多边形与平行四边形(教师)

合集下载

平行四边形优秀教案6篇

平行四边形优秀教案6篇

平行四边形优秀教案6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、演讲致辞、条据文书、合同协议、心得体会、自我鉴定、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, speeches, written documents, contract agreements, insights, self-evaluation, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!平行四边形优秀教案6篇编写好教案可以帮助我们更好地理清教学思路和目标,提高教学的针对性和有效性,编写教案可以帮助教师更好地组织和安排教学材料和教学资源,以下是本店铺精心为您推荐的平行四边形优秀教案6篇,供大家参考。

五 生活中的多边形《平行四边形的认识》(教案) 青岛版五年级上册数学

五 生活中的多边形《平行四边形的认识》(教案) 青岛版五年级上册数学

教案:五年级上册数学——生活中的多边形《平行四边形的认识》教学目标:1. 让学生通过观察、操作、推理等活动,理解平行四边形的特征,认识平行四边形。

2. 能识别平行四边形,并了解其在生活中的应用。

3. 培养学生的空间观念和几何直观能力,提高学生解决问题的能力。

教学重点:1. 平行四边形的特征。

2. 平行四边形在生活中的应用。

教学难点:1. 平行四边形的特征的推理和理解。

2. 平行四边形在实际生活中的应用。

教学准备:1. 课件或黑板,用于展示平行四边形的图片和实例。

2. 学生用的学习材料,如纸、剪刀、尺子等。

教学过程:一、导入1. 引导学生观察教室或校园中的平行四边形实例,如窗户、桌子等,让学生初步感知平行四边形的存在。

2. 展示一些生活中的平行四边形图片,如建筑、交通标志等,让学生进一步认识平行四边形。

二、探究平行四边形的特征1. 让学生通过观察和操作,发现平行四边形的特征,如对边平行且相等,对角相等等。

2. 引导学生用纸和剪刀制作平行四边形,通过实践来验证平行四边形的特征。

3. 让学生用自己的语言描述平行四边形的特征,并与其他同学进行交流。

三、应用平行四边形1. 展示一些生活中的平行四边形应用实例,如建筑设计、机械制造等,让学生了解平行四边形在实际生活中的应用。

2. 让学生举例说明平行四边形在生活中的应用,并与其他同学进行分享。

四、巩固练习1. 让学生完成一些关于平行四边形的练习题,巩固对平行四边形的认识。

2. 引导学生通过解决问题来应用平行四边形的特征,提高解决问题的能力。

五、总结1. 让学生回顾本节课所学的内容,总结平行四边形的特征和应用。

2. 引导学生思考平行四边形与其他几何图形的关系,培养学生的空间观念和几何直观能力。

教学反思:本节课通过观察、操作、推理等活动,让学生理解平行四边形的特征,并认识平行四边形。

在教学过程中,要注意引导学生通过实践来验证平行四边形的特征,培养学生的动手能力和观察力。

2022-2023 数学浙教版新中考 考点21多边形与平行四边形(解析版)

 2022-2023 数学浙教版新中考 考点21多边形与平行四边形(解析版)

考点21多边形与平行四边形考点总结1.n 边形以及四边形的性质:(1)n 边形的内角和为(n -2)×180°(n ≥3),外角和为360°,对角线条数为n (n -3)2.(2)四边形的内角和为360°,外角和为360°,对角线条数为 2 .(3)正多边形的定义:各边相等、各内角也相等的多边形叫做正多边形.2.平行四边形的性质及判定:(1)性质:①平行四边形的两组对边分别平行且相等.②平行四边形的对角相等,邻角互补.③平行四边形的对角线互相平分.④平行四边形是中心对称图形.(2)判定:①定义:两组对边分别平行的四边形是平行四边形.②一组对边平行且相等的四边形是平行四边形.③两组对边分别相等的四边形是平行四边形.④两组对角分别相等的四边形是平行四边形.⑤对角线互相平分的四边形是平行四边形.3.三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.4.在两条平行线中,一条直线上任意一点到另一条直线的距离,叫做两条平行线之间的距离.夹在两条平行线间的平行线段相等.真题演练一、单选题1.(2021·浙江衢州·中考真题)如图,在ABC 中,4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,连结DE ,EF ,则四边形ADEF 的周长为( )A .6B .9C .12D .15【答案】B【分析】 根据中点的定义可得AD 、AF 的长,根据三角形中位线的性质可得DE 、EF 的长,即可求出四边形ADEF 的周长.【详解】∵4AB =,5AC =,6BC =,点D ,E ,F 分别是AB ,BC ,CA 的中点,∵AD =12AB =2,AF =1522AC =,DE 、EF 为∵ABC 的中位线, ∵EF =12AB =2,DE ==1522AC =, ∵四边形ADEF 的周长=2+2+5522+=9, 故选:B .2.(2021·浙江·中考真题)如图,已知在ABC 中,90ABC ∠<︒,,AB BC BE ≠是AC 边上的中线.按下列步骤作图:①分别以点,B C 为圆心,大于线段BC 长度一半的长为半径作弧,相交于点,M N ;①过点,M N 作直线MN ,分别交BC ,BE 于点,D O ;①连结,CO DE .则下列结论错误的是( )A .OB OC =B .BOD COD ∠=∠C .//DE ABD .DB DE =【答案】D【分析】 首先根据题意可知道MN 为线段BC 的中垂线,然后结合中垂线与中线的性质逐项分析即可.【详解】由题意可知,MN 为线段BC 的中垂线,∵O 为中垂线MN 上一点,∵OB =OC ,故A 正确;∵OB =OC ,∵∵OBC =∵OCB ,∵MN ∵BC ,∵∵ODB =∵ODC ,∵∵BOD =∵COD ,故B 正确;∵D 为BC 边的中点,BE 为AC 边上的中线,∵DE 为∵ABC 的中位线,∵DE ∵AB ,故C 正确;由题意可知DB =DC ,假设DB =DE 成立,则DB =DE =DC ,∵BEC =90°,而题干中只给出BE 是中线,无法保证BE 一定与AC 垂直,∵DB 不一定与DE 相等,故D 错误;故选:D .3.(2021·浙江宁波·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =【答案】A【分析】 根据∵AED 和∵BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,可得出OP ,OQ 分别是∵FHE 和∵EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【详解】解:由题意得,∵AED 和∵BCG 是等腰直角三角形,∵45ADE DAE BCG GBC ∠=∠=∠=∠=︒∵四边形ABCD 是平行四边形,∵AD =BC ,CD =AB ,∵ADC =∵ABC ,∵BAD =∵DCB∵∵HDC =∵FBA ,∵DCH =∵BAF ,∵∵AED ∵∵CGB ,∵CDH ∵ABF∵AE =DE =BG =CG∵四边形HEFG 是矩形∵GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ∵EF 于点P ,OQ ∵GF 于点Q ,∵OP //HE ,OQ //EF∵点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∵OP ,OQ 分别是∵FHE 和∵EGF 的中位线, ∵1122OP HE b ==,1122OQ EF c == ∵1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∵BOF AOE S S ∆∆=∵11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===,222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∵13S S ≠,故选项B 不符合题意, 而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意, 故选:A 4.(2021·浙江宁波·中考真题)如图,在ABC 中,45,60,B C AD BC ∠=︒∠=︒⊥于点D ,BD =E ,F 分别为AB ,BC 的中点,则EF 的长为( )A B C .1 D 【答案】C【分析】根据条件可知∵ABD 为等腰直角三角形,则BD =AD ,∵ADC 是30°、60°的直角三角形,可求出AC 长,再根据中位线定理可知EF =2AC 。

多边形及平行四边形的性质

多边形及平行四边形的性质

专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。

组成多边形的各条线段叫做多边形的边。

边数为n的多边形叫n边形(n为正整数,且n≥3)。

2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。

多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。

3.四边形的内角和等于360o。

n边形的内角和为(n-2)×180o(n≥3)。

任何多边形的外角和为360o。

【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。

3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。

4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。

【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。

2024年人教版九年级数学中考总复习《多边形与平行四边形》课件40张(共40张PPT)

2024年人教版九年级数学中考总复习《多边形与平行四边形》课件40张(共40张PPT)

___四_____.
考点演练
5. 一个多边形除一个内角外,其余内角的和为1 510°,则这
个多边形的边数是(C)Fra bibliotekA. 九
B. 十
C. 十一 D. 十二
6. 一个多边形的内角和是外角和的2倍,这个多边形的边数为
A. 五
B. 六
C. 七
(B) D. 八
7. 一个多边形的每个内角均为120°,则这个多边形是( C )
即可求得答案.
答案:C
考题再现
1. (2014广东)一个多边形的内角和是900°,则这个多边形
的边数是 A. 10
B. 9
(D)
C. 8
D. 7
2. (2015广东)正五边形的外角和等于___3_6_0_°__. 3. (2016桂林)正六边形的每个外角是___6_0____度.
4. (2014梅州)内角和与外角和相等的多边形的边数为
A. 150°
B. 130°
C. 120° D. 100°
3. (2016丹东)如图1-4-6-4,在□ABCD中,BF平分∠ABC,
交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长

(B )
A. 8
B. 10
C. 12
D. 14
4. (2015梅州)如图1-4-6-5,在□ABCD中,BE平分∠ABC, BC=6,DE=2,则□ABCD的周长等于___2_0____.
第一部分 教材梳理
第四章 图形的认识(一) 第6节 多边形与平行四边形
知识梳理
概念定理
1. 多边形的有关概念 (1)多边形:在平面内,由一些线段首尾顺次相接组成的图 形叫做多边形.

第19讲 多边形与平行四边形

第19讲 多边形与平行四边形

第五章四边形第19讲多边形与平行四边形1.(2022河北)如图所示,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE的外角和的度数分别为α,β,则正确的是( A )A.α-β=0B.α-β<0C.α-β>0D.无法比较α与β的大小第1题图2.(2021恩施)如图所示,在平行四边形ABCD中,AB=13,AD=5,AC⊥BC,则平行四边形ABCD的面积为( B )A.30B.60C.65D.652第2题图3.(2022南充)如图所示,在正五边形ABCDE中,以AB为边向内作正三角形ABF,则下列结论错误的是( C )A.AE=AFB.∠EAF=∠CBFC.∠F=∠EAFD.∠C=∠E第3题图4.(2021扬州)如图所示,点A,B,C,D,E在同一平面内,连接AB,BC, CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E等于( D )A.220°B.240°C.260°D.280°第4题图5.(2022嘉兴)如图所示,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是( B )A.8B.16C.24D.32第5题图6.(2021常州)如图所示,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是(3,0) .第6题图7.如图所示,在平行四边形ABCD中,AC=4 cm.若△ACD的周长是12 cm,则平行四边形ABCD的周长是16 cm.第7题图8.(2021衢州)如图所示,在正五边形ABCDE中,连接AC,BD交于点F,则∠AFB的度数为72°.第8题图9.(2022长春)跳棋是一项传统的智力游戏.如图所示是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若AB=27 cm,则这个正六边形的周长为54 cm.10.(2022新疆)如图所示,在△ABC中,点D,F分别为边AC,AB的中点.延长DF到点E,使EF=DF,连接BE.求证:(1)△ADF≌△BEF;(2)四边形BCDE是平行四边形.证明:(1)∵F 是AB 的中点,∴AF=BF. 在△ADF 和△BEF 中,{AF =BF ,∠AFD =∠BFE ,DF =EF ,∴△ADF ≌△BEF(SAS).(2)∵点D,F 分别为边AC,AB 的中点, ∴DF ∥BC,DF=12BC.∵EF=DF, ∴DF+EF=DE=BC,∴四边形BCDE 是平行四边形.11.(2022乐山)如图所示,在平行四边形ABCD 中,过点D 作DE ⊥AB,垂足为E,过点B 作BF ⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF 的长为( B )A.4B.3C.52 D.2第11题图12.(2021东营胜利一中模拟)如图所示,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( D )第12题图A.8或2√3B.10或4+2√3C.10或2√3D.8或4+2√313.(2021伊春)如图所示,平行四边形ABFC的对角线AF,BC相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD,OE,若平行四边形ABFC的面积为48,则△EOG的面积为( C )A.4B.5C.2D.3第13题图14.(2021邢台一模)如图所示,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠EAC的度数是( C )A.10°B.15°C.20°D.25°第14题图15.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①所示;用n个全等的正六边形按这种方式进行拼接,如图②所示,若围成一圈后中间形成一个正多边形,则n的值为 6 .①②16.如图所示,已知▱ABCD的对角线相交于点O,且AD>CD,过点O作OM ⊥AC,交AD于点M,连接CM.(1)若▱ABCD的周长为12,求△CDM的周长;(2)若∠ACM=36°,CA=CB,求∠ADC的度数.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,OA=OC.∵▱ABCD的周长为12,∴AD+CD=6.∵OA=OC,OM⊥AC,∴AM=CM,∴△CDM的周长=CM+MD+CD=AM+MD+CD=AD+CD=6.(2)∵AM=CM,∴∠MAC=∠ACM=36°.∵CA=CB,∴∠CAB=∠ABC.在▱ABCD中,AD∥BC,∴∠ABC+∠DAB=180°,∴2∠ABC+36°=180°,解得∠ABC=72°,∴∠ADC=∠ABC=72°.17.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O,E,F 分别为OB, OD 的中点,延长AE 至点G,使EG=AE,连接CG.(1)求证:四边形EGCF 是平行四边形.(2)当AB 与AC 满足什么关系时,EG ∶EF=1∶2?请说明理由. (1)证明:∵四边形ABCD 是平行四边形, ∴AB=CD,OB=OD,OA=OC. ∵E,F 分别为OB,OD 的中点, ∴OE=12OB,OF=12OD,∴OE=OF.在△AOE 和△COF 中,{OE =OF ,∠AOE =∠COF ,OA =OC ,∴△AOE ≌△COF(SAS), ∴AE=CF,∠AEO=∠CFO, ∴AG ∥CF. 又∵EG=AE, ∴EG=CF,∴四边形EGCF 是平行四边形. (2)解:AC ⊥AB. 理由如下:由(1)可知EF=2OE,OE=BE.∵EF=2GE,∴OE=GE=BE=AE,∴∠AOE=∠OAE,∠ABE=∠BAE, ∴∠BAO=∠OAE+∠BAE=90°, 即AC⊥AB.。

2024年中考数学一轮复习考点17 多边形与平行四边形(精讲)

2024年中考数学一轮复习考点17 多边形与平行四边形(精讲)

考点17.多边形与平行四边形(精讲)【命题趋势】多边形与平行四边形是历年中考考查重点,年年都会考查,分值为10分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查多边形的内角和、平行四边形性质和判定、与三角形中位线有关计算的可能性比较大。

中考数学中,对平行四边形的单独考察难度一般不大,一般和三角形全等(相似)、函数、解直角三角形等综合考查的可能性比较大,对于本考点内容,要注重基础,反复练习,灵活运用。

【知识清单】1:多边形的相关概念(☆☆)1)多边形的定义:在平面中,由一些线段首尾顺次相接组成的封闭图形叫做多边形。

2)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。

3)多边形对角线条数:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形,n边形的对角线条数为()32n n-。

4)多边形内角和定理:n边形的内角和为(n−2)∙180°(n≥3)。

5)多边形外角和定理:任意多边形的外角和等于360°,与多边形的形状和边数无关。

6)正多边形的定义:各角相等,各边相等的多边形叫做正多边形。

7)平面镶嵌(密铺)的条件:在同一顶点内的几个角的和等于360°;所有正多边形中,单独使用其中一种能够进行密铺(镶嵌)的只有正三角形、正方形、正六边形。

如果选用多种,则需要满足:(1)边长相等;(2)选用正多边形若干个内角的和恰好等于360°。

2:平行四边形的性质与判定(☆☆☆)1)平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。

2)平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.3)平行四边形的性质:(1)两组对边平行且相等;(2)对角相等、邻角互补;(3)对角线互相平分;(4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。

多边形、平行四边形复习 (2)

多边形、平行四边形复习 (2)

第六章多边形、平行四边形回顾与思考一、学生知识状况分析学生的知识技能基础:学生在前面的学习中已经掌握了全等三角形的性质和判定,在本章前几节课中,又对平行四边形的判定、性质做了进一步学习,通过一定题量的练习,学生已经对有关内容得以掌握。

在本章后面几节课中,又学习了三角形中位线的定义和性质,并探索了连接四边形各边中点所成的四边形的形状等结论,学生在初一时已经掌握了三角形内角和定理,本章学生也掌握了多边形的内角和、外角和公式,对如何探究内角和、外角和的问题有了一定的认识。

学生的能力基础:在相关知识的学习过程中,学生对推理证明的基本要求、基本步骤和基本方法已经掌握,已经能利用平行四边形的判定和性质解决特殊四边形的有关命题,并且也能利用有关知识对探究型题目加以分析和证明。

学生活动经验基础:在相关知识的学习过程中,已经经历了“探索——发现——猜想——证明”的过程,体会了合情推理与演绎推理在获得结论中各自发挥的作用。

掌握了简单证明的方法,解决了简单的现实问题,同时在以前的数学学习中学生已经经历很多合作学习的过程,具有一定的合作学习经验和合作与交流的能力。

二、教学任务分析本章的定理较多,在系统掌握平行四边形的性质及判定等的基础上,学生还学习了多边形的内角和、外角和公式,为了让学生进一步掌握这些定理,并能熟练应用,为此,本节课的教学目标是:(1)能够熟练掌握平行四边形的判定和性质定理,并能够应用数学符号语言表述证明过程。

(2)掌握多边形内角和、外角和定理,进一步了解转化的数学思想。

(3)会熟练应用所学定理进行证明。

体会证明中所运用的归类、类比、转化等数学思想,通过复习课对证明的必要性有进一步的认识。

(4)学会对证明方法的总结。

(5)通过讨论交流,进一步发展学生的合作交流意识。

三、教学过程分析本节课设计了五个教学环节:第一环节:教师和学生一起回顾本章的主要内容;第二环节:随堂练习,巩固提高;第三环节:回顾小结,共同提升;第四环节:分层作业,拓展延伸;第五环节:课后反思。

平行四边形与多边形教案

平行四边形与多边形教案

平行四边形与多边形教案一、教案名称:平行四边形与多边形的性质及应用二、教学目标:1. 理解平行四边形的定义和性质;2. 掌握平行四边形的判定方法;3. 理解多边形的定义和性质;4. 掌握多边形的分类方法;5. 运用平行四边形和多边形的性质解决实际问题。

三、教学内容:1. 平行四边形的定义和性质:a. 定义:具有两对对边平行的四边形;b. 性质:i. 对角线互相平分;ii. 对边互相等长;iii. 对角线互相等分;iv. 相邻内角互补,即和为180°。

2. 平行四边形的判定方法:a. 判定两对对边是否平行;b. 判定对边是否相等;c. 判定对角线是否互相等分。

3. 多边形的定义和性质:a. 定义:由三个或者三个以上的线段组成的封闭图形;b. 性质:i. 边数大于3;ii. 内角和公式:(n-2) × 180°,其中n为多边形的边数;iii. 外角和公式:360°;iv. 正多边形的特殊性质。

4. 多边形的分类:a. 按边数分类:三角形、四边形、五边形等;b. 按角数分类:凸多边形、凹多边形;c. 特殊多边形:正多边形、等腰三角形、等边三角形等。

5. 平行四边形和多边形的应用:a. 计算平行四边形的面积;b. 利用平行四边形的性质解决实际问题;c. 利用多边形的性质解决实际问题。

四、教学过程:1. 导入:通过展示一些实际生活中的平行四边形和多边形的图片,引起学生对该话题的兴趣,并复习相关的几何知识。

2. 知识讲解:a. 介绍平行四边形的定义和性质,通过示意图和实例进行解释和演示。

b. 讲解平行四边形的判定方法,提供一些练习题供学生进行实践操作。

c. 介绍多边形的定义和性质,重点讲解多边形的内角和外角和公式,并展示一些实例进行说明。

d. 分类介绍多边形,讲解各种多边形的特点和性质,引导学生进行分类思维。

e. 介绍平行四边形和多边形的应用,给出一些实际问题,引导学生运用所学知识解决问题。

中考数学 第18讲 多边形与平行四边形复习教案1 北师大版(2021学年)

中考数学 第18讲 多边形与平行四边形复习教案1 北师大版(2021学年)

中考数学第18讲多边形与平行四边形复习教案1(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学第18讲多边形与平行四边形复习教案1 (新版)北师大版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学第18讲多边形与平行四边形复习教案1(新版)北师大版的全部内容。

课题:第十八讲多边形与平行四边形教学目标:1.了解多边形的定义,多边形的顶点、边、内角、外角、对角线等概念;掌握多边形内角和与外角和公式.2.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理,综合运用它们进行有关计算与推理.3.了解两条平行线间距离的定义,能度量两条平行线间的距离。

ﻭ教学重点与难点:重点:多边形内外角和公式、平行四边形的性质与判定.难点:灵活利用平行四边形的性质定理与判定定理.考点分析:四边形与三角形都是平面几何的基本图形,这部分知识的中考试题除考察基础知识、基本技能外,还考察基本思想、基本活动经验,如对多边形、四边形问题能否运用转化思想转化为三角形问题加以解决.另外,这部分知识常与图形的平移、对称(轴对称-折叠、中心对称)、旋转结合,考察数学的发现与探究能力,而图形的剪拼还考察空间想象能力和发散思维能力.教学过程:一、趣题导入1.如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为( )A.13B.14C.15D.16变式题目:一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数可能为__________.处理方式:第1题比较简单,只要掌握多边形的内角和公式即可解决,针对此题设计了一道变式练习,可以让学生小组讨论,或者拿出手中的多边形纸片用剪刀现场操作体验截去一个角应该分不同的类型,从而得出正确的额结论.设计意图:通过一道简单题目让学生了解我们今天复习的内容是第五单元四边形与多边形,变式题目的设计可以让学生除了动脑外也可以借助动手来体会题目内容的丰富性,以及数学中分类讨论的思想,小组合作的目的是通过多人合作探究出题目所有可能的结果.附变式题目解题思路:首先求得内角和为720°的多边形的边数,即可确定原多边形的边数设内角和为720°的多边形的边数是n,则(n﹣2)•180=720,解得:n=6若截去一个角的多边形的直线经过两个顶点,则原多边形是七边形;若截去一个角的多边形的直线经过一个顶点,则原多边形是六边形;若截去一个角的多边形的直线不经过顶点,则原多边形是五边形。

北师大版八年级数学下册《平行四边形——多边形的内角和与外角和》教学PPT课件(2篇)

北师大版八年级数学下册《平行四边形——多边形的内角和与外角和》教学PPT课件(2篇)

A.1800° B.540 °
C.720 °
D.710 °
3.一个多边形从一个顶点可引对角线3条,这个多边形
内角和等于( B )
A.360°
B.540 ° C.720 ° D.900 °
课堂小结
多边形的 内角和
内角和计 算公式
(n-2) × 180 °(n 是不小于3的 任意整数)
第六章 平行四边形 6.4 多边形的内角和与外角和
问题2:运用所学的知识,证明自己的推论.
已知:四边形ABCD.
A
求证:∠A+∠B+∠C=∠D=360°.
证明:如图,连接AC,
所以四边形被分为两个三角形,
所以四边形ABCD内角和为
B
180°×2=360°.
D C
课程讲授
1 多边形的内角和
问题3:你能仿照求四边形内角和的方法,选一种方法求五 边形和六边形内角和吗?
??
内角和
180° 360° 360° ?360°
课程讲授
1 多边形的内角和
问题1:根据前面所学的知识,我们已经知道三角形, 正方形和长方形的内角和,那么任意一个四边形的内角 和是否为一个定值呢?
D
A
提示:可将四边形分割成两个三角形.
归纳:四边形ABCD的内角和是 360°.
B
C
课程讲授
1 多边形的内角和
E
A
A
F
B
E
B
D
C
D
C
课程讲授
1 多边形的内角和
E
A
A
B
B
D
F E
C
D
C
归纳:五边形的内角和是540°.六边形的内角和是720°.

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)

人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
2.平行四边形的性质:
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是

2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .

北师大版小学数学九年级《多边形与平行四边形》教案

北师大版小学数学九年级《多边形与平行四边形》教案
A.AB∥DC,AD∥BC
B.OA=OC,OB=OD
C.AD=BC,AB∥DC
D.AB=DC,AD=BC
(四)举一反三
3.(2015·遂宁市)如图,在□ABCD中,点E,F在对角线BD上,且BE=DF,求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.
变式练习1:将条件中的BE=DF换成BF=DE呢?
(2)n边形共有条对角线.
3.多边形的内角和与外角和
(1)多边形的内角和等于;
(2)多边形的外角和等于.
(二)考向探究
命题角度:
1.多边形的内角和与边数的互逆求解;
2.已知多边形内角和与外角和的关系求边数.
(三)中考典例分析
【例1】(15·广元)一个多边形的内角和是外角和的2倍,则这个多边形是()
A.四边形B.五边形C.六边形D.八边形
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西——方法的选择和应用。从这道题中体会“从特殊到一般”的思想.
第一问较为简单,第二问考察学生的分情况讨论的思想,这是中考中常考的考题,主要考查分类讨论思想,属于高频考点.
七、
畅ቤተ መጻሕፍቲ ባይዱ



本节课你有什么收获?
通过上面的解题分析,再对整个学习过程进行总结,能够促进理解,提高认识水平,从而促进数学观点的形成和发展,更好地进行知识建构,实现良性循环.
(六)方法总结
(1)若已知一组对边平行,常考虑证另一组对边平行或者证这组对边相等.
(2)若已知一组对边相等,常考虑证另一组对边相等或者证这组对边平行.
(3)若已知条件与对角线有关,常考虑证对角线互相平分.
构建知识网络

2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)

2014年中考数学专题复习第20讲:多边形与平行四边形(含详细参考答案)

2014年中考数学专题复习第二十讲多边形与平行四边形【基础知识回顾】一、多边形:1、定义:在平面内,由若干条不在同一直线上的线段相连组成的图形叫做多边形,各边相等也相等的多边形叫做正多边形2、多边形的内外角和:n(n≥3)的内角和事外角和是正几边形的每个外角的度数是,每个内角的度数是3、多边形的对角线:多边形的对角线是连接多边形的两个顶点的线段,从几边形的一个顶点出发有条对角线,将多边形分成个三角形,一个几边形共有条对边线【名师提醒:1、三角形是边数最少的多边形2、所有的正多边形都是轴对称图形,正n边形共有条对称轴,边数为数的正多边形也是中心对称图形】二、平面图形的密铺:1、定义:用、完全相同的一种或几种平面图形进行拼接,彼此之间地铺成一起,这就是平面图形的密铺,称作平面图形的2、密铺的方法:⑴用同一种正多边形密铺,可以用、或⑵用两正多边形密铺,组合方式有:和、和、和合等几种【名师提醒:密铺的图形在一个拼接处的特点:几个图形的内角拼接在一起时,其和等于并使相等的边互相平合】三、平行四边1、定义:两组对边分别的四边形是平行四边形,平行四边形ABCD可写成2、平行四边形的特质:⑴平行四边形的两组对边分别⑵平行四边形的两组对角分别⑶平行四边形的对角线【名师提醒:1、平行四边形是对称图形,对称中心是过对角线交点的任一直线被一组对边的线段该直线将原平行四边形分成全等的两个部分】3、平行四边形的判定:⑴用定义判定⑵两组对边分别的四边形是平行四边形⑶一组对它的四边形是平行四边形⑷两组对角分别的四边形是平行四边形⑸对角线的四边形是平行四边形【名师提醒:特别的:一组对边平行,另一组对边相等的四边形和一组对边相等、一组对角相等的四边形两个命题都不被保证是平行四边形】4、平行四边形的面积:计算公式X同底(等底)同边(等边)的平行四边形面积【名师提醒:夹在两平行线间的平行线段两平行线之间的距离处】【重点考点例析】考点一:多边形内角和、外角和公式例1 (2012•南京)如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角.若∠A=120°,则∠1+∠2+∠3+∠4= .思路分析:根据题意先求出∠5的度数,然后根据多边形的外角和为360°即可求出∠1+∠2+∠3+∠4的值.解:由题意得,∠5=180°-∠EAB=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠5=300°.故答案为:300°.点评:本题考查了多边形的外角和等于360°的性质以及邻补角的和等于180°的性质,是基础题,比较简单.对应训练1.(2012•广安)如图,四边形ABCD中,若去掉一个60°的角得到一个五边形,则∠1+∠2= 度.1.240考点:多边形内角与外角.专题:数形结合.分析:利用四边形的内角和得到∠B+∠C+∠D的度数,进而让五边形的内角和减去∠B+∠C+∠D的度数即为所求的度数.解:∵四边形的内角和为(4-2)×180°=360°,∴∠B+∠C+∠D=360°-60°=300°,∵五边形的内角和为(5-2)×180°=540°,∴∠1+∠2=540°-300°=240°,故答案为240.点评:考查多边形的内角和知识;求得∠B+∠C+∠D的度数是解决本题的突破点.考点二:平面图形的密铺例 2 (2012•贵港)如果仅用一种正多边形进行镶嵌,那么下列正多边形不能够将平面密铺的是()A.正三角形B.正四边形C.正六边形D.正八边形思路分析:分别求出各个正多边形的每个内角的度数,再利用镶嵌应符合一个内角度数能整除360°即可作出判断.解:A、正三角形的一个内角度数为180°-360°÷3=60°,是360°的约数,能镶嵌平面,不符合题意;B、正四边形的一个内角度数为180°-360°÷4=90°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180°-360°÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正八边形的一个内角度数为180°-360°÷8=135°,不是360°的约数,不能镶嵌平面,符合题意;故选D.点评:本题考查平面密铺的问题,用到的知识点为:一种正多边形能镶嵌平面,这个正多边形的一个内角的度数是360°的约数;正多边形一个内角的度数=180°-360°÷边数.对应训练考点三:平行四边形的性质例3 (2012•阜新)如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF交于点G.若使EF=14AD,那么平行四边形ABCD应满足的条件是()A.∠ABC=60°B.AB:BC=1:4 C.AB:BC=5:2 D.AB:BC=5:8思路分析:根据四边形ABCD是平行四边形,利用平行四边形的性质得到对边平行且相等,然后根据两直线平行内错角相等,得到∠AEB=∠EBC,再由BE平分∠ABC得到∠ABE=∠EBC,等量代换后根据等角对等边得到AB=AE,同理可得DC=DF,再由AB=DC得到AE=DF,根据等式的基本性质在等式两边都减去EF得到AF=DE,当EF=14AD时,设EF=x,则AD=BC=4x,然后根据设出的量再表示出AF,进而根据AB=AF+EF用含x的式子表示出AB即可得到AB与BC的比值.解答:解:∵四边形ABCD是平行四边形,∴AD ∥BC ,AB=CD ,AD=BC ,∴∠AEB=∠EBC ,又BE 平分∠ABC ,∴∠ABE=∠EBC ,∴∠ABE=∠AEB ,∴AB=AE ,同理可得:DC=DF ,∴AE=DF ,∴AE-EF=DE-EF ,即AF=DE ,当EF=14AD 时,设EF=x ,则AD=BC=4x , ∴AF=DE=12(AD-EF )=1.5x , ∴AE=AB=AF+EF=2.5x ,∴AB :BC=2.5:4=5:8.故选D .点评:此题考查了平行四边形的性质,等腰三角形的性质,角平分性的定义以及等式的基本性质,利用了等量代换的数学思想,要求学生把所学的知识融汇贯穿,灵活运用.例4 (2012•广安)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE=AD ,点F 在AD 上,AF=AB ,求证:△AEF ≌△DFC .思路分析:由四边形ABCD 是平行四边形,利用平行四边形的性质,即可得AB=CD ,AB ∥CD ,又由平行线的性质,即可得∠D=∠EAF ,然后由BE=AD ,AF=AB ,求得AF=CD ,DF=AE ,继而利用SAS 证得:△AEF ≌△DFC .证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD ,∴∠D=∠EAF ,∵AF=AB ,BE=AD ,∴AF=CD ,AD-AF=BE-AB ,即DF=AE ,在△AEF 和△DFC 中,AE DF EAF D AF DC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△DFC(SAS).点评:此题考查了平行四边形的性质与全等三角的判定.此题难度不大,注意数形结合思想的应用.对应训练3.(2012•永州)如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD 交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为.3.20考点:平行四边形的性质;线段垂直平分线的性质.分析:由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为10,即可求得平行四边形ABCD的周长.解:∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,即CD+DE+EC=10,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×10=20.故答案为:20.点评:此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.4.(2012•大连)如图,▱ABCD中,点E、F分别在AD、BC上,且ED=BF,EF与AC相交于点O,求证:OA=OC.4.考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:根据ED=BF,可得出AE=CF,结合平行线的性质,可得出∠AEO=∠CFO,∠FCO=∠EAO,继而可判定△AEO≌△CFO,即可得出结论.证明:∵四边形ABCD是平行四边形,∴AD=CB,∠AEO=∠CFO,∠FCO=∠EAO,又∵ED=BF,∴AD-ED=BC-BF,即AE=CF,在△AEO和△CFO中,AE CFAEO CFOFCO EAO=⎧⎪∠=∠⎨⎪∠=∠⎩,∴△AEO≌△CFO,∴OA=OC.点评:此题考查了平行四边形的性质,根据平行四边形的性质得出ED=BF及∠AEO=∠CFO,∠FCO=∠EAO是解答本题的关键.考点四:平行四边形的判定例5 (2012•资阳)如图,△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC.运用这个图(不添加辅助线)可以说明下列哪一个命题是假命题?()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一组对边平行的四边形是梯形C.一组对边相等,一组对角相等的四边形是平行四边形D.对角线相等的四边形是矩形思路分析:已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形,根据全等三角形判定方法得出∠B=∠E,AB=DE,进而得出一组对边相等,一组对角相等的四边形不是平行四边形,得出答案即可.解:A.一组对边平行,另一组对边相等的四边形是平行四边形,根据等腰梯形符合要求,得出故此选项错误;B.有一组对边平行的四边形是梯形,若另一组对边也平行,则此四边形是平行四边形,故此选项错误;C.一组对边相等,一组对角相等的四边形是平行四边形,∵△ABC是等腰三角形,∴AB=AC,∠B=∠C,∵DE=AC,AD=AD,∠ADE=∠DAC,即DE ACADE DAC AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△DAC,∴∠E=∠C,∴∠B=∠E,AB=DE,但是四边形ABDE不是平行四边形,故一组对边相等,一组对角相等的四边形不是平行四边形,因此C符合题意,故此选项正确;D.对角线相等的四边形是矩形,根据等腰梯形符合要求,得出故此选项错误;故选:C.点评:此题主要考查了平行四边形的判定方法以及全等三角形的判定,结合已知选项,得出已知条件应分析一组边相等,一组角对应相等的四边不是平行四边形是解题关键.例6 (2012•湛江)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.思路分析:(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF;(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF,然后根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB CDA C AE CF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS);(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD-AE=BC-CF,即DE=BF,∴四边形BFDE是平行四边形.点评:此题考查了平行四边形的性质与判定以及全等三角形的判定.此题难度不大,注意数形结合思想的应用,注意熟练掌握定理的应用.对应训练5.(2012•泰州)下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A.1个B.2个C.3个D.4个考点:平行四边形的判定;三角形中位线定理;菱形的判定;正方形的判定;命题与定理;轴对称图形;中心对称图形.分析:根据平行四边形的各种判定方法、正方形的各种判定方法、菱形的各种判定方法以及正多边形的轴对称性逐项分析即可.解:①一组对边平行,且一组对角相等,则可以判定另外一组对边也平行,所以该四边形是平行四边形,故该命题正确;②对角线互相垂直且相等的四边形不一定是正方形,也可以是普通的四边形(例如筝形,如图所示),故该命题错误;③因为矩形的对角线相等,所以连接矩形的中点后都是对角线的中位线,所以四边相等,所以是菱形,故该命题正确;④正五边形只是轴对称图形不是中心对称图形,故该命题错误;所以正确的命题个数为2个,故选B.点评:本题考查菱形的判定,平行四边形的判定以及正方形的判定定理以及真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(2012•沈阳)已知,如图,在▱ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.(1)求证:△AEM≌△CFN;(2)求证:四边形BMDN是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)先根据平行四边形的性质可得出AD ∥BC ,∠DAB=∠BCD ,再根据平行线的性质及补角的性质得出∠E=∠F ,∠EAM=∠FCN ,从而利用ASA 可作出证明;(2)根据平行四边形的性质及(1)的结论可得BM ∥DN ,则由有一组对边平行且相等的四边形是平行四边形即可证明.证明:(1)四边形ABCD 是平行四边形,∴∠DAB=∠BCD ,∴∠EAM=∠FCN ,又∵AD ∥BC ,∴∠E=∠F .在△AEM 与△CFN 中,EAM FCN AE CF E F ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEM ≌△CFN ;(2)∵四边形ABCD 是平行四边形,∴AB ∥= CD ,又由(1)得AM=CN ,∴BM ∥DN ,∴四边形BMDN 是平行四边形.点评:本题考查了平行四边形的判定及性质,全等三角形的判定,属于基础题,比较简单.【聚焦山东中考】1.(2012•烟台)如图为2012年伦敦奥运会纪念币的图案,其形状近似看作为正七边形,则一个内角为 度(不取近似值)。

2024年广东省中考数学总复习专题17:多边形与平行四边形

2024年广东省中考数学总复习专题17:多边形与平行四边形

2024年广东省中考数学总复习专题17多边形与平行四边形一、多边形1.多边形的相关概念1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和1)内角和:n边形内角和公式为(n–2)·180°;2)外角和:任意多边形的外角和为360°.3.正多边形1)定义:各边相等,各角也相等的多边形.2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.3)正n边形有n条对称轴.4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形,平行四边形用“”表示.2.平行四边形的性质1)边:两组对边分别平行且相等.2)角:对角相等,邻角互补.3)对角线:互相平分.4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:1)平行四边形相邻两边之和等于周长的一半.2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;第1页(共9页)。

八年级(下)数学 同步讲义 多边形和平行四边形(解析版)

八年级(下)数学 同步讲义 多边形和平行四边形(解析版)

多边形是四边形章节第一节的内容,主要讲解的是多边形的内角和及外角和与边数之间的关系,比较基础,题目相对较简单.平行四边形是特殊的四边形的基础内容,奠定了特殊的四边形的基础,题型比较灵活,综合性也比较强,是综合证明题及计算题的理论依据,为进一步学习特殊的平行四边形打好基础.1、由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形.2、组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点.3、多边形相邻两边所在的射线组成的角叫做多边形的内角.4、联结多边形的两个不相邻顶点的线段,叫做多边形的对角线.5、对于一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形.6、多边形内角和定理:n边形的内角和等于(2)180n-⋅︒.7、由多边形的一个内角的一边和另一边的反向延长线组成的角,叫做多边形的外角.8、对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有外角的和,叫做多边形的外角和.9、多边形的外角和等于360°.多边形及平行四边形的性质内容分析知识结构模块一:多边形知识精讲2 / 21【例1】 (1)从五边形的一个顶点出发,可画出__________条对角线;(2)从一个多边形内的一点出发,分别联结各个顶点,可得出6个三角形,这个多 边形共有__________条对角线. 【答案】(1)2;(2)20.【解析】(1)多边形的一个顶点可以画()3n -条对角线,所以是5-3=2条.(2)由题意知,一个多边形可以切割成()2n -个三角形,则()2n -=6,由多边形的对角线条数公式()32n n -,可知这个多边形共有()883202⨯-=条对角线.【总结】考察多边形对角线的概念及条数公式.【例2】 四边形的内角和为( )A .90°B .180°C .360°D .720° 【答案】C【解析】四边形可以分割成两个三角形,所以内角和是360°.也可以通过多边形内角和 定理来计算:()1802n -. 【总结】考察多边形的内角和定理.【例3】 一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .7 【答案】C【解析】多边形内角和定理是:()1802n -,所以720°=()1802n -,解得6n =. 【总结】考察多边形的内角和定理的应用.例题解析【例4】 如果一个四边形的四个内角的度数之比为1:2:3:4,那么这个四边形的最大内角的度数是__________. 【答案】144°.【解析】四边形的内角和为360°,由题意可设四个内角度数分别为,2,3,4x x x x ,列方 程234360x x x x +++=,解得:36x =,所以最大内角4144x =. 【总结】考查多边形的内角和定理的应用.【例5】 已知一个多边形的内角和是外角和的8倍,且这个多边形的每个内角都相等,求这个多边形的边数与每个内角的度数. 【答案】边数是18,每个内角的度数为160°.【解析】因为多边形的外角都是360°,所以这个多边形的内角和为360°×8=2880°,又因为多边形的内角和公式是()1802n -,所以()1802n -=2880°,解得:18n =. 因为每个内角都相等,所以每个内角度数为2880°÷18=160°. 【总结】考察多边形内角和外角的应用.【例6】 一个多边形除了一个内角外,其余各内角的和为2750°,这个内角是多少度? 这个多边形有几条边? 【答案】18【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()275018022750180n -+,解此不等式地17.2718.27n ,n 为边数只能取正整数,所以18n =. 【总结】考察多边形内角和的应用.4 / 21【例7】 某人从点A 出发,沿直线前进100米后向左转30°,在沿着直线前进100米,又 向左转,...,照这样下去,他第一次回到出发点A 时,一共走了多少米. 【答案】1200米.【解析】由题意知A 回到出发点时,所走轨迹是一个正多边形,由多边形的外交和是360°, 所以360°÷30°=12次,所以共走了12个100米,一共走了12×100=1200米. 【总结】考察多边形外角和的应用.【例8】 在四边形ABCD 中,∠A =80°,∠B 和∠C 的外角分别为105°和32°,求∠D 的度数. 【答案】57°【解析】多边形外角和为360°,由题意知∠A 的外角为180°-80°=100°,所以∠D 的 外角为360°-100°-105°-32°=123°,对应的∠D=180°-123°=57°. 【总结】考察多边形外角和的应用.【例9】 设一个凸多边形,除去一个内角以外,其他内角的和为2570°,则该内角为( )A 、 40°B 、90°C 、120°D 、130° 【答案】D【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()257018022570180n <-<+,解此不等式地16.2717.27n ,n 为边数只能取正整数,所以17n =,所以这个内角为()()1802-2570180172-2570130n -=⨯-=. 【总结】考察多边形内角和的应用.【例10】 一个凸n 边形的内角中,恰好有4个钝角,则n 的最大值是( ) A 、5 B 、6 C 、7 D 、8 【答案】C【解析】因为多边形的内角和是180°的倍数,所以内角中有4个钝角,就会有()4n -个直角或者锐角,可知内角和一定小于4×180°+()490n -⨯, 即()1802n -< 4×180°+()490n -⨯,解得:8n <,最大值是7. 【总结】考察多边形内角和的应用.【例11】 已知,一个多边形的内角和与一个外角的差为1560°,求这个多边形的边数和这个外角的度数. 【答案】11,60°.【解析】多边形的内角和为()1802n -,则这个外角为()18021560n --,由于每一个外角都大于0°且小于180°,所以()018021560180n <--<,解得10.711.7n <<, 所以11n =,这个外角的度数为()()18021560180112156060n --=⨯--=. 【总结】考察多边形内外角和的应用.【例12】 已知凸n 边形12n A A A ⋅⋅⋅(n >4)的所有内角都是15°的整数倍,且123285A A A ∠+∠+∠=︒,那么n =__________.【答案】10【解析】多边形的内角和为()1802n -,其余共()3n -个内角和为()1802-285n -,可知()18022850n -->是15°的倍数也是()3n -的倍数, ()()18022851803105105718015123333n n n n n n ----⎛⎫==-=- ⎪----⎝⎭, 可知31n -=或者37n -=,又n >4,所以10n =. 【总结】考察多边形内外角和的应用.模块二:平行四边形的概念及性质6 / 211、 两组对边分别平行的四边形叫做平行四边形.平行四边形用符号“”表示,如:ABCD . 2、平行四边形性质定理①如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等. 简述为:平行四边形的对边相等.②如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等. 简述为:平行四边形的对角相等.③如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分. 简述为:平行四边形的两条对角线互相平分.④平行四边形是中心对称图形,对称中心是两条对角线的交点. ⑤推论:夹在两条平行线间的平行线段相等.【例13】 在平行四边形ABCD 中,若∠A 的度数比∠B 大20°,则∠B 的度数为__________,∠C 的度数为__________.【答案】80°,100°.【解析】因为是平行四边形,所以180A B ∠+∠=,又-20A B ∠∠=,解得80100B A ∠=∠=;.因为平行四边形的对角相等,所以100C ∠=. 【总结】考察平行四边形的内角和及内角的性质.知识精讲例题解析【例14】 在ABCD 中,E 在BC 上,AB =BE ,∠AEB =70°,求平行四边形ABCD 各内角的度数.【答案】40140B D BAD BCD ∠=∠=∠=∠=;.【解析】由题知,在∆BAE 中,70BEA BAE ∠=∠=,所以40B D ∠==∠, 18040140BAD BCD ∠=∠=-=.【总结】考察平行四边形的内角度数相关知识点.【例15】 如果ABCD 的周长是50cm ,AB 比BC 短3cm ,那么CD 、DA 分别是多少. 【答案】1411DA cm CD cm ==,.【解析】平行四边形的对边平行且相等,所以50225AB BC cm +=÷=,又-3BC AB cm =, 解得1411.BC cm AB cm ==,又因为,AB CD BC AD ==,所以14,11DA cm CD cm ==. 【总结】考察平行四边形的边的相关知识点.【例16】 如图,在△ABC 中,AB =AC =8,D 是底边BC 上一点,DE //AC ,DF //AB ,求四边形AEDF 的周长. 【答案】16【解析】由题意知DE //AC ,所以C EDB ∠=∠,又因为C B ∠=∠ 所以B EDB ∠=∠,得EB=ED .同理可得FD=FC ,所以四边形AEDF 的周长=AE +ED +DF+AF =AE +EB +CF +AF =AB +AC =8+8=16.【总结】考察平行四边形的边的平行性质的应用.【例17】 如图,已知平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =2,DE =1,则平行四边形ABCD 的周长等于__________.【答案】10【解析】由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠,即AE =AB =2. 因为AD=AE+ED =2+1=3,所以平行四边形ABCD 的周长等于=2×(AB +AD )=2×(2+3)=10. 【总结】考察平行四边形的综合应用.AB CDEABCDEF8 / 21【例18】 如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,已知△BOC 的周长比△AOB 的周长多8cm ,求ABCD 各边的长. 【答案】AB =CD =11cm ,BC =AD =19cm . 【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =8,又因为2×(AB +BC )=60,所以得BC +AB =30,BC -AB =8, 所以AB =CD =11cm ,BC =AD =19cm . 【总结】考察平行四边形的性质的综合应用.【例19】 平行四边形的一角平分线分对边为3和4两部分,这个平行四边形的周长为________.【难度】★★ 【答案】20或22.【解析】如图由题意可分两种情况:1、AE=3,ED =4,由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠, 即AE =AB=3,因为AD=AE+ED =3+4=7,所以这个平行四边形的周长为2×(AB +AD )=2×(3+7)=20; 2、AE =4,ED =3,同理可求这个平行四边形的周长为22; 故该平行四边形的周长为20或22.【总结】考察平行四边形的性质及等腰三角形的综合应用.ABCDOABCD E【例20】 如图,在ABCD 中,AE ⊥BC 、AF ⊥CD ,垂足分别为E 、F ,若∠ B =50°, 求∠F AE 的度数. 【答案】50゜.【解析】因为平行四边形的对角相等,所以50B D ∠=∠=.因为平形四边形的邻角互补,所以18050130BAD ∠=-=.在直角三角形BAE 中,40BAE ∠=,同理40DAF ∠=, 所以130404050FAE ∠=--=.【总结】考察平行四边形的性质及直角三角形的性质的综合应用.【例21】 平面直角坐标系中,ABCD 的对角线交点在坐标原点,若A 点的坐标为(4,3),B 点的坐标为(-2,2),求点C 、D 的坐标及ABCD 的周长.【答案】C (-4,-3);D (2,-2);229237+.【解析】因为平行四边形的对角线相互平分,所以可知C 点的坐标为(-4,-3),D 点的坐标为(2,-2).由两点间的距离公式可得()()22423237AB =++-=,()()22242329CB =-+++=,所以ABCD 的周长=2×(3729+)=237229+.【总结】考察平行四边形的性质的在平面直角坐标系中的运用.【例22】 在平面直角坐标系内,平行四边形ABCD 的边AB //x 轴,B 、D 均在y 轴上,又知道A 、D 在直线y =2x -1上,且B 点坐标(0,1),求A 、C 、D 的坐标及ABCDS. 【答案】A (1 ,1);C (-1 ,-1);D (0 ,-1);ABCDS =2.【解析】由题意知A 的纵坐标与B 相同,把y =1代入y =2x -1中,可得A 的横坐标为1,所以A 的坐标为A (1 ,1),D 为y =2x -1与y 轴的交点, 所以D 为(0,-1).因为AB //CD 且AB =CD , 所以C 的坐标为(-1,-1).从而可求CD=1,BD=2,且BD ⊥CD ,所以ABCDS=122CD BD ⨯=⨯=.【总结】考察平行四边形的性质在平面直角坐标系中的应用. 【例23】 如图,已知ABCD 的面积为24,求阴影部分的面积.【答案】12.【解析】因为平行四边形是中心对称图形,可知每一个小阴A BCDEFABCDO xy10 / 21影三角形都有一个小空白三角形与之完全重合. 所以阴影部分的面积是24.【总结】考察平行四边形的中心对称性的运用.【例24】 已知在ABCD 中,M 是AD 的中点,AD =2AB ,求∠BMC 的度数. 【答案】90°.【解析】由题知AM=AB=CD=MD ,设2ABC D ∠=∠=Φ.则可得ABM MBC AMB ∠=∠=∠=Φ,在三角形DMC 中,DM=DC ,2D ∠=Φ, 可得90DMC ∠=-Φ,所以()180-1809090BMC AMB DMC ∠=∠-∠=-Φ--Φ=. 【总结】考察平行四边形的性质的综合应用.【例25】 如图所示,平行四边形ABCD 中,G 、H 是对角线BD 上两点,DG =BH ,DF =BE . 求证:∠GEH =∠GFH .【解析】在DFG ∆与BHE ∆中,因为DG =BH ,DF =BE ,CDB DBA ∠=∠,所以DFG ∆≅BHE ∆,所以GF=EH ,DGF BHE ∠=∠.从而FGH GHE ∠=∠,所以GF//EH . 又因为GF=EH ,所以四边形GEHF 为平行四边形,从而∠GEH=∠GFH . 【总结】考察平行四边形的性质的应用.A BCDE F GH【例26】 如图所示,在平行四边形ABCD 中,DE ⊥AB 于点E ,BM =MC =DC . 求证:∠EMC =3∠BEM .【解析】延长EM 交DC 于F 点,易证()BEM CMF AAS ∆≅∆,则MF=ME ,即M 为EF 中点. 设BEM ϕ∠=,则F BEM ϕ∠=∠=,在直角∆FED 中,ME=MF=MD ,得CDM F ϕ∠=∠=, 所以2EMD F MDC ϕ∠=∠+∠=,又因为CM=CD , 所以MDC CMD ϕ∠=∠=,综上,233EMC CMD EMD BEM ϕϕϕ∠=∠+∠=+==∠. 【总结】考察平行四边形的性质及角的和差的综合应用.【例27】 如图所示,在平行四边形ABCD 中,直线FH 与AB 、CD 相交,过点A 、D 、C 、 B 向直线FH 作垂线,垂足分别为点G 、F 、E 、H ,求证:AG DF CE BH -=-.【解析】过A 点做AM ⊥DF ,易证四边形AMFG 为矩形,则AG=MF ,所以AG -DF=MF -DF=-DM . 同理过C 点做CN ⊥BH ,可证CE=HN , CE -BH=HN -BH=-BN .因为BH//AG ,所以GAB HBA ∠=∠, 可知90HBA BAM GAB BAM ∠+∠=∠+∠=, 又180DAB ABC ∠+∠=,所以()1809090DAM HBC DAB ABC MAB HBA ∠+∠=∠+∠-∠+∠=-=. 可得90DAM HBC ∠+∠=,从而得DAM BCN ∠=∠(同角的余角相等). 在∆ADM 和∆CNB 中,AD=BC ,90AMD CNB ∠=∠=︒,又DAM BCN ∠=∠得()AMD CNB AAS ∆≅∆,可得DM=BN ,从而-DM=-BN , 再得CE -BH=AG -DF .【总结】考察平行四边形的性质的应用.ABCDEMABCDEF G H12 / 21【例28】 如图,在平行四边形ABCD 中,∠BAD = 60°,AE 平分∠BAD 交CD 于E ,BF平分∠ABC 交CD 于F ,又AE 与BF 交于O ,已知OB =OE =1.试求平行四边形ABCD 的面积.【答案】1+3.【解析】因为AE 、BF 分别平分BAD ∠和ABC ∠,又BAD ∠+ABC ∠=180°,所以AOB ∠=90°. 在直角∆AOB 中,∠BAO=12∠BAD = 30°,OB =1,得OA =3.连接BE ,可求得∆BAE 的面积=()1113131222AE OB +⨯⨯=⨯+⨯=,所以平行四边形ABCD 的面积=2×BAE S ∆=13+. 【总结】考察平行四边形的性质的综合应用.【例29】 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F .(1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),求∠BDG 的度数. 【答案】(1)见解析;(2)45°.【解析】(1)因为AE 平分∠BAD ,所以∠BAE=∠BEA .又因为AB//CD ,所以∠F =∠BAE =∠BEA=∠CEF ,从而得CE=CF ;(2)连接BG 、CG .由(1)可知CE=CF ,且BE=BA=DC 又∠ECF=90°. 因为G 是EF 的中点,CG=EG,∠F=∠FEC=45°,从而∠GCD=∠GEB =135°. 综上,可得()BEG DCG SAS ∆≅∆,可得GB=GD ,∠DGC=∠BGE , 所以90°=∠BGD=∠DGA+∠BGE=∠DGA+∠DGC , 从而知∆GBD 是等腰直角三角形,所以∠BDG=45°. 【总结】考察平行四边形的性质的综合应用.ABCD EF O【习题1】 如果一个凸多边形的每一个内角都等于140°,那么,这个多边形共有多少条对角线?【答案】27【解析】由题意知共有360°÷(180°-140°)=9条边,根据多边形的对角线条数公式()()39932722n n -⨯-==条.【总结】考察多边形的基本知识的应用.【习题2】 两个凸多边形,它们的边长之和为12,对角线的条数之和为19,那么这两个多边形的边数分别是_________和_________.【答案】5,7【解析】设这两个凸多边形的边数分别为x 条和y 条,可列方程x +y =12,192)3(2)3(=-+-y y x x ,解得:12125577x x y y ==⎧⎧⎨⎨==⎩⎩. 所以这两个多边形的边数分别是5和7. 【总结】考察多边形的基础知识的应用.【习题3】 若一个多边形的内角和是它外角和的3倍,求这个多边形的边数. 【答案】8【解析】由题可知该多边形的内角和为360°×3=1080°()1802n =-,解得8n =. 【总结】考察多边形的内外角和的应用.随堂检测14 / 21【习题4】 如图, ABCD 中,AF ∶FC =1∶2,S △ADF =6cm 2,则ABCDS 的值为________.【答案】36cm 2.【解析】∆AFD 与∆CFD 同高,所以面积比等于底之比 AF :FC =1:2,所以22612DFC S cm ∆=⨯=, 则261218DAC S cm ∆=+=,所以2=218=36ABCDScm ⨯.【总结】考察平行四边边形的性质的应用.【习题5】 如图,ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,若CE =2,DF =1,∠EBF =60°,则ABCD 的面积为________.【答案】3【解析】因为360-D DFB DEB EBF ∠=∠-∠-∠=360°-90°-90°-60°=120°,所以180********A D ∠=-∠=-=,又60A C ∠=∠=,在直角∆BEC 中, 60C ∠=,EC =2,可得BC=4,BE =3AD=BC =4,所以AF=AD -DF =4-1=3. 在在直角∆AFB 中,60A ∠=,AF =3,可得AB =6. 综上平行四边形的面积为623123⨯ 【总结】考察平行四边形的性质的应用.【习题6】 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD于点M ,若△CDM 周长为a ,那么□ABCD 的周长为 ________.【答案】2a .【解析】由平行四边形的性质可知OA=OC ,又MO=MO ,MOA MOC ∠=∠,所以∆MOA ≅∆MOC ,所以MA=MC .所以∆CMD 的周长=a =CM+DM+CD=AM+DM+CD=AD+CD , 所以平行四边形的周长=()2AD 2CD a +=.【总结】考察平行四边形的对角线互相平分的性质的应用.20︒20︒20︒M【习题7】 在平面直角坐标系内,平行四边形ABCD 的边AB //y 轴,B 、D 均在x 轴上,又知道A 、D 在直线y =2x +1上,且B 点 坐标(1,0),求A 、C 、D 的坐标及ABCDS和ABCDC.【答案】A (1,3);C (12-,-3);D (12-,0);ABCD S=92; ABCDC=635+.【解析】由题可知A 的横坐标为1,代入y =2x +1可得A 的纵坐标为3,所以A (1,3).因为D 为y =2x +1与x 轴的交点,所以可得D (12-,0).因为ABCD 为平行四边形,CD=AB =3,所以C (12-,3).所以ABCD S =193122AB BD ⎛⎫⨯=⨯+= ⎪⎝⎭,2222333522AD AB BD ⎛⎫=+=+= ⎪⎝⎭,则ABCD C=()322356352AB AD ⎛⎫+=⨯+=+⎪⎝⎭. 【总结】考察平行四边形的性质的综合应用.【习题8】 如图所示,小华从M 点出发,沿直线前进10米后,向左转20°,再沿直线前进10米后,又向左转20°,…这样走下去,他第一次回到出发地M 时,行走了多少米?【答案】180米【解析】多边形的外角和为360°,每个外角为20°,可知共有360°÷20°=18条边,多边形的周长为18×10=180米. 【总结】考察多边形的外角的应用.【习题9】 如图,已知M 是 ABCD 边AB 的中点,CM 交BD 于点E ,且DE =2BE ,则图中阴影部分面积与 ABCD 的面积之比为( ) A .16 B .14 C .13 D .512【答案】C【解析】设∆BEM 的面积为x ,因为DE=2BE ,所以∆DEM 的面积为2x .在梯形MBCD 中,2DEM CBE S S x ∆∆==,同理可知24DCE BCE S S x ∆∆==.AB CDO xy16 / 21GDBCA FE则162DCB BCE DCE S S S x ∆∆∆=+==平行四边形ABCD 的面积,可知平行四边形的面积是 12x ,阴影部分的面积是224x x x +=,所以阴影部分面积与 ABCD 的面积之比为41123x x =,选C . 【总结】考察平行四边形有关的面积的综合应用.【习题10】 如图,已知ABCD 是平行四边形,E 在AC 上,AE =2EC ,F 在AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则□ABCD 的面积是________. 【答案】92cm .【解析】∆BEF 和∆AEF 的面积之比等于BF:AF =2:1,所以2221AEF BEF S S ∆∆=÷=÷=2cm . ∆BEA 和∆BEC 的面积之比等于AE:EC=2:1,所以2(21)2 1.5BEC BEA S S ∆∆=÷=+÷=, 从而得21.53 4.5ABC EBC ABE S S S cm ∆∆∆=+=+=, 从而得平行四边形的面积=222 4.59ABC S cm ∆=⨯=. 【总结】考察平行四边形有关的面积的综合应用.【习题11】 如图,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是( ) A .60°B . 65°C .70°D .75°【答案】B【解析】作DE 的中点M ,连结AM设∠ADB =Φ=∠DBC ,则∠ABD =75°-Φ,取DE 中点M ,连接AM .可知∠DAF =∠AFC =90°.在直角三角形ADE 中,MA =12DE =AB ,所以∠AEB =∠ABD =75°-Φ,又因为∠AEB =∠ADM +∠DAM =Φ+Φ=2Φ, 所以2Φ=75°-Φ,解得:Φ=25°,所以∠AED =90°-∠ADM =90°-25°=65°. 【总结】考察平行四边形的性质的综合应用.【习题12】 如图,在□ABCD 中,E 为AD 上一点,F 为AB 上一点,且BE =DF ,BE与DF 交于点G ,求证:∠BGC =∠DGC . 【答案】见解析【解析】作CM ⊥BE 、CN ⊥DF ,垂足分别为M 、N 连接CF 、CE .DABC E由题意知CFD CBE S S ∆∆==12平行四边形的面积, 即1122BE CM DF CN ⨯⨯=⨯⨯,因为BE=DF ,所以CM=CN , 在∠DGB 中,CM=CN ,可知CG 是∠DGB 的角平分线,即∠BGC =∠DGC . 【总结】考察平行四边的性质与角平分线性质的综合应用.【习题13】 如图,在凸五边形ABCDE 中,已知AB ∥CE ,BC ∥AD ,BE ∥CD ,DE ∥AC ,求证:AE ∥BD . 【答案】见解析【解析】因为BC//AD ,所以ABD ACD S S ∆∆=.因为AC//DE ,所以ACD ACE S S ∆∆=.因为AB//CE ,所以ACE BCE S S ∆∆=. 因为CD//BE ,所以BCE BDE S S ∆∆=,所以ABD EBD S S ∆∆=,所以AE//BD . 【总结】考察同底等高的两个三角形面积相等的综合运用.【作业1】 若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( ) A .9 B .10C .11D .12【答案】D【解析】由题知这个多边形的内角为180°×(2n -)=360°×5,12n =. 【总结】考察多边形的基础知识.课后作业18 / 21α110°106°78°【作业2】 如果一个凸多边形的每一个内角都等于120°,那么这个多边形共有多少条对角线? 【答案】9条.【解析】由题意知共有360°÷(180°-120°)=6条边,根据多边形的对角线条数公式()()3663922n n -⨯-==条.【总结】考察多边形的基础知识.【作业3】 如右图中的α∠的度数为__________. 【答案】106°【解析】由题知()10678180110360α∠+++-=.α∠=106°. 【总结】考察多边形的内角的应用.【作业4】 如图,ABFE 和CDEF 是完全相同的两个平行四边形,图中和△AOE 面积相同的三角形(△AOE 除外)有________个. 【答案】5【解析】由平行四边形的性质知AOE COF AOF COE DOE BOF S S S S S S ∆∆∆∆∆∆===== 【总结】考察平行四边形的面积综合应用.【作业5】 已知某平行四边形的周长为80mm ,它被两条对角线分成四个三角形,其中相 邻两个三角形的周长差为12mm ,求这个平行四边形一组邻边的长. 【答案】26mm ,14mm .【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =12mm .又因为2×(AB+BC)=80mm ,所以得BC+AB =40mm ,BC -AB=12mm , 所以AB =CD =26mm ,BC =AD =14mm .【总结】考察平行四边形的对角线互相平分的综合应用.【作业6】 如图所示,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC =a +b ,BD =a +c , AB =m ,求m 的取值范围.【答案】22b c b cm a -+<<+. A B CD E F OABCDO【解析】过C 作DB 的平行线交AB 的延长线于G ,可知四边形CDBG 为平行四边形. 可知CD =AB =BG ,BD=CG ,在∆ACG 中,AC+CG>AG=2AB , AC -CG<AG=2AB即2a b a c m +++>,()-2a b a c m ++<,得22b c b cm a -+<<+. 【总结】考察平行四边形的性质的综合应用【作业7】 若凸多边形的n 个内角与某个外角之和为1350°,求n 的值 . 【答案】9【解析】设这个外角为Φ(0180<Φ<),由题知()135018021710-180n n Φ=--=, 则01710-180180n <<,得8.59.5n <<,所以n =9. 【总结】考察多边形内外角的综合应用.【作业8】 已知:AB ∥EF ∥GH ,BE =GC .求证:AB =EF +GH . 【答案】见解析.【解析】过B 点做BO//AF ,交FE 的延长线于O . 可知四边形ABOF 为平行四边形,所以AB=FO , ∠ABO=∠FEG=∠HGC=∠BEO ,∠A=∠GHC=∠O .在∆BEO 和∆GHC 中,∠BEO=∠HGC ,BE=GC ,∠GHC=∠O , 所以∆BEO ≅∆GHC ,则EO=HG ,所以AB=FO=FE+EO=FE+GH . 【总结】考察平行四边形的性质与全等的综合应用.ABCF EH G20 / 21【作业9】 已知:CD 为Rt △ABC 斜边AB 上的高,AE 平分∠BAC 交CD 于E ,EF ∥AB , 交BC 于点F .求证:CE =BF . 【答案】见解析.【解析】分别过E 、F 做EM ⊥CA 、FN ⊥AB ,垂足分别为M 、N .因为AE 平分∠BAC ,所以ED =EM .因为EF //AB ,所以ED =FN ,所以EM =FN . 在直角△ABC 中,CD ⊥AB ,∠CAB +∠ACD =∠CAB +∠B =90゜.所以∠ACD =∠B . 在∆CEM 和∆BFN 中,EM =FN ,∠ACD =∠B ,∠CME =∠BNF =90゜ 所以∆CEM ≅∆BFN ,从而得CE =BF . 【总结】考察平行四边形的性质与全等的综合应用.【作业10】 如图所示,平行四边形ABCD 中,EF ∥BD ,EF 分别交AB 、AD 的延长线 于E 、F ,交BC 、CD 于G 、H .求证:EG =FH . 【答案】见解析.【解析】因为EF ∥BD ,DC ∥BA ,所以DH =BE ,∠DHF =∠E ,∠EGB =∠F 所以∆DHF ≅∆BGE ,所以EG =FH . 【总结】考察平行四边形的性质的综合应用.【作业11】 如图所示,平行四边形ABCD 中,P 为△BAD 内一点,若2PAB S =△,5PCB S =△, 求PBD S △的值. 【答案】3【解析】由题知1S S 2PAD PBC ∆∆+=平行四边形的面积=ABD APD ABP PBD S S S S ∆∆∆∆=++ 可得:S PBC ∆=ABP PBD S S ∆∆+,可得523PBD CBP ABP S S S ∆∆∆=-=-=. 【总结】考察平行四边形的面积的综合应用.A BCDEFABCDEFGHA B CDP【作业12】 如图所示,平行四边形ABCD 中,点E 在BC 边上,点F 在CD 边上, EF ∥BD .求证:ABE ADF S S =△△.【答案】见解析【解析】由CD //AB ,AD //BC ,EF //BD ,得:A ADF BDF BDE B E S S S S ∆∆∆∆===. 【总结】考察平行四边形的面积的综合应用.A BC D E F。

2015届中考数学自主复习课件【第21讲】多边形与平行四边形(30页)

2015届中考数学自主复习课件【第21讲】多边形与平行四边形(30页)
证明:∵四边形 ABCD 是平行四边形, ∴AF∥CE,AD=BC,AB=CD. ∵AE∥CF,∴四边形 AECF 是平行四边形, ∴AE=CF,AF=CE,∴BE=DF. AB=CD, 在△ABE 和△CDF 中,BE=DF, AE=CF, ∴△ABE≌△CDF(SSS).
第21讲┃ 多边形与平行四边形
第21讲┃ 多边形与平行四边形
【归纳总结】
1.多边形的性质:n 边形的内角和等于______ __ , (n-2)×180 ° n(n-3) 外角和等于________ ___. 360° ,对角线条数为_____ 2 2.正多边形的定义及性质: 相等 , 相等 的多边形 定义: 各个角都________ 各条边都________ 叫做正多边形. (n-2)×180° 性质:(1)每一个内角的度数为____ ____; n (2) 正多边形是轴对称图形,边数为偶数的正多边形也是 中心对称 ________图形.
[解析] 根据从一个 n 边形的某个顶点出发,可以引(n- 3)条对角线,把 n 边形分成(n-2)个三角形,得 n-2=6,解 得 n=8.故选 C.
第21讲┃ 多边形与平行四边形
4 . [2014· 长沙 ] 平行四边形的对角线一定具有的性质是 ( B ) A.相等 B.互相平分 C.互相垂直 D.互相垂直且相等 5. [2014· 淮安] 如图 21-3, 在四边形 ABCD 中, AB∥CD, 要使得四边形 ABCD 是平行四边形,应添加的条件是 ______ _ BC∥AD(答案不唯一) _(只填写一个条件, 不使用图形以外的 字母和线段).
第21讲┃ 多边形与平行四边形
8.[2014· 徐州] 已知:如图 21-6,在▱ABCD 中,点 E, F 在 AC 上,且 AE=CF. 求证:四边形 BEDF 是平行四边形.

第一节平行四边形(含多边形)

第一节平行四边形(含多边形)

第一节平行四边形(含多边形)平行四边形是几何学中的一种特殊四边形,具有一些独特的性质和特点。

在本文中,我们将介绍平行四边形的定义、性质和应用。

一、定义平行四边形是指四边形的对边两两平行的四边形。

这意味着平行四边形有两对平行边。

除此之外,平行四边形还具有两组对等的相邻边和对等的对角线。

二、性质1.对边平行性:平行四边形的对边两两平行;2.对角线性质:平行四边形的对角线互相平分,并且相互垂直;3.内角性质:平行四边形的内角互相对等;4.外角性质:平行四边形的外角互相对等;5.相等性质:平行四边形的对边相等,对角线相等;6.相似性质:平行四边形的各边比例相等;7.定理:若两条直线被一对平行的直线截断,在这两条直线上,所截取的线段所构成的四边形是平行四边形。

三、推导1.证明平行四边形的相邻边相等:假设平行四边形ABCD的对边AB和CD平行。

连接AC、BD两条对角线,假设它们的交点为O。

我们可以利用平行四边形的性质进行推导。

由于AB和CD平行,所以∠BAD=∠CDA,∠BAC=∠CDA,利用等角推论可以得出∠BAC=∠CDA。

同理,由于AC和BD平行,所以∠ACB=∠BDC。

在△ABC和△BCD中,∠BAC=∠CDA,∠BDA=∠CDB,∠ABC=∠BCD (180°-∠BAC-∠CAB=180°-∠BDA-∠BDC)。

所以△ABC与△BCD相似。

因此,我们可以得到以下结论:AB/BC=AC/BD(根据相似三角形的比例)AB/BC=AD/CDAB/AD=BC/CD所以,平行四边形ABCD的相邻边相等。

2.证明平行四边形的对角线平分:利用相似三角形的性质证明平行四边形的对角线平分。

由于平行四边形的对边平行,所以可以得出以下结论:∠A=∠C,∠B=∠D在△ABO和△BCO中,我们有相似三角形AOB~BOC(AAA相似)。

所以可以得到以下比例关系:AO/BO=BO/COAO=CO(两边乘以BO)同理,在△ADO和△CDO中也可以得到DO=CO。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形与平行四边形例题1. (2014•安徽省,第23题14分)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN= 60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP 于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3A.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出辅助线,根据三角形全等找出相等的线段.例题2. (2014•广西贺州,第21题7分)如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.考点:平行四边形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.解答:证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.点评:此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质等知识,得出△ABE≌△CDF是解题关键.例题3.(2014年云南省,第22题7分)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2C D.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=D C.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.例题4.(2014年广东汕尾,第20题9分)如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.分析:(1)利用已知得出△ABE≌△DFE(AAS),进而求出即可;(2)首先得出△FED∽△FBC,进而得出=,进而求出即可.(1)证明:∵在平行四边形ABCD中,E是AD边上的中点,∴AE=ED,∠ABE=∠F,在△ABE和△DFE中,∴△ABE≌△DFE(AAS),∴FD=AB;(2)解:∵DE∥BC,∴△FED∽△FBC,∵△ABE≌△DFE,∴BE=EF,S△FDE=S平行四边形ABCD,∴=,∴=,∴=,∴△FED的面积为:2.点评:此题主要考查了全等三角形的判定与性质以及平行四边形的性质以及相似三角形的判定与性质等知识,得出S△FDE=S平行四边形ABCD是解题关键.例题5.(2014•泰州,第23题,10分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.(第1题图)考点:平行四边形的判定与性质;角平分线的性质;等腰三角形的判定与性质;含30度角的直角三角形分析:(1)由DE∥AB,EF∥AC,可证得四边形ADEF是平行四边形,∠ABD=∠BDE,又由BD 是△ABC的角平分线,易得△BDE是等腰三角形,即可证得结论;(2)首先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,易求得DG与DE的长,继而求得答案.解答:(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形,∠ABD=∠BDE,∴AF=DE,∵BD是△ABC的角平分线,∴∠ABD=∠DBE,∴∠DBE=∠BDE,∴BE=DE,∴BE=AF;(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,∵∠ABC=60°,BD是∠ABC的平分线,∴∠ABD=∠EBD=30°,∴DG=BD=×6=3,∵BE=DE,∴BH=DH=BD=3,∴BE==2,∴DE=BE=2,∴四边形ADEF的面积为:DE•DG=6.点评:此题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.练习:1. (2014•广东,第7题3分)如图,▱ABCD中,下列说法一定正确的是()A.A C=BD B.A C⊥BD C.A B=CD D.A B=BC考点:平行四边形的性质.分析:根据平行四边形的性质分别判断各选项即可.解答:解:A、AC≠BD,故此选项错误;B、AC不垂直BD,故此选项错误;C、AB=CD,利用平行四边形的对边相等,故此选项正确;D、AB≠BC,故此选项错误;故选:C.点评:此题主要考查了平行四边形的性质,正确把握其性质是解题关键.2.(2014•新疆,第4题5分)四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.O A=OC,OB=OD B.A D∥BC,AB∥DC C.A B=DC,AD=BC D.A B∥DC,AD=BC考点:平行四边形的判定.分析:根据平行四边形的判定定理求解即可求得答案,注意排除法在解选择题中的应用.解答:解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;B、∵AD∥BC,AB∥DC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;C、AB=DC,AD=BC,∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.点评:此题考查了平行四边形的判定.此题比较简单,注意熟记定理是解此题的关键.3.(2014•毕节地区,第9题3分)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13 B.14 C.15 D.16考点:多边形内角与外角分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.4. (2014•株洲,第7题,3分)已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:A、由①得有一组邻边相等的平行四边形是菱形,由②得有一个角是直角的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;B、由②得有一个角是直角的平行四边形是矩形,由③得对角线相等的平行四边形是矩形,所以不能得出平行四边形ABCD是正方形,错误,故本选项符合题意;C、由①得有一组邻边相等的平行四边形是菱形,由③得对角线相等的平行四边形是矩形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意;D、由②得有一个角是直角的平行四边形是矩形,由④得对角线互相垂直的平行四边形是菱形,所以平行四边形ABCD是正方形,正确,故本选项不符合题意.故选B.点评:本题考查了正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.5. (2014•安徽省,第14题5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DME是解题关键.6. (2014•扬州,第13题,3分)如图,若该图案是由8个全等的等腰梯形拼成的,则图中的∠1=67.5°.(第2题图)考点:等腰梯形的性质;多边形内角与外角分析:首先求得正八边形的内角的度数,则∠1的度数是正八边形的度数的一半.解答:解:正八边形的内角和是:(8﹣2)×180°=1080°,则正八边形的内角是:1080÷8=135°,则∠1=×135°=67.5°.故答案是:67.5°.点评:本题考查了正多边形的内角和的计算,正确求得正八边形的内角的度数是关键.。

相关文档
最新文档