成立,求t 的最小值; (2)设b n =na n,求数列{b n }的前n 项和T n .解:(1)设等比数列{a n }的公比为q (q >0),由9S 2=5得a 1+a 1q =59,又a 3=a 1q 2=427,故q 21+q =415,所以15q 2-4q -4=0,解得q =23或q =-25(舍去),所以由a 1+a 1q =a 1(1+q )=a 1×53=59,解得a 1=13,所以S n =13⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫23n 1-23=1-⎝ ⎛⎭⎪⎫23n<1,所以t 的最小值是1. (2)由(1)可知a n =13⎝ ⎛⎭⎪⎫23n -1,所以b n =3n ⎝ ⎛⎭⎪⎫32n -1.故T n =3⎣⎢⎡1×⎝ ⎛⎭⎪⎫320+2×⎝ ⎛⎭⎪⎫321+…+n ×⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1①, 32T n =3[1×⎝ ⎛⎭⎪⎫321+2×⎝ ⎛⎭⎪⎫322+…+(n -1)×⎝ ⎛⎭⎪⎫32n -1+n ×⎝ ⎛⎭⎪⎫32n]②,①-②得,-12T n =3[⎝ ⎛⎭⎪⎫320+⎝ ⎛⎭⎪⎫321+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1-n ×⎝ ⎛⎭⎪⎫32n ],化简得T n =(6n -12)⎝ ⎛⎭⎪⎫32n+12.裂项相消法求和(师生共研)(2021·广东省七校联考)已知公差不为0的等差数列{a n }的前n 项和为S n ,且S 4=26,a 1,a 3,a 11成等比数列.(1)求数列{a n }的通项公式;(2)若数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1S n +n 的前n 项和为T n ,证明:T n <23.【解】 (1)由a 1,a 3,a 11成等比数列,得a 1a 11=a 23,又S 4=26,所以⎩⎪⎨⎪⎧4a 1+6d =26,a 1(a 1+10d )=(a 1+2d )2,又d ≠0,所以a 1=2,d =3.所以a n =2+3(n -1)=3n -1.(2)证明:S n =na 1+n (n -1)2d =2n +3n (n -1)2=3n 22+n2,1S n +n =13n 22+n 2+n=23n (n +1)=23⎝ ⎛⎭⎪⎫1n -1n +1. T n =23⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1=23⎝⎛⎭⎪⎫1-1n +1<23.(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n-1a n +1. (2021·长沙市四校模拟考试)设数列{a n }满足a 1=1,且2a n =a n+1+a n -1(n ≥2),a 3+a 4=12. (1)求{a n }的通项公式;(2)求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +2的前n 项和.解:(1)由2a n =a n +1+a n -1(n ≥2)可知数列{a n }是等差数列,设其公差为d ,由a 1=1,a 3+a 4=12,得d =2,所以{a n }的通项公式a n =2n -1(n ∈N *).(2)1a n a n +2=1(2n -1)(2n +3)=14⎝⎛⎭⎪⎫12n -1-12n +3, 记数列⎩⎨⎧⎭⎬⎫1a n a n +2的前n 项和为S n ,则 S n =14[⎝ ⎛⎭⎪⎫1-15+⎝ ⎛⎭⎪⎫13-17+⎝ ⎛⎭⎪⎫15-19+…+⎝⎛⎭⎪⎫12n -1-12n +3] =14⎝ ⎛⎭⎪⎫1+13-12n +1-12n +3=13-n +1(2n +1)(2n +3).并项求和(师生共研)(2021·河南八市重点高中联盟测评)已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.(1)求数列{a n }的通项公式;(2)记b n =(-1)n a 2n +1a n a n +1,数列{b n }的前n 项和为S n ,求S 2n .【解】 (1)设等差数列{a n }的公差为d , 因为a 2+2,a 4,a 6-2成等比数列, 所以a 24=(a 2+2)(a 6-2),所以(a 3+d )2=(a 3-d +2)(a 3+3d -2),又a 3=3,所以(3+d )2=(5-d )(1+3d ),化简得d 2-2d +1=0,解得d =1, 所以a n =a 3+(n -3)d =3+(n -3)×1=n . (2)由(1)得,b n =(-1)n a 2n +1a n a n +1=(-1)n2n +1n (n +1)=(-1)n⎝ ⎛⎭⎪⎫1n +1n +1,所以S 2n =b 1+b 2+b 3+…+b 2n =-⎝ ⎛⎭⎪⎫1+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…+⎝ ⎛⎭⎪⎫12n +12n +1=-1+12n +1=-2n 2n +1.用并项求和法求数列的前n 项和一般是指把数列的一些项合并组成我们熟悉的等差数列或等比数列来求和.可用并项求和法的常见类型:一是数列的通项公式中含有绝对值符号;二是数列的通项公式中含有符号因子“(-1)n ”;三是数列{a n }是周期数列.(2020·湖北八校第一次联考)已知数列{a n }和⎩⎨⎧⎭⎬⎫a 2nn 均为等差数列,a 1=12.(1)求数列{a n }的通项公式;(2)设数列{b n }满足b n =(-1)n ·4a n +1n (n +1),求数列{b n }的前n 项和S n .解:(1)因为数列⎩⎨⎧⎭⎬⎫a 2n n 为等差数列,所以2·a 222=a 211+a 233.数列{a n }为等差数列,设{a n }的公差为d ,则上式可化为(a 1+d )2=a 21+(a 1+2d )23,即(a 1-d )2=0,即a 1=d . 又a 1=12,所以a n =12+(n -1)·12=n2.(2)由(1)及题设得b n =(-1)n·2n +1n (n +1)=(-1)n·⎝ ⎛⎭⎪⎫1n +1n +1. 所以S n =-⎝ ⎛⎭⎪⎫11+12+⎝ ⎛⎭⎪⎫12+13-⎝ ⎛⎭⎪⎫13+14+…+(-1)n ⎝ ⎛⎭⎪⎫1n+1n +1=-1+(-1)n ·1n +1.[学生用书P309(单独成册)][A 级 基础练]1.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2D .2n +n -2解析:选C.S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.2.在数列{a n }中,a 1=2,a 2=2,a n +2-a n =1+(-1)n ,n ∈N *,则S 60的值为( )A .990B .1 000C .1 100D .99解析:选A.n 为奇数时,a n +2-a n =0,a n =2;n 为偶数时,a n +2-a n =2,a n =n .故S 60=2×30+(2+4+…+60)=990.3.在数列{a n }中,a n =2n -12n ,若{a n }的前n 项和S n =32164,则n =( ) A .3 B .4 C .5D .6解析:选D.由a n =2n -12n =1-12n 得,S n =n -⎝ ⎛⎭⎪⎫12+122+…+12n =n -⎝ ⎛⎭⎪⎫1-12n ,则S n =32164=n -⎝ ⎛⎭⎪⎫1-12n ,将各选项中的值代入验证得n =6. 4.(2020·武昌区高三调研)已知数列{a n }的前n 项和S n =32n 2-12n ,设b n =1a n a n +1,则数列{b n }的前n 项和为( ) A.n 3n +1 B .3n 3n +1C.n -13n -2D.-3n +33n -2解析:选A.当n ≥2时,a n =S n -S n -1=32n 2-12n -32(n -1)2+12(n -1)=3n -2;当n =1时,a 1=S 1=1,满足上式,所以a n =3n -2,则b n =1a n a n +1=1(3n -2)(3n +1)=13⎝⎛⎭⎪⎫13n -2-13n +1,记数列{b n }的前n 项和为T n ,则T n =13⎝⎛⎭⎪⎫1-14+14-17+17-110+…+13n -2-13n +1=13⎝ ⎛⎭⎪⎫1-13n +1=n 3n +1,故选A. 5.已知函数f (n )=⎩⎨⎧n 2,当n 为奇数时,-n 2,当n 为偶数时,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( )A .0B .100C .-100D .10 200解析:选B.由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-50×101+50×103=100.6.(2020·福州市质量检测)已知S n 为数列{a n }的前n 项和,若a 1=52,且a n +1(2-a n )=2,则S 21=________.解析:因为a 1=52,a n +1=22-a n ,所以a 2=22-a 1=-4,a 3=22-a 2=13,a 4=22-a 3=65,a 5=22-a 4=52,…显然数列{a n }是以4为周期的周期数列,则S 21=⎝ ⎛⎭⎪⎫52-4+13+65×204+52=83. 答案:837.若{a n },{b n }满足a n b n =1,a n =n 2+3n +2,则{b n }的前18项和为________. 解析:因为a n b n =1,且a n =n 2+3n +2,所以b n =1n 2+3n +2=1(n +2)(n +1)=1n +1-1n +2,所以{b n }的前18项和为12-13+13-14+14-15+…+119-120=12-120=10-120=920.答案:9208.已知数列{a n }满足a n +1=12+a n -a 2n ,且a 1=12,则该数列的前2 021项的和等于________.解析:因为a 1=12,又a n +1=12+a n -a 2n ,所以a 2=1,从而a 3=12,a 4=1,即得a n =⎩⎨⎧12,n =2k -1(k ∈N *),1,n =2k (k ∈N *),故数列的前2 021项的和等于S 2 021=1011×12+1 010×1=3 0312.答案:3 03129.(2020·开封市第一次模拟考试)已知等差数列{a n }满足a n +1+n =2a n +1. (1)求{a n }的通项公式; (2)记S n 为{a n }的前n项和,求数列⎩⎨⎧⎭⎬⎫1S n 的前n 项和T n .解:(1)已知{a n }为等差数列,记其公差为d . ①当n ≥2时,⎩⎪⎨⎪⎧a n +1+n =2a n +1,a n +n -1=2a n -1+1,所以d =1,②当n =1时,a 2+1=2a 1+1,所以a 1=1.所以a n =n . (2)由(1)可得S n =n (n +1)2.所以1S n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以T n =2[⎝⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1n +1]=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1.10.(2020·昆明市三诊一模)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,已知a 1=b 1,a 3=b 1+b 2=5,q =2d .(1)求数列{a n },{b n }的通项公式;(2)记c n =a n ·b n ,求数列{c n }的前n 项和S n . 解:(1)因为b 1+b 2=5,所以b 1(1+q )=5, 又q =2d ,a 1=b 1,所以a 1(1+2d )=5, 所以a 3=a 1+2d =5,所以a 1=5-2d , 所以(5-2d )(1+2d )=5,解得d =0或d =2, 若d =0,则q =2d =0(舍去),若d =2,则q =2d =4,所以b 1=a 1=a 3-2d =1, 所以a n =a 1+(n -1)d =2n -1, b n =b 1q n -1=4n -1.(2)c n =a n ·b n =(2n -1)·4n -1,所以S n =1+3×4+5×42+…+(2n -1)4n -1, 所以4S n =4+3×42+5×43+…+(2n -1)4n ,-3S n =1+2×4+2×42+2×43+…+2×4n -1-(2n -1)×4n =1+2×4(4n -1-1)4-1-(2n -1)×4n=-6n -53×4n -53,S n =6n -59×4n +59.[B 级 综合练]11.(2021·西安五校联考)设S n 是数列{a n }的前n 项和,若a n +S n =2n ,2b n =2a n +2-a n +1(n ∈N*),则数列⎩⎨⎧⎭⎬⎫1nb n 的前99项和为( )A.9798 B .9899 C.99100D.100101解析:选C.当n ≥2时,a n -1+S n -1=2n -1,则a n -a n -1+(S n -S n -1)=2n -2n -1=2n -1,即2a n -a n -1=2n -1,所以2a n +2-a n +1=2n +1(n ∈N *),即2b n =2a n+2-a n +1=2n +1,所以b n =log 2 2n +1=n +1,从而1nb n=1n (n +1)=1n -1n +1,故1b 1+12b 2+…+199b 99=1-12+12-13+…+199-1100=1-1100=99100.故选C. 12.已知数列{a n }满足a 1=1,a n +1·a n =2n (n ∈N *),则S 2 021=( ) A .22 012-1 B .21 012-3 C .21 011-1D .21 011-2解析:选B.a 1=1,a 2=2a 1=2,又a n +2·a n +1a n +1·a n=2n +12n =2,所以a n +2a n =2.所以a 1,a 3,a 5,…成等比数列;a 2,a 4,a 6,…成等比数列,所以S 2 021=a 1+a 2+a 3+a 4+a 5+a 6+…+a 2 020+a 2 021=(a 1+a 3+a 5+…+a 2 021)+(a 2+a 4+a 6+…+a 2 020)=1-21 0111-2+2(1-21 010)1-2=21 012-3.故选B.13.已知数列{a n }和{b n }满足a 1a 2a 3…a n =2b n (n ∈N *),若数列{a n }为等比数列,且a 1=2,a 4=16,则数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =________.解析:因为{a n }为等比数列,且a 1=2,a 4=16,所以公比q =3a 4a 1=3162=2,所以a n =2n ,所以a 1a 2a 3…a n =21×22×23×…×2n =21+2+3+…+n =2n (n +1)2. 因为a 1a 2a 3…a n =2b n ,所以b n =n (n +1)2.所以1b n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1. 所以⎩⎨⎧⎭⎬⎫1b n 的前n 项和S n =b 1+b 2+b 3+…+b n =2⎝⎛11-12+12-13+13-14+…+⎭⎪⎫1n -1n +1=2⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. 答案:2nn +114.已知等差数列{a n }中,a 5-a 3=4,前n 项和为S n ,且S 2,S 3-1,S 4成等比数列.(1)求数列{a n }的通项公式; (2)令b n =(-1)n4na n a n +1,求数列{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,由a 5-a 3=4,得2d =4,d =2. 所以S 2=2a 1+2,S 3-1=3a 1+5,S 4=4a 1+12,又S 2,S 3-1,S 4成等比数列,所以(3a 1+5)2=(2a 1+2)·(4a 1+12),解得a 1=1,所以a n =2n -1.(2)b n =(-1)n4n a n a n +1=(-1)n ⎝⎛⎭⎪⎫12n -1+12n +1, 当n 为偶数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…-⎝⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1,所以T n =-1+12n +1=-2n 2n +1.当n 为奇数时,T n =-⎝ ⎛⎭⎪⎫1+13+⎝ ⎛⎭⎪⎫13+15-⎝ ⎛⎭⎪⎫15+17+…+⎝⎛⎭⎪⎫12n -3+12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1, 所以T n =-1-12n +1=-2n +22n +1.所以T n=⎩⎪⎨⎪⎧-2n2n +1,n 为偶数,-2n +22n +1,n 为奇数.[C 级 提升练]15.(2020·福州市质量检测)等差数列{a n }的公差为2,a 2,a 4,a 8分别等于等比数列{b n }的第2项,第3项,第4项.(1)求数列{a n }和{b n }的通项公式;(2)若数列{c n }满足c 1a 1+c 2a 2+…+c na n=b n +1,求数列{c n }的前2 020项的和.解:(1)依题意,得b 23=b 2b 4, 所以(a 1+6)2=(a 1+2)(a 1+14),所以a 21+12a 1+36=a 21+16a 1+28,解得a 1=2. 所以a n =2n .设等比数列{b n }的公比为q ,则q =b 3b 2=a 4a 2=84=2,又b 2=a 2=4,所以b n =4×2n -2=2n . (2)由(1)知,a n =2n ,b n =2n .因为c 1a 1+c 2a 2+…+c n -1a n -1+c n a n =2n +1,①所以当n ≥2时,c 1a 1+c 2a 2+…+c n -1a n -1=2n ,②①-②得,c na n=2n ,即c n =n ·2n +1,又当n =1时,c 1=a 1b 2=23不满足上式, 所以c n =⎩⎪⎨⎪⎧8,n =1,n ·2n +1,n ≥2.数列{c n }的前2 020项的和S 2 020=8+2×23+3×24+…+2 020×22 021=4+1×22+2×23+3×24+…+2 020×22 021,设T2 020=1×22+2×23+3×24+…+2 019×22 020+2 020×22 021,③则2T2 020=1×23+2×24+3×25+…+2 019×22 021+2 020×22 022,④③-④得:-T2 020=22+23+24+…+22 021-2 020×22 022=22(1-22 020)1-2-2 020×22 022=-4-2 019×22 022,所以T2 020=2 019×22 022+4,所以S2 020=T2 020+4=2 019×22 022+8.。

河南省百师联盟2023届高三一轮复习联考(四)全国卷理科数学试题 附答案

河南省百师联盟2023届高三一轮复习联考(四)全国卷理科数学试题 附答案

2023届高三一轮复习联考(四)全国卷理科数学试题注意事项:1.答卷前,考生务必将自己的姓名、考场号、座位号、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

考试时间为120分钟,满分150分一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知{}{}||1|2,|1A x x B x x =-<=>,则A ∪B=A. {}|13x x -<<B. {}|1x x >-C. {}|3x x >D. {}|13x x << 2.已知复数z 满(2)2z i i +=-,其中i 为虚数单位,则z z ⋅=A .13B.12C .1D .23.下列命题中的假命题是 A.,sin 2x R x ∈= B .,ln 1x R x ∃∈=- C. 2,0x R x ∀∈>D. ,30xx R ∀∈>4.等差数列{a n }中,12326,27a a S -==-,当S n 取得最小值时,n 的值为 A .4或5B .5或6C .4D .55.函数()cos sin 2f x x x =+的图象可能是,6.已知321lg ,cos1,22a b c -===,则a ,b ,c 的大小关系为A .a b c <<B .a c b <<C .b a c <<D .b c a <<7.已知正数a ,b 满足2221,a b +=,则2ab 的最大值是A .13B.3C.9D .198.已知平面向量a ,b ,c ,其中(2,0),(a b c a b λμ==-=+,且c 与a 和c 与b 的夹角相等,则λμ= A .—1B .1C .—2D .29.直线:l y =与椭圆2222:1x y C a b+=交于P ,Q 两点,F 是椭圆C 的右焦点,且PF QF ⋅=0,则椭圆的离心率为A.4-B .3C1D.210.函数2()2sin cos cos f x x x a x =+关于直线12x π=对称,则函数f (x )的最大值为A .2BC.2D .211.如图所示,在正方体ABCD —1111A B C D 中,O ,F 分别为BD ,AA 1的中点,点P 为棱BB 1上的动点(不含端点),设二面角F −D 1O −P 的平面角为α,直线OF 与平面1OPD 所成角为β,则A .αβ>B .αβ<C .αβ=D .以上均有可能12.相原理也称祖氏原理,是一个涉及求几何体体积的著名数学命题。

福建省百校联考2024-2025学年高三上学期10月联合测评数学试题

福建省百校联考2024-2025学年高三上学期10月联合测评数学试题

福建省百校联考2024-2025学年高三上学期10月联合测评数学试题一、单选题1.设集合{2,4,7}M =-,{}230N xx x n =--=∣,若{4}M N ⋂=,则N =( ) A .{3,4}- B .{2,4} C .{1,4}D .{1,4}-2.命题“[]1,2x ∃∈-,2102x a -≤”是真命题的一个充分不必要条件是( )A .0a ≥B .3a ≥-C .0a ≤D .3a ≥3.已知奇函数()()22cos x xf x m x -=+⋅,则m =( )A .1-B .0C .1D .124.若函数()ln 2h x x ax =-在[]1,3上不单调,则实数a 的取值范围为( ) A .11,62⎛⎫ ⎪⎝⎭B .11,62⎡⎤⎢⎥⎣⎦C .(,1)-∞D .1,6⎛⎫+∞ ⎪⎝⎭5.已知2sin 3αα=,则πcos 43α⎛⎫+= ⎪⎝⎭( )A .6365-B .1781-C .2425 D .456.设n S 是数列{}n a 的前n 项和,且11a =,()121n n n S S S +=+,则511a S =( ) A .12-B .23-C .2-D .34-7.已知函数22()e 2e 4(0)x x f x a a x a =-->,若函数()f x 的值域与(())f f x 的值域相同,则a 的取值范围是( ) A .10,2⎛⎫ ⎪⎝⎭B .(0,1]C .1,2⎡⎫+∞⎪⎢⎣⎭D .(1,)+∞8.已知0ω>,函数()sin f x x ω=与()cos g x x ω=的图象在[]π,2π上最多有两个公共点,则ω的取值范围为( )A .15170,,448⎛⎤⎛⎫ ⎪⎥⎝⎦⎝⎭UB .59170,,448⎛⎤⎛⎤ ⎥⎥⎝⎦⎝⎦UC .179210,,848⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭UD .17950,,842⎛⎤⎛⎫ ⎪⎥⎝⎦⎝⎭U二、多选题9.若a ,b ∈R ,则下列命题正确的是( ) A .若0ab ≠且a b <,则11a b> B .若a b <,则33a b < C .若||||a a b b <,则a b <D .若0a b >>,则11b ba a+<+ 10.已知函数()ϕx 的定义域为R ,对于x ∀,y ∈R ,恒有()()()x y x y t ϕϕϕ+=+-,且当0x >时,()x t ϕ<,则下列命题正确的有( )A .(0)t ϕ=B .()(2)x t x ϕϕ=-C .(2024)2(2024)t ϕϕ-=-D .x y ∀≠∈R ,()[()()]0x y x y ϕϕ--<11.已知数列{}n a 的前n 项和为n S ,11(32)(31)(61)n n n n S n S n S +-++-=+(n ∈N ,且2n ≥),若112a =,215a =,则下列说法正确的是( )A .5114a =B .数列1n a ⎧⎫⎨⎬⎩⎭为等差数列C .数列21n n a a +⎧⎫⎨⎬⎩⎭中的最小项为12D .数列1(1)n n n a a +⎧⎫-⎨⎬⎩⎭的前2n 项和2n T 为21812n n +三、填空题12.函数()22024log 1y ax x =++的值域为R ,则实数a 的取值范围是.13.已知数列{}n a 满足121,2a a ==,且12n n n a a a ++=+,则2029a = 14.已知不等式22ln 21e xa x x x+-≤-恒成立,则实数a 的取值范围为.四、解答题15.已知函数ππ()sin sin (0)63f x x x ωωω⎛⎫⎛⎫=+--> ⎪ ⎪⎝⎭⎝⎭.(1)当2ω=时,求()f x 的对称轴方程和最大值;(2)若*ω∈N ,且()f x 在区间π,02⎛⎫- ⎪⎝⎭上单调递增,求()f x 在区间4π0,3⎛⎫⎪⎝⎭上的极值点个数.16.已知函数2()log 4(2)21x xf x a a ⎡⎤=++⋅++⎣⎦.(1)若0a =,求满足2()4f x <<的x 的取值范围; (2)若对任意1x ≥,(x)x f ≥恒成立,求a 的取值范围. 17.已知函数()cos 1f x x ax =+-.(1)当1a =时,求曲线()y f x =在点(π,(π))f 处的切线方程; (2)当12a =时,求()f x 在区间(0,)+∞上的零点个数. 18.设n S ,n T 分别为数列{}n a ,{}n b 的前n 项和,11122n n n a a ++-=,134a =,数列{}n b 是公比为23-的等比数列,2289S T =.(1)求{}n a ,{}n b 的通项公式; (2)比较n S 和n T 的大小.19.如图,在求解一些函数零点的近似值时,常用牛顿切线法进行求解.牛顿切线法的计算过程如下:设函数()f x 的一个零点0x ,先取定一个初值1x ,曲线()y f x =在1x x =处的切线为1l ,记1l 与x 轴的交点横坐标为2x ,曲线()y f x =在2x x =处的切线为2l ,记2l 与x 轴的交点横坐标为3x ,以此类推,每进行一次切线求解,我们就称之为进行了一次迭代,若进行足够多的迭代次数,就可以得到0x 的近似值()*n x n ∈N ,设函数3()1f x x x =+-,令11x =.(1)证明:()f x 存在唯一零点0x ,且0213x <<; (2)已知23n x >,证明:2100n n x x x x +-<-; (3)经过4次迭代后,判断0x 的近似值5x 与0x 的差值小于710-.。

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题及答案

绝密★启用前2020届全国100所名校最新高考模拟示范卷(四)高三数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上 一、单选题 1.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则MN =( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<答案:A根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 解:∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 点评:本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-答案:B根据共轭复数定义及复数模的求法,代入化简即可求解. 解:z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 点评:本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件答案:A根据幂函数定义,求得b 的值,结合充分条件与必要条件的概念即可判断. 解:∵当函数()()2231af x b b x =--为幂函数时,22311b b --=,解得2b =或12-, ∴“2b =”是“函数()()2231af x b b x =--为幂函数”的充分不必要条件.故选:A. 点评:本题考查了充分必要条件的概念和判断,幂函数定义的应用,属于基础题.4.已知()21AB =-,,()1,AC λ=,若cos BAC ∠=,则实数λ的值是( ) A .-1 B .7C .1D .1或7答案:C根据平面向量数量积的坐标运算,化简即可求得λ的值. 解:由平面向量数量积的坐标运算,代入化简可得cos 105AB AC BAC AB AC⋅∠===. ∴解得1λ=. 故选:C. 点评:本题考查了平面向量数量积的坐标运算,属于基础题.5.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆有下述四个结论: (1)焦距长约为300公里; (2)长轴长约为3988公里; (3)两焦点坐标约为()150,0±; (4)离心率约为75994. 其中正确结论的个数为()A .1B .2C .3D .4答案:B根据椭圆形轨道,设该椭圆长轴长为a ,半焦距为c ,先求得月球的半径r ,再根据近月点与月球表面距离为100公里,有100a c r -=+,远月点与月球表面距离为400公里,有400a c r +=+,然后两式联立求解. 解:设该椭圆长轴长为a ,半焦距为c ,依题意可得月球半径约为1347617382⨯=, 所以1001738183840017382138a c a c -=+=⎧⎨+=+=⎩,解得1988150a c =⎧⎨=⎩所以离心率150751988994c e a ===,可知结论(1)(4)正确,(2)错误; 因为没有给坐标系,焦点坐标不确定,所以(3)错误. 故选:B 点评:本题主要考查椭圆的几何性质,还考查了阅读抽象应用的能力,属于基础题. 6.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=,且321c b -=,则cos C ()A .12-B .3C .12D 6 答案:A根据1a =,321c b -=,由正弦定理边化为角得到3sin 2sin sin C B A -=,由A B C π++=,得到()3sin 2sin sin C A C A -+=,再根据6A π=求解.解:由321c b -=,得32c b a -=,即3sin 2sin sin C B A -=, 所以()3sin 2sin sin C A C A -+=, 而6A π=,所以3sin 2sin sin 66C C ππ⎛⎫-+= ⎪⎝⎭, 即3113sin 2sin cos 222C C C ⎛⎫-+= ⎪ ⎪⎝⎭, 解得1cos 2C =-. 故选:A 点评:本题主要考查正弦定理和三角恒等变换,还考查了运算求解的能力,属于中档题. 7.函数()2cos2cos221xxf x x =+-的图象大致是( ) A . B .C .D .答案:C根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项. 解:∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--,()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >,故选:C. 点评:本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.8.设x ,y 满足约束条件2010x y x y x m -+≥⎧⎪+-≥⎨⎪≤⎩,若2z x y =+的最大值大于17,则实数m 的取值范围为() A .()4,+∞ B .13,2⎛⎫+∞⎪⎝⎭C .()6,+∞D .()5,+∞答案:D先作出不等式组表示的平面区域,然后平移直线l :20x y +=,当直线l 在y 轴上的截距最大时,z 取得最大值求解. 解:作出不等式组表示的平面区域如图所示,作出直线l :20x y +=,并平移,当直线l 经过点(),2m m +时,直线在y 轴上的截距最大,z 取得最大值, 因为2z x y =+的最大值大于17, 所以2217m m ++>,解得5m >. 故选:D 点评:本题主要考查线性规划求最值,还考查了数形结合的方法的能力,属于基础题. 9.七巧板是一种古老的中国传统智力玩具,是由七块板组成.而这七块板可拼成许多图形,人物、动物、建筑物等,在18世纪,七巧板流传到了国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧图谱》.若用七巧板(图1为正方形),拼成一只雄鸡(图2),在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡头或鸡尾(阴影部分)的概率为A .112B .18C .14D .316答案:D这是一个几何概型模型,设包含7块板的正方形边长为4,求得正方形的面积,即为雄鸡的面积,然后求得雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和,代入公式求解. 解:设包含7块板的正方形边长为4,正方形的面积为4416⨯=, 则雄鸡鸡头(标号3或5)和鸡尾(标号6)的面积之和为1212132⨯⨯+⨯=, 在雄鸡平面图形上随机取一点,则恰好取自雄鸡几头或鸡尾(阴影部分)的概率为316p. 故选:D 点评:本题主要考查几何概型的概率,还考查了阅读抽象应用的能力,属于基础题.10.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为()A .2π B .3π C .4π D .6π 答案:C设AE BF a ==,13B EBF EBFV S B B '-'=⨯⨯,利用基本不等式,确定点E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.设AE BF a ==,则()()23119333288B EBFaa V a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 9322222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=.方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫⎪⎝⎭, ∴3,3,32A F ⎛⎫'=--⎪⎝⎭,()3,3,0AC =-, 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯,所以异面直线A F '与AC 所成的角为4π. 故选:C 点评:本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.11.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论:①实数a 的值为1;②()()1,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称; ③21x x -的最大值为π, ④12x x +的最小值为23π. 其中所有正确结论的编号是() A .①②③ B .①③④C .①④D .③④答案:B 根据56x π=是函数()f x 的一条对称轴,确定函数()f x ,再根据函数()f x 在区间()12,x x 上具有单调性,得到21x x -的最大值为2Tπ=,然后由()()12f x f x =-,得到()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称求解验证. 解: ∵56x π=是函数()f x 的一条对称轴,∴()53f x f x π⎛⎫=-⎪⎝⎭, 令0x =,得()503f f π⎛⎫=⎪⎝⎭,即=1a =,①正确; ∴()sin 2sin 3π⎛⎫==- ⎪⎝⎭f x x x x .又因为函数()f x 在区间()12,x x 上具有单调性, ∴21x x -的最大值为2Tπ=,且()()12f x f x =-, ∴()()11,x f x 和()()22,x f x 两点关于函数()f x 的一个对称中心对称,∴121233223x x x x k ππ⎛⎫⎛⎫-+- ⎪ ⎪+π⎝⎭⎝⎭=-=π,k Z ∈, ∴12223x x k ππ+=+,k Z ∈, 当0k =时,12x x +取最小值23π,所以①③④正确,②错误.故选:B 点评:本题主要考查三角函数的图象和性质,还考查了推理论证,运算求解的能力,属于中档题.12.如图,在ABC 中,AB 4=,点E 为AB 的中点,点D 为线段AB 垂直平分线上的一点,且4DE =,固定边AB ,在平面ABD 内移动顶点C ,使得ABC 的内切圆始终与AB 切于线段BE 的中点,且C 、D 在直线AB 的同侧,在移动过程中,当CA CD +取得最小值时,ABC 的面积为()A .12524-B .6512-C .12518-D .658-答案:A以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,利用圆的切线长定理,得到C 点的轨迹是以A 、B 为焦点的双曲线在第一象限部分,然后利用直线段最短,得到点C 的位置,再求三角形的面积. 解: 如图,以AB 所在直线为x 轴,ED 所在直线为y 轴建立平面直角坐标系,则()2,0A -,()2,0B ,()0,4D ,设ABC 的内切圆分别切BC 、AC 、AB 于F ,G ,H 点,∵3124CA CB AG BF AH HB -=-=-=-=<,所以C 点的轨迹是以A 、B 为焦点的双曲线的第一象限部分,且1a =,2c =,2223b c a =-=,∴C 的轨迹方程为()220,03y x x y ->>.∵2CA CB -=,∴2CA CB =+,∴2CA CD CB CD +=++, 则当点C 为线段BD 与双曲线在第一象限的交点时,CA CD +最小, 如图所示:线段BD 的方程为()4202y x x =-≤≤,将其代入22330x y --=,得216190x x -+=,解得835x =+835x =-,∴426512y x =-=, ∴()835,6512C -. ∴ABC 的面积为()146512125242⨯⨯=. 故选:A 点评:本题主要考查双曲线的定义,圆的切线长定理以及三角形的面积,还考查了数形结合的思想和运算求解的能力,属于中档题. 二、填空题13.若函数()()()()()2log 2242x x f x f x x ⎧->⎪=⎨+≤⎪⎩,则()()5f f -=__________. 答案:1利用分段函数,先求()5f -,再求()()5f f -的值.解: ∵()()()5130f f f -=-==,∴()()()()5041ff f f -===.故答案为:1 点评:本题主要考查分段函数求函数值问题,还考查了运算求解的能力,属于基础题. 14.若()()613x a x -+的展开式中3x 的系数为45-,则实数a =__________. 答案:13利用通项公式得到()()613x a x -+的展开式中含3x 的项为:()()23236633x C x a C x ⋅-⋅,再根据系数为45-,建立方程求解.解:因为()()613x a x -+的展开式中含3x 的项为:()()()232336633135540x C x a C x a x ⋅-⋅=-,∴13554045a -=-,解得13a =. 故答案为:13点评:本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 15.如图,在矩形ABCD 中,24==AD AB ,E 是AD 的中点,将ABE △,CDE △分别沿BE CE ,折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.答案:323π 根据题意,画出空间几何体,设BE EC BC ,,的中点分别为M N O ,,,并连接AM CM AO DN NO DO OE ,,,,,,,利用面面垂直的性质及所给线段关系,可知几何体ABCDE 的外接球的球心为O ,即可求得其外接球的体积. 解:由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图所示,设BE EC BC ,,的中点分别为M N O ,,, 连接AM CM AO DN NO DO OE ,,,,,,, 则OM BE ⊥,ON CE ⊥.因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE , 所以OM ⊥平面ABE ,ON ⊥平面DEC , 易得2OA OB OC OD OE =====,则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==. 故答案为:323π. 点评:本题考查了空间几何体的综合应用,折叠后空间几何体的线面位置关系应用,空间几何体外接球的性质及体积求法,属于中档题.16.若函数()2ln 2f x x x ax x =--有两个不同的极值点,则实数a 的取值范围为__________. 答案:10,4e ⎛⎫ ⎪⎝⎭由函数()2ln 2f x x x ax x =--有两个不同的极值点,则()ln 40f x x ax '=-=有两个不同的根,转化为方程ln 4x a x =有两个不同解,即函数()g x ln 4xx=的图象与直线y a =有两个公共点求解.解:由()ln 40f x x ax '=-=,得ln 4xa x=, 记()ln 4x g x x =,则()21ln 4xg x x-'=, 当()0,x e ∈时,()0g x '>,()g x 单调递增,当(),x e ∈+∞时,()0g x '<,()g x 单调递减. 又∵()14g e e=,当0x →时,()g x →-∞,当x →+∞时,()0g x →. 因为函数()2ln 2f x x x ax x =--有两个不同的极值点, 所以方程ln 4xa x=有两个不同的解, 即函数()g x 的图象与直线y a =有两个公共点, 故实数a 的取值范围为10,4e ⎛⎫ ⎪⎝⎭. 故答案为:10,4e ⎛⎫ ⎪⎝⎭点评:本题主要考查导数与函数的极值点以及导数与函数的零点问题,还考查了数形结合的思想和运算求解的能力,属于中档题. 三、解答题17.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,//DF GE ,2222AB AG DG DF ====.(1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小. 答案:(1)见解析;(2)23π(1)根据面面垂直性质及线面垂直性质,可证明BE FG ⊥;由所给线段关系,结合勾股定理逆定理,可证明FE FG ⊥,进而由线面垂直的判定定理证明FG ⊥平面BEF .(2)建立空间直角坐标系,写出各个点的坐标,并求得平面AFB 和平面EFB 的法向量,由空间向量法求得两个平面夹角的余弦值,结合图形即可求得二面角A BF E --的大小. 解:(1)证明:∵平面DGEF ⊥平面ABEG ,且BE GE ⊥, ∴BE ⊥平面DGEF , ∴BE FG ⊥,由题意可得2FG FE ==, ∴222FG FE GE +=,∵FE FG ⊥,且FE BE E ⋂=, ∴FG ⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--,()1,1,1FB =-,()0,1,1FE =-.设平面AFB 的法向量是()111,,n x y z =,则11111111100000x y z x z FA n x y z y FB n --==⎧⎧⎧⋅=⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎩,令11x =,()1,0,1n =,由(1)可知平面EFB 的法向量是()0,1,1m GF ==,∴1cos<,222n m n m n m⋅>===⨯⋅,由图可知,二面角A BF E --为钝二面角,所以二面角A BF E --的大小为23π. 点评:本题考查了线面垂直的判定,面面垂直及线面垂直的性质应用,空间向量法求二面角的大小,属于中档题.18.在等差数列{}n a 中,12a =,35730a a a ++=.(1)求数列{}n a 的通项公式;(2)记23n n a an b =+,当*n N ∈时,1n n b b λ+>,求实数λ的取值范围.答案:(1)2n a n =(2)实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭(1)根据12a =,35730a a a ++=,利用“1,a d ”法求解.(2)由(1)得到2349n naa n n nb =+=+,将()114949n n n n λ+++>+对*n N ∀∈恒成立,转化为5419nλ<⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立求解. 解:(1)在等差数列{}n a 中,3575330a a a a ++==,∴510a =,所以{}n a 的公差51251a a d -==-, ∴()112n a a n d n =+-=. (2)∵2349n naa n n nb =+=+,∴()114949n n n n λ+++>+对*n N ∀∈恒成立,即4499595444949419n n n n n n n n λ⨯+⨯⨯<=+=+++⎛⎫+ ⎪⎝⎭对*n N ∀∈恒成立, 又∵55974441341199n+≥+=⎛⎫++ ⎪⎝⎭,∴9713λ<,即实数λ的取值范围是97,13⎛⎫-∞ ⎪⎝⎭.点评:本题主要考查等差数列的基本运算以及有关数列的不等式恒成立问题,还考查了运算求解的能力,属于中档题.19.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()02F ,的距离小1.(1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222221C x y -++=:上一动点,过点P 作曲线1C 的两条切线,切点分别为A B 、,求直线AB 斜率的取值范围.答案:(1)28x y =;(2)13,44⎡⎤⎢⎥⎣⎦(1)设(),M x y ,根据题意可得点M 的轨迹方程满足的等式,化简即可求得动点M 的轨迹1C 的方程;(2)设出切线PA PB 、的斜率分别为12k k ,,切点()12,A x x ,()22,B x y ,点()P m n ,,则可得过点P 的拋物线的切线方程为()y k x m n =-+,联立抛物线方程并化简,由相切时0∆=可得两条切线斜率关系12,k k +12k k ;由抛物线方程求得导函数,并由导数的几何意义并代入抛物线方程表示出12,y y ,可求得4AB mk =,结合点()P m n ,满足()()22221x y -++=的方程可得m 的取值范围,即可求得AB k 的范围.解:(1)设点(),M x y ,∵点M 到直线1y =-的距离等于1y +, ∴11y +=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA PB 、的斜率都存在,分别设为12k k ,,切点()12,A x x ,()22,B x y ,设点()P m n ,,过点P 的拋物线的切线方程为()y k x m n =-+,联立()28y k x m n x y⎧=-+⎨=⎩,化简可得28880x kx km n -+-=,∴26432320k km n ∆=-+=,即220k km n -+=, ∴122m k k +=,122n k k =. 由28x y =,求得导函数4xy '=, ∴114x k =,2211128x y k ==,2222228x y k ==,∴222121212121224424ABy y k k k k m k x x k k --+====--, 因为点()P m n ,满足()()22221x y -++=, 由圆的性质可得13m ≤≤,∴13444AB m k ≤=≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 点评:本题考查了动点轨迹方程的求法,直线与抛物线相切的性质及应用,导函数的几何意义及应用,点和圆位置关系求参数的取值范围,属于中档题.20.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案()a 规定每日底薪100元,外卖业务每完成一单提成2元;方案()b 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)[)[)[)[)[)[]2535354545555565657575858595,,,,,,,,,,,,,七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率;(2)从以往统计数据看,新聘骑手选择日工资方案()a 的概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率,(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替) 答案:(1)0.4;(2)1127;(3)应选择方案()a ,理由见解析 (1)根据频率分布直方图,可求得该快餐店的骑手的人均日外卖业务量不少于65单的频率,即可估算其概率;(2)根据独立重复试验概率求法,先求得四人中有0人、1人选择方案()a 的概率,再由对立事件概率性质即可求得至少有两名骑手选择方案()a 的概率;(3)设骑手每日完成外卖业务量为X 件,分别表示出方案()a 的日工资和方案()b 的日工资函数解析式,即可计算两种计算方式下的数学期望,并根据数学期望作出选择. 解:(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”.根据频率分布直方图可知快餐店的人均日外卖业务量不少于65单的频率分别为0.2,0.15,0.05,∵020*******++=...., ∴()P A 估计为0.4.(2)设事件′为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C ,为“甲、乙、丙、丁四名骑手中恰有()01234ii =,,,,人选择方案()a ”, 则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()11002,*Y X X N =+∈,方案()b 的日工资()215054*15055454*X X N Y X X X N ≤∈⎧=⎨+->∈⎩,,,,,所以随机变量1Y 的分布列为()1160005180005200022200324002260015280005224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.......;同理,随机变量2Y 的分布列为()21500318003230022800153300052035E Y =⨯+⨯+⨯+⨯+⨯=.......∵()()21EY E Y >,∴建议骑手应选择方案()a . 点评:本题考查了频率分布直方图的简单应用,独立重复试验概率的求法,数学期望的求法并由期望作出方案选择,属于中档题.21.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-.(1)若函数()f x 在()0+∞,上单调递减,且函数()g x 在02,上单调递增,求实数m 的值;(2)求证:()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫+++⋯+<⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭(*n N ∈,且2n ≥).答案:(1)1;(2)见解析(1)分别求得()f x 与()g x 的导函数,由导函数与单调性关系即可求得m 的值; (2)由(1)可知当0x >时,()ln1x x +<,当02x π<<时,sin x x <,因而()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,,,构造()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,由对数运算及不等式放缩可证明()()1111ln 1sin11+sin 1+sin 1sin 2212231n n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+=-<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦,从而不等式可证明. 解:(1)∵函数()f x 在()0+∞,上单调递减, ∴()101mf x x'=-≤+,即1m x ≤+在()0+∞,上恒成立, ∴1m ,又∵函数()g x 在02,上单调递增,∴()cos 0g x m x '=-≥,即cos m x ≥在02,上恒成立,m 1≥,∴综上可知,1m =.(2)证明:由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0+∞,上为减函数,()sin g x x x =-在02,上为增函数,而()()00,00f g ==,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <. ∴()()*111sin1sinsin sin 0,213,221n N n n n⋯>∈≥⨯⨯-⨯,,,, ∴()()111ln 1sin11+sin 1+sin 1sin 12231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦()()111ln 1sin1ln 1+sin ln 1+sin ln 1sin 12231n n ⎛⎫⎛⎫⎛⎫=+++⋯++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭ ()111sin1sinsin sin 12231n n <+++⋯+⨯⨯-⨯()11111111111122312231n n n n ⎛⎫⎛⎫⎛⎫<+++⋯+=+-+-+⋯+- ⎪ ⎪ ⎪⨯⨯-⨯-⎝⎭⎝⎭⎝⎭122n=-< 即()()111ln 1sin11+sin 1+sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫+⋯+<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦, ∴()()()2*1111sin11+sin 1+sin 1sin ,212231e n N n n n ⎛⎫⎛⎫⎛⎫+⋯+<∈≥⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭,. 点评:本题考查了导数与函数单调性关系,放缩法在证明不等式中的应用,属于难题. 22.在直角坐标系xOy 中,直线l 的方程为0x y a -+=,曲线C 的参数方程为22cos 22sin x y αα=+⎧⎨=+⎩(α为参数).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)若射线6πθ=与l 的交点为M ,与曲线C 的交点为A ,B ,且4OA OB OM +=,求实数a 的值.答案:(1)l :cos sin 0a ρθρθ-+=,C :24cos 4sin 40ρρθρθ--+=(2)12a =- (1)先消去参数得到C 的普通方程,然后利用cos x ρθ=,sin y ρθ=分别代入,得到直线和曲线C 的极坐标方程.(2)在极坐标系中,设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭,将π6θ=代入24cos 4sin 40ρρθρθ--+=,然后利用韦达定理求解.解:(1)将cos x ρθ=,sin y ρθ=代入方程0x y a -+=中,得到直线l 的极坐标方程为cos sin 0a ρθρθ-+=;曲线C 的普通方程为()()22224x y -+-=,即224440x y x y +--+=, 所以曲线C 的极坐标方程为24cos 4sin 40ρρθρθ--+=.(2)在极坐标系中,可设1π,6M ρ⎛⎫ ⎪⎝⎭,2π,6A ρ⎛⎫ ⎪⎝⎭,3π,6B ρ⎛⎫ ⎪⎝⎭, 将π6θ=代入24cos 4sin 40ρρθρθ--+=,得()2240ρρ-+=,∴232ρρ+=,∵4OA OB OM +=,∴1ρ=即1π,26M ⎛⎫ ⎪ ⎪⎝⎭,将1π,26M ⎛⎫ ⎪ ⎪⎝⎭代入cos sin 0a ρθρθ-+=,得()111sin cos 222a ρθθ=-=⨯=-. 点评:本题主要考查参数方程,普通法方程极坐标方程间的转化以及直线与曲线的位置关系,还考查了运算求解的能力,属于中档题.23.已知不等式112x x ++-≤的解集为{}x a x b ≤≤.(1)求实数a 、b 的值;(2)设0m >,0n >,且满足122a b m n-=,求证:1212m n ++-≥. 答案:(1)1a =-,1b =(2)见解析(1)利用绝对值的几何意义,去绝对值求解.(2)由(1)得到1122m n+=,利用三角不等式转化为1212m n m n ++-≥+,再利用基本不等式求解.解:(1)原不等式等价于①122x x <-⎧⎨-≤⎩,∴x ∈∅; ②1122x -≤≤⎧⎨≤⎩,∴11x -≤≤; ③122x x >⎧⎨≤⎩,∴x ∈∅. 所以原不等式的解集为{}11x x -≤≤,∴1a =-,1b =.(2)∵122a b m n -=,∴1122m n+=, ∴()()1211212m n m n m n ++-≥++-=+()111122222222n m m n m n m n ⎛⎫⎛⎫=+⋅+=++≥ ⎪ ⎪⎝⎭⎝⎭, 当且仅当22n m m n =,即1m =,12n =时取等号, ∴1212m n ++-≥.点评:本题主要考查绝对值不等式的解法以及三角不等式和基本不等式的应用,还考查了运算求解的能力,属于中档题.。

2022-2023下学年高三年级 TOP二十名校四月冲刺考(一)高三理科数学参考答案

2022-2023下学年高三年级 TOP二十名校四月冲刺考(一)高三理科数学参考答案

2022-2023下学年高三年级TOP二十名校四月冲刺考(一)高三理科数学参考答案1.【答案】 B【解析】 A=x|x(x-2)<0{}=x|0<x<2{},则A∩B=1{}.故选B.2.【答案】 B【解析】 设复数z,-i,i在复平面内对应的点分别为Z(x,y),A(0,-1),B(0,1),则|z+i|=|z-i|的几何意义是Z到A的距离和Z到B的距离相等,则z在复平面内对应的点(x,y)满足y=0.故选B.3.【答案】 A【解析】 y=cos2x-π2()=sin2x.令sin2x=±1,则2x=π2+kπ(k∈Z),即x=π4+kπ2(k∈Z),故对称轴可以是直线x=π4.故选A.4.【答案】 D【解析】 由函数模型U(t)=-U0lnKt,当t=50时,U(t)=15,可得15=-20ln(50K),即15=-20ln50-20lnK①.设血液尿酸浓度达到正常值7时,摄入天数为t′,则7=-20ln(t′K),即7=-20lnt′-20lnK②,②-①可得-8=-20lnt′50,即lnt′50=25,则t′50=e25,t′=50e25≈74.5.故选D.5.【答案】 A【解析】 依题意,每个兴趣小组采集3处水样,每处水样至少有1个兴趣小组进行采集,可分为两步.第一步,甲组进行采样,有C35=10种方法;第二步,乙组进行采样,有C22×C13=3种方法,所以共有10×3=30种方法.故选A.6.【答案】 A【解析】 由A(3,槡23)在y2=2px上,得12=2p×3,解得p=2,则F(1,0),直线AF的斜率k=槡233-1=槡3,倾斜角为60°.如图,过点A作l的垂线,垂足为H.由抛物线的定义可知|AF|=|AH|.在Rt△AHB中,∠BAH=60°,∴|AB|=2|AH|,∴|BF|=|AB|-|AF|=|AH|,∴|AF|=|BF|.故选A.7.【答案】 D【解析】 在△A1BC1中,因为M,N分别为A1B,A1C1的中点,所以MN∥BC1,又BC1∥AD1,所以MN∥AD1,故A选项正确;同理,MP∥BD,MN∥BC1,则MP∥平面BC1D,MN∥平面BC1D,所以平面MNP∥平面BC1D,故B选项正确;因为MN∥AD1,AD1⊥CD,所以MN⊥CD,故C选项正确;取BD的中点E,则∠A1EC1即为二面角A1-BD-C1的平面角,易知∠A1EC1≠90°,则平面A1BD与平面BC1D不垂直,又平面MNP∥平面BC1D,故平面MNP与平面A1BD不垂直,故D选项错误.故选D.8.【答案】 D【解析】 在△ABC中,|AC|=|BC|=槡5.如图,当公共弦AB最大,即AB为圆C′的直径时,∠ACB最大.此时在Rt△CC′A中,|AC|=槡5,|AC′|=1,|CC′|=|AC|2-|AC′|槡2=2.故选D.9.【答案】 A【解析】 设选择与甲进行比赛且获胜的业余棋手人数为X,选择与乙进行比赛且获胜的业余棋手人数为Y;设选择与甲进行比赛的业余棋手人数为n,则选择与乙进行比赛的业余棋手人数为32-n.X所有可能的取值为0,1,2,…,n,则X~Bn,13(),E(X)=n3;Y所有可能的取值为0,1,2,…,32-n,则Y~B32-n,14(),E(Y)=32-n4,获胜的业余棋手总人数的期望E(X+Y)=E(X)+E(Y)=n3+32-n4=n+9612≥10,解得n≥24.故选A.10.【答案】 B【解析】 由a1=1,a4=4,a2是a1与a4的等比中项,可知a2=±2.若a2=2,由a1=a5=1,可知a6=2,由a3=-3,可知a7=-3,则a8=a4=4,则数列an{}:1,2,-3,4,1,2,-3,4,…,是以4为周期的数列,易知前n项和无最大值.若a2=-2,同理可得数列an{}:1,-2,-3,4,1,-2,-3,4,…,则数列Sn{}是以4为周期的数列,且S1=1,S2=-1,S3=-4,S4=0,所以Sn的最大值S=1.故选B.11.【答案】 D【解析】 如图,将圆台O1O补成圆锥PO.设圆台O1O的母线长为l,则l2=h2+(R-r)2,等腰梯形ABCD为过两母线的截面.设PC=x,∠APB=θ,由rR=xx+l,则有x=rlR-r,则S=S△PAB-S△PCD=12[(x+l)2-x2]sinθ=R+r2(R-r)l2sinθ.当h≥R-r时,θ≤90°,当sinθ最大时,即截面为轴截面时,面积最大,则S的最大值为(R+r)h.当h<R-r时,θ>90°,当sinθ=1时,截面面积最大,则S的最大值为R+r2(R-r)l2=(R+r)[h2+(R-r)2]2(R-r).故选D.12.【答案】 C【解析】 a=ln2.4>0,b=log32.8>0,ab=ln2.4log32.8<ln2.4log3e=ln2.4×ln3<ln2.4+ln32()2=ln7.22()2=(ln7.槡2)2<(lne)2=1,则a<b.c=lg5.7<lg2.42=ln2.42ln10=2ln2.4ln10=ln2.4槡ln10因为槡ln10>lne>1,所以c<ln2.4=a,则有c<a<b.故选C.13.【答案】 (1,-1)(答案不唯一,横、纵坐标互为相反数即可)【解析】 由题意可知a-b=(3,3),设c=(x,y),则3x+3y=0,取x=1,则y=-1,则与a-b垂直的非零向量可以为c=(1,-1).14.【答案】 -1【解析】 当x>0时,f′(x)=1x+1.当x<0时,f′(x)=-1x+1,根据导数的几何意义结合图象,不妨设x1<0,x2>0.因为曲线f(x)在点A,B处的两条切线互相垂直,所以-1x1+1·1x2+1=-1,整理得x1x2+x1+x2=0,所以1x1+1x2=-1.15.【答案】 槡103【解析】 不妨设点P在第二象限,直线AP的方程为y=x+a,联立y=x+a,y=-bax,{得点P的纵坐标yP=aba+b;联立y=x+a,y=bax,{得点Q的纵坐标yQ=abb-a.由A为PQ的三等分点,可知yQ=-2yP,则有abb-a=-2aba+b,整理,得a=3b,则a2=9(c2-a2),故C的离心率e=ca=槡103.16.【答案】 3【解析】 设∠ABC=θ,θ∈(0°,180°).在△ABC中,由余弦定理得AC2=AB2+BC2-2AB·BCcosθ=3-槡22cosθ,由正弦定理得1sin∠ACB=ACsinθ,则sin∠ACB=sinθAC.在△ACD中,AD=槡2CD,∠ADC=45°,则∠ACD=π2,CD=AC.在△DCB中,由余弦定理得BD2=CD2+2-槡22CD·cosπ2+∠ACB()=AC2+2+槡22ACsin∠ACB=3-槡22cosθ+2+槡22AC·sinθAC=5+槡22(sinθ-cosθ)=5+4sinθ-π4(),当θ=3π4时,sinθ-π4()取最大值1,则BD2的最大值为9,故BD的最大值为3.17.【答案】 见解析【解析】 (1)设数列bn{}的公差为d,由b2+b3=-12,得2b1+3d=-12,由b1=-3,得d=-2,故bn=-2n-1,即an+an+1=-2n-1.①(3分)………………………………………………………………………递推,得an+1+an+2=-2n-3,②①-②,得an-an+2=2,故an-an+2=2得证.(6分)…………………………………………………………………………(2)法一:若an{}为等差数列,设公差为d′,由an+2-an=-2可得,2d′=-2,d′=-1.又an+an+1=-2n-1,即2an+d′=-2n-1,所以an=-n.又a1=-1,∴an{}的前n项和Sn=(-1-n)n2=-n22-n2.法二:由an+an+1=-2n-1,可知a2=-a1-3.又an+2-an=-2,所以a3=a1-2.又an{}为等差数列,所以a1+a3=2a2,即a1+(a1-2)=2(-a1-3),解得a1=-1,(9分)…………………………………………………则有d′=-1,an{}的前n项和Sn=-n+n(n-1)2·(-1)=-n22-n2.(12分)………………………18.【答案】 见解析【解析】 (1)x=6+15+25+344=20,y=5+10+15+194=12.25,(2分)……………………………所以^b=∑4i=1xiyi-4xy∑4i=1x2i-4x2=1201-4×20×12.252042-4×400=0.5,(4分)………………………………………所以^a=y-^bx=12.25-0.5×20=2.25.所以所求线性回归方程为^y=0.5x+2.25.(6分)…………………………………………………(2)当x=44时,^y=0.5×44+2.25=24.25,|^y-y|=|24.25-24|=0.25≤1.(8分)……………………………………………………………当x=54时,^y=0.5×54+2.25=29.25,|^y-y|=|29.25-31|=1.75>1.(10分)……………………………………………………………故不能用此回归方程估计该海域其他岛屿的植物种数.(12分)…………………………………19.【答案】 见解析【解析】 (1)如图,取BD的中点G,连接AG,CG.因为∠BCD=90°,BG=DG,所以BG=CG.又因为AB=AC,AG为公共边,所以△ABG≌△ACG,所以∠AGB=∠AGC.(2分)…………………………………………………………………………同理可得∠AGC=∠AGD,所以∠AGB=∠AGD.因为∠AGB+∠AGD=180°,所以∠AGB=∠AGC=∠AGD=90°,(4分)…………………………………………………………所以AG⊥BD,AG⊥CG.又因为BD∩CG=G,所以AG⊥平面BCD.又因为AG 平面ABD,所以平面ABD⊥平面BCD.(5分)………………………………………(2)过点C作直线CH⊥平面BCD,以C为坐标原点,CD→ ,CB→ ,CH→的方向分别为x轴,y轴,z轴的正方向,建立如图所示的空间直角坐标系,设AG=a(a>0),则A槡32,12,a(),B(0,1,0),C(0,0,0),D(槡3,0,0),则有BA→ =槡32,-12,a(),CA→ =槡32,12,a(),CD→ =(槡3,0,0).设平面ACD的一个法向量为n=(x,y,z),由n·CA→ =0,n·CD→=0,{得槡32x+12y+az=0,槡3x=0,{可取n=(0,2a,-1).设直线AB与平面ACD所成的角为α,则sinα=|cos〈n,BA→ 〉|=|n·BA→||n||BA→ |=2a4a2+槡1·a2+槡1.(8分)……………………………………sin2α=4a2(4a2+1)(a2+1)=4a24a4+5a2+1=44a2+1a2+5≤424a2·1a2槡+5=49,当且仅当4a2=1a2,即a=槡22时,等号成立.(11分)………………………………………………因为BD=2,BC=1,∠BCD=90°,所以CD=槡3,此时三棱锥A-BCD的体积V=13S△BCD×AG=13×槡32×槡22=槡612,故当直线AB与平面ACD所成的角最大时,三棱锥A-BCD的体积为槡612.(12分)……………20.【答案】 见解析【解析】 (1)不妨设点P在x轴的上方,由椭圆的性质可知|OA|=a.因为△APO是以P为直角顶点的等腰直角三角形,所以P-a2,a2(),代入x2a2+y2b2=1,得a24a2+a24b2=1,整理,得a2=3b2.(2分)……………………………………………因为△APO的面积为1,所以12a·a2=1,所以a2=4,b2=43.故椭圆C的方程为x24+3y24=1.(4分)………………………………………………………………(2)设直线AM的斜率为k1,直线BN的斜率为k2,M(x1,y1),N(x2,y2),直线MN的方程为x=my+1.不妨设y2<0<y1,则k1=tan∠MAB,k2=tan∠NBA.联立x=my+1,x2+3y2=4,{可得(m2+3)y2+2my-3=0,Δ=16m2+36>0,则y1+y2=-2mm2+3,y1y2=-3m2+3,(6分)…………………………………………所以y1+y2y1y2=2m3,即2my1y2=3(y1+y2),则k1k2=y1x1+2y2x2-2=y1x1+2·x2-2y2=y1(my2-1)(my1+3)y2=my1y2-y1my1y2+3y2=32(y1+y2)-y132(y1+y2)+3y2=12y1+32y232y1+92y2=13,(10分)………………………………………………………………………………………………………所以3k1=k2,故3tan∠MAB=tan∠NBA得证.(12分)……………………………………………………………21.【答案】 见解析【解析】 (1)设g(x)=f′(x)=lnx-2ax+1,g(x)的定义域为(0,+∞),g′(x)=1x-2a.(1分)………………………………………………………………………………当a≤0时,g′(x)>0,g(x)在区间(0,+∞)上单调递增.(2分)…………………………………当a>0时,令g′(x)=0,得x=12a,若x∈0,12a(),g′(x)>0,g(x)单调递增;若x∈12a,+∞(),g′(x)<0,g(x)单调递减.综上,当a≤0时,f′(x)在(0,+∞)上单调递增;当a>0时,f′(x)在区间0,12a()上单调递增,在区间12a,+∞()上单调递减.(4分)…………………………………………………………………(2)直线y=e22与曲线y=f(x)有两个交点,即关于x的方程xlnx-ax2=e22有两个解,整理方程,得a=lnxx-e22x2.(6分)…………………………………………………………………令φ(x)=lnxx-e22x2,其中x>0,则φ′(x)=1-lnxx2+e2x3=x-xlnx+e2x3.令s(x)=x-xlnx+e2,则s′(x)=-lnx.当0<x<1时,s′(x)>0,此时函数s(x)单调递增;当x>1时,s′(x)<0,此时函数s(x)单调递减.(8分)……………………………………………由s(1)=1+e2,s(e2)=0,得0<x<1时,x-xlnx+e2=x(1-lnx)+e2>0,则φ′(x)>0;当1<x<e2时,s(x)>s(e2)=0,则φ′(x)>0;当x>e2时,s(x)<s(e2)=0,则φ′(x)<0,所以函数φ(x)在区间(0,e2)上单调递增,在区间(e2,+∞)上单调递减,则φ(x)max=φ(e2)=32e2.(10分)……………………………………………………………………当x趋近于+∞时,φ(x)趋近于0,即当x>e2时,φ(x)>0;当x趋近于0时,φ(x)趋近于-∞.故要使直线y=e22与曲线y=f(x)有两个交点,则需0<a<32e2,即a的取值范围是0,32e2().(12分)………………………………………………………………22.【答案】 见解析【解析】 (1)由曲线C1的参数方程是x=t′,y=t′2-2,{得C1的直角坐标方程为y=x2-2.(2分)…………………………………………………………由ρ=1得ρ2=1,又x2+y2=ρ2,则有x2+y2=1,故C2的直角坐标方程为x2+y2=1.(4分)…………………………………………………………(2)把x=tcosθ,y=-1+tsinθ{代入y=x2-2,得tsinθ-1=t2cos2θ-2,整理,得t2cos2θ-tsinθ-1=0设t1,t2所对应的点分别为A,B,则t1+t2=sinθcos2θ.(6分)………………………………………………………………………………把x=tcosθ,y=-1+tsinθ{代入x2+y2=1,得t2cos2θ+(tsinθ-1)2=1,整理,得t2-2tsinθ=0,设t3,t4所对应的点分别为C,D,则t3+t4=2sinθ.(8分)………………………………………………………………………………因为|OA|=|OB|,|OC|=|OD|,即AB与CD的中点重合,所以t1+t2=t3+t4,所以sinθcos2θ=2sinθ,且sinθ≠0,所以cosθ=±槡22,故|CD|=槡2.(10分)………………………………………………………………………………23.【答案】 见解析【解析】 (1)因为a2+b2=1,即|a|2+|b|2=1,所以|a|2+|b|2=(|a|+|b|)2-2|a|·|b|=1.(2分)……………………………………………根据基本不等式,得(|a|+|b|)2-1=2|a|·|b|≤(|a|+|b|)22,当且仅当|a|=|b|=槡22时,等号成立,整理,得(|a|+|b|)2≤2,所以|a|+|b|≤槡2.(4分)…………………………………………………………………………(2)a3b+b3a=ab·a2+ba·b2=ab·(1-b2)+ba·(1-a2)=ab-|ab|+ba-|ab|=ab+ba-2|ab|.(8分)………………………………………………………………………由基本不等式和不等式的性质,得ab+ba≥2ab·ba槡=2,2|ab|≤a2+b2=1.故ab+ba-2|ab|≥2-1=1,当且仅当|a|=|b|=槡22时,等号成立,所以a3b+b3a≥1.(10分)………………………………………………………………………。

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案

2021-2022年高三上学期第二次月考数学(理)试题含答案一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集为R ,集合A={x|()x ≤1},B={x|x 2﹣6x+8≤0}, 则A∩()=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4}2.下列函数在其定义域内既是奇函数又是增函数的是( ) (A)y=tanx (B)y=3x (C)y= (D)y=lg|x|3.下列四种说法中,错误的个数是( ) ①A={0,1}的子集有3个;②“若am 2<bm 2,则a<b ”的逆命题为真;③“命题p ∨q 为真”是“命题p ∧q 为真”的必要不充分条件;④命题“∀x ∈R,均有x 2-3x-2≥0”的否定是:“∃x 0∈R,使得x 02-3x 0-2≤0”. (A)0 (B)1 (C)2 (D)3 4.已知函数则f(f())的值是( ) (A)9(B)(C)-9(D)-5.若a=log 20.9,则( )(A)a<b<c (B)a<c<b (C)c<a<b(D)b<c<a6.若函数y=-x 2+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是( )()()()()53A B C D 4664ππππ7.已知命题p:函数f(x)=2ax 2-x-1(a ≠0)在(0,1)内恰有一个零点;命题q:函数y=x 2-a 在(0,+∞)上是减函数.若p 且﹁q 为真命题,则实数a 的取值范围是 ( ) (A)a>1(B)a ≤2 (C)1<a ≤2(D)a ≤1或a>28.函数f(x)=的大致图象为( )9.设函数f (x )=x 2+xsinx ,对任意x 1,x 2∈(﹣π,π), 若f (x 1)>f (x 2),则下列式子成立的是( ) A .x 1>x 2B .C .x 1>|x 2|D .|x 1|<|x 2|10函数y=f(x)(x ∈R)满足f(x+1)=-f(x),且x ∈[-1,1]时f(x)=1-x 2,函数()lg x,x 0,g x 1,x 0,x>⎧⎪=⎨-<⎪⎩则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数为( ) (A)7(B)8(C)9(D)10二、填空题(本大题共5小题,每小题5分,共25分.请把正确答案填在题中横线上)11.已知集合M={y|y=x 2﹣1,x ∈R},,则M∩N=_____ 12.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是 [﹣1,0],则a+b= .13.已知p:≤x ≤1,q:(x-a)(x-a-1)>0,若p 是﹁q 的充分不必要条件,则实数a 的取值范围是 .14.若f (x )=是R 上的单调函数,则实数a 的取值范围为 . 15.若方程有正数解,则实数的取值范围是_______三、解答题(本大题共6小题,共75分.解答时应写出必要的文字说明、证明过程或演算步骤)16.(12分)已知p :∀x ∈R ,2x >m (x 2+1),q :∃x 0∈R , x+2x 0﹣m ﹣1=0,且p ∧q 为真,求实数m 的取值范围.17、(12分)已知函数.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)证明f(x)在(0,1)内单调递减.18.(12分)已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[1,4]上的最大值.19.(12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(Ⅰ)当0≤x≤200时,求函数v(x)的表达式;(Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).20. (13分)已知函数f(x)满足()()()x 121f x f 1e f 0x x .2-='-+(1)求f(x)的解析式及单调区间.(2)若f(x)≥x 2+ax+b,求(a+1)b 的最大值.21、 (14分)已知函数21()(21)2ln ()2f x ax a x x a R =-++∈.(Ⅰ)若曲线y=f (x )在x=1和x=3处的切线互相平行,求a 的值; (Ⅱ)求f (x )的单调区间;(Ⅲ)设g (x )=x 2﹣2x ,若对任意x 1∈(0,2],均存在x 2∈(0,2],使得 f (x 1)<g (x 2),求a 的取值范围.高三数学第一次检测题答案解析1. C .2.C.3.D.4.B.5.B.6.D.7.C 8、D.9.【解析】∵f (﹣x )=(﹣x )2﹣xsin (﹣x )=x 2+xsinx=f (x ),∴函数f (x )=x 2+xsinx 为偶函数,又f′(x )=2x+sinx+xcosx ,∴当x >0时,f′(x )>0,∴f (x )=xsinx 在[0,π]上单调递增,∴f (﹣x )=f (|x|);∵f (x 1)>f (x 2),∴结合偶函数的性质得f (|x 1|)>f (|x 2|),∴|x 1|>|x 2|,∴x 12>x 22.故选B .10.选A.由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)的零点,即求f(x)=g(x)在区间[-5,4]的解的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.11、解:∵集合M={y|y=x2﹣1,x∈R}={y|y≥﹣1},={x|﹣},∴M∩N=.故答案为:.12、解:当a>1时,函数f(x)=a x+b在定义域上是增函数,所以,解得b=﹣1,=0不符合题意舍去;当0<a<1时,函数f(x)=a x+b在定义域上是减函数,所以,解得b=﹣2,a=,综上a+b=,故答案为:13.q:x>a+1或x<a,从而﹁q:a≤x≤a+1.由于p是﹁q的充分不必要条件,故a111a2≥⎧⎪⎨≤⎪⎩+,,即0≤a≤.答案:[0,]14、解:∵f(x)=是R上的单调函数,∴,解得:a≥,故实数a的取值范围为[,+∞),故答案为:[,+∞)15.16、解:不等式2x>m(x2+1),等价为mx2﹣2x+m<0,若m=0,则﹣2x<0,即x>0,不满足条件.若m≠0,要使不等式恒成立,则,即,解得m<﹣1.即p:m<﹣1.———————————————————————4分若∃x0∈R,x+2x﹣m﹣1=0,则△=4+4(m+1)≥0,解得m≥﹣2,即q:m≥﹣2.———————————————————————8分若p∧q为真,则p与q同时为真,则,即﹣2≤m<﹣1————12分17、解:(1)⇔﹣1<x<0或0<x<1,故f(x)的定义域为(﹣1,0)∪(0,1);————————————4分(2)∵,∴f(x)是奇函数;————————————————————————————6分(3)设0<x1<x2<1,则∵0<x1<x2<1,∴x2﹣x1>0,x1x2>0,(1﹣x1)(1+x2)=1﹣x1x2+(x2﹣x1)>1﹣x1x2﹣(x2﹣x1)=(1+x1)(1﹣x2)>0∴,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2)∴f(x)在(0,1)内递减——————————————————12分另解:∴当x∈(0,1)时,f′(x)<0故f(x)在(0,1)内是减函数.—————————————————12分18、解:(1)求导函数,可得f′(x)=3x2﹣2ax﹣3,∵f(x)在区间[1,+∞)上是增函数,∴f′(x)≥0在区间[1,+∞)上恒成立∴3x2﹣2ax﹣3≥0在区间[1,+∞)上恒成立∴且f′(1)=﹣2a≥0∴a≤0———4分(2)∵x=﹣是f(x)的极值点,∴∴∴a=4——6分∴f(x)=x3﹣4x2﹣3x,f′(x)=3x2﹣8x﹣3,∴x1=﹣,x2=3令f′(x)>0,1<x<4,可得3<x<4;令f′(x)<0,1<x<4,可得1<x<3;∴x=3时,函数取得最小值﹣18∵f(1)=﹣6,f(4)=﹣12∴f(x)在[1,4]上的最大值为﹣6.————————————————12分19、解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v (x)=ax+b再由已知得,解得故函数v(x)的表达式为.——————4分(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.—————————————————————————10分答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.——————————————————————————12分20.(1)∵f(x)=f′(1)e x-1-f(0)x+x2,∴f′(x)=f′(1)e x-1-f(0)+x,令x=1得:f(0)=1,∴f(x)=f′(1)e x-1-x+x2,∴f(0)=f′(1)e-1=1,∴f′(1)=e得:f(x)=e x-x+x2.—————————4分设g(x)=f′(x)=e x-1+x,g′(x)=e x+1>0,∴y=g(x)在R上单调递增.令f′(x)>0=f′(0),得x>0,令f′(x)<0=f′(0)得x<0,∴f(x)的解析式为f(x)=e x-x+x2且单调递增区间为(0,+∞),单调递减区间为(-∞,0).————————————-4分(2)由f(x)≥x2+ax+b得e x-(a+1)x-b≥0,令h(x)=e x-(a+1)x-b,则h′(x)=e x-(a+1).①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增.x→-∞时,h(x)→-∞与h(x)≥0矛盾.——————————6分②当a+1>0时,由h′(x)>0得x>ln(a+1),由h′(x)<0得x<ln(a+1)=(a+1)-(a+1)ln(a+1)-b≥0.———8分得当x=ln(a+1)时,h(x)min(a+1)b≤(a+1)2-(a+1)2ln(a+1) (a+1>0).令F(x)=x2-x2ln x(x>0),则F′(x)=x(1-2ln x),——————10分由F′(x)>0得0<x<,由F′(x)<0得x>,当x=时,F(x)=,∴当a=-1,b=时,(a+1)b的最大值为.—————————max—————————————13分21、解:(Ⅰ)∵函数,∴(x>0).∵曲线y=f(x)在x=1和x=3处的切线互相平行,∴f'(1)=f'(3),即,解得.————————————4分(Ⅱ)(x>0).①当a≤0时,x>0,ax﹣1<0,在区间(0,2)上,f'(x)>0;在区间(2,+∞)上f'(x)<0,故f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞).②当时,,在区间(0,2)和上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是(0,2)和,单调递减区间是③当时,,故f(x)的单调递增区间是(0,+∞).④当时,,在区间和(2,+∞)上,f'(x)>0;在区间上f'(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.————————————8分(Ⅲ)由已知,在(0,2]上有f(x)max <g(x)max.由已知,g(x)max=0,由(Ⅱ)可知,①当时,f(x)在(0,2]上单调递增,故f(x)max=f(2)=2a﹣2(2a+1)+2ln2=﹣2a﹣2+2ln2,所以,﹣2a﹣2+2ln2<0,解得a>ln2﹣1,故.——————————————————12分②当时,f(x)在上单调递增,在上单调递减,故.由可知,2lna>﹣2,﹣2lna<2,所以,﹣2﹣2lna<0,f(x)max<0,综上所述,a>ln2﹣1.————————————————14分21072 5250 剐31873 7C81 粁31426 7AC2 竂z33043 8113 脓e35722 8B8A 變 39463 9A27 騧K34467 86A3 蚣38124 94EC 铬=40272 9D50 鵐。

福建省百校2024届高三上学期期中联考数学试卷(含解析)

福建省百校2024届高三上学期期中联考数学试卷(含解析)

福建省百校2024届高三上学期期中联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.图中的阴影部分表示的集合为( )A. B. C. D.2.若,为复数,则“是纯虚数”是“,互为共轭复数”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.函数的部分图象为( )A.B.C.D.4.故宫是世界上现存规模最大、保存最为完整的木质结构古建筑群.故宫宫殿房檐设计恰好使北房在冬至前后阳光满屋,夏至前后屋檐遮阴.已知北京地区夏至前后正午太阳高度角约为75°,冬至前后正午太阳高度角约为30°,图1是顶部近似为正四棱锥、底部近似为正四棱柱的宫殿,图2是其示意图,则其出檐AB 的长度(单位:米)约为( )A B C()U A B C ð()U A B C ð()U A B Cð1Z 2Z 12Z Z -1Z 2Z ()21cos 1e xf x x ⎛⎫=- ⎪+⎝⎭A.3B.4C.D.5.已知数列满足,且,若,则正整数k 为( )A.13B.12C.11D.10.点P在线段CD 上,则的取值范围是( )A. B. C. D.7.已知直线是函数图像相邻的两条对称轴,将的图像.若在上恰有三个不同的零点,则实数m 的取值范围为( )A. B. C. D.8.已知,,,则( )A. B. C. D.二、多项选择题9.设正实数a ,b 满足,则下列说法正确的是( )的最小值为2D.的最小值为210.函数的部分图象如图中实线所示,图中圆C 与的图象交于M ,N 两点,且M 在y 轴上,则( ))61)31{}n a 1112n n n n n a a a a ++--=21a =-816k a a =2PA PB ⋅[]1,2-2⎤⎦[]3,4[]1,0-x =4π3x =()()π4sin 06f x x ωω⎛⎫=+> ⎪⎝⎭(f x ()g x ()g x (),m m -7π11π,1212⎛⎤ ⎥⎝⎦7π13π,1212⎛⎤⎥⎝⎦5π13π,1212⎛⎤⎥⎝⎦5π11π,1212⎛⎤⎥⎝⎦0.11a e = 1.11.1b = 1.11c =a b c>>a c b>>b a c>>b c a>>2a b +=22a b +()()π2sin ,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭()f xA .函数在上单调递增BC.函数的图象关于点成中心对称D.函数在上单调递减11.如图,在长方体中,E ,F 分别是棱,的中点,点P 在侧面内,且,,则三棱锥外接球表面积的取值可能是( )A. B. C. D.12.已知数列满足,,则下列说法正确的有( )B.C.若D.三、填空题13.已知,则______.()f x 3π,π2⎛⎫-- ⎪⎝⎭()f x 2π,03⎛⎫- ⎪⎝⎭()f x 2021π2023π,1212⎡⎤⎢⎥⎣⎦1111ABCD A B C D -1224AD AB AA ===AD 11B C 11A ADD (BE BP yBF x x =+)y ∈R 1P BB F -10π20π12π44π{}n a 11a =()12ln 11n n n a a a +=++5<2211n n n a a a +-≤+2n ≥1111n i i a =≤<+∑()()1ln 121ln 2nn i i a =+≤-∑πsin 6α⎛⎫+= ⎪⎝⎭ππ,44⎛⎫∈- ⎪⎝⎭πsin 3α⎛⎫-= ⎪⎝⎭14.已知非零向量,满足,若,则向量在向量方向上的投影向量的坐标为______.15.已知数列,,若数列为单调递增数列,则的取值范围为______.四、双空题16.法国的拿破仑提出过一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个等边三角形的外接圆圆心恰好是一个等边三角形的三个顶点.”在ABC 中,,以AB ,BC ,AC 为边向外作三个等边三角形,其外接圆圆心依次为,,,则______;若的最大值为______.五、解答题17.已知函数,将个单位长度,所得函数的图象关于y 轴对称.(1)求函数的解析式;(2)若关于x 的方程在上恰有两个实数根,求实数a 的取值范围.18.已知函数.(1)讨论函数的单调性;(2)若,是否存在整数,都有恒成立,若存在求出实数m 的最小值,若不存在说明理由.19.设数列前n 项和满足.a bb =π,3b =()a b a -⊥ a b{n a ()2222n na a n n *+++=∈N L ()214n n b a n n λ=--+{}n b λ60A =︒1O 2O 3O 13O AO ∠=12O O O ()()()π2cos 22x x f x ϕϕϕ⎛⎫=+++< ⎪⎝⎭(f x ()f x ()f x a =π5,π612⎡⎤⎢⎥⎣⎦()()ln 1x a a f x x =-+∈R ()f x 2a =-()m m *∈N ()()1f x m x ≤+{}n a n S n n S a +=*∈N(1)证明:数列为等比数列;,求数列的前n 项和.20.如图,在四棱锥中,PAD 为等边三角形,M 为PA 的中点,,平面平面ABCD .(1)证明:平面平面PAB ;(2)若,,,直线PB 与平面MCD 所成角的正弦值为的体积.21.如图,在海岸线EF 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段FGBC ,该曲线段是函数,的图像,图像的最高点为.边界的中间部分为长1千米的直线段CD ,且,游乐场的后一部分边界是以O 为圆心的一段圆弧DE .(1)求曲线段FGBC 的函数表达式;(2)曲线段FGBC 上的入口G 距海岸线EF 最近距离为1千米,现准备从入口G 修一条笔直的景观路到O ,求景观路GO 长;(3)如图,在扇形ODE 区域内建一个平行四边形休闲区OMPQ ,平行四边形的一边在海岸线EF 上,一边在半径OD 上,另外一个顶点P 在圆弧DE 上,且,求平行四边形休闲区OMPQ 面积的最大值及此时的值.22.已知函数.11n S n ⎧⎫-⎨⎬+⎩⎭11n S n =-+()()111n n n b b b +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭n T P ABCD -PD AB ⊥PAD ⊥CDM ⊥//AD BC 24AD BC =<2AB =MCD -()()()sin 0,0,0,πy A x A ωϕωϕ=+>>∈[]4,0x ∈-()1,2B -//CD EF POE θ∠=θ()sin cos f x x x x =+(1)求在的单调区间与最值;(2)当,证明:有且仅有两个零点. ()f x[]π,πx∈-a>()()212g x f x ax=-()g x参考答案1.答案:B解析:由已知中阴影部分所表示的集合元素满足“是B 的元素,也是A 的元素,不是C 的元素”,故阴影部分所表示的集合是.故选:B.2.答案:D解析:先验证充分性:令,满足是纯虚数,但是不满足,互为共轨复数,所以充分性不成立;再验证必要性:令,满足,互为共轭复数,但是不满足是纯虚数,所以必要性不成立,所以“是纯虚数”是“,互为共轭复数”的既不充分也不必要条件.故选:D.3.答案:C解析:,定义域为R ,为奇函数,故图象关于原点对称,故排除A ,D ;令,则,,故有无数个零点,故排除B.故选:C.4.答案:C解析:如图:由题意可得,,()U A B C ð14i Z =22i Z =12Z Z -1Z 2Z 121Z Z ==1Z 2Z 12Z Z -12Z Z -1Z 2Z 21e ()1cos cos 1e 1e x x xf x x x -⎛⎫=-=⋅ ⎪++⎝⎭1e ()cos()()1exxf x x f x ---∴-=⋅-=-+()f x ∴()0f x =2x k π=+πk ∈Z 30FCD ∠=︒75ADE ∠=︒24CD =直角三角形中,的长度为米,故选:C.5.答案:B 解析:由已知可得,,以上各式累加可得,又,代入,即,解得故,令,解得.故选:B.6.答案:D解析:如图,O 为圆心,连接,18075105ADC ∴∠=︒-︒=︒1803010545CAD ∠=︒-︒-︒=︒ACD △sin 30AD=︒AD ∴=ADB ()()sin sin 9075sin 4530AB AD ADB ︒︒︒︒=⨯∠=-=-()1sin 45cos30cos 45sin 3062︒︒︒︒⎫=-==⎪⎪⎭AB ∴6)0211112a a ⎛⎫-= ⎪⎝⎭12112a ⎛⎫-= ⎪⎝⎭21112n n a --⎛⎫-= ⎪⎝⎭10122111111111221222212n n n n a a ---⎛⎫- ⎪⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭-=++⋯⋯+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭-21a =-021111212a a ⎛⎫-=-= ⎪⎝⎭1111a --=1a =22n n a -=-262162k --=-⨯12k =OP则因为点P 在线段上且,则圆心到直线的距离,所以,则,即的取值范围是.故选:D.7.答案:A解析:由题意可知,则,故,令,解得,由图像可知解得故选A 项.8.答案:A解析:下面先证明,(且).记,则,()()PA PB PO OA PO OB ⋅=+⋅+ 2222()||4PO PO OB PO OA OA OB PO PO OB OA OA PO =+⋅+⋅+⋅=+⋅+-=- CD ||2CD =d ==||2PO ≤≤23||4PO ≤≤ 21||40PO -≤-≤ PA PB ⋅[]1,0-(f x 4536ππ=-==π=2ω=()f x =4sin 26x π⎛⎫+ ⎪⎝⎭()4sin 24sin 2666g x x x ⎡ππ⎤π⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2()6x k k π-=π∈Z ()212k x k ππ=+∈Z 0,11,127,12m m m ⎧⎪>⎪π⎪-≥-⎨⎪π⎪>⎪⎩712m π<≤ln 1x x <-0x >x l ≠()ln (1)f x x x =--1()1f x x'=-令,得:;令,得:;函数在上单增,在上单减,所以对任意,都有,即恒成立,所以对任意且,都有,即恒成立,故,故,构造函数,则故当时,单调递增,故,即,综上.故选:A.9.答案:ABD 解析:10.答案:CD解析:根据函数的图象以及圆C 的对称性,可得M ,N 两点关于圆心对称,所以,于是,由及,得由于所以,,故半径为当时,,,因为在区间()0f x '<01x <<()0f x '>1x >()f x (0,1)(1,)+∞0x >()(1)0f x f ≤=ln 1x x ≤-0x >1x ≠()(1)0f x f <=ln 1x x <-1.1ln1.1 1.1(1.11)0.11<⨯-=a b >1.1()(1)(1.11)g x x x =+-+0.10.1() 1.1(1) 1.1 1.1(1)1g x x x ⎡⎤=+-=+-⎣⎦0x >()f x 1.1 1.1(0.1)(10.1)(1.10.11) 1.1 1.110f =+-⨯+=->b c >a b c >>()2sin()f x x ωϕ=+(,0)C c 3c π=22622T c ωωππππ=+=⇒=⇒=2ω=,06A π⎛⎫- ⎪⎝⎭()()033k k k k ϕϕππ-+=+π∈⇒=+π∈Z Z ||ϕ<=()2sin 23f x x π⎛⎫=+ ⎪⎝⎭(0)f =||CM =≠3,2x π⎛⎫∈--π ⎪⎝⎭852,333x πππ⎛⎫+∈-- ⎪⎝⎭sin y x =85,33ππ⎛⎫-- ⎪⎝⎭上先减后培,所以原函数在上先减后增,故A 错误;,故C 正确;当时,,即,此时为减函数,故D 正确.故选:CD.11.答案:BCD解析:如图,连接,,,易证四边形是平行四边形,则点在线段上,取的中点G ,连接,,分别取,的中点,,连接,易知三棱锥外接球的球心O 在直线上,连接,,,,设三棱锥外接球的半径为R ,则,因为,所以,所以,所以.则当P 与E 重合时,此时三棱锥当P 与重合时,此时三棱锥,故三棱锥外接球表面积的取值范围是.12.答案:BCD3,2π⎛⎫--π ⎪⎝⎭22sin()03f π⎛⎫-=-π= ⎪⎝⎭20212023,1212x ππ⎡⎤∈⎢⎥⎣⎦202320252,366x πππ⎡⎤+∈⎢⎥⎣⎦792336,336366x πππ⎡⎤+∈π+π+⎢⎥⎣⎦()f x EF 1D E 1D F 1BED F PD 1D E 11A D AG GF BF AG 1O 2O 12O O 12O O OB OP 2O E 2O P 1P BB F -222221122R OO O B OO O P =+=+124AD AB AA ===122O O =12O B O E ==2222112|2|2R OO OO EP =+=-++21114OO EP =+11OO =1P BB F -1D 13OO =1P BB F -1P BB F -[]12π44π,解析:对于A :,,,,故A 错误;对于B :,要证,则证,即证,即证,令,则,,设,,当时,,函数单调递增,当时,,函数单调递减,,恒成立,,故B 正确;易知足遂增数列,所以,则,,则11a =()12ln 11n n n a a a -=++()2112ln 1121(01)13a a a ∴=++=⨯++=()3222ln 116ln 37a a a =++=+31222(6ln 37)3ln 3 3.513a a a +∴==+++ln 3ln e 1>= 3ln 33∴>31223ln 3 3.5 6.5a a a ∴=+>+()12ln 11n n n a a a -=++ 2211n n n a a a --≤+()22ln 1121n n na a a ++≤+ln 1n n a a +≤ln 10n n a a +-≤n a x =ln 10x x +-≤0x >()ln 1f x x x =+-11()1x f x x x-'∴=-=01x <<()0f x '>()f x 1x >()0f x '<()f x ()(1)ln 110f x f ∴≤=+-=ln 10n n a a ∴+-≤2211n n n a a a +∴-≤+{}n a 11n a a ≥=ln 11n a +≥()12ln 1121n n n n a a a a -=++≥+()1121n n a a -+≥+2≥,即,所以而当时,则有故C 正确;令函数则所以在上单调递减,所以当时,,则,所以所以,D 正确.故选:BCD.解析:因为11221121n n n a aa a ---+⋅⋯⋅≥+()111212n n n a a -+≥+=≤2111111111221111222212nn n n i i a =⎛⎫- ⎪⎝⎭≤+++==-<+-∑ 2n ≥112111111ni i a a a =≥+=+++∑()2ln g x x x =-2222121()10x x g x x x x -+-'=--=≤()g x (0,)+∞1x ≥()(1)0g x g ≤=11ln 2x x x ⎛⎫≤- ⎪⎝⎭()2211112112112n n n n n n n n a a a a a a a a +-⎡⎤⎛⎫≤-++=++≤+⎢⎥ ⎪⎝⎭⎣⎦()()1ln 1ln 1n n a a -+≤+()()()()12121ln 1ln 12ln 1ln 1n n n a a a a ---++⋅≤++ ()()111ln 12ln 12ln 2n n n a a --∴+≤+=()()()11ln 1122ln 221ln 2nn n i i a -=+≤++⋯+=-∑,44αππ⎛⎫∈- ⎪⎝⎭5,1212αππ⎛⎫+∈- ⎪⎝⎭故,所以14.答案:解析:15.答案:解析:由题意可得时,,当,即,对也成立,则,,,若数列为单调道壇数列,则恒成立,即化为恒成立.设当时,,当时,为递减数列,即可得cos 06απ⎛⎫+> ⎪⎝⎭cos 6απ⎛⎫+== ⎪⎝⎭sin sin cos 3266αααπ⎡ππ⎤π⎛⎫⎛⎫⎛⎫-=-+=+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦14⎫⎪⎪⎭3,8⎛⎫+∞ ⎪⎝⎭1n =12a =n ≥(1)1n n =--=2nn a =1n =2n n a =*n ∈N ()2214n n b n n λ=--+{}n b 1n n b b +>()()12221(1)4(1)214n n n n n n λλ+--+++>--+λ>*∈N n c =111212352222n n n n n n n nc c +++----=-=1,2n =321c c c >>3n ≥{}n c 345,c c c >>>⋯c则.解析:17.答案:(1);(2)解析:(1),将函数所得函数为,,,,..(2),,单调递增;单调递减.且,,.方程在上恰有两个实数根,,实数a 的取值范围为.18.答案:(1)单调性见解析;(2)3解析:(1),,λ>3,8⎫+∞⎪⎭()π2sin 26f x x ⎛⎫=-⎪⎝⎭)2()()()π2cos 22sin 26f x x x x ϕϕϕ⎛⎫=+++=++ ⎪⎝⎭(f x ππ52sin 22sin 2π366y x x ϕϕ⎡⎤⎛⎫⎛⎫=+++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦∴5πππ62k ϕ+=+k ∈Z ∴ππ3k ϕ=-+k ∈Z ϕ=()π2sin 26f x x ⎛⎫=- ⎪⎝⎭ π5,π612x ⎡⎤∈⎢⎥⎣⎦∴ππ2π2,663x ⎡⎤-∈⎢⎥⎣⎦π26x ≤-≤x ≤≤()f x π26x <-≤x <≤()f x π23f ⎛⎫= ⎪⎝⎭π16f ⎛⎫= ⎪⎝⎭5π12f ⎛⎫= ⎪⎝⎭()f x a =π5π,612⎡⎤⎢⎥⎣⎦∴2a ≤<∴)2 0x >()1f x a x'=-当,,在单调递增,当时,令,得得在单调递增,在单调递减.综上,时,在单调递增;当时,在单调递增,在单调递减.(2),,,令令,,在单调递减.,,使得,当,,,单调递增,当,,,单调递减,,,m 的最小值为3.19.答案:(1)证明见解析;0a ≤()0f x '>∴()f x ()0,+∞0a >()f x '=()0f x '>x <()0f x '<x >∴()f x 10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x ()0,+∞0a >()f x 10,a ⎛⎫ ⎪⎝⎭1,a ⎛⎫+∞ ⎪⎝⎭2a =-∴()ln 21f x x x =++∴()ln 211x x m x ++≤+∴m ≥()g x =(g x '()12ln u x x x =+-()2110u x x x '=--<∴()u x ()0,+∞ ()2222112ln 220e e u e e =+-=+-> ()3333112ln 230e eu e e =+-=+-<∴()230e ,e x ∃∈()00u x '=02ln 0x +-=02ln x +=()00,x x ∈()0u x >()0g x '>()g x ()0,x x ∈+∞()0u x <()0g x '<()g x ∴()()()02000000max0000123ln 212312111x x x x x x g x g x x x x x ++++++=====++++ (230e ,e x ∈()0,1∴3m ≥∴(2)解析:(1)证明:,,,,令,可得,所以数列是首项为(2)由(1)可得,,.20.答案:(1)证明见解析;解析:(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以,且平面平面ABCD ,平面平面,面PAD ,所以平面ABCD ,又平面ABCD ,所以,又因为,,平面PAD ,所以平面PAD ,又因为平面PAD ,所以,11121n +-- n n S a +=()12n n n S S n -=-≥∴()121221n n S S n n n--=-≥+∴()111221n n S S n n n -⎛⎫-=-≥ ⎪+⎝⎭∴()1111212n n S n n S n--+=≥-1n =10S =∴112S -=11n S n ⎧⎫-⎨⎬+⎩⎭111111222n nn S n -⎛⎫⎛⎫⎛⎫-=-=- ⎪⎪⎪+⎝⎭⎝⎭⎝⎭∴111n n S b n ⎛⎫=--= ⎪+⎝⎭2nn b =∴()()()()112111212121n n n n n n n b b b ++==-----∴1111111111111337715212121n n n n T ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎝⎭L PN AD ⊥PAD ⊥PAD ABCD AD =PN ⊂PN ⊥AB ⊂PN AB ⊥PD AB ⊥PN PD P = ,PN PD ⊂AB ⊥DM ⊂AB DM ⊥因为M 为AP 中点,所以,且,平面PAD ,所以平面PAB ,且平面CDM ,所以平面平面PAB .(2)由(1)可知,且,,所以平面PAD ,且平面PAD ,所以,以A 为坐标原点,分别以AB ,AD 所在直线为x ,y 轴,建立如图所示空间直角坐标系,设,则可得,,,,,,即,,,设平面MCD 的法向量为,则则可得,取,则,所以平面MCD 的一个法向量为,设直线PB 与平面MCD 所成角为,DM PA ⊥PA AB A = ,PA PB ⊂DM ⊥DM ⊂CDM ⊥PN AB ⊥PD AB ⊥PN PD P = AB ⊥AD ⊂AB AD ⊥()22AD a a =<()0,0,0A ()2,0,0B ()0,P a 0,2a M ⎛ ⎝()2,,0C a ()0,2,0D a ()2,,PB a =- ()2,,0DC a =- 30,2DM a ⎛⎫=- ⎪ ⎪⎝⎭(),,n x y z =20302DC n x ay DM n ay ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ 2a x y z ⎧=⎪⎨⎪=⎩2y =x a =z =(,2,n a =θ所以解得,或,即(舍去)或1,所以,21.答案:(1),;(3)解析:(1)由已知条件,得,又,,又当时,有,曲线段FBC 的解析式为,.(2)由得,又,,,,(3)如图,,,作轴于点,在中,,在,sin cos ,PB n PB n PB n θ⋅====216a =21a =4a =2AD =11112332P MCD PMD V S AB -=⋅=⨯⨯=π2π2sin 63y x ⎛⎫=+ ⎪⎝⎭[]4,0x ∈-θ=2A =34T =2π12T ω==∴ω= 1x =-π2sin 26y φ⎛⎫=-+= ⎪⎝⎭∴φ=∴π2π2sin 63y x ⎛⎫=+ ⎪⎝⎭[]4,0x ∈-π2π2sin 163y x ⎛⎫=+= ⎪⎝⎭()()614k x k k =+--∈Z []4,0x ∈-∴0k =3x =-∴()3,1G -OG =OC =1=∴2OD =COD ∠=1PP x ⊥1P 1Rt OPP △1sin 2sin PP OP θθ==△=∴()()sin 60sin 602cos sin120OP OM θθθθ⋅︒-==︒-=-︒12cos 2sin OMPQ S OM PP θθθ⎛⎫=⋅=⋅ ⎪ ⎪⎝⎭平行四边形当22.答案:(1)的增区间为:,,减区间为:,;;(2)证明见解析.解析:(1),解得与的分布列如下:.(2)的定义域为R,,所以为偶函数.,当有且仅有两个零点24sin cos2sin22θθθθθ=-=+π26θ⎛⎫=+⎪⎝⎭π0,3⎛⎫∈ ⎪⎝⎭π26θ+==()f xππ,2⎛⎫--⎪⎝⎭π0,2⎛⎫⎪⎝⎭π,02⎛⎫- ⎪⎝⎭π,π2⎛⎫⎪⎝⎭(f x1()sin cos sin cos0f x x x x x x x'=+⋅-=⋅=x=∴()f x()f x'(f x1()g x()()()()()21sin cos2g x x x xx a g x=-+---=--()g x()010g=>∴a>()g x⇔当在上有且仅有一个零点.,当时,若,则,所以在上单调递减,,在上有且仅有一个零点;时,存在,使得,当时,,当时,,当时,,所以,在递增,在上递减,在上单调递增,,可得当时,,所以,所以,在上有且仅有一个零点,综上,当有且仅有两个零点.a >()x ()0,+∞ ()()cos x x x a g '=⋅-1a ≥0x >()0g x '<()g x ()0,+∞ ()21π1π02g a =--<∴()g x ()0,+∞1a <<π0,2θ⎛⎫∈ ⎪⎝⎭cos a θ=0x θ<<()0g x '>()2π2π2πk x k k θθ+<<+-∈N ()0g x '<()2π2π2π2πk x k k θθ+-<<++∈N ()0g x '>()g x ()0,θ()()2π,2π2πk k k θθ++-∈N ()()2π2π,2π2πk k k θθ+-++∈N tan θ=1a <<0tan θ<<k ∈N (2π2πtan 2πk θθ++->-()()2112π2π2π2πtan 122g k k a θθθ⎡⎤++=-++--+⎣⎦()2132π2πtan 162k θθ⎡⎤<-++--+⎣⎦()22π2πtan 1006k θθ++--=-<()g x ()0,+∞a >()g x。

华大新高考联盟2020届高三4月教学质量测评数学(理)试题及答案

华大新高考联盟2020届高三4月教学质量测评数学(理)试题及答案

机密★启用前华大新高考联盟2020届高三4月教学质量测评理科数学本试题卷共4页.23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝#试顺利★注意事项:1 .答短前.先将fl己的姓名■准考iE弓域可在答距长上.并将准琴江号条形研财在答恩K上的指定位2.逸押IS的作答:侦小应燃目的答案愫勺涂黑・耳在试K上的区域均无效.3.填空*和解答题的作答:用签字笔宜接答在容愆卡上酉应的答题IK域内.写在试题尝,草SI纸和答W卡上的菲答题区域均无效.4.选考也的作答■先把所送趣口的醴号在答粗N上指定的位置用2B松宅涂SL答宝珂在答履卞上对应的谷(SH域内" 。

在武!»■・草棉舐和答的|?上的曹咨IS风域均无效.5 .考试培束后.崎将谷曜卡上交.-、选择题:本题共12小越,每小越5分,共60分,在每小题纶出的四个选项中,只有一项是符合题目萋求的。

1.已W?»r»l+4-.则r •iA.OB.1C.72D.22.设«^A-{xlx>3}-B-Ullog>(x-a»0|.Wa=3 是8UA 的A .充分不必要条件 B.2要不充分条件C充妾条件 D.既不充分又K必要条件3.i殳等是数列修」的前〃顼和为S..已知七5s,+., 30.岫S«A.85B.97C.100D.1754.槐晋时期的数学家弟薇首创常剧术.为计算圈周率建星『严密的戒论即完脊的算法.所时割倒术.就是以间内按正多边形的而枳.来无限逼近同血枳.对澈形容他的利同术说,•割之弥细.所失弥少.割之又割.以至丁木讨刮.则勺网合体.而尤所失矣...比;I企一1盘内■一内按正I二边形•将loottSTM机撤入间盘内.发现只右I粒豆子不在正十.边形内.据此实羚估计网周宇的近似值为A-T R 16r22C T n T5.已tU^=lg2.>»-ln3.c ~ log,3•则A.《rVz VyB.Vy<rC.x<y<t\lz<T<y6 .执行如图所示程序也图.设输出教据构成集合人•从集合人中任取一个兀素m,则事件“函敢fM)=/+”rr在[0・+c>上是增雨数”的借率为理科教学忒题第1页(共4贞〉7 .设/(x).g(r)分别为定义在-5 I的奇函牧和偶函数.日/(”+g(«r) = 2e,cgr(e为自然对数的底j = /(x)-«(x)的图象大致为&某病。

安徽省滁州市定远县第二中学2022届高三下学期高考模拟检测理科数学试题(含答案解析)

安徽省滁州市定远县第二中学2022届高三下学期高考模拟检测理科数学试题(含答案解析)

药物浓度,D 正确.
故选:D.
5.B
【分析】根据三视图画出直观图,利用三棱锥的体积公式计算.
【详解】根据三视图画出直观图如图所示:该几何体为三棱锥 P ABC ,
其中 P 到底面 ABC 的距离为 PD 3 ,底面三角形 ABC 的面积为 2 4 4 , 2
∴体积为V 1 4 4 16 ,
试卷第 4页,共 5页
10
10
10
2
10
参考数据: xi 220 , yi 720 , xi x 272 , xi x yi y 429
i 1
i 1
i 1
i 1
n
参考公式: b i1
xi x
n
yi y
2
, $a y $bx
xi x
i 1
(1)已知这些品牌食品的所含热量的百分比 xi 与美食家以百分制给出的对此种食品口味
的评价分数 yi 具有相关关系.试求出回归方程(最后结果精确到 0.1);
(2)某人只能接受食品所含热量的百分比为 20 及以下的食品.现在他想从这些食品中随
机选取两种购买,求他所选取的两种食品至少有一种是美食家以百分制给出的对此种食
品口味的评价分数为 75 分以上的概率.
20.已知抛物线
C
:
y2
2 px
点),且 AM MN .求证:直线 l 过定点.
21.已知函数
f
x
ex
x
a
a
1
R

(1)若函数 f x 的图象在点 P 0, f 0 处的切线 l 与直线 3x-y-6=0 平行,求切线 l 的
方程;
(2)若函数
g
x
ln x x

江苏省百校大联考2024学年数学高三上期末调研模拟试题含解析

江苏省百校大联考2024学年数学高三上期末调研模拟试题含解析

江苏省百校大联考2024学年数学高三上期末调研模拟试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a ,b 满足4a =,b 在a 上投影为2-,则3a b -的最小值为( ) A .12B .10C .10D .22.在各项均为正数的等比数列{}n a 中,若563a a =,则3132310log log log a a a +++=( )A .31log 5+B .6C .4D .53.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40B .60C .80D .1004.已知六棱锥P ABCDEF -各顶点都在同一个球(记为球O )的球面上,且底面ABCDEF 为正六边形,顶点P 在底面上的射影是正六边形ABCDEF 的中心G ,若6PA =,2AB =,则球O 的表面积为( )A .163πB .94π C .6πD .9π5.已知棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的四个面中,最大面积为( )A .22B .23C .4D .266.已知函数2sin ()1x f x x =+.下列命题:①函数()f x 的图象关于原点对称;②函数()f x 是周期函数;③当2x π=时,函数()f x 取最大值;④函数()f x 的图象与函数1y x=的图象没有公共点,其中正确命题的序号是( ) A .①④B .②③C .①③④D .①②④7.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A .B .C .D .8.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行; ②若一个平面经过另一个平面的垂线,则这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是( )A .①和②B .②和③C .③和④D .②和④ 9.若()f x 是定义域为R 的奇函数,且()()2f x f x +=-,则 A .()f x 的值域为RB .()f x 为周期函数,且6为其一个周期C .()f x 的图像关于2x =对称D .函数()f x 的零点有无穷多个10.已知正方体1111ABCD A B C D -的棱长为2,E ,F ,G 分别是棱AD ,1CC ,11C D 的中点,给出下列四个命题: ①1EF B C ⊥;② 直线FG 与直线1A D 所成角为60︒;③ 过E ,F ,G 三点的平面截该正方体所得的截面为六边形; ④ 三棱锥B EFG -的体积为56. 其中,正确命题的个数为( ) A .1B .2C .3D .411.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( )A .甲7件,乙3件B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件12.已知条件:1p a =-,条件:q 直线10x ay -+=与直线210x a y +-=平行,则p 是q 的( ) A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。

高三数学总复习_三角函数性质与图像

高三数学总复习_三角函数性质与图像

09级高三数学总复习讲义——三角函数性质与图像知识清单: 反三角函数符号的运用:arcsin ,22a ππ⎡∈-⎢⎣、[]arccos 0,a π∈、arc tan (,22a ππ∈-注意:反三角数符号只表示...这个范围的角,其他范围的角需要用诱导公式变到这个范围.备注:以上性质的理解记忆关键是能想象或画出函数图象........... 函数s i n ()y Ax ωϕ=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x=−−−−→图例变化为②sin()y A x ωϕ=+(A >0,ω>0)相应地,①的单调增区间2,222k k ππππ⎡⎤-++⎢⎥⎣⎦−−−→变为2222k x k πππωϕπ-+++≤≤的解集是②的增区间.注:⑴)sin(ϕω+=x y 或cos()y x ωϕ=+(0≠ω)的周期ωπ2=T ;⑵sin()y x ωϕ=+的对称轴方程是2x k ππ=+(Z k ∈),对称中心(,0)k π;cos()y x ωϕ=+的对称轴方程是x k π=(Z k ∈),对称中心1(,0)2k ππ+;)tan(ϕω+=x y 的对称中心(0,2πk ). 课前预习1.函数sin cos y x x =-的最小正周期是 . 2. 函数1π2sin()23y x =+的最小正周期T = . 3.函数sin2xy =的最小正周期是( ) (A)2π(B)π (C) 2π (D) 4π 4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是( )(A)]3,0[π (B)]127,12[ππ (C) ]65,3[ππ (D)],65[ππ 5.函数22cos()()363y x x πππ=-≤≤的最小值是( )()2A -()B ()1C - ()1D6.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移3π个单位,所得图象的解析式是__________________. 8.函数sin y x x =在区间[0,2π]的最小值为______.9.适合13sin ,,32x x ππ⎡⎤=-∈⎢⎥⎣⎦的角x 是( )1()arcsin()3A - 1()arcsin 3B - 1()2arcsin()3C π+- 1()arcsin()3D π--10.已知f (x )=5sin x cos x -35cos 2x +325(x ∈R ) ⑴求f (x )的最小正周期; ⑵求f (x )单调区间;⑶求f (x )图象的对称轴,对称中心。

天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)

天津市第一中学2023-2024学年高三第四次月考数学试卷(解析版)

天津一中2023—2024-2高三年级第四次月考数学试卷本试卷总分150分,考试用时120分钟.考生务必将答案涂写在答题卡上,答在试卷上的无效.一、选择题(本大题共9小题,每小题5分,共45分)1. 已知集合,则( )A. B. C. D. 【答案】C 【解析】【分析】根据题意,求得集合,结合集合交集的运算,即可求解.【详解】由不等式,解得,所以,又由,所以.故选:C.2. 将收集到的天津一中2021年高考数学成绩绘制出频率分布直方图,如图所示,则下列说法中不正确的是( )A. B. 高三年级取得130分以上的学生约占总数的65%C. 高三年级的平均分约为133.2D. 高三年级成绩的中位数约为125【答案】D 【解析】【分析】对于A ,由各个矩形面积之和为1即可列式求解;对于B ,求最右边两个矩形面积之和即可验算;对于C ,D 分别由平均数计算公式、中位数计算方法即可判断.{}{}2|3100,33A x x x B x x =--<=-≤≤A B = (2,3]-[)3,5-{1,0,1,2,3}-{3,2,1,0,1,2,3,4}---{}1,0,1,2,3,4A =-23100x x --<25x -<<{}1,0,1,2,3,4A =-{}33B x x =-≤≤{}1,0,1,2,3A B ⋂=-0.028a =【详解】对于A ,,故A 正确;对于B ,高三年级取得130分以上的学生约占总数的,故B 正确;对于C ,高三年级的平均分约为,故C 正确;对于D ,设高三年级成绩的中位数为,由于,所以,故D 不正确.故选;D.3. 已知,条件,条件,则是的( )A. 充分不必要条件 B. 必要不充分条件C 充要条件D. 既不充分也不必要条件【答案】A 【解析】【分析】结合绝对值的性质,根据不等式的性质及充分条件、必要条件的定义分析判断即可.【详解】因为,所以由得,故由能推出;反之,当时,满足,但是;所以是的充分不必要条件.故选:A .4. 函数的图象大致为( )A. B.C. D.【答案】B 【解析】.()1100.0010.0090.0250.037100.028a =-⨯+++÷=⎡⎤⎣⎦()0.0280.03710100%65%+⨯⨯=()1050.0011150.0091250.0251450.0281350.03710133.2⨯+⨯+⨯+⨯+⨯⨯=x 0.010.090.250.350.500.350.370.72++=<<+=130140x <<0a >:p a b >2:q a ab >p q 0a >a b >2a ab ab >≥:p a b >2:q a ab >10,2a b =>=-212a ab =>=-122a =<-=p q ()21cos 31x f x x ⎛⎫=-⋅ ⎪+⎝⎭【分析】根据函数奇偶性即可排除CD ,由特殊点的函数值即可排除A.【详解】,则的定义域为R ,又,所以为奇函数,图象关于原点对称,故排除CD ,当时,,故排除A .故选:B.5. 已知函数是上的偶函数,且在上单调递增,设,,,则a ,b ,c 的大小关系是( )A. B. C. D. 【答案】B 【解析】【分析】结合偶函数的性质,函数单调性,只需比较对数、分数指数幂的大小即可得解.【详解】因为函数是上的偶函数,且在上单调递增,所以,即.故选:B.6. 多项式展开式中的系数为( )A. 985B. 750C. 940D. 680【答案】A 【解析】分析】由二项式定理即可列式运算,进而即可得解.【详解】多项式展开式中的系数为.故选:A.7. 已知斜三棱柱中,为四边形对角线的交点,设三棱柱的体积【2()(1)cos 31xf x x =-⋅+()f x ()()()22321cos 1cos 1cos 313131x x x xf x x x x f x -⎛⎫⨯⎛⎫⎛⎫-=-⋅-=-⋅=-+⋅=- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭()f x πx =()ππ22π1cos π103131f ⎛⎫-=< ⎪++⎝⎭=-+()f x R ()f x [0,)+∞12e a f ⎛⎫= ⎪⎝⎭12b f ⎛⎫= ⎪⎝⎭1ln 2c f ⎛⎫= ⎪⎝⎭a b c <<b<c<ac<a<bb a c<<()f x R ()f x [0,)+∞()()1211ln 2ln 1e 22b f f f c f ff a ⎛⎫⎛⎫⎛⎫=<==<<== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭b<c<a ()52(71)52x x++2x ()52(71)52x x++2x 32350555C 712C 7159805985⋅⋅⋅+⋅⋅⋅=+=111ABC A B C -O 11ACC A 111ABC A B C -为,四棱锥的体积为,则( )A. B. C. D. 【答案】A 【解析】【分析】如图,延长,连接,则、,进而得,即可求解.【详解】如图,延长,连接,则,所以,又O 为的中点,所以点到平面的距离是点到平面的距离的2倍,则,所以,即故选:A8. 已知函数(为常数,且)的一个最大值点为,则关于函数的性质,下列说法错误的有( )个.1V 11O BCC B -2V 21:V V =1:31:41:62:31OA 11,,OB OB A B 111123A BCC B V -=11122A BCC B V V -=12223V V =1OA 11,,OB OB A B 11111111,3A ABC A BCCB A ABC V V V V V ---=+=111123A BCCB V -=1AC 1A 11BCC B O 11BCC B 11111222A BCC B O BCC B V V V --==12223V V =2113V V =()sin cos f x a x b x =+,a b 0,0a b >>π3x =()sin 2cos 2g x a x b x =+①的最小正周期为;②的一个最大值点为;③在上单调递增;④的图像关于中心对称.A. 0个 B. 1个C. 2个D. 3个【答案】B 【解析】【分析】根据三角函数的性质,求的关系,再根据辅助角公式化简函数,再利用代入的方法,判断函数的性质.【详解】函数,,平方后整理为,所以,,函数的最小正周期为,故①正确;当时,,此时函数取得最大值,故②正确;当时,,位于单调递增区间,故③正确;,故④错误,所以错误的只有1个.故选:B9. 已知双曲线的左焦点为,过作渐近线的垂线,垂足为,且与抛物线交于点,若,则双曲线的离心率为( )A.B.C.D.【答案】B 【解析】()g x π()g x π6()g x 2π,π3⎛⎫⎪⎝⎭()gx 7π,012⎛⎫⎪⎝⎭,a b ()g x ()sin cos f x a x b x =+12b +=()20a =a π()sin 2cos 22sin 26g x x b x b x ⎛⎫=+=+ ⎪⎝⎭0b >()g x 2ππ2=π6x =πππ2662⨯+=()g x 2π,π3x ⎛⎫∈⎪⎝⎭π3π13π2,626x ⎛⎫+∈ ⎪⎝⎭77ππ4π2sin 22sin 0121263g b b π⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭22221(0,0)x y a b a b-=>>1(,0)F c -1F P 212y cx =M 13PM F P =【分析】首先利用等面积法求出点坐标,再根据,求出坐标,再将坐标带入抛物线化简即可求解出双曲线离心率.【详解】据题意,不妨取双曲线的渐近线方程为,此时,,∴,且是直角三角形,设,则,,代入中,得,即;设,则,,由,则,,∴,则;又在抛物线上,,即,化简得,分子分母同时除以,,且,,.故选:B二、填空题(本大题共6小题,每小题5分,共30分)10. 已知,且满足(其中为虚数单位),则_________.【答案】2【解析】【分析】根据复数相等得到关于的方程组,解该方程组即可.【详解】由题意,可得,P 13PM F P =M M 212y cx =by x a=-1F P b =1OF c =OP a =1OPF (,)p p P x y 11122OPF p S ab cy== p aby c ∴=b y xa =-2p a x c =-2(,a ab P c c-(,)M xy 2,a ab PM x y c c ⎛⎫=+- ⎪⎝⎭ 221,,a ab b ab F P c cc c c ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭ 13PM F P = 223a b x c c+=⋅3ab ab y c c -=⋅2234,b a ab x y c c -==2234(,)b a abM c c -M 212y cx =22243()12ab b a cc c-∴=()()()2222222222221612316123a b b aca c a c a a c ⎡⎤=-⇔-=--⎣⎦422491640c a c a -+=4a 4291640e e ∴-+=1e >2e ∴===e ∴=,R a b ∈(12i)(i)3i a b ++=-i 22a b +=,a b (12i)(i)3i a b ++=-(2)(2)i 3i a b a b -++=-所以,解得,所以.故答案为:211. 著名的“全错位排列”问题(也称“装错信封问题”是指“将n 个不同的元素重新排成一行,每个元素都不在自己原来的位置上,求不同的排法总数.”,若将个不同元素全错位排列的总数记为,则数列满足,.已知有7名同学坐成一排,现让他们重新坐,恰有两位同学坐到自己原来的位置,则不同的坐法有_________种【答案】【解析】【分析】根据数列递推公式求出项,再结合分步计数原理求解.【详解】第一步,先选出两位同学位置不变,则有种,第二步,剩下5名同学都不在原位,则有种,由数列满足,,则,,,则不同的做法有种.故答案为:.12. 已知在处的切线与圆相切,则_________.【答案】或【解析】【分析】根据导数的几何意义,求得切线方程,再由直线与圆相切,列出方程,即可求解.【详解】由函数,可得,则且,所以函数在处的切线方程为,即,又由圆,可得圆心,半径为,2321a b a b -=⎧⎨+=-⎩1575a b ⎧=⎪⎪⎨⎪=-⎪⎩222a b +=n n a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥9242776C 2121⨯==⨯5a {}n a 120,1a a ==()12(1)(3)n n n a n a a n --=-+≥()()321312a a a =-+=()()432419a a a =-+=()()5435144a a a =-+=2144924⨯=9242()ln f x x x =-1x =22:()4C x a y -+==a -0x y -=2()ln f x x x =-1()2f x x x=-'(1)1f '=(1)1f =()f x 1x =11y x -=-0x y -=22:()4C x a y -+=(,0)C a 2r =因为与圆,解得.故答案为:.13. 元旦前夕天津-中图书馆举办一年一度“猜灯谜”活动,灯谜题目中逻辑推理占,传统灯谜占,一中文化占,小伟同学答对逻辑推理,传统灯谜,一中文化的概率分别为,,,若小伟同学任意抽取一道题目作答,则答对题目的概率为______,若小伟同学运用“超能力”,抽到的5道题都是逻辑推理题,则这5道题目中答对题目个数的数学期望为______.【答案】 ①. ##②. 【解析】【分析】根据全概率公式求解概率,根据二项分布列的期望公式求解即可.【详解】设事件“小伟同学任意抽取一道题目作答,答对题目”,则.由题意小伟同学任意抽取一道逻辑推理题作答,则答对题目的概率为,根据二项式分布知,所以,即的数学期望为.故答案为:,14. 在中,设,,其夹角设为,平面上点满足,,交于点,则用表示为_________.若,则的最小值为_________.【答案】 ①. ②.【解析】【分析】由和三点共线,得到和,得出方程组,求得的值,得到,再由,化简得到,得出,结合基本不等式,即可求解.0x y -=C 2a =±±20%50%30%0.20.60.7X 0.5511201A =()0.20.20.50.60.30.70.55P A =⨯+⨯+⨯=0.2()5,0.2X B ~()50.21E X =⨯=X 10.551ABC ,AB a AC b ==u u u r r u u u r r θ,D E 2AD AB = 3AE AC =,BE DC O AO ,a b65AO DE DC BE ⋅=⋅ cos θ4355AO a b =+ ,,D O C ,,B O E 2(1)AO ta t b =+- ()33AO ua u b =+-2133t ut u =⎧⎨-=-⎩,t u 4355AO a b =+ 65AO DE DC BE ⋅=⋅ 2248209a b a b ⋅=+ 22209cos 48a b a bθ+=【详解】因为三点共线,则存在实数使得,又因为三点共线,则存在实数使得,可得,解得,所以,由,因为,可得,整理得,可得,所以又因为所以,当且仅当时,即时,等号成立,所以.故答案为:15. 设函数,若函数与直线有两个不同的公共点,则的取值范围是______.【答案】或或【解析】【分析】对于,当可直接去绝对值求解,当时,分和,,D O C t (1)2(1)AO t AD t AC ta t b =+-=+-,,B O E u ()()133AO u AB u AE ua u b =+-=+-2133t u t u =⎧⎨-=-⎩24,55t u ==4355AO a b =+ 32,2,3DE AE AD b a DC AC AD b a BE AE AB b a =-=-=-=-=-=- 65AO DE DC BE ⋅=⋅ 436()(32)(2)(3)555a b b a b a b a +⋅-=-⋅-2248209a b a b ⋅=+ 2248cos 209a b a b θ=+ 22209cos 48a b a bθ+=22209a b+≥ 22209cos 48a b a b θ+=≥ 22209a b = 3b cos θ4355AO a b =+ 22()21f x x ax ax =-++()y f x =y ax =a 2a <-21a -<<-2a >221y x ax =-+0∆≤0∆>a <-a >论,通过和图像交点情况来求解.详解】由已知,即,则必过点,必过,对于,当时,,此时恒成立,所以,令,即,要有两个不同的公共点,则,解得或或,当时,或当时,和图象如下:此时夹在其两零点之间的部分为,令,得无解,则有两个根有两个根,即有两个解,,符合要求;当和图象如下:【221y x ax =-+()1y ax x =-22()21f x x ax ax ax =-++=()2211x ax ax x -+=-()1y ax x =-()()0,0,1,0221y x ax =-+()0,1221y x ax =-+280a ∆=-≤a -≤≤2210x ax -+≥()222()2121f x x ax ax a x ax =-++=+-+()221a x ax ax +-+=()22210a x ax +-+=()21Δ442020a a a ⎧=-+>⎨+≠⎩2a -≤<-21a -<<-2a <≤280a ∆=->a <-a >a <-221y x ax =-+()1y ax x =-221y x ax =-+-2221x ax ax ax -+-=-+()221a x -=()2211x ax ax x -+=-()2211x ax ax x ⇔-+=-()22210a x ax +-+=()2Δ4420a a =-+>a <-a >221y x ax =-+()1y ax x =-或令,根据韦达定理可得其两根均为正数,对于①,则,解得,对于②,则,解得,综上所述,的取值范围是或或.【点睛】方法点睛:对于方程的根或者函数零点问题,可以转化为函数图象的交点个数问题,图象直观方便,对解题可以带来很大的方便.三、解答题(本大发共5小题,共75分)16. 已知中,角A ,B ,C 的对边分别为a ,b ,c ,且,.(1)求;(2)若,求的面积.【答案】(1(2【解析】【分析】(1)利用正弦定理求关系,再利用余弦定理求出,再利用两角和的正弦定理计算即可;(2)利用三角形的面积公式求解即可.【小问1详解】2210x ax -+=011⎧<<⎪⎪>3a >011⎧<<⎪⎪<3a <<a 2a <-21a -<<-2a >ABC sin cos sin 22C CB =2223a c b -=πsin 3B ⎛⎫+⎪⎝⎭1b =ABC ,,a b c cos B因为,所以,由正弦定理得,所以,即,所以,在中,,所以【小问2详解】由(1)得当时,,所以17. 已知四棱台,下底面为正方形,,,侧棱平面,且为CD 中点.(1)求证:平面;(2)求平面与平面所成角的余弦值;(3)求到平面的距离.【答案】(1)证明见详解 (2)sincos sin 22C CB =sin 2sinC B =2c b =2222223347b a b c b b +=+===a 222cos 2a cb B ac +-===ABC sin B ==π11sin sin 322B B B ⎛⎫+=== ⎪⎝⎭1b =2a c ==122ABC S =´´=1111ABCD A B C D -ABCD 2AB =111A B =1AA ⊥ABCD 12,AA E =1//A E 11BCC B 11ABC D 11BCC B E 11ABC D 15(3【解析】【分析】(1)直接使用线面平行的判定定理即可证明;(2)构造空间直角坐标系,然后分别求出两个平面的法向量,再计算两个法向量的夹角余弦值的绝对值即可;(3)使用等体积法,从两个不同的方面计算四面体的体积即可求出距离.【小问1详解】由于,,故,而,故四边形是平行四边形,所以,而在平面内,不在平面内,所以平面;【小问2详解】如上图所示,以为原点,为轴正方向,建立空间直角坐标系.则,,,,,,设平面与平面的法向量分别是和,则有和,1EAD B 11∥A B AB CE AB ∥11CEA B 1111122CE CD AB A B ====11CEA B 11A E B C ∥1B C 11BCC B 1A E 11BCC B 1//A E 11BCC B 1A 11111,,A A A D A B,,x y z ()2,0,0A ()10,1,0D ()2,0,2B ()10,0,1B ()10,1,1C ()()()()11110,0,2,2,1,0,2,0,1,0,1,0AB AD BB B C ==-=--=11ABC D 11BCC B ()1,,n p q r = ()2,,n u v w =11100n AB n AD ⎧⋅=⎪⎨⋅=⎪⎩ 212110n BB n B C ⎧⋅=⎪⎨⋅=⎪⎩即,,从而,,.故我们可取,,而,故平面与平面所成角的余弦值是.【小问3详解】设到平面的距离为,由于,而,所以.所以到平面18. 已知椭圆的左右顶点为A ,B ,上顶点与两焦点构成等边三角形,右焦点(1)求椭圆的标准方程;(2)过作斜率为的直线与椭圆交于点,过作l 的平行线与椭圆交于P ,Q 两点,与线段BM 交于点,若,求.【答案】(1)(2)【解析】【分析】(1)根据上顶点与两焦点构成等边三角形求出即可;(2)设出直线方程,利用弦长公式求出求出,,利用点到直线的距离求出点到直线的距离和点到直线的距离,再根据列式计算即可.【小问1详解】2020r p q =⎧⎨-+=⎩200u w v --=⎧⎨=⎩0r v ==2p q =20u w +=()11,2,0n = ()21,0,2n =-11cos ,5n 11ABC D 11BCC B 15E 11ABC D L 111111332E AD B AD B V LS L AD AB L -==⋅⋅⋅= 111142333E AD B B AD E AEB ABCD V V S S --==⋅⋅=⋅= 43=L =E 11ABC D 22221(0)x y a b a b +=>>(1,0)F A (0)k k >l M F N 2AMN BPQ S S =△△k 22143x y +=k =,a b AM PQ N AM B PQ 2AMN BPQ S S =△△由已知在等边三角形中可得,则椭圆的标准方程为为;【小问2详解】设直线的方程为:,联立消去得,则,得,,设直线的方程为:,设,联立,消去得,易知,则,所以,由得,所以直线的方程为,即,联立得,所以点到直线的22,a c b ====22143x y +=l ()2y k x =+()222143y k x x y ⎧=+⎪⎨+=⎪⎩y ()2222341616120k x k x k +++-=221612234M k x k --=+226834M k x k-=+226834Mk AM x k -=-=-=+PQ ()1y k x =-()()1122,,,P x y Q x y ()221143y k x x y ⎧=-⎪⎨+=⎪⎩y ()22223484120k x k x k +-+-=0∆>221212228412,3434k k x x x x k k-+==++PQ ==()2212134k k +=+226834M k x k -=+222681223434M k k y k k k ⎛⎫-=⋅+= ⎪++⎝⎭BM ()2221234268234kk y x k k +=---+()324y x k=--()()3241y x k y k x ⎧=--⎪⎨⎪=-⎩222463,4343k k N k k ⎛⎫+ ⎪++⎝⎭N AM点到直线,因为,所以,解得.【点睛】方法点睛:直线与椭圆联立问题第一步:设直线方程:有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,都可由点斜式设出直线方程.第二步:联立方程:把所设直线方程与椭圆方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根的判别式.第四步:写出根之间的关系,由根与系数的关系可写出.第五步:根据题设条件求解问题中的结论.19. 已知数列满足对任意的,均有,且,,数列为等差数列,且满足,.(1)求,的通项公式;(2)设集合,记为集合中的元素个数.①设,求的前项和;②求证:,.【答案】(1),B PQ 2AMN BPQ S S =△△()221211122234k k +=⨯+k =∆0∆>{}n a *N n ∈212n n n a a a ++=12a =24a ={}n b 11b =2105b b a +={}n a {}n b {}*1N n n k n A k a b a +=∈<≤n c n A ()2n n n p b c =+{}n p 2n 2n P *N n ∀∈122121111176n n c c c c -++++< 2n n a =32n b n =-(2)①;②证明过程见解析【解析】【分析】(1)根据等比中项的性质,结合等差数列的通项公式、等比数列的通项公式进行求解即可;(2)①根据不等式的解集特征,结合累和法、等比数列的前项和公式分类讨论求出的表达式,最后根据错位相减法进行求解即可;②运用放缩法,结合等比数列前项和公式进行运算证明即可.【小问1详解】因为数列满足对任意的,均有,所以数列是等比数列,又因为,,所以等比数列的公比为,因此;设等差数列的公差为,由;【小问2详解】因为,,所以由,因此有,即有,,当时,有于是有当为大于2的奇数时,()2122122n n P n n +=-⋅+-12322,n n k k +*<-≤∈N n n c n {}n a *N n ∈212n n n a a a ++={}n a 12a =24a ={}n a 212a a =1222n n n a -=⨯={}n b d ()210511932313132n b d d d b b n n a ⇒+++=⇒=⇒=+-=+-=2n n a =32n b n =-11,2322,nn n k n a b a k k k *+*+<≤∈⇒<-≤∈N N {}{}{}{}{}123452,3,4,5,6,7,8,9,10,11,12,13,,22A A A A A ===== {}623,24,,43,A =1234561,1,3,5,11,21,c c c c c c ======234512233445562,42,82,162,322,c c c c c c c c c c +=+==+==+==+== 12,n n n c c ++= 2,N n n *≥∈112,n n n c c --+=1112,n n n c c -+--=n ()()()243122431122221n n n n n n n c c c c c c c c -----=-+-+-+=+++++,显然也适合,当为大于2的偶数时,,显然也适合.①,,,设,则有,两式相减,得,,;②设,显然,,当时,有,因此,12214211143n n -⎛⎫- ⎪+⎝⎭=+=-11c =n ()()()244222442222221n n n n n n n c c c c c c c c -----=-+-++-+=+++++ 122214211143nn ⎛⎫- ⎪-⎝⎭=+=-21c =()()()21,21,N 221,2,Nn n n n n n n k k p b c n n k k **⎧+=-∈⎪=+=⎨-=∈⎪⎩()()212342121321242n n n n n P P P P P P P P P P P P P --=++++++=+++++++ ()()132124212132321221222424222n nn n n n -⎡⎤⎡⎤=⨯++⨯+++-⋅+-+⨯-+⨯-++⋅-⎣⎦⎣⎦()()()123212122232212221234212n n n n n n -⎡⎤=⨯+⨯+⨯++-⋅+⋅+-+-+--⎣⎦ ()()12321212223221222n n S n n -=⨯+⨯+⨯++-⋅+⋅ ()()234221212223221222nn S n n +=⨯+⨯+⨯++-⋅+⋅ 123212212222222n n n S n -+-=+++++-⋅ ()()2212121222212212n n n S n S n ++-⇒-=-⋅⇒=-⋅+-()2122122n n P n n +=-⋅+-()()11321k k k k c *+=∈+-N ()11332121k k k k c +=≤-+-()4213224k k k --⨯=-4,N k k *≥∈()()344213224042132212kk kkkk k--⨯=->⇒->⨯⇒<-()1133421221k k k k k c +=≤<-+-所以当时,,即,显然当时,有成立.【点睛】关键点点睛:本题的关键由可以确定从第几项开始放缩,根据数列的通项公式的形式,得到,这样可以进行放缩证明.20. 已知函数.(1)讨论的单调区间;(2)已知,设的两个极值点为,且存在,使得的图象与有三个公共点;①求证:;②求证:.【答案】(1)答案见解析 (2)证明见解析【解析】【分析】(1)首先求函数的导数,再讨论,结合函数的定义域,即可求函数的单调区间;(2)①要证,即证,只需证,构造函数,,借助导数即可得证;②同①中证法,先证,则可得,利用、是方程的两根所得韦达定理,结合即可得证.【小问1详解】,,N k *∈4512321111111111143222k k k c c c c c -⎛⎫+++++<++++++ ⎪⎝⎭ 43123211111111122114312k k k c c c c c --⎛⎫- ⎪⎝⎭⇒+++++<+++⨯- 312321111171171171322326k k k c c c c c --⎛⎫+++++<+-<+= ⎪⎝⎭ 2k n =122121111176n n c c c c -++++< 171111632=+++()1133421221k k k k k c +=≤<-+-2()24ln f x x ax x =-+()f x [4,6]a ∈()f x ()1212,λλλλ<b ∈R ()y f x =y b =()123123,,x x x x x x <<1212x x λ+>31x x -<∆1212x x λ+>2112x x λ>-()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈2232x x λ+<()()2312123122x x x x x x λλ=++<---1λ2λ220x ax -+=[4,6]a ∈()()222422x ax f x x a x x-+'=-+=0x >其中,,当时,即,此时恒成立,函数在区间单调递增,当时,即或当时,在区间上恒成立,即函数在区间上单调递增,当,得或当时,,时,,所以函数的单调递增区间是和,单调递减区间是,综上可知,当的单调递增区间是;当的单调递增区间是和,单调递减区间是;【小问2详解】①由(1)知,当时,函数的单调递增区间是和,单调递减区间是,、是方程的两根,有,,又的图象与有三个公共点,故,则,()22tx x ax =-+28a ∆=-0∆≤a -≤≤()0f x '≥()f x ()0,∞+0∆>a <-a >a <-()0f x ¢>()0,∞+()f x ()0,∞+a >()0t x =1x =1x =0x <<x >()0f x ¢>x <<()0f x '<()f x ⎛ ⎝⎫+∞⎪⎪⎭a ≤()f x ()0,∞+a >()f x ⎛ ⎝⎫+∞⎪⎪⎭[4,6]a ∈()f x ()10,λ()2,λ+∞()12,λλ1λ2λ220x ax -+=122λλ=12a λλ+=()y f x =y b =()123123,,x x x x x x <<112230x x x λλ<<<<<1112x λλ->要证,即证,又,且函数在上单调递减,即可证,又,即可证,令,,由,则恒成立,故在上单调递增,即,即恒成立,即得证;②由,则,令,,则,故在上单调递增,即,1212x x λ+>2112x x λ>-1112x λλ->()f x ()12,λλ()()1122f x f x λ<-()()12f x f x b ==()()1112f x f x λ<-()()()12x g x f x f λ=--()10,x λ∈()()()()212222422x ax x x f x x a x x xλλ-+--'=-+==()()()()()112211122222x x xx x g x x λλλλλλλ------'=+-()()()()()1221112222x x x x x x x λλλλλλ+--+-=-⋅-()()222211*********x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()12221111222420x x x x x x x λλλλλλλ--=-⋅=>--()g x '()10,λ()()()()111102g x g f f λλλλ<=--=()()1112f x f x λ<-112230x x x λλ<<<<<2322x λλ-<()()()22x h x f x f λ=--()2,x λ∈+∞()()()()()122221222222x x xx x h x x λλλλλλλ------'=+-()()()()()2112222222x x x x x x x λλλλλλ+--+-=-⋅-()()221122212222222x x x x x x xx x λλλλλλλλ-+++--+=-⋅-()()()()()22112222222420x x x x x x x λλλλλλλ--=-⋅=>--()h x '()2,λ+∞()()()()222202h x h ff λλλλ>=--=即当时,,由,故,又,故,由,,函数在上单调递减,故,即,又由①知,故,又,故.【点睛】关键点点睛:最后一问关键点在于先证,从而借助①中所得,得到.()2,x λ∈+∞()()22x f x f λ>-32x λ>()()3232f x f x λ>-()()32f x f x =()()3222f x f x λ>-2322x λλ-<122x λλ<<()f x ()12,λλ2322x x λ<-2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---2122λλ-==≤=31x x -<2232x x λ+<1212x x λ+>()()2312123122x x x x x x λλ=++<---。

2021版《高考调研》大一轮复习(新课标,数学理)题组训练第十一章算法初步与统计题组71

2021版《高考调研》大一轮复习(新课标,数学理)题组训练第十一章算法初步与统计题组71

题组层级快练(七十一)1.商场在2021年国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为 ( )A .6万元B .8万元C .10万元D .12万元答案 C解析 由0.40.1=x2.5,得10万元,故选C.2.如图是2021年某高校自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )7 98 4 4 6 4 7 9 3A.85,84 B .84,85 C .86,84 D .84,86答案 A解析 由图可知去掉一最高分和一个最低分后,所剩数据为84,84,86,84,87,则平均数为85,众数为84.3.为调查同学身高的状况,随机抽测了高三两个班120名同学的身高(单位:cm),所得数据均在区间[140,190]上,其频率分布直方图如图所示,则在抽测的120名同学中,身高位于区间[160,180)上的人数为( )A .70B .71C .72D .73答案 C解析 依据频率分布直方图,得同学的身高位于区间[160,180)上的频率为(0.040+0.020)×10=0.6,∴对应的人数为120×0.6=72.故选C.4.(2022·山东理)为了争辩某药品的疗效,选取若干名志愿者进行临床试验.全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的挨次分别编号为第一组,其次组,……,第五组.如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为 ( ) A .6 B .8 C .12 D .18答案 C解析 第一组和其次组的频率之和为0.4,故样本容量为200.4=50,第三组的频率为0.36,故第三组的人数为50×0.36=18,故第三组中有疗效的人数为18-6=12.5.(2022·荆州市质检)已知一组数据按从小到大的挨次排列,得到-1,0,4,x ,7,14,中位数为5,则这组数据的平均数和方差分别为( ) A .5,2423B .5,2413C .4,2513D .4,2523答案 A6.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为S A 和S B ,则( )A.x -A >x -B ,S A >S BB.x -A <x -B ,S A >S BC.x -A >x -B ,S A <S B D.x -A <x -B ,S A <S B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10, B 组的6个数为15,10,12.5,10,12.5,10, 所以x -A =2.5+10+5+7.5+2.5+106=37.56,x -B =15+10+12.5+10+12.5+106=706.明显x -A <x -B ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以S A >S B ,故选B.7.(2021·四川文)某学校随机抽取20个班,调查各班中有网上购物经受的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )答案 A解析 由茎叶图知,各组频数统计如下表:分组 区间 [0,5)[5,10)[10,15) [15,20) [20,25) [25,30) [30,35) [35,40]频数 统计11424332上表对应的频率分布直方图为A ,故选A.8.(2021·山东文)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中依据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③ D .②④答案 B解析 由茎叶图中的数据通过计算求得 x -甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3105; x -乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]= 2. ∴x -甲<x -乙,s 甲>s 乙,故①④正确.选B.9.(2021·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________.答案 6解析 由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.10.下面茎叶图是甲、乙两人在5次综合测评中成果的茎叶图,其中一个数字被污损,则甲的平均成果超过乙的平均成果的概率为________.答案 45解析 设被污损的数字为a(0≤a ≤9且a ∈N ),则由甲的平均成果超过乙的平均成果得88+89+90+91+92>83+83+87+99+90+a ,解得8>a ,即得0≤a ≤7且a ∈N ,∴甲的平均成果超过乙的平均成果的概率为P。

100测评网2022届高三数学第一轮复习资料——平面向量

100测评网2022届高三数学第一轮复习资料——平面向量

100测评网2022届高三数学第一轮复习资料——平面向量由100测评网上传提供,一线特高级教师整理编辑,非常有助于中小学生的学业提升平面向量第2章平面向量§2.1向量的概念及其表示考纲要求:①了解向量的实际背景.②理解平面向量的概念及向量相等的含义.③理解向量的几何表示.经典例题:下列命题正确的是()A.a与b共线,b与c共线,则a与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行当堂练习:1.下列各量中是向量的是()A.密度B.体积C.重力D.质量2下列说法中正确的是()A.平行向量就是向量所在的直线平行的向量B.长度相等的向量叫相等向量C.零向量的长度为零D.共线向量是在一条直线上的向量3.设O是正方形ABCD的中心,则向量AO、OB、CO、OD是()A.平行向量B.有相同终点的向量C.相等的向量D.模都相同的向量4.下列结论中,正确的是()A.零向量只有大小没有方向B.对任一向量a,|a|>0总是成立的C.||=||D.||与线段BA的长度不相等5.若四边形ABCD是矩形,则下列命题中不正确的是()A.AB与CD共线B.AC与BD相等C.AD与CB是相反向量D.AB与CD模相等6.已知O是正方形ABCD对角线的交点,在以O,A,B,C,D这5点中任意一点为起点,另一点为终点的所有向量中,(1)与BC相等的向量有;(2)与OB长度相等的向量有;(3)与DA共线的向量有.7.在①平行向量一定相等;②不相等的向量一定不平行;③共线向量一定相等;④相等向量一定共线;⑤长度相等的向量是相等向量;⑥平行于同一个向量的两个向量是共线向量中,不正确的命题是.并对你的判断举例说明由100测评网上传提供,一线特高级教师整理编辑,非常有助于中小学生的学业提升.8.如图,O是正方形ABCD对角线的交点,四边形OAED,OCFB都是正方形,在图中所示的向量中:(1)与AO相等的向量有;(2)写出与AO共线的向有;(3)写出与AO的模相等的有;(4)向量AO与CO是否相等?答.9.O是正六边形ABCDE的中心,且OAa,OBb,ABc,在以A,B,C,D,E,O为端点的向量中:(1)与a相等的向量有;(2)与b相等的向量有;(3)与c相等的向量有10.在如图所示的向量a,b,c,d,e中(小正方形的边长为1),是否存在:(1)是共线向量的有;(2)是相反向量的为;(3)相等向量的的;(4)模相等的向量.11.如图,△ABC中,D,E,F分别是边BC,AB,CA的中点,在以A、B、C、D、E、F为端点的有向线段中所表示的向量中,(1)与向量FE共线的有.(2)与向量DF的模相等的有.(3)与向量ED相等的有.FC12.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时,它位于A点,这只“马”第一步有几种可能的走法?试在图中画出来.若它位于图中的P点,这只“马”第一步有几种可能的走法?它能否从点A走到与它相邻的B?它能否从一交叉点出发,走到棋盘上的其它任何一个交叉点?第2章平面向量§2.2向量的线性运算重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.考纲要求:①掌握向量加法,减法的运算,并理解其几何意义.②掌握向量数乘的运算及其意义。

100测评网高中数学复习一、找出下列单词中含有的首字母,并将此字母写在横线上

100测评网高中数学复习一、找出下列单词中含有的首字母,并将此字母写在横线上

一、找出下列单词中含有的首字母,并将此字母写在横线上1pple2at 3 range 4 ouse5 ion6 oo二、英汉连线vase 小提琴 violin 冬天 winter 花瓶 pencil 春天 spring 铅笔 English 英语 plane 轮船 ship 大象 train 火车 elephant 飞机三、填所缺的词1、I (起床) at six in the morning.A. gut upB. play footballC. go to schoolD. go to work2、He _______ (足球) in the afternoon.A. play basketballB. play the fluteC. plays footballD. sing3、We (去上学) by bike.A. walk to schoolB. go outC. go to schoolD. go home4、We have (数字和语文) in the morning.A. Maths and EnglishB. Maths and ChineseC. Music and Chinese5、My father goes to work (骑自行车)。

A. by bikeB. by busC. by planeD. by train6、They (吃午饭) at twelve.A. have breakfastB. have dinnerC. have lunchD. have sweets7、He plays the (笛子) in the classroom.A. drumsB. fluteC. play pingpong8、Do you (去游泳)?Yes,I do.A. go to swimmingB. go swimming B. go swim9、We (穿毛衣) in autumn.A. wear sweatersB. wear shirtsC. wear glovesD. wear hats10、In (夏天),we wear T-shirt.A. springB. winterC. autumnD. summer===========================================================适用版本:人教版,苏教版, 鲁教版,北京版,语文A版,语文S版,冀教版,沪教版,北大师大版,人教版新版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版适用学科:语文,数学,英语,科学,物理,化学,生物,政治,历史,地理适用年级:一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初适用领域及关键字:100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷===========================================================本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

江苏省盐城市2024高三冲刺(高考数学)统编版(五四制)能力评测(巩固卷)完整试卷

江苏省盐城市2024高三冲刺(高考数学)统编版(五四制)能力评测(巩固卷)完整试卷

江苏省盐城市2024高三冲刺(高考数学)统编版(五四制)能力评测(巩固卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知的展开式中x2的系数为10,则n=()A.3B.4C.5D.6第(2)题如图是某人设计的产品图纸,已知四边形的三个顶点在某圆上,且,,则该圆的面积为()A.B.C.D.第(3)题已知双曲线的左、右焦点分别为,若上存在点,使得,则的离心率的取值范围为()A.B.C.D.第(4)题已知i是虚数单位,复数在复平面内对应的点为P,Q,若(O为坐标原点),则实数()A.B.C.0D.1第(5)题在中,,若,则的最大值为()A.B.2C.D.第(6)题已知袋中有除颜色外形状相同的红、黑球共10个,设红球的个数为n,从中随机取出3个球,取出2红1黑的概率记为,当最大时,红球个数为()A.6B.7C.8D.9第(7)题已知a,b是空间中两条互相垂直的异面直线,给出以下四个命题:①存在平面,使得且;②存在平面和,使得,且;③存在平面,使得且;④存在平面和,使得,且.则所有正确命题的个数是()A.4B.3C.2D.1第(8)题已知,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的值域是,则下列命题正确的是()A.若,则不存在最大值B.若,则的最小值是C.若,则的最小值是D.若,则的最小值是第(2)题在长方形ABCD中,,,点E,F分别为边BC和CD上两个动点(含端点),且,设,,则()A.,B.为定值C.的最小值50D.的最大值为第(3)题如图在四棱柱中,底面四边形是菱形,,,平面,,点与点关于平面对称,过点做任意平面,平面与上、下底面的交线分别为和,则下列说法正确的是()A.B.平面与底面所成的角为C.点到平面的距离为1D.三棱锥的体积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球,则摸出的两只球颜色不同的概率是________.第(2)题在的展开式中,的系数是___________.第(3)题用列举法表示______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题已知函数.(1)讨论的单调性;(2)若在有两个极值点,求证:.第(2)题已知函数.(1)讨论的单调性;(2)若不等式恒成立,求的取值范围;(3)当时,试判断函数的零点个数,并给出证明.第(3)题已知动点Q到直线的距离比到定点的距离大1.(1)写出动点Q的轨迹C的方程;(2)设为过作曲线C的任一条弦AB所在直线方程,弦AB的中点为D,过D点作直线DP与直线交于点P,与x轴交于点M,且使得,,求的正弦值(其中F为定点).第(4)题如图,设抛物线()的准线与轴交于,焦点为;以、为焦点,离心率的椭圆与抛物线在轴上方的一个交点为.(1)当时,求椭圆的方程;(2)在(1)的条件下,直线经过椭圆的右焦点,与抛物线交于、,如果以线段为直径作圆,试判断点与圆的位置关系,并说明理由;(3)是否存在实数,使得的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.第(5)题已知函数.(1)若是函数的一个极值点,求实数的值;(2)若函数有两个极值点,其中,①求实数的取值范围;②若不等式恒成立,求实数的取值范围.。

2022年江苏省苏州市木渎高级中学高三数学理月考试题含解析

2022年江苏省苏州市木渎高级中学高三数学理月考试题含解析

2021-2022学年江苏省苏州市木渎高级中学高三数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 若集合M={4,5,7,9},N={3,4,7,8,9},全集U=M∪N,则集合CU(M∩N) 中的元素共有 ( )A. 3个 B . 4个 C . 5个 D . 6个参考答案:A2. 函数y=ax2+bx与y=(ab≠0,|a|≠|b|)在同一直角坐标系中的图象可能是()A.B.C.D.参考答案:D【考点】二次函数的图象;对数函数的图象与性质.【分析】可采用反证法做题,假设A和B的对数函数图象正确,由二次函数的图象推出矛盾,所以得到A和B错误;同理假设C和D的对数函数图象正确,根据二次函数图象推出矛盾,得到C错误,D 正确.【解答】解:对于A、B两图,||>1而ax2+bx=0的两根为0和﹣,且两根之和为﹣,由图知0<﹣<1得﹣1<<0,矛盾,对于C、D两图,0<||<1,在C图中两根之和﹣<﹣1,即>1矛盾,C错,D正确.故选:D.3. 双曲线x2﹣my2=1的实轴长是虚轴长的2倍,则m等于()B C参考答案:解答:解:双曲线x2﹣my2=1化为,∴a2=1,,∵实轴长是虚轴长的2倍,∴2a=2×2b,化为a2=4b2,,解得m=4.故选D.点评:熟练掌握双曲线的标准方程及实轴、虚轴的定义是解题的关键.122112离心率为()A.B.2 C.D.参考答案:D【考点】双曲线的简单性质.【分析】根据题设条件,利用余弦定理能够求出|PF1|=c,再由双曲线定义可以推导出2a=c,从而求出该双曲线的离心率.【解答】解:设|PF1|=x,|PF2|=2x,|F1F2|=2c,∵∠PF1F2=60°,∴cos60°==?x=c,∵|PF2|﹣|PF1|=2a,∴x=2a=c,∴e==.故选:D.5. 如果执行右面的程序框图,则输出的结果是A. B. C. D.4参考答案:A当时,;当时,;当时,;当时,;当时,;当时,;当时,;当时,所以取值具有周期性,周期为6,当时的取值和时的相同,所以输出,选A.6. 把函数y=sin(2x﹣)的图象向左平移个单位后,所得函数图象的一条对称轴为( )A.x=0 B.x=C.x=﹣D.x=参考答案:B考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,可得结论.解答:解:把函数y=sin(2x﹣)的图象向左平移个单位后,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,令x=,求得y=sin(2x+)=1,是最大值,可得所得函数图象的一条对称轴为x=,故选:B.点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.7. 已知中,BC=3,AC=4,AB=5点P是三边上的任意一点,m=,则m的最小值是A.-25B.C.D.0参考答案:B略8. 在的展开式中,项的系数为()A.45 B.36 C.60 D.120参考答案:B9. 设集合A={x∈R|x>1},B={x∈R|x2≤4},则A∪B=()A.[﹣2,+∞)B.(1,+∞)C.(1,2] D.(﹣∞,+∞)参考答案:A【考点】1D:并集及其运算.【分析】根据集合的基本运算进行求解即可.【解答】解:B={x∈R|x2≤4}={x|﹣2≤x≤2},则A∪B={x|x≥﹣2},故选:A.10. 已知点A(﹣5,0),B(5,0),直线AM,BM的交点为M,AM,BM的斜率之积为,则点M 的轨迹方程是()A.B.C.D.参考答案:D【考点】轨迹方程.【分析】设出点M的坐标,利用已知条件列出方程求解即可.【解答】解:由题意可设M(x,y),y≠0,点A(﹣5,0),B(5,0),直线AM,BM的交点为M,AM,BM的斜率之积为,可得:,整理可得:.故选:D.【点评】本题考查轨迹方程的求法,考查分析问题解决问题的能力.二、填空题:本大题共7小题,每小题4分,共28分11. 如图,已知点在圆直径的延长线上,过作圆的切线,切点为若,则圆的面积为.参考答案:略12.若的展开式中常数项为84,则a=___________,其展开式中二项式系数之和为_________.(用数字作答) 参考答案: 1,51213. 已知三棱锥,,平面,其中,四点均在球的表面上,则球的表面积为.参考答案:略14. 已知函数f(x)=a x+b (a>0且a≠1)的图象如图所示,则a+b的值是________.参考答案:-215. 已知数列为等比数列,且.,则=________.参考答案:1616. 以下命题正确的是_____________.①把函数的图象向右平移个单位,得到的图象;②一平面内两条直线的方程分别是,,它们的交点是P,则方程表示的曲线经过点P;③由“若,则”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4月25日
1、设数列{a n }的前项和为n S ,已知a 1=1, a 2=6, a 3=11,且1(58)(52)n n n S n S An B +--+=+, ,,3,2,1 =n 其中A,B 为常数.
(Ⅰ)求A 与B 的值; (Ⅱ)证明数列{a n }为等差数列;
(Ⅲ)1m n >对任何正整数、都成立
2、设正项等比数列{}n a 的首项2
11=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。

(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T
3、设等比数列{}n a 的公比为q ,前n 项和),2,1( 0 =>n S n 。

(Ⅰ)求q 的取值范围; (Ⅱ)设1223++-
=n n n a a b ,记{}n b 的前n 项和为n T ,试比较n S 与n T 的大小。

1、20A =-,8B =-
2、.,2,1,2111 ===-n q a a n n n .22
212)1(1-+++=-n n n n n n T 3、q 的取值范围是).,0()0,1(+∞⋃- 当112q -<<-
或2q >时0n n T S ->即n n T S > 当122
q -<<且q ≠0时,0n n T S -<即n n T S < 当12
q =-或q =2时,0n n T S -=即n n T S = ===========================================================
适用版本:
人教版,苏教版, 鲁教版,北京版,语文A 版,语文S 版,冀教版,沪教版,北大师大版,人教版新
版,外研版,新起点,牛津译林,华师大版,湘教版,新目标,苏科版,粤沪版,北京版,岳麓版 适用学科:
语文,数学,英语,科学,物理,化学,生物,政治,历史,地理
适用年级:
一年级,二年级,三年级,四年级,五年级,六年级,七年级,八年级,九年级,小一,小二,小三,小四,小五,小六,初一,初二,初三,高一,高二,高三,中考,高考,小升初
适用领域及关键字:
100ceping,51ceping,52ceping,ceping,xuexi,zxxx,zxjy,zk,gk,xiti,教学,教学研究,在线教学,在线学习,学习,测评,测评网,学业测评, 学业测评网,在线测评, 在线测评网,测试,在线测试,教育,在线教育,中考,高考,中小学,中小学学习,中小学在线学习,试题,在线试题,练习,在线练习,在线练习,小学教育,初中教育,高中教育,小升初复习,中考复习,高考复习,教案,学习资料,辅导资料,课外辅导资料,在线辅导资料,作文,作文辅导,文档,教学文档,真题,试卷,在线试卷,答案,解析,课题,复习资料,复习专题,专项练习,学习网,在线学习网,学科网,在线学科网,在线题库,试题库,测评卷,小学学习资料,中考学习资料,单元测试,单元复习,单元试卷,考点,模拟试题,模拟试卷,期末考试,期末试卷,期中考试,期中试卷
===========================================================
本卷由《100测评网》整理上传,专注于中小学生学业检测,练习与提升.。

相关文档
最新文档