初二数学多边形与平行四边形知识点大全
新人教版八年级下册多边形知识点
新人教版八年级下册多边形知识点
1. 多边形的定义和分类
- 多边形是由多个直线段组成的封闭图形。
- 根据边的个数,多边形可以分为三角形、四边形、五边形等
不同类型。
2. 三角形的性质
- 三角形是由三个直线段组成的多边形。
- 三角形的内角和为180度。
- 根据三边的长短,三角形可以分为等边三角形、等腰三角形
和普通三角形。
3. 四边形的性质
- 四边形是由四个直线段组成的多边形。
- 四边形的相对边是平行的。
- 根据角的大小和四边的长短,四边形可以分为矩形、正方形、平行四边形和梯形等不同类型。
4. 五边形及以上多边形
- 五边形是由五个直线段组成的多边形。
- 六边形、七边形、八边形等多边形的性质和分类方法与前述相似。
5. 多边形的周长和面积
- 多边形的周长是各边长的总和。
- 多边形的面积可以通过不同公式计算,例如三角形的面积为底乘以高的一半,而四边形的面积可以通过各边长和对角线的关系计算。
以上是关于新人教版八年级下册多边形知识点的简要介绍,请参考。
如需更详细的内容,请查阅教材或相关参考资料。
中考数学复习《多边形与平行四边形》
证明:∵BD垂直平分AC, ∴AB=BC,AD=DC.
在△ADB与△CDB中,
∴△ADB≌△CDB(SSS). ∴∠BCD=∠BAD. ∵∠BCD=∠ADF,∴∠BAD=∠ADF, ∴AB∥FD. ∵BD⊥AC,AF⊥AC,∴AF∥BD. ∴四边形ABDF是平行四边形.
考题再现
1. (2015广州)下列命题中,真命题的个数有 ( B )
(5)面积:①计算公式:S□=底×高=ah.
②平行四边形的对角线将四边形分成4个面积相等的三角形.
4. 平行四边形的判定 (1)定义法:两组对边分别平行的四边形是平行四边形. (2)两组对角分别相等的四边形是平行四边形. (3)两组对边分别相等的四边形是平行四边形. (4)对角线互相平分的四边形是平行四边形. (5)一组对边平行且相等的四边形是平行四边形. 5. 三角形中位线定理 (1)三角形的中位线:连接三角形两边的中点,所得线段叫 做该三角形的中位线. (2)三角形中位线定理:三角形的中位线平行于第三边并且 等于第三边的一半.
中考考点精讲精练
考点1 多边形的内角和与外角和
考点精讲
【例1】(2016临沂)一个正多边形的内角和为540°,则这
个正多边形的每一个外角等于
()
A. 108°
B. 90°
C. 72° D. 60°
思路点拨:首先设此多边形为n边形,根据题意,得180·
(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,
5. (2016梅州)如图1-4-6-6,平行
四边形ABCD中,BD⊥AD,∠A=45°, E,F分别是AB,CD上的点,且BE=DF, 连接EF交BD于点O. (1)求证:BO=DO; (2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求 AE的长.
(完整版)平行四边形基本知识点总结
(完整版)平行四边形基本知识点总结平行四边形基本知识点总结
平行四边形是一种特殊的四边形,它具有一些独特的性质和特点。
以下是平行四边形的基本知识点总结:
定义
平行四边形是指具有两组对边分别平行的四边形。
性质
1. 对边平行性质:平行四边形的两组对边分别平行。
2. 对角线性质:平行四边形的对角线互相平分,并且长度相等。
3. 内角和性质:平行四边形的内角的和为180度。
4. 外角性质:平行四边形的外角的和为360度。
5. 对边长度性质:平行四边形的对边长度相等。
6. 同底角性质:与平行四边形的一条边相邻,另一条边平行的两个内角相等。
7. 同旁内角性质:与平行四边形的两条边相邻,另一条边平行的两个内角互补。
判定方法
1. 对边平行判定:如果一个四边形中有两组对边分别平行,则它是一个平行四边形。
2. 对角线平分判定:如果一个四边形的对角线互相平分,并且长度相等,则它是一个平行四边形。
特殊类型
1. 矩形:具有四个内角都为90度的平行四边形。
2. 正方形:具有四个内角都为90度,且四条边长度相等的平
行四边形。
相关公式
1. 平行四边形的面积公式:面积 = 底边长度 ×高度。
2. 平行四边形的周长公式:周长= 2 ×(底边长度+ 侧边长度)。
以上是关于平行四边形的基本知识点总结。
通过了解这些性质
和定理,可以更好地理解和解决相关的数学问题。
2015年中考数学一轮复习系列专题17_多边形与平行四边形
基础知识知识点一:四边形 1、四边形 内角和:360° 外角和:360° 2、多边形内角和公式:() 1802⨯-n 外角和等于360°知识点二:平面图形的密铺:1、定义:用 形状、 大小 完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙 、不重叠 地铺成一起,这就是平面图形的密铺,又称作平面图形的 镶嵌 。
2、密铺的方法:⑴用同一种正多边形密铺,可以用正三角形、正四边形或正六边形。
⑵用两种正多边形密铺,组合方式有: 正三角形 和正四边形 、正三角形 和正六边形、 正四边形 和 正八边形 等几种。
知识点三:平行四边形定义:两组对边分别平行的四边形称为平行四边形 1、平行四边形的性质2、平行四边形的判定重点例题分析例1:七边形外角和为()A.180°B.360°C.900°D.1260°例2:一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7例3:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.例4:如图19-1,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.16例5:在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()答案:D同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.例6:如图19-2,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.答案:证明:(1)∵四边形ABCD是平行四边形,例7:如图19-3,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO 方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.∵MF∥PD,∴EMF∽△EDP,巩固练习1.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直2.如图19-4,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.如图19-5,在平行四边形ABCD中,下列结论中错误的是(),A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD4.如图19-6,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:55.若一个多边形外角和与内角和相等,则这个多边形是边形.6.已知一个多边形的内角和是1080°,这个多边形的边数是.7.已知如图19-7,菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为.8.如图19-8,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.9.如图19-9,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.图19-810.如图19-10,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.中考预测1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD;从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A.3种B.4种C.5种D.6种6.如图19-11,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.正十二边形每个内角的度数为.8.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.9.如图19-12,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.10.如图19-13,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11.如图19-14,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1) 求证:OE=OF(2)若CE=12,CF=5,求OC的长;(3) 当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.12.如图19-15,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案:巩固练习1.C2.D3.D4.A7.58.证明:∵BE∥DF,(2)设AP=x,则PD=4﹣x,中考预测6.D7.150°。
平行四边形和多边形知识点
平行四边形和多边形知识点一、平行四边形知识点。
1. 平行四边形的定义。
- 两组对边分别平行的四边形叫做平行四边形。
用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。
2. 平行四边形的性质。
- 边的性质。
- 平行四边形的对边平行且相等。
即AB = CD,AD = BC;AB∥CD,AD∥BC。
- 角的性质。
- 平行四边形的对角相等,邻角互补。
即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。
- 对角线的性质。
- 平行四边形的对角线互相平分。
即AO = CO,BO = DO(设AC、BD相交于点O)。
3. 平行四边形的判定。
- 边的判定。
- 两组对边分别平行的四边形是平行四边形(定义判定)。
- 两组对边分别相等的四边形是平行四边形。
- 一组对边平行且相等的四边形是平行四边形。
- 角的判定。
- 两组对角分别相等的四边形是平行四边形。
- 对角线的判定。
- 对角线互相平分的四边形是平行四边形。
4. 平行四边形的面积。
- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。
二、多边形知识点。
1. 多边形的定义。
- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。
2. 多边形的内角和。
- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。
- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。
3. 多边形的外角和。
- 多边形的外角和等于360°,与边数无关。
4. 正多边形。
- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。
- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。
八年级上册数学多边形知识点总结人教版
八年级上册数学多边形知识点总结
一、多边形的定义
1. 多边形是由三条或更多的线段组成的封闭图形。
2. 多边形的边界是线段,顶点是两条线段相交的地方。
3. 多边形的内角和为(n-2)×180°,其中n为多边形的边数。
二、多边形的分类
1. 根据边数的不同,可以分为三角形、四边形、五边形、六边形等。
2. 根据边是否相等,可以分为等边三角形、等腰梯形、正方形等。
3. 根据角的大小,可以分为锐角三角形、直角三角形、钝角三角形等。
三、多边形的性质
1. 多边形的内角和等于(n-2)×180°。
2. 多边形的外角和等于360°。
3. 多边形的对角线互相平分。
4. 多边形的任意一条对角线都可以将多边形分为两个三角形。
5. 多边形的任意一条中线都可以将多边形分为两个面积相等的部分。
四、多边形的周长和面积
1. 多边形的周长是指多边形所有边的长度之和。
2. 多边形的面积是指多边形内部的所有点到其边界的距离之和。
3. 计算多边形的周长和面积时,需要知道多边形的边长和角度。
五、多边形的相似性
1. 如果两个多边形的形状相同,但大小不同,那么这两个多边形就是相似的。
2. 两个相似的多边形,它们的对应边成比例,对应角相等。
3. 两个相似的多边形,它们的周长比等于对应边的比,面积比等于对应边的平方比。
多边形与平行四边形知识点
多边形与平行四边形一、多边形1.多边形的相关概念1)定义:在平面内,由一些段线首尾顺次相接组成的封闭图形叫做多边形.2)对角线:从n边形的一个顶点可以引(n–3)条对角线,并且这些对角线把多边形分成了(n–2)个三角形;n边形对角线条数为()32n n-.2.多边形的内角和、外角和1)内角和:n边形内角和公式为(n–2)·180°;2)外角和:任意多边形的外角和为360°. 3.正多边形1)定义:各边相等,各角也相等的多边形.2)正n边形的每个内角为()2180nn-⋅,每一个外角为360n︒.3)正n边形有n条对称轴.4)对于正n边形,当n为奇数时,是轴对称图形;当n为偶数时,既是轴对称图形,又是中心对称图形.二、平行四边形的性质1.平行四边形的定义:.2.平行四边形的性质1)边:两组对边分别平行且相等.2)角:对角相等,邻角互补.3)对角线:互相平分.4)对称性:中心对称但不是轴对称.3.注意:利用平行四边形的性质解题时一些常用到的结论和方法:1)平行四边形相邻两边之和等于周长的一半.2)平行四边形中有相等的边、角和平行关系,所以经常需结合三角形全等来解题.3)过平行四边形对称中心的任一直线等分平行四边形的面积及周长.4.平行四边形中的几个解题模型1)如图①,AE平分∠BAD,则可利用平行线的性质结合等角对等边得到△ABE为等腰三角形,即AB=BE.2)平行四边形的一条对角线把其分为两个全等的三角形,如图②中△ABD≌△CDB;两条对角线把平行四边形分为两组全等的三角形,如图②中△AOD≌△COB,△AOB≌△COD;根据平行四边形的中心对称性,可得经过对称中心O的线段与对角线所组成的居于中心对称位置的三角形全等,如图②△AOE≌△COF.图②中阴影部分的面积为平行四边形面积的一半.3)如图③,已知点E为AD上一点,根据平行线间的距离处处相等,可得S△BEC=S△ABE+S△CDE. 4)如图④,根据平行四边形的面积的求法,可得AE·BC=AF·CD.三、平行四边形的判定1)方法一(定义法):两组对边分别平行的四边形是平行四边形.2)方法二:两组对边分别相等的四边形是平行四边形.3)方法三:有一组对边平行且相等的四边形是平行四边形.4)方法四:对角线互相平分的四边形是平行四边形.5)方法五:两组对角分别相等的四边形是平行四边形.四、三角形的中位线1)定义:三角形两边中点的连线叫中位线。
多边形平行四边形矩形菱形正方形的知识点总结
多边形(基础)知识讲解知识点一、多边形的概念1.定义:在平面内不在同一直线上的一些线段首尾顺次相接所组成的封闭图形叫做多边形.其中,各个角相等、各条边相等的多边形叫做正多边形. 2.相关概念:边:组成多边形的各条线段叫做多边形的边. 顶点:每相邻两条边的公共端点叫做多边形的顶点.内角:多边形相邻两边组成的角叫多边形的内角,一个n 边形有n 个内角. 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角. 对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.3. 多边形的分类:画出多边形的任何一边所在的直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形,如果整个多边形不在直线的同一侧,这个多边形叫凹多边形.如图:知识点诠释:(1)正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可; (2)过n 边形的一个顶点可以引(n-3)条对角线,n 边形对角线的条数为()23-n n ;(3)过n 边形的一个顶点的对角线可以把n 边形分成(n-2)个三角形.凸多边形凹多边形知识点二、多边形内角和n边形的内角和为(n-2)·180°(n≥3).知识点诠释:(1)内角和公式的应用:①已知多边形的边数,求其内角和;②已知多边形内角和求其边数;(2)正多边形的每个内角都相等,都等于()nn︒⋅-1802;知识点三、多边形的外角和多边形的外角和为360°.知识点诠释:(1)在一个多边形的每个顶点处各取一个外角,这些外角的和叫做多边形的外角和.n边形的外角和恒等于360°,它与边数的多少无关;(2)正n边形的每个内角都相等,所以它的每个外角都相等,都等于n ︒360;(3)多边形的外角和为360°的作用是:①已知各相等外角度数求多边形边数;②已知多边形边数求各相等外角的度数.平行四边形(基础)知识点一、平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“□ABCD”,读作“平行四边形ABCD”.知识点诠释:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.知识点二、平行四边形的性质1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;3.对角线性质:平行四边形的对角线互相平分;4.平行四边形是中心对称图形,对角线的交点为对称中心.知识点诠释:(1)平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;对角线的性质可以证明线段的相等关系或倍半关系.(2)由于平行四边形的性质内容较多,在使用时根据需要进行选择.(3)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.知识点三、平行四边形的判定1.两组对边分别平行的四边形是平行四边形;2.两组对边分别相等的四边形是平行四边形;3.一组对边平行且相等的四边形是平行四边形;4.两组对角分别相等的四边形是平行四边形;5.对角线互相平分的四边形是平行四边形.知识点诠释:(1)这些判定方法是学习本章的基础,必须牢固掌握,当几种方法都能判定同一个平行四边形时,应选择较简单的方法.(2)这些判定方法既可作为判定平行四边形的依据,也可作为“画平行四边形”的依据.知识点四、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 知识点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可重合的4个小三角形.因而每个小三角形的周长为原三角形周长的21,每个小三角形的面积为原三角形面积的41. (3)三角形的中位线不同于三角形的中线. 知识点五、平行线间的距离 1.两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值. (2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度. 两条平行线间的任何两条平行线段都是相等的. 2.平行四边形的面积:平行四边形的面积=底×高;等底等高的平行四边形面积相等.知识点一、矩形的定义有一个角是直角的平行四边形叫做矩形.知识点诠释:矩形定义的两个要素:①是平行四边形;②有一个角是直角.即矩形首先是一个平行四边形,然后增加一个角是直角这个特殊条件.知识点二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的对角线相等;3.矩形的四个角都是直角;4.矩形是轴对称图形,它有两条对称轴.知识点诠释:(1)矩形是特殊的平行四边形,因而也是中心对称图形.过中心的任意直线可将矩形分成完全全等的两部分.(2)矩形也是轴对称图形,有两条对称轴(分别通过对边中点的直线).对称轴的交点就是对角线的交点(即对称中心).(3)矩形是特殊的平行四边形,矩形具有平行四边形的所有性质,从而矩形的性质可以归结为从三个方面看:从边看,矩形对边平行且相等;从角看,矩形四个角都是直角;从对角线看,矩形的对角线互相平分且相等.知识点三、矩形的判定1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.知识点诠释:在平行四边形的前提下,加上“一个角是直角”或“对角线相等”都能判定平行四边形是矩形.知识点四、直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.知识点诠释:(1)直角三角形斜边上的中线的性质是矩形性质的推论.性质的前提是直角三角形,对一般三角形不可使用.(2)学过的直角三角形主要性质有:①直角三角形两锐角互余;②直角三角形两直角边的平方和等于斜边的平方;③直角三角形中30°所对的直角边等于斜边的一半.(3)性质可以用来解决有关线段倍分的问题.知识点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.知识点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.知识点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 知识点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.知识点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.知识点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.正方形(基础)知识点一、正方形的定义四条边都相等,四个角都是直角的四边形叫做正方形.知识点诠释:既是矩形又是菱形的四边形是正方形,它是特殊的菱形,又是特殊的矩形,更为特殊的平行四边形,正方形是有一组邻边相等的矩形,还是有一个角是直角的菱形.知识点二、正方形的性质正方形具有四边形、平行四边形、矩形、菱形的一切性质.1.边——四边相等、邻边垂直、对边平行;2.角——四个角都是直角;3.对角线——①相等,②互相垂直平分,③每条对角线平分一组对角;4.是轴对称图形,有4条对称轴;又是中心对称图形,两条对角线的交点是对称中心.知识点诠释:正方形具有平行四边形、矩形、菱形的一切性质,其对角线将正方形分为四个等腰直角三角形.知识点三、正方形的判定正方形的判定除定义外,判定思路有两条:或先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).知识点四、特殊平行四边形之间的关系或者可表示为:知识点五、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.知识点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.梯形(基础)知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:方法作法图形目的平移平移一腰过一顶点作一腰的平行线分解成一个平行四边形和一个三角形过一腰中点作另一腰的平行线构造出一个平行四边形和一对全等的三角形平移对角线过一顶点作一条对角线的平行线构造出平行四边形和一个面积与梯形相等的三角形作高过一底边的端点作另一底边的垂线构造出一个矩形和两个直角三角形;特别对于等腰梯形,两个直角三角形全等延长延长两腰延长梯形的两腰使其交于一点构成两个形状相同的三角形延长顶点和一腰中点的连线连接一顶点和一腰的中点并延长与底边相交构造一对全等的三角形,将梯形作等积变换知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.。
2024年中考数学一轮复习考点17 多边形与平行四边形(精讲)
考点17.多边形与平行四边形(精讲)【命题趋势】多边形与平行四边形是历年中考考查重点,年年都会考查,分值为10分左右,预计2024年各地中考还将出现,并且在选择、填空题中考查多边形的内角和、平行四边形性质和判定、与三角形中位线有关计算的可能性比较大。
中考数学中,对平行四边形的单独考察难度一般不大,一般和三角形全等(相似)、函数、解直角三角形等综合考查的可能性比较大,对于本考点内容,要注重基础,反复练习,灵活运用。
【知识清单】1:多边形的相关概念(☆☆)1)多边形的定义:在平面中,由一些线段首尾顺次相接组成的封闭图形叫做多边形。
2)多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
3)多边形对角线条数:从n边形的一个顶点可以引(n-3)条对角线,并且这些对角线把多边形分成了(n-2)个三角形,n边形的对角线条数为()32n n-。
4)多边形内角和定理:n边形的内角和为(n−2)∙180°(n≥3)。
5)多边形外角和定理:任意多边形的外角和等于360°,与多边形的形状和边数无关。
6)正多边形的定义:各角相等,各边相等的多边形叫做正多边形。
7)平面镶嵌(密铺)的条件:在同一顶点内的几个角的和等于360°;所有正多边形中,单独使用其中一种能够进行密铺(镶嵌)的只有正三角形、正方形、正六边形。
如果选用多种,则需要满足:(1)边长相等;(2)选用正多边形若干个内角的和恰好等于360°。
2:平行四边形的性质与判定(☆☆☆)1)平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2)平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”.3)平行四边形的性质:(1)两组对边平行且相等;(2)对角相等、邻角互补;(3)对角线互相平分;(4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。
中考总复习:多边形与平行四边形--知识讲解(基础)
中考总复习:多边形与平行四边形--知识讲解(基础)【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】 B.类型二:平行四边形及其他知识的综合运用3.如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=3 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF ∥AO ,且PF=12AO , ∵PF ⊥BD ,∴∠PFD=90°, ∴∠AOD=∠PFD=90°,又∵PE ⊥AC ,∴∠AEP=90°,∴∠AOD=∠AEP ,∴PE ∥OD ,∵点P 是AD 的中点,∴PE 是△AOD 的中位线,∴PE=12OD , ∵PE=PF ,∴AO=OD ,且AO ⊥OD ,∴平行四边形ABCD 是正方形,设BC=x ,则x+12x ,∵ -4,∴x , 解得x=4,即BC=4.【总结升华】 本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD 是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M (-2,-1),且P (-1,-2)是双曲线上的一点,Q 为坐标平面上的一动点,PA ⊥x 轴,QB ⊥y 轴,垂足分别为A 、B .(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,是否可以使△OBQ 与△OAP 面积相等?(3)如图2,点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。
多边形与平行四边形知识点归纳
第 部分 四边形第一单元第1课时 多边形与平行四边形二、知识梳理(一) 多边形1.多边形的概念:(1)多边形:在平面内,由若干条不在同一直线上 的线段首尾顺次相连接组成的封闭图形叫做多边形。
(2)正多边形:在平面内,各内角 都相等, 各边 也都相等的多边形叫正多边形。
各角相等的多边形不一定是正多边形,如矩形;各边相等的多边形不一定是正多边形,如菱形。
正多边形都是轴对称图形,边数为偶数的正多边形是中心对称图形。
2.多边形的内角和与外角和:(1)内角和:n 边形的内角和等于(n ─2)∙180 ;正n 边形的一个内角等于nn180)2( .(2)外角和:多边形的外角和等于360°.(注:多边形的外角和是定值,与边数无关). 3.多边形的对角线:(1)概念:在多边形中,连接 互不相邻 的两个顶点的线段叫做多边形的对角线. (2) n 边形有2)3( n n 条对角线 4.平面图形的镶嵌:(1)概念:用形状 、大小 完全相同的一种或几种 平面图形 进行拼接,彼此之间不留空隙、不重叠地铺成一片,就是平面图形的 镶嵌 . (2)镶嵌的条件:在同一顶点的几个角的和等于360°. (二) 平行四边形1.平行四边形的概念: 两组对边分别平行 的四边形是平行四边形。
2.平行四边形的性质:(1)边:平行四边形的两组对边分别 平行且相等 . (2)角:平行四边形的对角 相等 ,邻角 互补 。
图1图2图4 (3)对角线:平行四边形的对角线 互相平分 。
(4)平行四边形对称性:平行四边形是中心对称图形,其对称中心是 对角线交点 ;经过对称中心的任意一条直线将平行四边形面积平分. 3.平行四边形的判定方法:(1)边:①两组对边分别 平行 的四边形是平行四边形(平行四边形的概念);②一组对边 平行且相等 的四边形是开行四边形; ③两组对边分别 相等 的四边形是平行四边形.(2)角:两组对角分别 相等 的四边形是平行四边形. (3)对角线:对角线 互相平分 的四边形是平行四边形. 4.平行四边形面积:平行四边形面积=底×高.三、课堂训练考查目标:多边形的内角和与外角和 1.已知一个多边形的内角和是外角和的23,则这个多边形的边数是 5 . [举一反三]一个多边形的内角和是720°,则这个多有的边数为 6 . [举一反三]矩形的外角和等于 360° 考查目标:正多边形的概念2.一个正多边形的每一个外角都是40°,这个多边形的边数是 9 .[举一反三]一个正多边形的一个内角是144°,它是一个 10 边形. 考查目标:平面图形的镶嵌3.下列多边形中,不能单独铺满地面的是( C ) (A )正三角形 (B )正方形 (C )正五边形 (D )正六边形[举一反三]现有四种地砖,它们的形状分别为正三角形、正方形、正六边形、正八边形,且它们的边长都相等,同时选择其中两种地砖密铺地面.选择的方式有( B ) (A )2种 (B )3种 (C )4种 (D )5种 考查目标:平行四边形的性质4.如图1.在□ABCD 中,过点C 的直线CE ⊥AB .垂足为E ,若∠EAD =53°,则∠BCE 的度数为( B )(A )53° (B )37° (C )47° (D )123°[举一反三] 如图2.在□ABCD 中,对角线AC 、BD 相交于点O ,且AB ≠AD ,则下列式子不正确的是( A )(A )AC ⊥BD (B )AB =CD (C )BO =OD (D )∠BAD =∠BCD5.如图3.在□ABCD 中,AC 平分∠DAB ,AB =3.则□ABCD 的周长( C ) (A )6 (B )9 (C )12 (D )15图5图5 第3题第6题第7题[举一反三]如图4在□ABCD 中,已知AB =6cm ,AD =8cm , DE 平分∠ADC 交BC 边于点E ,则BE 等于( A )(A )2cm (B )4cm (C )6cm (D )8cm 考查目标:平行四边形的判定6.不能判定一个四边形是平行四边形的条件是( B )(A )两组对边分别平行 (B )一组对边平行另一组对边相等 (C )一组对边平等且相等 (D )两组对边分别相等 [举一反三]在四边形ABCD 中,已知AB =CD ,再添加一个条件:_AD =BC (答案不唯一)______,使四边形ABCD 成为平行四边形 考查目标:平行四边形的面积 7.平行四边形花坛的底是6m ,高是4m ,则它的面积是 24cm 2[举一反三].如图5,A 、B 、C 为一个平行四边形的三个顶点, 且A 、B 、C 三点的坐标分别为(3,3)、(6,4)、(4、6).(1)请直接写出这个平行四边形的第四个顶点的坐标;(2)求此平行四边形的面积. 解:(1)第四个顶点的坐标为(7,7)或(5,1)或(1,5)(2)把⊿ABC 补成正方形,面积为9,减去三个小直角三角形 的面积可得S ⊿ABC =4,∴平行四边形的面积为8 【达标训练】1.(2013.长沙市)下列多边形中,内角和与外角和相等的是( A ) .(A )四边形 (B )五边形 (C )六边形 (D )八边形 2.(2013.梅州市)已知一个多边形的内角和小于它的外角和.则这个多边形的边数是( A ) (A )3 (B )4 (C )5 (D )63.(2013.襄阳市)如图□ABCD 的对角线相交于点O ,且AB =5, ⊿OCD 的周长为23,则□ABCD 的两条对角线的和是( C ) (A )18 (B )28 (C )36 (D )464.(2013.杭州市)在□ABCD 中,下列结论一定正确的是( B ) .(A )AC ⊥BD (B )∠A +∠B =180° (C )AB =CD (D )∠A ≠∠C5.(2011.泰州)四边形ABCD 中,对角线AC 、BD 相交于点O .给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有( C ) (A )1组 (B )2组 (C )3组 (D )4组6.(2013.江西省)如图. □ABCD 与□DCEF 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 25° .7.(2013.安徽省)如图.P 为平行四边形ABCD 边AD 上一点,E 、F 分别为PB 、PC 的中点.⊿PEF 、⊿PDC 、⊿P AB 的面积分别为S 、S 1、S 2.若S =2.则S 1+S 2= 8 .8.(2013.烟台市)如图.□ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BC =12,则⊿DOE 的周长为 15 .C 9.(2013.北京市)如图.在□ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE、CF.(1)求证:四边形CEDF是平行四边形.(2)若AB=4,AD=6,∠B=60°.求DE的长答案:(1)证明:在□ABCD中AD∥BC,AD=BC.∵F是AD的中点,∴DF=12AD.又∵CE=12BC,∴DF=CE且DF∥CE,∴四边形CEDF为平行四边形.(2)解:过点D作DH⊥BE于H,在□ABCD,AB∥CD.∵∠B=60°,∴∠DCE=60°.∵AB=4,∴CD=4.∴在Rt⊿CDH中,CH=12CD=2,DH=32.在□CEDF中,CE=DF=12AD=3,∴EH=CE-CH=3-2=1.在Rt⊿DHE中,DE=22HEDH =221)32( =13.10.(2011.常德)如图.已知四边形ABCD是平行四边形(1)求证:⊿MEF∽⊿MBA(2)若AF、BE分别是∠DAB和∠CBA的平分线,求证DF=EC.【答案】(1)证明:在□ABCD中,∵CD∥AB,∴∠MEF=∠MBA,∠MFE=∠MAB,∴⊿MEF∽⊿MBA.(2)证明:在□ABCD中,CD∥AB,∠DF A=∠F AB,又∵AF是∠DAB的平分线,∴∠DAF=∠F AB∴∠DAF=∠DF A,∴AD=DF,同理可得EC=BC,∵在□ABCD中,AD=BC,∴DF=EC.。
中考知识点梳理-多边形与平行四边形思维导图-多边形的内角和、外角
第五单元四边形
第19讲多边形与平行四边形
,每一个外角为
利用平行四边形的性
质解题时的一些常用
到的结论和方法:
(1)平行四边形相邻
两边之和等于周长的
一半.
(2)平行四边形中有
相等的边、角和平行
关系,所以经常需结
合三角形全等来解题.
(3)过平行四边形对
称中心的任一直线等
分平行四边形的面积
及周长.
例:
如图,□ABCD中,
EF过对角线的交点
O,AB=4,AD=3,
OF=1.3,则四边形
BCEF的周长为9.6.
:平行四边形的判定
例:如图四边形
ABCD的对角线相交
于点O,AO=CO,请
你添加一个条件
BO=DO或AD∥BC
或AB∥CD(只添加
一个即可),使四边形
ABCD为平行四边形.。
初二数学八下平行四边形所有知识点总结和常考题型练习题
平行四边形知识点一、四边形相关1、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的外角和定理:。
推论:多边形的内角和定理:多边形的外角和定理:。
2、多边形的对角线条数的计算公式设多边形的边数为n ,则多边形的对角线条数为___________。
二、平行四边形1.定义: 2.平行四边形的性质: 平行四边形的有关性质和判定都是从 边、角、对角线 三个方面的特征进行简述的.(1)角:(2)边:(3)对角线:(4)面积:①_________________; ②平行四边形的对角线将四边形分成_____个面积相等的三角形.3.平行四边形的判别方法三、矩形1. 矩形定义:2. 矩形性质3. 矩形的判定:4. 矩形的面积四、菱形 1. 菱形定义:2. 菱形性质3. 菱形的判定:.4. 菱形的面积五、正方形1. 正方形定义:它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形。
2. 正方形性质3. 正方形的判定:4. 正方形的面积平行四边形练习2.一只因损坏而倾斜的椅子,从背后看到的形状如图,其中两组对边的平行关系没有发生变化,若∠1=75°,则∠2的大小是( )A .75º B.115º C.65º D.105ºA BDO C C DB A O 12(第2题图) 第3题图 第4题图B (第7题图)3.如图3,在□ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,▱ABCD 的周长是在14,则DM 等于)是( )6.过□ABCD 对角线交点O 作直线m ,分别交直线AB 于点E ,交直线CD 于点F ,若AB=4,AE=6,则DF 的长是 .7. 如图7,□ABCD 中,∠ABC=60°,E 、F 分别在CD 、BC 的延长线上,AE∥BD,EF⊥BC ,DF=2,则EF= .8. 在□ABCD 中,AD=BD ,BE 是AD 边上的高,∠EBD=20°,则∠A 的度数为 .9. 在□ABCD 中,AB <BC ,已知∠B=30°,AB=2,将△ABC 沿AC 翻折至△AB ′C ,使点B ′落在□ABCD 所在的平面内,连接B ′D .若△AB ′D 是直角三角形,则BC 的长为.10.如图,已知:□ABCD 中,∠BCD 的平分线CE 交AD 于点E ,∠ABC 的平分线BG 交CE 于点F ,交AD 于点G .求证:AE=DG .11.如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE=∠BAD ,AE ⊥AC .(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB=5,AD=6,求AC 的长.C . 36D . 3613.如图,将矩形纸带ABCD ,沿EF 折叠后,C 、D 两点分别落在C ′、D′的位置,经测量得∠EFB=65°,第12题图 第14题图 第5题图 第13题图 第15题图A B C DEF G14.如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则的16.如图,已知在梯形ABCD 中,AD ∥BC ,BC=2AD ,如果对角线AC 与BD 相交于点O ,△AOB 、△BOC 、△COD 、△DOA 的面积分别记作S 1、S 2、S 3、S 4,那么下列结论中,不正确的是( )A .S 1=S 3B .S 2=2S 4C .S 2=2S 1 D.S 1•S 3=S 2•S 417.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE=1,F 为AB 上一点,AF=2,P 为AC 上一点,则PF+PE 的最小值为 .18.已知:如图,在长方形ABCD 中,AB=4,AD=6.延长BC 到点E ,使CE=2,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 的运动时间为t 秒,当t 的值为 或 秒时.△ABP 和△DCE 全等.19.已知,如图,在四边形ABCD 中,AB∥CD,E ,F 为对角线AC 上两点,且AE=CF ,DF∥BE,AC平分∠BAD.求证:四边形ABCD 为菱形.20.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD 是一个筝形,其中AB=CB ,AD=CD .对角线AC ,BD 相交于点O ,OE⊥AB,OF⊥CB,垂足分别是E ,F .求证OE=OF .21. 如图1,点O 是正方形ABCD 两对角线的交点,分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,第17题图 第16题图 第18题图然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.22. 如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,(1)求证:四边形AECF为平行四边形;(2)若△AEP是等边三角形,连结BP,求证:△APB≌△EPC;(3)若矩形ABCD的边AB=6,BC=4,求△CPF的面积.。
初二数学几何知识点归纳有哪些
数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。
为了帮助大家更好的学习初二数学几何,下面是分享给大家的初二数学几何知识点,希望大家喜欢!初二数学几何知识点一四边形含多边形知识点、概念总结一、平行四边形的定义、性质及判定1.两组对边平行的四边形是平行四边形。
2.性质:1平行四边形的对边相等且平行2平行四边形的对角相等,邻角互补3平行四边形的对角线互相平分3.判定:1两组对边分别平行的四边形是平行四边形2两组对边分别相等的四边形是平行四边形3一组对边平行且相等的四边形是平行四边形4两组对角分别相等的四边形是平行四边形5对角线互相平分的四边形是平行四边形4.对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:1有一个角是直角的平行四边形叫做矩形2有三个角是直角的四边形是矩形3两条对角线相等的平行四边形是矩形4.对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定1.定义:有一组邻边相等的平行四边形叫做菱形1菱形的四条边都相等2菱形的对角线互相垂直,并且每一条对角线平分一组对角3菱形被两条对角线分成四个全等的直角三角形4菱形的面积等于两条对角线长的积的一半2.菱=争6n、6分别为对角线长3.判定:1有一组邻边相等的平行四边形叫做菱形2四条边都相等的四边形是菱形3对角线互相垂直的平行四边形是菱形4.对称性:菱形是轴对称图形也是中心对称图形四、正方形定义、性质及判定1.定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2.性质:1正方形四个角都是直角,四条边都相等2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角3正方形的一条对角线把正方形分成两个全等的等腰直角三角形4正方形的对角线与边的夹角是45°5正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形3.判定:1先判定一个四边形是矩形,再判定出有一组邻边相等2先判定一个四边形是菱形,再判定出有一个角是直角4.对称性:正方形是轴对称图形也是中心对称图形五、梯形的定义、等腰梯形的性质及判定1.定义:一组对边平行,另一组对边不平行的四边形是梯形两腰相等的梯形是等腰梯形一腰垂直于底的梯形是直角梯形2.等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等3.等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形4.对称性:等腰梯形是轴对称图形六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
人教版初中数学中考复习一轮复习-多边形和平行四边形(知识点+中考真题)
(1) 平行四边形的对边平行且相等. (2) 平行四边形的邻角互补,对角相.等.
推论:夹在两条平行线间的 平行线段 相等. (3) 平行四边形的对角线互相平分 .
(4)若一直线过平行四边形两对角线的交点, 则: 则二等这分条此直平线行被四一边组形对的边面截积下的线段以对角线的交点为中点,并且这两条直.线
是 中心 对称图形.②正n边形有 n 条对称轴 .
3.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全 覆盖 ,叫做用多边形
覆盖平面(或平面镶嵌).平面镶嵌的条件:当围绕一点拼在一起的几个多边形的内
角和为 360° 时,可以平面镶嵌.
知识点梳理——平行四边形
1.平行四边形的概念: 两组对边分别平行的四边形叫做平行.四边形
【解答】证明:∵DE=DC,∴∠DEC=∠C. ∵∠B=∠C, ∴∠B=∠DEC, ∴ AB∥BE, ∵AD∥BC, ∴四边形ABED是平行四边形. ∴AD=BE.
14.(10分)(2021•怀化)已知:如图,四边形ABCD为平行四边形,点E、 A、C、F在同一直线上,AE=CF. 求证:(1)△ADE≌△CBF;
C ∠D=58°,则∠AEC的大小是( )
A.61° B.109° C.119° D.122°
典型例题
7.(2021•恩施州)如图,在▱ABCD中,AB=13,AD=5,
AC⊥BC,则▱ABCD的面积为( B )
A.30 B.60
C.65 D.
典型例题
8.(2021·安顺、贵阳) 如图,在▱ABCD中,∠ABC的平分线交AD于点E,
形的边数是
.
2.(2020•陕西12/25)如图,在正五边形ABCDE中,DM是边CD的延长线,连接BD ,则∠BDM的度数是 .
八年级(下)数学 同步讲义 多边形和平行四边形(解析版)
多边形是四边形章节第一节的内容,主要讲解的是多边形的内角和及外角和与边数之间的关系,比较基础,题目相对较简单.平行四边形是特殊的四边形的基础内容,奠定了特殊的四边形的基础,题型比较灵活,综合性也比较强,是综合证明题及计算题的理论依据,为进一步学习特殊的平行四边形打好基础.1、由平面内不在同一直线上的一些线段首尾顺次联结所组成的封闭图形叫做多边形.2、组成多边形的每一条线段叫做多边形的边;相邻的两条线段的公共端点叫做多边形的顶点.3、多边形相邻两边所在的射线组成的角叫做多边形的内角.4、联结多边形的两个不相邻顶点的线段,叫做多边形的对角线.5、对于一个多边形,画出它的任意一边所在的直线,如果其余各边都在这条直线的一侧,那么这个多边形叫做凸多边形;否则叫做凹多边形.6、多边形内角和定理:n边形的内角和等于(2)180n-⋅︒.7、由多边形的一个内角的一边和另一边的反向延长线组成的角,叫做多边形的外角.8、对多边形的每一个内角,从与它相邻的两个外角中取一个,这样取得的所有外角的和,叫做多边形的外角和.9、多边形的外角和等于360°.多边形及平行四边形的性质内容分析知识结构模块一:多边形知识精讲2 / 21【例1】 (1)从五边形的一个顶点出发,可画出__________条对角线;(2)从一个多边形内的一点出发,分别联结各个顶点,可得出6个三角形,这个多 边形共有__________条对角线. 【答案】(1)2;(2)20.【解析】(1)多边形的一个顶点可以画()3n -条对角线,所以是5-3=2条.(2)由题意知,一个多边形可以切割成()2n -个三角形,则()2n -=6,由多边形的对角线条数公式()32n n -,可知这个多边形共有()883202⨯-=条对角线.【总结】考察多边形对角线的概念及条数公式.【例2】 四边形的内角和为( )A .90°B .180°C .360°D .720° 【答案】C【解析】四边形可以分割成两个三角形,所以内角和是360°.也可以通过多边形内角和 定理来计算:()1802n -. 【总结】考察多边形的内角和定理.【例3】 一个多边形的内角和是720°,这个多边形的边数是( )A .4B .5C .6D .7 【答案】C【解析】多边形内角和定理是:()1802n -,所以720°=()1802n -,解得6n =. 【总结】考察多边形的内角和定理的应用.例题解析【例4】 如果一个四边形的四个内角的度数之比为1:2:3:4,那么这个四边形的最大内角的度数是__________. 【答案】144°.【解析】四边形的内角和为360°,由题意可设四个内角度数分别为,2,3,4x x x x ,列方 程234360x x x x +++=,解得:36x =,所以最大内角4144x =. 【总结】考查多边形的内角和定理的应用.【例5】 已知一个多边形的内角和是外角和的8倍,且这个多边形的每个内角都相等,求这个多边形的边数与每个内角的度数. 【答案】边数是18,每个内角的度数为160°.【解析】因为多边形的外角都是360°,所以这个多边形的内角和为360°×8=2880°,又因为多边形的内角和公式是()1802n -,所以()1802n -=2880°,解得:18n =. 因为每个内角都相等,所以每个内角度数为2880°÷18=160°. 【总结】考察多边形内角和外角的应用.【例6】 一个多边形除了一个内角外,其余各内角的和为2750°,这个内角是多少度? 这个多边形有几条边? 【答案】18【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()275018022750180n -+,解此不等式地17.2718.27n ,n 为边数只能取正整数,所以18n =. 【总结】考察多边形内角和的应用.4 / 21【例7】 某人从点A 出发,沿直线前进100米后向左转30°,在沿着直线前进100米,又 向左转,...,照这样下去,他第一次回到出发点A 时,一共走了多少米. 【答案】1200米.【解析】由题意知A 回到出发点时,所走轨迹是一个正多边形,由多边形的外交和是360°, 所以360°÷30°=12次,所以共走了12个100米,一共走了12×100=1200米. 【总结】考察多边形外角和的应用.【例8】 在四边形ABCD 中,∠A =80°,∠B 和∠C 的外角分别为105°和32°,求∠D 的度数. 【答案】57°【解析】多边形外角和为360°,由题意知∠A 的外角为180°-80°=100°,所以∠D 的 外角为360°-100°-105°-32°=123°,对应的∠D=180°-123°=57°. 【总结】考察多边形外角和的应用.【例9】 设一个凸多边形,除去一个内角以外,其他内角的和为2570°,则该内角为( )A 、 40°B 、90°C 、120°D 、130° 【答案】D【解析】设有n 条边,则内角和为()1802n -.因为多边形每个内角度数都大于0°小于180°.所以()257018022570180n <-<+,解此不等式地16.2717.27n ,n 为边数只能取正整数,所以17n =,所以这个内角为()()1802-2570180172-2570130n -=⨯-=. 【总结】考察多边形内角和的应用.【例10】 一个凸n 边形的内角中,恰好有4个钝角,则n 的最大值是( ) A 、5 B 、6 C 、7 D 、8 【答案】C【解析】因为多边形的内角和是180°的倍数,所以内角中有4个钝角,就会有()4n -个直角或者锐角,可知内角和一定小于4×180°+()490n -⨯, 即()1802n -< 4×180°+()490n -⨯,解得:8n <,最大值是7. 【总结】考察多边形内角和的应用.【例11】 已知,一个多边形的内角和与一个外角的差为1560°,求这个多边形的边数和这个外角的度数. 【答案】11,60°.【解析】多边形的内角和为()1802n -,则这个外角为()18021560n --,由于每一个外角都大于0°且小于180°,所以()018021560180n <--<,解得10.711.7n <<, 所以11n =,这个外角的度数为()()18021560180112156060n --=⨯--=. 【总结】考察多边形内外角和的应用.【例12】 已知凸n 边形12n A A A ⋅⋅⋅(n >4)的所有内角都是15°的整数倍,且123285A A A ∠+∠+∠=︒,那么n =__________.【答案】10【解析】多边形的内角和为()1802n -,其余共()3n -个内角和为()1802-285n -,可知()18022850n -->是15°的倍数也是()3n -的倍数, ()()18022851803105105718015123333n n n n n n ----⎛⎫==-=- ⎪----⎝⎭, 可知31n -=或者37n -=,又n >4,所以10n =. 【总结】考察多边形内外角和的应用.模块二:平行四边形的概念及性质6 / 211、 两组对边分别平行的四边形叫做平行四边形.平行四边形用符号“”表示,如:ABCD . 2、平行四边形性质定理①如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等. 简述为:平行四边形的对边相等.②如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等. 简述为:平行四边形的对角相等.③如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分. 简述为:平行四边形的两条对角线互相平分.④平行四边形是中心对称图形,对称中心是两条对角线的交点. ⑤推论:夹在两条平行线间的平行线段相等.【例13】 在平行四边形ABCD 中,若∠A 的度数比∠B 大20°,则∠B 的度数为__________,∠C 的度数为__________.【答案】80°,100°.【解析】因为是平行四边形,所以180A B ∠+∠=,又-20A B ∠∠=,解得80100B A ∠=∠=;.因为平行四边形的对角相等,所以100C ∠=. 【总结】考察平行四边形的内角和及内角的性质.知识精讲例题解析【例14】 在ABCD 中,E 在BC 上,AB =BE ,∠AEB =70°,求平行四边形ABCD 各内角的度数.【答案】40140B D BAD BCD ∠=∠=∠=∠=;.【解析】由题知,在∆BAE 中,70BEA BAE ∠=∠=,所以40B D ∠==∠, 18040140BAD BCD ∠=∠=-=.【总结】考察平行四边形的内角度数相关知识点.【例15】 如果ABCD 的周长是50cm ,AB 比BC 短3cm ,那么CD 、DA 分别是多少. 【答案】1411DA cm CD cm ==,.【解析】平行四边形的对边平行且相等,所以50225AB BC cm +=÷=,又-3BC AB cm =, 解得1411.BC cm AB cm ==,又因为,AB CD BC AD ==,所以14,11DA cm CD cm ==. 【总结】考察平行四边形的边的相关知识点.【例16】 如图,在△ABC 中,AB =AC =8,D 是底边BC 上一点,DE //AC ,DF //AB ,求四边形AEDF 的周长. 【答案】16【解析】由题意知DE //AC ,所以C EDB ∠=∠,又因为C B ∠=∠ 所以B EDB ∠=∠,得EB=ED .同理可得FD=FC ,所以四边形AEDF 的周长=AE +ED +DF+AF =AE +EB +CF +AF =AB +AC =8+8=16.【总结】考察平行四边形的边的平行性质的应用.【例17】 如图,已知平行四边形ABCD 中,∠ABC 的平分线交AD 于点E ,且AE =2,DE =1,则平行四边形ABCD 的周长等于__________.【答案】10【解析】由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠,即AE =AB =2. 因为AD=AE+ED =2+1=3,所以平行四边形ABCD 的周长等于=2×(AB +AD )=2×(2+3)=10. 【总结】考察平行四边形的综合应用.AB CDEABCDEF8 / 21【例18】 如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,已知△BOC 的周长比△AOB 的周长多8cm ,求ABCD 各边的长. 【答案】AB =CD =11cm ,BC =AD =19cm . 【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =8,又因为2×(AB +BC )=60,所以得BC +AB =30,BC -AB =8, 所以AB =CD =11cm ,BC =AD =19cm . 【总结】考察平行四边形的性质的综合应用.【例19】 平行四边形的一角平分线分对边为3和4两部分,这个平行四边形的周长为________.【难度】★★ 【答案】20或22.【解析】如图由题意可分两种情况:1、AE=3,ED =4,由题知ABE CBE ∠=∠.因为AD//BC ,所以AEB CBE ∠=∠,得ABE AEB ∠=∠, 即AE =AB=3,因为AD=AE+ED =3+4=7,所以这个平行四边形的周长为2×(AB +AD )=2×(3+7)=20; 2、AE =4,ED =3,同理可求这个平行四边形的周长为22; 故该平行四边形的周长为20或22.【总结】考察平行四边形的性质及等腰三角形的综合应用.ABCDOABCD E【例20】 如图,在ABCD 中,AE ⊥BC 、AF ⊥CD ,垂足分别为E 、F ,若∠ B =50°, 求∠F AE 的度数. 【答案】50゜.【解析】因为平行四边形的对角相等,所以50B D ∠=∠=.因为平形四边形的邻角互补,所以18050130BAD ∠=-=.在直角三角形BAE 中,40BAE ∠=,同理40DAF ∠=, 所以130404050FAE ∠=--=.【总结】考察平行四边形的性质及直角三角形的性质的综合应用.【例21】 平面直角坐标系中,ABCD 的对角线交点在坐标原点,若A 点的坐标为(4,3),B 点的坐标为(-2,2),求点C 、D 的坐标及ABCD 的周长.【答案】C (-4,-3);D (2,-2);229237+.【解析】因为平行四边形的对角线相互平分,所以可知C 点的坐标为(-4,-3),D 点的坐标为(2,-2).由两点间的距离公式可得()()22423237AB =++-=,()()22242329CB =-+++=,所以ABCD 的周长=2×(3729+)=237229+.【总结】考察平行四边形的性质的在平面直角坐标系中的运用.【例22】 在平面直角坐标系内,平行四边形ABCD 的边AB //x 轴,B 、D 均在y 轴上,又知道A 、D 在直线y =2x -1上,且B 点坐标(0,1),求A 、C 、D 的坐标及ABCDS. 【答案】A (1 ,1);C (-1 ,-1);D (0 ,-1);ABCDS =2.【解析】由题意知A 的纵坐标与B 相同,把y =1代入y =2x -1中,可得A 的横坐标为1,所以A 的坐标为A (1 ,1),D 为y =2x -1与y 轴的交点, 所以D 为(0,-1).因为AB //CD 且AB =CD , 所以C 的坐标为(-1,-1).从而可求CD=1,BD=2,且BD ⊥CD ,所以ABCDS=122CD BD ⨯=⨯=.【总结】考察平行四边形的性质在平面直角坐标系中的应用. 【例23】 如图,已知ABCD 的面积为24,求阴影部分的面积.【答案】12.【解析】因为平行四边形是中心对称图形,可知每一个小阴A BCDEFABCDO xy10 / 21影三角形都有一个小空白三角形与之完全重合. 所以阴影部分的面积是24.【总结】考察平行四边形的中心对称性的运用.【例24】 已知在ABCD 中,M 是AD 的中点,AD =2AB ,求∠BMC 的度数. 【答案】90°.【解析】由题知AM=AB=CD=MD ,设2ABC D ∠=∠=Φ.则可得ABM MBC AMB ∠=∠=∠=Φ,在三角形DMC 中,DM=DC ,2D ∠=Φ, 可得90DMC ∠=-Φ,所以()180-1809090BMC AMB DMC ∠=∠-∠=-Φ--Φ=. 【总结】考察平行四边形的性质的综合应用.【例25】 如图所示,平行四边形ABCD 中,G 、H 是对角线BD 上两点,DG =BH ,DF =BE . 求证:∠GEH =∠GFH .【解析】在DFG ∆与BHE ∆中,因为DG =BH ,DF =BE ,CDB DBA ∠=∠,所以DFG ∆≅BHE ∆,所以GF=EH ,DGF BHE ∠=∠.从而FGH GHE ∠=∠,所以GF//EH . 又因为GF=EH ,所以四边形GEHF 为平行四边形,从而∠GEH=∠GFH . 【总结】考察平行四边形的性质的应用.A BCDE F GH【例26】 如图所示,在平行四边形ABCD 中,DE ⊥AB 于点E ,BM =MC =DC . 求证:∠EMC =3∠BEM .【解析】延长EM 交DC 于F 点,易证()BEM CMF AAS ∆≅∆,则MF=ME ,即M 为EF 中点. 设BEM ϕ∠=,则F BEM ϕ∠=∠=,在直角∆FED 中,ME=MF=MD ,得CDM F ϕ∠=∠=, 所以2EMD F MDC ϕ∠=∠+∠=,又因为CM=CD , 所以MDC CMD ϕ∠=∠=,综上,233EMC CMD EMD BEM ϕϕϕ∠=∠+∠=+==∠. 【总结】考察平行四边形的性质及角的和差的综合应用.【例27】 如图所示,在平行四边形ABCD 中,直线FH 与AB 、CD 相交,过点A 、D 、C 、 B 向直线FH 作垂线,垂足分别为点G 、F 、E 、H ,求证:AG DF CE BH -=-.【解析】过A 点做AM ⊥DF ,易证四边形AMFG 为矩形,则AG=MF ,所以AG -DF=MF -DF=-DM . 同理过C 点做CN ⊥BH ,可证CE=HN , CE -BH=HN -BH=-BN .因为BH//AG ,所以GAB HBA ∠=∠, 可知90HBA BAM GAB BAM ∠+∠=∠+∠=, 又180DAB ABC ∠+∠=,所以()1809090DAM HBC DAB ABC MAB HBA ∠+∠=∠+∠-∠+∠=-=. 可得90DAM HBC ∠+∠=,从而得DAM BCN ∠=∠(同角的余角相等). 在∆ADM 和∆CNB 中,AD=BC ,90AMD CNB ∠=∠=︒,又DAM BCN ∠=∠得()AMD CNB AAS ∆≅∆,可得DM=BN ,从而-DM=-BN , 再得CE -BH=AG -DF .【总结】考察平行四边形的性质的应用.ABCDEMABCDEF G H12 / 21【例28】 如图,在平行四边形ABCD 中,∠BAD = 60°,AE 平分∠BAD 交CD 于E ,BF平分∠ABC 交CD 于F ,又AE 与BF 交于O ,已知OB =OE =1.试求平行四边形ABCD 的面积.【答案】1+3.【解析】因为AE 、BF 分别平分BAD ∠和ABC ∠,又BAD ∠+ABC ∠=180°,所以AOB ∠=90°. 在直角∆AOB 中,∠BAO=12∠BAD = 30°,OB =1,得OA =3.连接BE ,可求得∆BAE 的面积=()1113131222AE OB +⨯⨯=⨯+⨯=,所以平行四边形ABCD 的面积=2×BAE S ∆=13+. 【总结】考察平行四边形的性质的综合应用.【例29】 在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 的延长线于点F .(1)在图1中证明CE =CF ;(2)若∠ABC =90°,G 是EF 的中点(如图2),求∠BDG 的度数. 【答案】(1)见解析;(2)45°.【解析】(1)因为AE 平分∠BAD ,所以∠BAE=∠BEA .又因为AB//CD ,所以∠F =∠BAE =∠BEA=∠CEF ,从而得CE=CF ;(2)连接BG 、CG .由(1)可知CE=CF ,且BE=BA=DC 又∠ECF=90°. 因为G 是EF 的中点,CG=EG,∠F=∠FEC=45°,从而∠GCD=∠GEB =135°. 综上,可得()BEG DCG SAS ∆≅∆,可得GB=GD ,∠DGC=∠BGE , 所以90°=∠BGD=∠DGA+∠BGE=∠DGA+∠DGC , 从而知∆GBD 是等腰直角三角形,所以∠BDG=45°. 【总结】考察平行四边形的性质的综合应用.ABCD EF O【习题1】 如果一个凸多边形的每一个内角都等于140°,那么,这个多边形共有多少条对角线?【答案】27【解析】由题意知共有360°÷(180°-140°)=9条边,根据多边形的对角线条数公式()()39932722n n -⨯-==条.【总结】考察多边形的基本知识的应用.【习题2】 两个凸多边形,它们的边长之和为12,对角线的条数之和为19,那么这两个多边形的边数分别是_________和_________.【答案】5,7【解析】设这两个凸多边形的边数分别为x 条和y 条,可列方程x +y =12,192)3(2)3(=-+-y y x x ,解得:12125577x x y y ==⎧⎧⎨⎨==⎩⎩. 所以这两个多边形的边数分别是5和7. 【总结】考察多边形的基础知识的应用.【习题3】 若一个多边形的内角和是它外角和的3倍,求这个多边形的边数. 【答案】8【解析】由题可知该多边形的内角和为360°×3=1080°()1802n =-,解得8n =. 【总结】考察多边形的内外角和的应用.随堂检测14 / 21【习题4】 如图, ABCD 中,AF ∶FC =1∶2,S △ADF =6cm 2,则ABCDS 的值为________.【答案】36cm 2.【解析】∆AFD 与∆CFD 同高,所以面积比等于底之比 AF :FC =1:2,所以22612DFC S cm ∆=⨯=, 则261218DAC S cm ∆=+=,所以2=218=36ABCDScm ⨯.【总结】考察平行四边边形的性质的应用.【习题5】 如图,ABCD 中,BE ⊥CD ,BF ⊥AD ,垂足分别为E 、F ,若CE =2,DF =1,∠EBF =60°,则ABCD 的面积为________.【答案】3【解析】因为360-D DFB DEB EBF ∠=∠-∠-∠=360°-90°-90°-60°=120°,所以180********A D ∠=-∠=-=,又60A C ∠=∠=,在直角∆BEC 中, 60C ∠=,EC =2,可得BC=4,BE =3AD=BC =4,所以AF=AD -DF =4-1=3. 在在直角∆AFB 中,60A ∠=,AF =3,可得AB =6. 综上平行四边形的面积为623123⨯ 【总结】考察平行四边形的性质的应用.【习题6】 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD于点M ,若△CDM 周长为a ,那么□ABCD 的周长为 ________.【答案】2a .【解析】由平行四边形的性质可知OA=OC ,又MO=MO ,MOA MOC ∠=∠,所以∆MOA ≅∆MOC ,所以MA=MC .所以∆CMD 的周长=a =CM+DM+CD=AM+DM+CD=AD+CD , 所以平行四边形的周长=()2AD 2CD a +=.【总结】考察平行四边形的对角线互相平分的性质的应用.20︒20︒20︒M【习题7】 在平面直角坐标系内,平行四边形ABCD 的边AB //y 轴,B 、D 均在x 轴上,又知道A 、D 在直线y =2x +1上,且B 点 坐标(1,0),求A 、C 、D 的坐标及ABCDS和ABCDC.【答案】A (1,3);C (12-,-3);D (12-,0);ABCD S=92; ABCDC=635+.【解析】由题可知A 的横坐标为1,代入y =2x +1可得A 的纵坐标为3,所以A (1,3).因为D 为y =2x +1与x 轴的交点,所以可得D (12-,0).因为ABCD 为平行四边形,CD=AB =3,所以C (12-,3).所以ABCD S =193122AB BD ⎛⎫⨯=⨯+= ⎪⎝⎭,2222333522AD AB BD ⎛⎫=+=+= ⎪⎝⎭,则ABCD C=()322356352AB AD ⎛⎫+=⨯+=+⎪⎝⎭. 【总结】考察平行四边形的性质的综合应用.【习题8】 如图所示,小华从M 点出发,沿直线前进10米后,向左转20°,再沿直线前进10米后,又向左转20°,…这样走下去,他第一次回到出发地M 时,行走了多少米?【答案】180米【解析】多边形的外角和为360°,每个外角为20°,可知共有360°÷20°=18条边,多边形的周长为18×10=180米. 【总结】考察多边形的外角的应用.【习题9】 如图,已知M 是 ABCD 边AB 的中点,CM 交BD 于点E ,且DE =2BE ,则图中阴影部分面积与 ABCD 的面积之比为( ) A .16 B .14 C .13 D .512【答案】C【解析】设∆BEM 的面积为x ,因为DE=2BE ,所以∆DEM 的面积为2x .在梯形MBCD 中,2DEM CBE S S x ∆∆==,同理可知24DCE BCE S S x ∆∆==.AB CDO xy16 / 21GDBCA FE则162DCB BCE DCE S S S x ∆∆∆=+==平行四边形ABCD 的面积,可知平行四边形的面积是 12x ,阴影部分的面积是224x x x +=,所以阴影部分面积与 ABCD 的面积之比为41123x x =,选C . 【总结】考察平行四边形有关的面积的综合应用.【习题10】 如图,已知ABCD 是平行四边形,E 在AC 上,AE =2EC ,F 在AB 上,BF =2AF ,如果△BEF 的面积为22cm ,则□ABCD 的面积是________. 【答案】92cm .【解析】∆BEF 和∆AEF 的面积之比等于BF:AF =2:1,所以2221AEF BEF S S ∆∆=÷=÷=2cm . ∆BEA 和∆BEC 的面积之比等于AE:EC=2:1,所以2(21)2 1.5BEC BEA S S ∆∆=÷=+÷=, 从而得21.53 4.5ABC EBC ABE S S S cm ∆∆∆=+=+=, 从而得平行四边形的面积=222 4.59ABC S cm ∆=⨯=. 【总结】考察平行四边形有关的面积的综合应用.【习题11】 如图,□ABCD 中,∠ABC =75°,AF ⊥BC 于F ,AF 交BD 于E ,若DE =2AB ,则∠AED 的大小是( ) A .60°B . 65°C .70°D .75°【答案】B【解析】作DE 的中点M ,连结AM设∠ADB =Φ=∠DBC ,则∠ABD =75°-Φ,取DE 中点M ,连接AM .可知∠DAF =∠AFC =90°.在直角三角形ADE 中,MA =12DE =AB ,所以∠AEB =∠ABD =75°-Φ,又因为∠AEB =∠ADM +∠DAM =Φ+Φ=2Φ, 所以2Φ=75°-Φ,解得:Φ=25°,所以∠AED =90°-∠ADM =90°-25°=65°. 【总结】考察平行四边形的性质的综合应用.【习题12】 如图,在□ABCD 中,E 为AD 上一点,F 为AB 上一点,且BE =DF ,BE与DF 交于点G ,求证:∠BGC =∠DGC . 【答案】见解析【解析】作CM ⊥BE 、CN ⊥DF ,垂足分别为M 、N 连接CF 、CE .DABC E由题意知CFD CBE S S ∆∆==12平行四边形的面积, 即1122BE CM DF CN ⨯⨯=⨯⨯,因为BE=DF ,所以CM=CN , 在∠DGB 中,CM=CN ,可知CG 是∠DGB 的角平分线,即∠BGC =∠DGC . 【总结】考察平行四边的性质与角平分线性质的综合应用.【习题13】 如图,在凸五边形ABCDE 中,已知AB ∥CE ,BC ∥AD ,BE ∥CD ,DE ∥AC ,求证:AE ∥BD . 【答案】见解析【解析】因为BC//AD ,所以ABD ACD S S ∆∆=.因为AC//DE ,所以ACD ACE S S ∆∆=.因为AB//CE ,所以ACE BCE S S ∆∆=. 因为CD//BE ,所以BCE BDE S S ∆∆=,所以ABD EBD S S ∆∆=,所以AE//BD . 【总结】考察同底等高的两个三角形面积相等的综合运用.【作业1】 若一个多边形的内角和是外角和的5倍,则这个多边形的边数是( ) A .9 B .10C .11D .12【答案】D【解析】由题知这个多边形的内角为180°×(2n -)=360°×5,12n =. 【总结】考察多边形的基础知识.课后作业18 / 21α110°106°78°【作业2】 如果一个凸多边形的每一个内角都等于120°,那么这个多边形共有多少条对角线? 【答案】9条.【解析】由题意知共有360°÷(180°-120°)=6条边,根据多边形的对角线条数公式()()3663922n n -⨯-==条.【总结】考察多边形的基础知识.【作业3】 如右图中的α∠的度数为__________. 【答案】106°【解析】由题知()10678180110360α∠+++-=.α∠=106°. 【总结】考察多边形的内角的应用.【作业4】 如图,ABFE 和CDEF 是完全相同的两个平行四边形,图中和△AOE 面积相同的三角形(△AOE 除外)有________个. 【答案】5【解析】由平行四边形的性质知AOE COF AOF COE DOE BOF S S S S S S ∆∆∆∆∆∆===== 【总结】考察平行四边形的面积综合应用.【作业5】 已知某平行四边形的周长为80mm ,它被两条对角线分成四个三角形,其中相 邻两个三角形的周长差为12mm ,求这个平行四边形一组邻边的长. 【答案】26mm ,14mm .【解析】由题知8BOC AOB C C ∆∆-=,且OA =OC ,即BO +OC +BC -(BO +OA +AB )=BC -AB =12mm .又因为2×(AB+BC)=80mm ,所以得BC+AB =40mm ,BC -AB=12mm , 所以AB =CD =26mm ,BC =AD =14mm .【总结】考察平行四边形的对角线互相平分的综合应用.【作业6】 如图所示,平行四边形ABCD 中,对角线AC 、BD 交于O ,AC =a +b ,BD =a +c , AB =m ,求m 的取值范围.【答案】22b c b cm a -+<<+. A B CD E F OABCDO【解析】过C 作DB 的平行线交AB 的延长线于G ,可知四边形CDBG 为平行四边形. 可知CD =AB =BG ,BD=CG ,在∆ACG 中,AC+CG>AG=2AB , AC -CG<AG=2AB即2a b a c m +++>,()-2a b a c m ++<,得22b c b cm a -+<<+. 【总结】考察平行四边形的性质的综合应用【作业7】 若凸多边形的n 个内角与某个外角之和为1350°,求n 的值 . 【答案】9【解析】设这个外角为Φ(0180<Φ<),由题知()135018021710-180n n Φ=--=, 则01710-180180n <<,得8.59.5n <<,所以n =9. 【总结】考察多边形内外角的综合应用.【作业8】 已知:AB ∥EF ∥GH ,BE =GC .求证:AB =EF +GH . 【答案】见解析.【解析】过B 点做BO//AF ,交FE 的延长线于O . 可知四边形ABOF 为平行四边形,所以AB=FO , ∠ABO=∠FEG=∠HGC=∠BEO ,∠A=∠GHC=∠O .在∆BEO 和∆GHC 中,∠BEO=∠HGC ,BE=GC ,∠GHC=∠O , 所以∆BEO ≅∆GHC ,则EO=HG ,所以AB=FO=FE+EO=FE+GH . 【总结】考察平行四边形的性质与全等的综合应用.ABCF EH G20 / 21【作业9】 已知:CD 为Rt △ABC 斜边AB 上的高,AE 平分∠BAC 交CD 于E ,EF ∥AB , 交BC 于点F .求证:CE =BF . 【答案】见解析.【解析】分别过E 、F 做EM ⊥CA 、FN ⊥AB ,垂足分别为M 、N .因为AE 平分∠BAC ,所以ED =EM .因为EF //AB ,所以ED =FN ,所以EM =FN . 在直角△ABC 中,CD ⊥AB ,∠CAB +∠ACD =∠CAB +∠B =90゜.所以∠ACD =∠B . 在∆CEM 和∆BFN 中,EM =FN ,∠ACD =∠B ,∠CME =∠BNF =90゜ 所以∆CEM ≅∆BFN ,从而得CE =BF . 【总结】考察平行四边形的性质与全等的综合应用.【作业10】 如图所示,平行四边形ABCD 中,EF ∥BD ,EF 分别交AB 、AD 的延长线 于E 、F ,交BC 、CD 于G 、H .求证:EG =FH . 【答案】见解析.【解析】因为EF ∥BD ,DC ∥BA ,所以DH =BE ,∠DHF =∠E ,∠EGB =∠F 所以∆DHF ≅∆BGE ,所以EG =FH . 【总结】考察平行四边形的性质的综合应用.【作业11】 如图所示,平行四边形ABCD 中,P 为△BAD 内一点,若2PAB S =△,5PCB S =△, 求PBD S △的值. 【答案】3【解析】由题知1S S 2PAD PBC ∆∆+=平行四边形的面积=ABD APD ABP PBD S S S S ∆∆∆∆=++ 可得:S PBC ∆=ABP PBD S S ∆∆+,可得523PBD CBP ABP S S S ∆∆∆=-=-=. 【总结】考察平行四边形的面积的综合应用.A BCDEFABCDEFGHA B CDP【作业12】 如图所示,平行四边形ABCD 中,点E 在BC 边上,点F 在CD 边上, EF ∥BD .求证:ABE ADF S S =△△.【答案】见解析【解析】由CD //AB ,AD //BC ,EF //BD ,得:A ADF BDF BDE B E S S S S ∆∆∆∆===. 【总结】考察平行四边形的面积的综合应用.A BC D E F。
中考数学常考易错点:44《多边形与平行四边形》
4.4多边形与平行四边形易错清单1.平行四边形的性质.【例1】(2014·湖南益阳)如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件不能是().A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2【解析】 A.当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B. 当BE=FD,∵平行四边形ABCD,∴AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C. 当BF=ED,∴BE=DF.∵平行四边形ABCD,∴AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D. 当∠1=∠2,∵平行四边形ABCD,∴AB=CD,∠ABE=∠CDF.在△ABE和△CDF中,∴△ABE≌△CDF(ASA),故此选项错误;【答案】 A【误区纠错】此题主要考查了平行四边形的性质以及全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题关键.注意平行四边形对角线互相平分.2.平行四边形的判定.【例2】(2014·云南)如图,在平行四边形ABCD中,∠C=60°,M,N分别是AD,BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.【解析】(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.【答案】(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC.∵M,N分别是AD,BC的中点,∴MD=NC,MD∥NC.∴四边形MNCD是平行四边形.(2)如图,连接ND,∵四边形MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN.∵BC=2CD,∠C=60°,∴△NCD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC.∵DN=NC=NB,【误区纠错】本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.但是要注意一组对边平行,另一组对边相等的四边形不一定是平行四边形,例如等腰梯形.名师点拨1.掌握多边形内角和公式(n-2)·180°及外角和均为360°这个特征.2.会利用平行四边形性质定理及判定定理,能说出两者的区别与联系.名师点拨1.掌握多边形内角和公式(n-2)·180°及外角和均为360°这个特征.2.会利用平行四边形性质定理及判定定理,能说出两者的区别与联系.提分策略1.综合运用平行四边形的性质与判定解决问题.由于平行四边形的对边相等、对角相等,所以利用平行四边形的性质可以探索与证明边角相等的问题,解决此类问题时,一般先判定一个四边形是平行四边形,然后利用其性质得到结论.【例1】如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC.又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【答案】(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD.在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD-AE=BC-CF,即DE=BF.∴四边形BFDE是平行四边形.2.平行四边形的判定.利用平行四边形的性质研究三角形的全等,以及等腰三角形的判定等,也可为了证明一个四边形是平行四边形,先证明两个三角形全等,为进一步证明四边形是平行四边形提供条件.【例2】(2014·甘肃白银)D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.如图,当点O 在△ABC的内部时,求证:四边形DGFE是平行四边形.【解析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC 且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可; 【答案】∵D,E分别是AB,AC边的中点,∴DE∥GF且DE=GF.∴四边形DEFG是平行四边形.3.研究一种或多种正多边形的镶嵌问题.(1)判断一种正多边形能否进行平面镶嵌,可以用360°除以这个正多边形的内角度数,如果能整除则这个正多边形能进行平面镶嵌.【例3】在下列图形中,单独选用该图形不能进行平面镶嵌的是().A. 正三角形B. 正六边形C. 正方形D. 正五边形【解析】 A. 正三角形的一个内角度数为180°-360°÷3=60°,是360°的因数,能镶嵌平面,不符合题意;B. 正六边形的一个内角度数为180°-360°÷6=120°,是360°的因数,能镶嵌平面,不符合题意;C. 正方形的一个内角度数为180°-360°÷4=90°,是360°的因数,能镶嵌平面,不符合题意;D. 正五边形的一个内角度数为180°-360°÷5=108°,不是360°的因数,不能镶嵌平面,符合题意.【答案】 D(2)判断不同种的正多边形能否进行平面镶嵌,先求出这些正多边形的内角,建立方程,然后判断这个方程是否有正整数解.【例4】现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是().A. 正方形和正六边形B. 正三角形和正方形C. 正三角形和正六边形D. 正三角形、正方形和正六边形【解析】A选项,正方形和正六边形内角分别为90°,120°,由于90m+120n=360,得,显然n取任何正整数时,m不能得正整数,故不能铺满;B选项,正三角形和正方形内角分别为60°,90°,由于60°×3+90°×2=360°,故能铺满;C选项,正三角形和正六边形内角分别为60°,120°,由于60°×2+120°×2=360°,故能铺满;D选项,正三角形、正方形和正六边形内角分别为60°,90°,120°,由于60°+90°+90°+120°=360°,故能铺满.【答案】 A专项训练一、选择题1. (2014·北京房山区二模)若正多边形的一个外角是36°,则该正多边形为().A. 正八边形B. 正九边形C. 正十边形D. 正十一边形2. (2014·江苏常州模拟)已知四边形ABCD是平行四边形,下列结论中不正确的是().A. 当AB=BC时,它是菱形B. 当AC⊥BD时,它是菱形C. 当∠ABC=90°时,它是矩形D. 当AC=BD时,它是正方形3.(2014·四川乐山模拟)如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2,若S=2,则S1+S2等于().A. 4B. 6C. 8D. 不能确定(第3题)(第4题)4. (2014·安徽安庆外国语学校模拟)如图,已知点O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=70°,则∠DAO+∠DCO的大小是().A. 70°B. 110°C. 140°D. 150°5. (2013·浙江海宁部分学校联考)如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是().A. 110°B. 108°C. 105°D. 100°(第5题)(第7题)6. (2013·内蒙古赤峰模拟)一个多边形的内角和比外角和的3倍少180°,则该多边形的边数是().A. 5B. 6C. 7D. 87. (2013·云南宣威模拟)如图,在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且AE=BE,则∠BCD的度数为().A. 30°B. 60°或120°C. 60°D. 120°8. (2013·陕西西安模拟)下面给出了四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是().A. 1∶2∶3∶4B. 2∶3∶2∶3C. 2∶3∶4∶5D. 1∶2∶2∶3二、填空题9. (2014·江苏南京二模)如图,将正五边形ABCDE的点C固定,并依顺时针方向旋转,若要使得新五边形A'B'C'D'E'的顶点D'落在直线BC上,则至少要旋转°.(第9题)10.(2013·湖北枣阳模拟)已知▱ABCD的周长为28,自顶点A作AE⊥DC,垂足为E,AF⊥BC,垂足为F.若AE=3,AF=4,则CE-CF= .三、解答题11. (2014·上海长宁区二模)如图,在△ABC中,∠ACB=90°,D,E分别是BC,BA的中点,连接DE,F在DE延长线上,且AF=AE.求证:四边形ACEF是平行四边形.(第11题)12.(2014·广东深圳模拟)已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于点E,CF⊥BD于点F,(1)求证:△AED≌△CFB;(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长?(第12题)13. (2013·浙江湖州中考模拟试卷)如图,▱ABCD中,E,F分别是边AB,CD的中点.(1)求证:四边形EBFD是平行四边形;(2)若AD=AE=2,∠A=60°,求四边形EBFD的周长.(第13题)参考答案与解析1. C[解析]多边形外角和均等于360°,2. D[解析] 当AC=BD时,它是矩形..因为对角线相等的平行四边形是矩形.3. C[解析]∵△PEF的面积是2,∴△PBC的面积是2×4=8.∵△PDC,△PAB的面积和等于△PBC的面积均是平行四边形面积的一半,∴S1+S2=8.4.D[解析]∠BAO+∠BCO=∠ABO+∠CBO=∠ABC=70°,所以∠BOA+∠BOC=360°-140°=220°,所以∠AOC=140°.5. D[解析]本题考查多边形的内角和,外角和的概念.6. C[解析](n-2)×180°=3×360°-180°.7. D[解析]△ABE是等边三角形.8. B[解析]平行四边形对角相等.9. 72°[解析]正五边形每个内角相等,均等于, 至少旋转180°-108°=72°后新五边形A'B'C'D'E'的顶点D'落在直线BC上.11.∵∠ACB=90°, E是BA的中点,∴CE=AE=BE.∵AF=AE,∴AF=CE.在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰三角形BEC底边上的中线.∴ED也是等腰三角形BEC的顶角平分线.∴∠1=∠2.∴∠AEC=180°-∠1-∠2=180°-2∠1.∵AF=AE,∴∠F=∠3 .∵∠1=∠3,∴∠1=∠F=∠3.∴在△AEF中,∠FAE=180°-∠3-∠F=180°-2∠1.∴∠AEC=∠F AE,∴CE∥AF.又CE=AF,∴四边形ACEF是平行四边形.(第11题)12. (1)∵平行四边形ABCD,∴AD=BC,AD∥BC.∴∠ADE=∠CBF.又AE⊥BD于点E,CF⊥BD于点F,∴∠AED=∠CFB=90°.∴△AED≌△CFB (AAS) .(2)在Rt△AED中,∵∠ADE=30°,AE=3,∴AD=2AE=2×3=6.∵∠ABC=75°,∠ADB=∠CBD=30°,∴∠ABE=45°.13. (1)在▱ABCD中,AB=CD,AB∥CD.∵E,F分别是AB,CD的中点,∴BE=DF.∴四边形EBFD是平行四边形.(2)∵AD=AE,∠A=60°,∴△ADE是等边三角形.∴DE=AD=2.又BE=AE=2,由(1)知四边形EBFD是平行四边形, ∴四边形EBFD的周长=2(BE+DE)=8.。
数学八下22.1~22.3多边形和平行四边形-知识点
数学八下22.1~22.3多边形和平行四边形-知识点
1、画任意一边所在的直线,其余各边都在这条直线的同一侧,这样的多边形叫做凸多边形,否则,就叫凹多边形。
2、n边形的内角和等于(n-2)×180°;n边形的外角和是一个定值,等于360°。
从n边形的一个顶点出发有(n-3)条对角线,n边形共有2)3
(
n
n
条对角线。
3、平行四边形的性质:①两组对边分别平行,②两组对边分别相等,
③两组对角分别相等,④对角线互相平分,⑤是中心对称图形,且对称中心是对角线的交点。
4、平行四边形的判定:①两组对边分别平行,②两组对边分别相等,
③一组对边平行且相等,④两组对角分别相等,⑤对角线互相平分。
5、矩形的性质:①具有平行四边形的所有性质,②四个角都是直角,③两条对角线相等。
6、矩形的判定:①证三个内角90°,②先证平四,再证一个内角90°,
③先证平四,再证对角线相等。
7、菱形的性质:①具有平行四边形的所有性质,②四条边都相等,③两条对角线互相垂直,且每一条对角线平分一组对角。
8、菱形的判定:①证四条边都相等,②先证平四,再证一组邻边相等,
③先证平四,再证对角线互相垂直。
9、正方形的性质:具有平行四边形、矩形和菱形的所有性质。
10、正方形的判定:①先证矩形,再证含有菱形的特性(邻边相等或对角线互相垂直);②先证菱形,再证含有矩形的特性(有一个内角90°或对角线相等)。
小初高个性化辅导,助你提升学习力! 1。
平行四边形全章知识点总结
平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。
(2)相对角相等:平行四边形的相对角度相等。
(3)对角线互相平分:平行四边形的对角线互相平分。
(4)内角和为180度:平行四边形的所有内角的和等于180度。
3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。
(2)内错角定理:平行线与直线相交时,内错角是相等的。
(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。
(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。
4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。
(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。
(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。
(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。
5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。
(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。
(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。
通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。
掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。
因此,对平行四边形的学习和理解是我们几何学习的重要一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5关 多边形与平行四边形(讲义部分)知识点1 多边形的概念和性质多边形:在平面内,若干条不在同一条直线上的线段首尾顺次相接组成的封闭的图形叫做多边形. 正多边形:多边形中,如果各条边都相等,各个内角都相等,这样的多边形叫做正多边形. 定理1:n 边形的内角和等于2180n -⋅()(n 为不小于3的整数).外角和等于360(n 为不小于3的整数).题型1 多边形内角和【例1】一个多边形截去一个角后,形成另一个多边形的内角和为720︒,那么原多边形的边数为( ) A .5B .5或6C .5或7D .5或6或7【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1, ②只过一个顶点剪,则和原来边数相等, ③按照顶点连线剪,则比原来的边数少1,设内角和为720︒的多边形的边数是n ,则(2)180720n -=,解得:6n =.则原多边形的边数为5或6或7. 故选:D .【点评】本题考查了多边形的内角和定理,理解分三种情况是关键.【例2】一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数和内角和. 【解答】解:设这个多边形的边数为n ,根据题意,得(2)1803360180n -⨯︒=⨯︒-︒,解得7n =.所以这个多边形的内角和为:(72)180900-︒=︒.【点评】本题考查多边形的内角和与外角和定理,任意多边形的外角和都是360︒,与边数无关.【例3】已知一个正多边形相邻的内角比外角大140︒. (1)求这个正多边形的内角与外角的度数; (2)直接写出这个正多边形的边数. 【解答】解:(1)设正多边形的外角为x ︒,则内角为(180)x -︒,由题意,得180140x x --=.解得20x =.∴正多边形的内角为160︒,外角为20︒.(2)这个正多边形的边数为:3602018︒÷︒=.【点评】本题考查多边形的内角和,解题的关键是熟练运用多边形的内角和公式,本题属于基础 题型.【例4】多边形的内角和与某一个外角的度数总和为1350︒. (1)求多边形的边数;(2)此多边形必有一个内角为多少度?【解答】解:设这个外角度数为x ,根据题意,得(2)1801350n x -⨯︒+︒=︒,解得:13501803601710180x n n ︒=︒-︒+︒=︒-︒, 由于0180x <︒<︒,即01710180180n <︒-︒<︒, 解得8.59.5n <<, 所以9n =.可得1350(92)18090x ︒=︒--⨯︒=︒该多边形必有一内角度数1809090︒-︒=︒.【点评】主要考查了多边形的内角和定理.解题的关键是熟记n 边形的内角和为:180(2)n ︒-.【例5】(1)如图,在图1中,互不重叠的三角形共有3个,在图2中,互不重叠的三角形共有5个,在图3中,互不重叠的三角形共有7个,⋯,则在第n 个图形中,互不重叠的三角形共有 个.(用含n 的代数式表示)(2)若在如图4所示的n 边形中,P 是1n A A 边上的点,分别连接2PA 、3PA 、41n PA PA -⋯,得到1n -个互不重叠的三角形.你能否根据这样的划分方法写出n 边形的内角和公式并说明你的理由;(3)反之,若在四边形内部有n 个不同的点,按照(1)中的方法可得k 个互不重叠的三角形,试探究n 与k 的关系. 【解答】解:(1)()21n +个.(2)设n 边形的内角和为k ,则:(1)180180k n =-⨯︒-︒(2)180n =-︒.(3)又设在四边形内部有n 个不同的点,且按(1)中的方法可得k 个互不重叠的三角形,而:四边形的内角和为360︒, 360360180n k ∴+︒=⨯︒, 则:22n k +=.【点评】本题主要考查了多边形的内角与外角,正确读懂题目,理解例题的基本思路是解决本题 的关键. 知识点2 平行四边形1.平行四边形的性质概念:两组对边分别平行的四边形叫做平行四边形。
用“▱ ”表示. 性质:平行四边形对边相等,对角相等. 推论1:夹在两条平行线间的平行线段相等. 推论2:平行线间的距离处处相等. 2. 平行四边形的判定定理1:一组对边平行且相等的四边形是平行四边形. 定理2:两组对边分别相等的四边形是平行四边形. 定理3:对角线互相平分的四边形是平行四边形. 三角形中位线:定理:三角形两边中点连线平行于第三边,并且等于第三边的一半.题型2 平行四边形的性质【例6】某人准备设计平行四边形图案,拟以长为4cm ,5cm ,7cm 的三条线段中的两条为边,另一条为对角线画不同形状的平行四边形,他可以画出形状不同的平行四边形个数为( ) A .1 B .2 C .3 D .4【解答】解:分别以4cm ,5cm 为边,7cm 为对角线;或以4cm ,7cm 为边,5cm 为对角线; 或5cm ,7cm 为边,4cm 为对角线共有三种情况.故选:C .【点评】本题考查了平行四边形的判定,实质上只要三条线段的长符合构成三角形,就可以画不 同形状的平行四边形.【例7】如图,过平行四边形ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的过平行四边形AEMG 的面积1S 与HCFM 的面积2S 的大小关系是()A .12S S >B .12S S =C .12S S <D .不能确定 【解答】解:四边形ABCD 是平行四边形,//EF BC ,//HG AB ,AD BC ∴=,AB CD =,////AB GH CD ,////AD EF BC , ∴四边形HBEM 、GMFD 是平行四边形, 在ABD ∆和CDB ∆中;, AB CD BD DB DA CB =⎧⎪=⎨⎪=⎩, ()ABD CDB SSS ∴∆≅∆,即ABD ∆和CDB ∆的面积相等;同理BEM ∆和MHB ∆的面积相等,GMD ∆和FDM ∆的面积相等, 故四边形AEMG 和四边形HCFM 的面积相等,即12S S =. 故选:B .【点评】本题考查了平行四边形的性质和判定,全等三角形的性质和判定的应用,解此题的关键 是求出ABD ∆和CDB ∆的面积相等,BEP ∆和PGB ∆的面积相等,HPD ∆和FDP ∆的 面积相等,注意:如果两三角形全等,那么这两个三角形的面积相等.【例8】如图, 在周长为20cm 的平行四边形ABCD 中,AB AD ≠,AC ,BD 相交于点O ,OE BD ⊥交AD 于E ,求ABE ∆的周长 .【解答】解:四边形ABCD 是平行四边形, AC ∴、BD 互相平分, O ∴是BD 的中点 . 又OE BD ⊥,OE ∴为线段BD 的中垂线, BE DE ∴=.又ABE ∆的周长AB AE BE =++,ABE ∴∆的周长AB AE DE AB AD =++=+. 又ABCD 的周长为20cm , 10AB AD cm ∴+=ABE ∴∆的周长10cm =.【点评】本题考查了平行四边形的性质 . 平行四边形的对角线互相平分 .【例9】如图,ABC ∆是直角三角形,且90ABC ∠=︒,四边形BCDE 是平行四边形,E 为AC 中点,BD 平分ABC ∠,点F 在AB 上,且BF BC =.求证: (1)DF AE =; (2)DF AC ⊥.【解答】证明:(1)延长DE 交AB 于点G ,连接AD .四边形BCDE 是平行四边形, //ED BC ∴,ED BC =.点E 是AC 的中点,90ABC ∠=︒, AG BG ∴=,DG AB ⊥. AD BD ∴=,BAD ABD ∴∠=∠. BD 平分ABC ∠,45ABD BAD ∴∠=∠=︒,即45BDE ADE ∠=∠=︒. 又BF BC =, BF DE ∴=.∴在AED ∆与DFB ∆中,AD BD ADE DBF ED FB =⎧⎪∠=∠⎨⎪=⎩,()AED DFB SAS ∴∆≅∆,AE DF ∴=,即DF AE =; (2)设AC 与FD 交于点O . 由(1)知,AED DFB ∆≅∆,AED DFB ∴∠=∠, DEO DFG ∴∠=∠.90DFG FDG ∠+∠=︒, 90DEO EDO ∴∠+∠=︒,90EOD ∴∠=︒,即DF AC ⊥.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全 等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰 当的判定条件.题型3 平行四边形的判定【例10】如图,已知://AB CD ,BE AD ⊥,垂足为点E ,CF AD ⊥,垂足为点F ,并且AE DF =. 求证:四边形BECF 是平行四边形.【解答】证明:BE AD ⊥,CF AD ⊥,90AEB DFC ∴∠=∠=︒, //AB CD , A D ∴∠=∠,在AEB ∆与DFC ∆中, AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AEB DFC ASA ∴∆≅∆, BE CF ∴=.BE AD ⊥,CF AD ⊥, //BE CF ∴.∴四边形BECF 是平行四边形.【点评】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边 形是平行四边形.【例11】如图所示,以ABC ∆的三边AB 、BC 、CA 在BC 的同侧作等边ABD ∆、BCE ∆、CAF ∆ 请说明:四边形ADEF 为平行四边形.【解答】证明:BCE ∆、ACF ∆、ABD ∆都是等边三角形,AB AD ∴=,AC CF =,BC CE =,BCE ACF ∠=∠, BCE ACE ACF ACE ∴∠-∠=∠-∠, 即BCA FCE ∠=∠,在BCA ∆和ECF ∆中,BC CE BCA ECF AC CF =⎧⎪∠=∠⎨⎪=⎩,()BCA ECF SAS ∴∆≅∆, AB EF ∴=, AB AD =, AD EF ∴=,同理:BDE BAC ∆≅∆, DE AF ∴=,∴四边形ADEF 是平行四边形.【点评】此题主要考查了等边三角形的性质和平行四边形的判定以及全等三角形的判定与性质, 得出BCA ECF ∆≅∆是解题关键.【例12】如图1,ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH . (1)求证:四边形EGFH 是平行四边形;(2)如图2,若//EF AB ,//GH BC ,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD 面积相等的所有平行四边形(四边形AGHD 除外).【解答】(1)证明:四边形ABCD 是平行四边形,//AD BC ∴,EAO FCO ∴∠=∠,在OAE ∆与OCF ∆中EAO FCO AOE COF OA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩,OAE OCF ∴∆≅∆, OE OF ∴=, 同理OG OH =,∴四边形EGFH 是平行四边形; (2)解:与四边形AGHD 面积相等的所有平行四边形有GBCH ,ABFE ,EFCD ,EGFH ;四边形ABCD 是平行四边形, //AD BC ∴,//AB CD , //EF AB ,//GH BC ,∴四边形GBCH ,ABFE ,EFCD ,EGFH 为平行四边形, EF 过点O ,GH 过点O , OE OF =,OG OH =,GBCH ∴,ABFE ,EFCD ,EGFH ,ACHD 它们面积12ABCD =的面积,∴与四边形AGHD 面积相等的所有平行四边形有GBCH ,ABFE ,EFCD ,EGFH . 【点评】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形 的判定定理是解题的关键.【例13】如图,已知矩形ABCD ,P 、R 分别是BC 和DC 上的点,E 、F 分别是PA ,PR 的中点.如果3DR =,4AD =,则EF 的长为 .【解答】解:四边形ABCD 是矩形,ADR ∴∆是直角三角形, 3DR =,4AD =,5AR ∴=, E 、F 分别是PA ,PR 的中点,115 2.522EF AR ∴==⨯=.故答案为:2.5.【点评】本题属中等难度题目,涉及到矩形的性质,勾股定理的运用及三角形中位线的性质.【例14】如图,在ABC ∆中,E ,F 分别是AB ,BC 的中点,M ,N 是AC 的三等分点,EM ,FN 的延长线相交于点D .求证:四边形ABCD 是平行四边形.【解答】证明:连接BD 交AC 于O ,连结BM ,BN ,如图所示:E 是AB 中点,AM MN =,AE BE ∴=,EM 是ABN ∆的一条中位线, //EM BN ∴,即//MD BN , 同理可证//BM DN ,∴四边形BNDM 是平行四边形. BO OD ∴=,MO ON =, 又AM NC =,AM MO NC ON ∴+=+, 即AO OC =, 又BO OD =,∴四边形ABCD 是平行四边形.【点评】本题考查了平行四边形的判定与性质、三角形中位线定理;熟练掌握三角形中位线定理,证明四边形是平行四边形是解决问题的关键.第5关 多边形与平行四边形(题册部分)【课后练1】一个正多边形的每一个内角为140︒,求它的边数. 【解答】解:18014040︒-︒=︒,360409︒÷︒=. 故它的边数是9.【课后练2】(1)如图1,计算下列五角星图案中五个顶角的度数和.即:求A B C D E ∠+∠+∠+∠+∠的大小.(2)如图2,若五角星的五个顶角的度数相等,求1∠的大小. 【解答】解:(1)如图1,设BD 、AD 与CE 的交点为M 、N ;MBE∆和NAC ∆中,由三角形的外角性质知: DMN B E ∠=∠+∠,DNM A C ∠=∠+∠; DMN ∆中,180DMN DNM D ∠+∠+∠=︒, 故180A B C D E ∠+∠+∠+∠+∠=︒; (2)如图2,五角星的五个顶角的度数相等, ∴3602725︒∠==︒, 11802108∴∠=︒-∠=︒.【课后练3】平行四边形的一个角比它的邻角的 2 倍还大15︒,则相邻两个角为( ) A .30︒,75︒ B .40︒,95︒ C .50︒,115︒ D .55︒,125︒【解答】解:四边形是平行四边形,∴邻角互补,∴设较小角等于x ,则另一个角为:215x +︒, 故215180x x ++︒=︒,解得:55x =︒, 故215125x =︒=︒,即相邻两角为55︒,125︒; 故选:D .【课后练4】如图,在平行四边形ABCD 中,AC ,BD 为对角线,6BC =,BC 边上的高为4,则图中阴影部分的面积为( )A .3B .6C .12D .24【解答】解:通过观察结合平行四边形性质得:164122S =⨯⨯=阴影. 故选:C .【课后练5】ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则图中共有平行四边形的个数是 .【解答】解:图中平行四边形有四边形ABCD ,四边形AECG ,四边形BHDF ,四边形MNQP ,理由:四边形ABCD 是平行四边形(已知),AB CD =,AE EB =,CG GD =, //AE CG ∴,AE CG =,∴四边形AECG 是平行四边形,同法可证四边形BHDF 是平行四边形, //BH DF ∴,//AG EC ,∴四边形MNQP 是平行四边形. 故答案为4.【课后练6】如图,在ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F . (1)求证:ADE BFE ∆≅∆;(2)若DF 平分ADC ∠,连接CE .试判断CE 和DF 的位置关系,并说明理由.【解答】(1)证明:四边形ABCD 是平行四边形,//AD BC ∴.又点F 在CB 的延长线上,//AD CF ∴,12∴∠=∠.点E 是AB 边的中点,AE BE ∴=.在ADE ∆与BFE ∆中,12DEA FEB AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE BFE AAS ∴∆≅∆;(2)解:CE DF ⊥.理由如下:如图,连接CE .由(1)知,ADE BFE ∆≅∆,DE FE ∴=,即点E 是DF 的中点,12∠=∠. DF 平分ADC ∠,13∴∠=∠,32∴∠=∠,CD CF ∴=,CE DF ∴⊥.【课后练7】如图,AD BD =,AE EC =,延长DE 到F ,使E F D E =,连接AF 、FC 、CD ,求证:四边形DBCF 是平行四边形.【解答】证明:AD BD =,AE EC =,//DE BC ∴,AE EC =,EF DE =,∴四边形ADCF 是平行四边形,//AD FC ∴,即//BD FC ,又//DF BC ,∴四边形DBCF 是平行四边形.【课后练8】如图所示,已知AD 是ABC ∆的中线,//DE AB ,且DE AB =,连结AE ,EC ,求证:四边形ADCE 是平行四边形.【解答】证明://DE AB ,且DE AB =,∴四边形ABDE 是平行四边形,AE BD ∴=,//AE BC , AD 是ABC ∆的中线,BD CD ∴=,AE CD ∴=,∴四边形ADCE 是平行四边形.【课后练9】如图,四边形ABCD 对角线交于点O ,且O 为AC 中点,AE CF =,//DF BE ,求证:四边形ABCD 是平行四边形.【解答】证明:O 为AC 中点,OA OC ∴=,AE CF =,OE OF ∴=,//DF BE ,E F ∴∠=∠,在BOE ∆和DOF ∆中,E F OE OFBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()BOE DOF ASA ∴∆≅∆,OB OD ∴=,又OA OC =,∴四边形ABCD 是平行四边形.【课后练10】在ABCD 中,分别以AD 、BC 为边向内作等边ADE ∆和等边BCF ∆,连接BE 、DF .求证:四边形BEDF 是平行四边形.【解答】证明:四边形ABCD 是平行四边形,CD AB ∴=,AD CB =,DAB BCD ∠=∠.又ADE ∆和CBF ∆都是等边三角形,DE BF ∴=,AE CF =.60DAE BCF ∠=∠=︒.DCF BCD BCF ∠=∠-∠,BAE DAB DAE ∠=∠-∠,DCF BAE ∴∠=∠.()DCF BAE SAS ∴∆≅∆.DF BE ∴=.∴四边形BEDF 是平行四边形.【课后练11】已知,如图所示,在ABC ∆中,E 是AB 的中点,CD 平分ACB ∠,AD CD ⊥于点D ,连接ED ,求证:(1)//DE BC ;(2)2DE BC AC =-.【解答】解:(1)延长AD 交BC 于点F , CD 平分ACB ∠,且AD AD ⊥,90CDA CDF ∴∠=∠=︒,ACD FCD ∠=∠,CD CD =, ACD FCD ∴∆≅∆,AC CF ∴=,AD DF =. E 是AB 的中点,DE ∴是ABF ∆的中位线,//DE BC ∴;(2)由(1)知DE 是ABF ∆的中位线,AC CF =,111()()222DE BF BC CF BC AC ∴==-=-, 即2DE BC AC =-.。