多边形与平行四边形
多边形与平行四边形知识点总结

多边形与平行四边形知识点总结
多边形与平行四边形
一、多边形
1.多边形的定义:平面内由若干条线段首尾相接而成的封闭图形。
2.多边形的对角线:n边形的一个顶点可以引出(n-3)条对角线,将多边形分成(n-2)个三角形。
3.多边形的内角和和外角和:n边形的内角和公式为(n-2)×180°,外角和为360°。
4.正多边形:各边相等,各角也相等的多边形。
二、平行四边形的性质
1.平行四边形的定义:两组对边分别平行的四边形。
2.平行四边形的性质:
边:两组对边分别平行且相等。
角:对角相等,邻角互补。
对角线:互相平分。
对称性:中心对称但不是轴对称。
3.平行四边形解题模型:
利用平行四边形相邻两边之和等于周长的一半。
利用平行四边形中有相等的边、角和平行关系,结合三角形全等来解题。
过平行四边形对称中心的任一直线等分平行四边形的面积及周长。
三、平行四边形的判定
注意:平行四边形的解题方法有很多种,需要根据具体情况进行选择。
中考数学复习《多边形与平行四边形》

证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
多边形及平行四边形的性质

专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。
组成多边形的各条线段叫做多边形的边。
边数为n的多边形叫n边形(n为正整数,且n≥3)。
2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。
多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。
3.四边形的内角和等于360o。
n边形的内角和为(n-2)×180o(n≥3)。
任何多边形的外角和为360o。
【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。
3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。
4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。
【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。
中考复习第24课时多边形与平行四边形课件

称图形,边数为偶数的正多边形也是 中心对称 图形. 3. 平面图形的密铺: (1)密铺的条件:围绕一个点拼在一起的所有角度之和为 360° . (2)常见的密铺图形:等边三角形,正方形,正六边形.
考点聚焦 豫考探究 当堂检测
第24课时┃ 多边形与平行四边形
考点2 平行四边形的性质
1.已知平行四边形 ABCD 中,∠B=4∠A,则∠C=( B ) A.18° A.4 B.36° B.12 C.72° C.24 D.144° D.28 2.已知▱ABCD 的周长为 32,AB=4,则 BC=( B ) 3.在平行四边形 ABCD 中,AB=3 cm,BC=5 cm,对角线 AC, BD 相交于点 O,则 OA 的取值范围是( C ) A.3 cm<OA<5 cm C.1 cm<OA<4 cm
中,AB=AC,D,A,E三点都在直线m上,并 且有∠BDA=∠AEC=∠BAC=α,其中α为任 意锐角或钝角.请问结论DE=BD+CE是否成 立?如成立,请你给出证明;若不成立,请说 明理由.
考点聚焦 豫考探究 当堂检测
第24课时┃ 多边形与平行四边形
(3)拓展与应用:如图③,D,E是D,A, E三点所在直线m上的两动点(D,A,E三点互 不重合),点F为∠BAC平分线上的一点,且 △ABF和△ACF均为等边三角形,连接BD, CE,若∠BDA=∠AEC=∠BAC,试判断 △DEF的形状.
考点聚焦
豫考探究
当堂检测
第24课时┃ 多边形与平行四边形
豫 考 探 究
► 热考 平行四边形的判定与性质
例 [2013· 东营] (1)如图24-1①,已知: 在△ABC中,∠BAC=90°,AB=AC,直线 m经过点A,BD⊥直线m,CE⊥直线m,垂足 分别为点D、E.证明:DE=BD+CE. (2)如图②,将(1)中的条件改为在△ABC
2015年中考数学一轮复习系列专题17_多边形与平行四边形

基础知识知识点一:四边形 1、四边形 内角和:360° 外角和:360° 2、多边形内角和公式:() 1802⨯-n 外角和等于360°知识点二:平面图形的密铺:1、定义:用 形状、 大小 完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙 、不重叠 地铺成一起,这就是平面图形的密铺,又称作平面图形的 镶嵌 。
2、密铺的方法:⑴用同一种正多边形密铺,可以用正三角形、正四边形或正六边形。
⑵用两种正多边形密铺,组合方式有: 正三角形 和正四边形 、正三角形 和正六边形、 正四边形 和 正八边形 等几种。
知识点三:平行四边形定义:两组对边分别平行的四边形称为平行四边形 1、平行四边形的性质2、平行四边形的判定重点例题分析例1:七边形外角和为()A.180°B.360°C.900°D.1260°例2:一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7例3:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.例4:如图19-1,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.16例5:在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()答案:D同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.例6:如图19-2,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.答案:证明:(1)∵四边形ABCD是平行四边形,例7:如图19-3,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO 方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.∵MF∥PD,∴EMF∽△EDP,巩固练习1.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直2.如图19-4,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.如图19-5,在平行四边形ABCD中,下列结论中错误的是(),A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD4.如图19-6,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:55.若一个多边形外角和与内角和相等,则这个多边形是边形.6.已知一个多边形的内角和是1080°,这个多边形的边数是.7.已知如图19-7,菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为.8.如图19-8,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.9.如图19-9,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.图19-810.如图19-10,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.中考预测1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD;从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A.3种B.4种C.5种D.6种6.如图19-11,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.正十二边形每个内角的度数为.8.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.9.如图19-12,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.10.如图19-13,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11.如图19-14,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1) 求证:OE=OF(2)若CE=12,CF=5,求OC的长;(3) 当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.12.如图19-15,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案:巩固练习1.C2.D3.D4.A7.58.证明:∵BE∥DF,(2)设AP=x,则PD=4﹣x,中考预测6.D7.150°。
平行四边形和多边形知识点

平行四边形和多边形知识点一、平行四边形知识点。
1. 平行四边形的定义。
- 两组对边分别平行的四边形叫做平行四边形。
用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。
2. 平行四边形的性质。
- 边的性质。
- 平行四边形的对边平行且相等。
即AB = CD,AD = BC;AB∥CD,AD∥BC。
- 角的性质。
- 平行四边形的对角相等,邻角互补。
即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即AO = CO,BO = DO(设AC、BD相交于点O)。
3. 平行四边形的判定。
- 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
4. 平行四边形的面积。
- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。
二、多边形知识点。
1. 多边形的定义。
- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
2. 多边形的内角和。
- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。
- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。
3. 多边形的外角和。
- 多边形的外角和等于360°,与边数无关。
4. 正多边形。
- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。
- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。
第18讲 多边形和平行四边形

第十八讲多边形和平行四边形考点综述:本部分内容是中考热点和重点之一。
它包括:多边形的内角和与外角和的相关知识,平行四边形的性质和判定,以及会利用三角形、四边形或正六边形进行简单的镶嵌设计。
解决此类问题时要注重观察、操作、猜想、探究等活动过程,注重知识的理解和运用。
考点精析考点1 图形的旋转(1)旋转的概念:平面内将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动成为旋转,这个定点称为旋转中心;旋转的角度叫做旋转角。
注意:①旋转只改变图形的位置,不改变图形的大小和形状;②旋转中心只有一个,它可以在图形的内部,也可以在图形的外部,转动的方向有两个,可以顺时针方向,也可以逆时针方向。
③在一个旋转中,图形的每一点(除旋转中心)均沿着相同的方向转动相同的角度。
④在任意一对对应点与旋转中心的连线所成的角都是旋转角。
(2)旋转的基本性质①旋转前后的图形全等;②对应点到旋转中心的距离相等;③每一对对应点与旋转中心的连线所成的角彼此相等。
考点2 中心对称(1)中心对称①概念:两个平面图形,把一个图形绕着某点旋转180°,如果它能够与另一个图形重合,那么这两个图形关于这个点对称。
这个点叫做对称中心,两个图形关于点对称也称中心对称。
这两个图形的对应点叫做关于中心的对称点。
②性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(2)中心呢对称图形概念:把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。
考点3 平行四边形(1)概念:两组对边分别平行的四边形叫做平行四边形。
(2)平行四边形的性质①平行四边形的对边相等;②平行四边形的对角相等;③平行四边形的对角线互相平分。
(3)平行四边形的判定①一组对边平行且相等的四边形是平行四边形;②两条对角线互相平分的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④两组对角分别相等的四边形是平行四边形。
第1课时 多边形与平行四边形

宇轩图书
浙江考情分析
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
【思路点拨】(1)连结 CE,通过证明△ADE≌△CDE, 得到∠EDC=30° ,从而证得 DE∥CB;(2)可通过假设四 边形 DCBE 是平行四边形,求出 AC 与 AB 的数量关系. 解: (1)证明: 如图, 连结 CE, ∵点 E 为 Rt△ABC 的斜边 AB 的中点, 1 ∴CE= AB=AE. 2
宇轩图书
浙江考情分析
浙江三年中考
中考考点梳理
典型考题展示
能力评估检测
方法总结 1.平行四边形的基本性质: (1)平行四边形两组对 边分别平行; (2) 平行四边形的两组对边分别相等; (3)平行四边形的两组对角分别相等;(4)平行四边形的 对角线互相平分;(5)平行四边形是中心对称图形,对 称中心为对角线的交点. 2.利用平行四边形的性质可以解决角相等、线平 行、线段相等等问题.
宇轩图书
浙江考情分析
浙江三年中考
Байду номын сангаас
中考考点梳理
典型考题展示
能力评估检测
6.(2012· 湖州)已知:如图,在▱ABCD 中,点 F 在 AB 的延长线上,且 BF=AB,连结 FD,交 BC 于 点 E. (1)说明△DCE≌△FBE 的理由; (2)若 EC=3,求 AD 的长.
宇轩图书
浙江考情分析
(2013· 湛江)已知一个多边形的内角和是 540° ,则这个多边形是( B A.四边形 C.六边形
【思路点拨】 利用 n 边形的内角和可以表示成 (n-2)· 180° ,列出方程即可求出答案.
宇轩图书
浙江考情分析
浙江三年中考
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多边形与平行四边形考点扫描1、多边形与正多边形的概念、内角和、外角和、性质。
2、平面图形的镶嵌及镶嵌设计。
3、平行四边形的概念与性质,平行四边形判定。
一、选择题1、下列正多边形中,能够铺满地面的正多边形有 ( ) ①正六边形;②正方形;③正五边形;④正三角形; A 1种 B 2种 C 3种 D 4种2、小明用两根同样长的竹棒做对角线,制作四边形的风筝,则该风筝的形状一定是 ( )A 矩形B 正方形C 等腰梯形D 无法确定3、若四边形四角度数之比为1:2:2:3,则此四边形为 ( ) A . 梯形 B 正方形 C 直角梯形 D 平行四边形4、(2007乐山)如图,在平面四边形ABCD 中,CE AB ⊥,E 为垂足.如果125A =o∠,则BCE =∠( )B A.55oB.35oC.25oD.30o5、(2005年天津市)如图,在ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,则该图中的平行四边形的个数共有( )A .7个B .8个C .9个D .11个 6、(2007浙江金华)国家级历史文化名城——金华,风光秀丽,花木葱茏.某广场上一个形状是平行四边形的花坛(如图),分别种有红、黄、蓝、绿、橙、紫6种颜色的花.如果有AB EF DC ∥∥,BC GH AD ∥∥,那么下列说法中错误的是( )CA .红花、绿花种植面积一定相等B .紫花、橙花种植面积一定相等C .红花、蓝花种植面积一定相等D .蓝花、黄花种植面积一定相等 7、(2007山东日照)如图,在周长为20cm 的□ABCD 中,AB ≠AD ,AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )D(A)4cm (B)6cm (C)8cm (D)10cm8、(2005年山东省)如图,在ABCD 中,对角线AC 、BD 相交于点O ,E 、F•是对角线AC 上的两点,AE B C D4题图 黄蓝 紫橙红 绿 AGEDH C FB 第6题 5题图 A BC D O E 7题图8题图9题图A .OE=OFB .DE=BFC .∠ADE=∠CBFD .∠ABE=∠CDF 9、(2006年怀化市)如图,AB=AC ,AD ⊥BC ,AD=BC ,若用剪刀沿AD 剪开,•则最多能拼出不同形状的四边形个数是( )A .2个 B .3个 C .4个 D .5个 10、如图, ABCD 中,点E 、F 分别是AD 、AB 的中点,EF 交AC 于点G ,那么AG :GC 的值为(• ) A .1:2 B .1:3 C .1:4 D .2:311、如图所示,小华从一个圆形场地的A 点出发,沿着与半径OA 夹角为α的方向行走,走到场地边缘B 后,再沿着与半径OB 夹角为α的方向折向行走。
按照这种方式,小华第五次走到场地边缘时处于弧AB 上,此时∠AOE =56°,则α的度数是( )。
A 、52° B 、60°C 、72°D 、76°12.将五边形纸片ABCDE 按如图方式折叠,折痕为AF ,点E 、D 分别落在 E ’、 D ’,已知∠CFD ’等于 ( )A 、31°B 、28°C 、24°D 、22° 13、(2006·长春市)如图,任意四边形ABCD 各边中点分别是E 、F 、G 、H ,若对角线AC 、BD 的长都为20cm ,则四边形EFGH 的周长是( B )A .80cmB .40cmC .20cmD .10cm14、(2006·鸡西市)如图,在矩形ABCD 中,EF∥AB,GH∥BC,EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( ) C(A)3对 (B)4对 (C)5对 (D)6对15、(2006南京市)在平面直角坐标系中,□ABCD 的顶点A 、B 、D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是 ( C )A .(3,7)B .(5,3)C .(7,3)D .(8,2)16、将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( ) A. 2433cm B. 2839cm C. 2439cm D. 28327cm AB C D E 第11题图Oα αE DF D ’E ’A B C 第12题图 10题图13题图14题图15题图二、填空题17.如图,小亮从A 点出发前进10m ,向右转15o,再前进10m ,又向右转15o,…,这样一直走下去,他第一次回到出发点A 时,一共走了 m .18、(2005年西宁市)如图,在ABCD 中,已知对角线AC 和BD 相交于点O ,△AOB•的周长为15,AB=6,那么对角线AC+BD=_______. 19、如图(2),在平行四边形ABCD 中,∠ABC 的角平分线BE 交AD 于E 点AB=5,ED=3,则平行四边形ABCD 的周长为 . 20、(2006资阳市)如图4,已知点E 在面积为4的平行四边形ABCD 的边上运动,使△ABE 的面积为1的点E 共有_______个 . 221、(2006日照市)如图,在平行四边形ABCD 中,AE⊥BC 于E ,AF⊥CD 于F ,∠EAF=45,且AE+AF=22,则平行四边形ABCD 的周长是 .8;22、如图,口ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,则FC 的长为 。
23.右图是用12个全等的等腰梯形镶嵌(密铺)成的图形,这个图形中等腰梯形的上底长与下底长的比是 。
24、如图,菱形ABCD 的对角线的长分别为3和8,P 是对角线AC 上的任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F 。
则阴影部分的面积是_______。
25、(2004重庆)如图平行四边形ABCD 中,M 是BC 的中点,且AM=9,BD=12,AD=10,则该平行四边形的面积是 26、(2007河北) 在□ABCD 中,AB =6,AD =8,∠B 是锐角,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,如果AE 过BC 的中点,则□ABCD 的面积为 .三、解答题27. 问题背景 某课外学习小组在一次学习研讨中,得到如下两个命题: 20题图第23题图 21题图17图A 15°15°19题图D A C BE 18题图 D ABCEF22题图24题图25题图ODC MB A①如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON = 60°,则BM = CN.②如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON = 90°,则BM = CN.然后运用类比的思想提出了如下的命题:③如图3,在正五边形ABCDE中,M、N分别是CD、DE上的④点,BM与CN相交于点O,若∠BON = 108°,则BM = CN.任务要求(1)请你从①、②、③三个命题中选择一个进行证明。
(2)请你继续完成下面的探索:①如图4,在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,问当∠BON等于多少度时,结论BM = CN成立?(不要求证明)②如图5,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,当∠BON = 108°时,请问结论BM = CN是否还成立?若成立,请给予证明;若不成立,请说明理由.28、(2006无锡)图l是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm,有三条边的长是3cm,每个内角都是120º,该六棱校的高为3cm。
现沿它的侧棱剪开展平,得到如图3的平面展开图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为 cm。
(说明:以上裁剪均不计接缝处损耗.)图2NM图1OAB CDONMCBA图4图3NMODEEAB CDONMFCBA图5ODENMCBA29、(2006宿迁市)如图,在□ABCD 中,AE 、BF 分别平分∠DAB 和∠ABC ,交CD 于点E 、F ,AE 、BF 相交于点M .(1)试说明:AE ⊥BF ;(2)判断线段DF 与CE 的大小关系,并予以说明.30、(2007山东青岛)将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF .(1)求证:△ABE ≌△AD ′F ;(2)连接CF ,判断四边形AECF 是什么特殊四边形?证明你的结论.31、(2006江阴市)已知平行四边形ABCD 中,点E 、F 分别在边AB 、BC 上.(1)若AB=10,AB 与CD 间距离为8,AE=EB ,BF=FC ,求△DEF 的面积. (2)若△ADE 、△BEF 、△CDF 的面积分别为5、3、4,求△DEF 的面积.32、如图①,小明在研究正方形ABCD 的有关问题时,得出:“在正方形ABCD 中,如果点E 是CD 的中点,点F 是BC 边上的一点,且∠F AE =∠EAD ,那么EF ⊥AE ”。
他又将“正方形”改为“矩形”、“菱形”和“任意平行四边形”(如图②、图③、图④),其它条件不变,发现仍然有“EF ⊥AE ”结论。
你同意小明的观点吗?若同意,请结合图④加以证明;若不同意,请说明理由。
(第32题图)A A A AB BC CD DE D D EE EF 图① 图② 图③ 图④ M F E D C B A (第27题)A B C DE F D ′33、课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分DAB∠, ︒=∠60DAB, B∠与D∠互补,求证ACADAB3=+.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“DB∠=∠”, 如图2,可证ACADAB3=+.(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)34、(2007佳木斯市)已知四边形ABCD中,AB AD⊥,BC CD⊥,AB BC=,120ABC=o∠,60MBN=o∠,MBN∠绕B点旋转,它的两边分别交AD DC,(或它们的延长线)于E F,.当MBN∠绕B点旋转到AE CF=时(如图1),易证AE CF EF+=.当MBN∠绕B点旋转到AE CF≠时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE CF,,EF又有怎样的数量关系?请写出你的猜想,不需证明.ABC DEFMNABC DEFMNABC DEFN35、如图,过四边形ABCD的四个顶点分别作对角线AC、BD的平行线,所围成的四边形EFGH显然是平行四边形。