高中数学第三章函数的应用3-2函数模型及其应用第2课时预习导航学案新人教A版必修1

合集下载

高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例讲义教案 新人教A版必修1

高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例讲义教案 新人教A版必修1

学习资料3.2。

2 函数模型的应用实例学习目标核心素养1.会利用已知函数模型解决实际问题.(重点) 2.能建立函数模型解决实际问题.(重点、难点)3.了解拟合函数模型并解决实际问题.(重点)通过本节内容的学习,使学生认识函数模型的作用,提升学生数学建模、数据分析的素养.1.常用函数模型常用函数模型(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=ba x+c(a,b,c为常数,b≠0,a>0且a≠1)(4)对数函数模型y=m log a x+n(m,a,n为常数,m≠0,a〉0且a≠1)(5)幂函数模型y=ax n+b(a,b为常数,a≠0)(6)分段函数模型y=错误!思考:解决函数应用问题的基本步骤是什么?提示:利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:1.如表是函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x 45678910y 15171921232527C.指数函数模型D.对数函数模型A[自变量每增加1函数值增加2,函数值的增量是均匀的,故为一次函数模型.故选A。

]2.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量y(只)与引入时间x(年)的关系为y=a log2(x+1),若该动物在引入一年后的数量为100只,则第7年它们发展到()A.300只B.400只C.600只D.700只A[将x=1,y=100代入y=a log2(x+1)得,100=a log2(1+1),解得a=100。

所以x =7时,y=100log2(7+1)=300.]3.据调查,某自行车存车处在某星期日的存车量为2 000辆次,其中变速车存车费是每辆一次0。

8元,普通车存车费是每辆一次0.5元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系式是()A.y=0。

高中数学第三章函数的应用3.2.1函数模型及其应用课堂导学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2.1函数模型及其应用课堂导学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章函数的应用3.2.1 函数模型及其应用课堂导学案新人教A版必修1的全部内容。

3.2。

1 函数模型及其应用课堂导学三点剖析一、常见函数模型【例1】(一次函数模型)某商店出售茶壶和茶杯,茶壶每个定价20元,茶杯每个定价5元,该店推出两种优惠办法:(1)买一个茶壶赠送一个茶杯;(2)按总价的92%付款。

某顾客需购茶壶4个,茶杯若干(不少于4个),若需茶杯x个,付款数为y(元),试分别建立两种优惠办法中y与x的函数关系,并讨论顾客选择哪种优惠方法更合算。

思路分析:本题考查的是建立一次函数模型,并应用一次函数模型解决实际问题的能力.第一种优惠方法中,实际付款是4个茶壶的钱和(x-4)个茶杯的钱.第二种优惠方法只需将货款总数乘以92%,而后再作差比较二者的大小即可。

解:由优惠办法(1)可得函数关系式:y1=20×4+5(x-4)=5x+60(x≥4),由优惠办法(2)可得函数关系式:y2=(5x+4×20)×92%=4.6x+73。

6.比较:y1-y2=0.4x—13。

6(x≥4)。

①当0.4x-13。

6>0,即x>34时,y1>y2,即当购买茶杯个数大于34时,优惠办法(2)合算。

②当0。

4x-13。

6=0,即x=34时,两种优惠办法一样合算.③当0.4x—13。

高中数学第三章函数的应用3.2函数模型及其应用互动课堂学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2函数模型及其应用互动课堂学案新人教A版必修1(2021年整理)

高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A 版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第三章函数的应用3.2 函数模型及其应用互动课堂学案新人教A版必修1的全部内容。

3.2 函数模型应用举例互动课堂疏导引导一、函数的应用1。

数学建模的地位和作用数学来源于生活,又服务于生活。

在生活中的形形色色的数据处理需要数学模型,对于事物的发展和预测也离不开数学模型的建立,所以数学建模是提出问题和解决问题的必由之路.掌握函数的基础知识是学好本节的前提.例如函数概念、指数函数和性质、对数函数和性质.反过来,通过函数建模的学习,又能加深对上述知识的理解和认识,还能提高同学们学习数学的积极性。

在实际建模过程中,要学会化整为零,分步骤、有层次地完成,要求掌握计算器的使用。

2.数学模型的种类第一类是以数学课本上的知识为探究内容.如利用图形计算器展现数学知识的形成过程、知识的应用过程.第二类探究的内容来源于物理、化学等学科。

主要是利用CBL(基于图形计算器的掌上实验室)和各种探讨开展物理和化学实验,对物理现象和化学反应进行观察、收集数据、处理数据,完成定性和定量的分析.第三类探究的内容主要来源于生活,是那些看似与数学无关或与数学有关但关系不明显的问题。

如节约能源(怎样烧开一壶水更省天然气)、储蓄问题(怎样存钱能获得更多利息)、绿化问题(控制栽树和伐树的比例保护环境)、生态问题(草食动物和肉食动物的平衡)等等,这样的问题可以由我们自己发现和提出,也可以由老师提供原始材料,我们对材料进行筛选、组织,选取关键的特征和关系,用数学的语言表达,建立数学模型,利用图形\,计算器对数学模型处理,从而解决问题.3。

高中数学第三章函数的应用3.2.2函数模型的应用实例教案新人教A版必修

高中数学第三章函数的应用3.2.2函数模型的应用实例教案新人教A版必修

3.2.2 函数模型的应用实例1.知识与技能(1)能利用给定函数模型解决实际问题;(2)通过给出数据进行分析,画出散点图,并能验证问题中的数据与所提供的函数模型是否相吻合;(3)增强读图、画图、识图的意识,全面提高阅读理解的能力.2.过程与方法(1)通过对给出的图形和数据的分析,抽象出相应的确定性函数的模型;(2)根据收集到的数据作出散点图,并通过观察图象判断问题所适用的函数模型,利用计算器的数据拟合功能得出具体的函数解析式.3.情感、态度与价值观应用数学知识解决实际问题.培养学生高尚的品德,使其树立远大的理想,并能利用所学知识为社会服务.重点:根据收集到的数据作出散点图,并通过观察图象判断问题所适用的函数模型,利用计算器的数据拟合功能得出具体的函数解析式.难点:怎样选择数学模型分析解决实际问题.重难点突破:结合学生的知识水平,在引导学生选择数学模型分析解决实际问题的同时总结该类问题的解法:(1)直接法:若由题中条件能明显确定需要用的数学模型,或题中直接给出了需要用的数学模型,则可直接代入表中的数据,问题即可获解;(2)列式比较法:若题中所涉及的是最优化方案问题,则可根据表格中的数据先列式,然后进行比较;(3)描点观察法:若根据题设条件不能直接确定需要用哪种数学模型,则可根据表中的数据在直角坐标系中进行描点,作出散点图,然后观察这些点的位置变化情况,确定所需要用的数学模型,问题即可顺利解决.全国大学生建模竞赛简介1.建模竞赛的起源与历史建模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动,目的是促进建模的教学,培养学生应用数学的能力.我国在1992年起开展这项竞赛,现已形成一项全国性的竞赛活动.2.建模竞赛题的类型及出题的指导思想大部分的建模竞赛题都是源于生产实际或者科学研究的过程中,例如去年C题“资金的使用计划”,D题“公交车的调度”.关于“公交车的调度”这道题目,在这儿稍做详细一点的介绍,题目给出我国某座大城市的一条交通线路.它只有上、下行驶方向各14个站,从早上6时开始至晚上12时,每站每小时上的人数的统计资料已绘出;每站之间的距离,公交车行驶速度也绘出.汽车平均可载客100人,最大载承量为120人,要求在人流高峰期乘客候车时间不超过5分钟,客流低峰期候车时间不超过15分钟,客车空载率不低于50%.问:(1)此线路应当配备多少辆车?(2)如何设计发车时间表?这样的问题与传统的数学竞赛一般偏重理论知识不一样,它要考查的内容单一,数据简单明确,不允许用计算器完成.对此而言,建模竞赛题是一个“课题”,它是一个综合性的问题,数据庞大,需要用计算机来完成.其答案往往不是唯一的(数学模型是实际的模拟,是实际问题的近似表达,它的完成是在某种合理的假设下,因此其只能是较优的,不唯一的)呈报的成果是一篇“论文”.由此可见“建模竞赛”偏重于应用,它是以数学知识为主导,计算机运用能力及文章的写作能力为辅的综合能力的竞赛.3.全国大学生建模竞赛是如何进行的呢?我国著名的大学每年通常参加二次建模竞赛.春节后有一次“全美建模竞赛”,其发起的单位是美国工业与应用数学学会,现在已经发展成一项国际性的竞赛活动,竞赛题在网上获得,论文的书写是全英文的,比赛评奖直接在美国本土进行,第二项比赛就是“全国大学生建模竞赛”了.4.参加建模竞赛通常需要哪些方面的知识呢?第一方面:数学知识的应用能力.按历年比赛的试题来看,虽然涉及的数学知识面十分地宽广,但归结起来大体上有以下几类:(1)概率与数理统计.(2)统筹与线性规划.(3)微分方程及与计算机知识相交叉的知识,计算机模拟.第二方面:计算机的运用能力.第三方面:论文的写作能力.精美句子1、善思则能“从无字句处读书”。

高中数学第三章函数的应用3.2.2函数模型的应用实例教案新人教A版必修1

高中数学第三章函数的应用3.2.2函数模型的应用实例教案新人教A版必修1

高中数学第三章函数的应用3.2.2函数模型的应用实例教案新人教A版必修13.2.2 函数模型的应用实例[目标] 1.会用分段函数模型或自建函数模型解决一些简单的实际问题;2.会根据所给数据选择合适的函数模型进行拟合.[重点] 根据给定的函数模型解决实际问题.[难点] 建立数学模型解答实际问题.知识点一解函数模型应用题的一般步骤[填一填]1.函数模型应用的两个方面(1)利用已知函数模型解决问题;(2)建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.2.解函数应用题的一般步骤(1)审题:弄清题意,分清条件和结论,理顺数理关系.(2)建模:将文字语言转化为数学语言,用数学知识建立相应的数学模型.(3)求模:求解数学模型,得到数学结论.(4)还原:将用数学方法得到的结论还原为实际问题.[答一答]1.常见的函数模型有哪些?提示:(1)正比例函数模型:f(x)=kx(k为常数,k≠0);(2)反比例函数模型:f(x)=kx(k为常数,k≠0);(3)一次函数模型:f(x)=kx+b(k,b为常数,k≠0);(4)二次函数模型:f(x)=ax2+bx+c(a,b,c为常数,a≠0);(5)指数函数模型:f(x)=ab x+c(a,b,c为常数,a≠0,b>0,b≠1);(6)对数函数模型:f(x)=m log a x+n(m,n,a为常数,m≠0,a>0,a≠1);(7)幂函数模型:f(x)=ax n+b(a,b,n为常数,a≠0,n≠1).知识点二函数拟合与预测的一般步骤[填一填](1)收集数据;(2)画散点图;(3)选择函数模型;(4)求函数模型;(5)检验.若符合实际情况,则用函数模型解释实际问题;若不符合实际情况则从(3)重新开始.[答一答]2.如何根据收集到的数据解决实际问题?提示:通过收集数据直接去解决问题的一般过程如下:第一步:收集数据;第二步:根据收集到的数据在平面直角坐标系内画出散点图;第三步:根据点的分布特征,选择一个能刻画散点图特征的函数模型;第四步:选择其中的几组数据求出函数模型;第五步:将已知数据代入所求出的函数模型进行检验,看其是否符合实际.若不符合实际,则重复第三、四、五步.若符合实际,则进入下一步;第六步:用求得的函数模型去解释实际问题.以上过程可用程序框图表示如下:3.数据拟合时,得到的函数为什么需要检验?提示:因为根据已给的数据作出散点图,一般是以比较熟悉的、最简单的函数作模拟,但所估计的函数有时可能误差较大或不切合客观实际,此时要重新调整数据或选用其他函数模型.类型一建立函数模型的应用题[例1] 某汽车城销售某种型号的汽车,进货单价为25万元.市场调研表明:当销售单价为29万元时,平均每周能售出8辆,而当销售单价每降低0.5万元时,平均每周能多售出4辆.设每辆汽车降价x万元,每辆汽车的销售利润为y万元(每辆车的销售利润=销售单价-进货单价).(1)求y与x之间的函数关系式,并在保证商家不亏本的前提下,写出x的取值范围;(2)假设这种汽车平均每周的销售利润为z万元,试写出z与x之间的函数关系式;(3)当每辆汽车的销售单价为多少万元时,平均每周的销售利润最大?最大利润是多少?[分析] 解决本题需弄清楚:每辆车的销售利润=销售单价-进货单价;先求出每辆车的销售利润,再乘以售出辆数可得每周销售利润.通过二次函数求最值,可得汽车合适的销售单价.[解] (1)因为y=29-25-x,所以y=-x+4(0≤x≤4).(2)z=(8+x0.5×4)y=(8x+8)(-x+4)=-8x2+24x+32(0≤x≤4).(3)由(2)知,z=-8x2+24x+32=-8(x-1.5)2+50(0≤x≤4).故当x=1.5时,z max =50.所以当销售单价为29-1.5=27.5万元时,每周的销售利润最大,最大利润为50万元.在函数模型中,二次函数模型占有重要的地位,因为根据实际问题建立函数解析式后,可利用配方法、判别式法、换元法、函数的单调性等来求函数的最值,从而解决实际问题中的最大、最小等问题.[变式训练1] 据市场分析,烟台某海鲜加工公司当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数;当月产量为10吨时,月总成本为20万元;当月产量为15吨时,月总成本最低为17.5万元,且为二次函数的顶点.(1)写出月总成本y (万元)关于月产量x (吨)的函数关系式;(2)已知该产品销售价为每吨1.6万元,那么月产量为多少时,可获最大利润?解:(1)设y =a (x -15)2+17.5,将x =10,y =20代入上式,得20=25a +17.5.解得a =110. 所以y =110(x -15)2+17.5(10≤x ≤25). (2)设最大利润为Q (x ), 则Q (x )=1.6x -y =1.6x -⎝ ⎛⎭⎪⎫110x 2-3x +40 =-110(x -23)2+12.9(10≤x ≤25). 因为x =23∈[10,25],所以月产量为23吨时,可获最大利润12.9万元.类型二 已知函数模型的应用题[例2] 已知某产品市场价格与市场供应量P 的关系近似满足P (x )=2(1-kt )(x -b )2(其中t 为关税的税率,且t ∈[0,12),x 为市场价格,b ,k 为正常数),当t =18时的市场供应量曲线如图所示.(1)根据图象求b ,k 的值;(2)记市场需求量为Q ,它近似满足Q (x )=211-x 2,当P =Q 时的价格称为市场平衡价格,为使市场平衡价格不低于9元,求税率的最小值.[解] (1)由图象知:⎩⎪⎨⎪⎧2(1-k 8)(5-b )2=1,2(1-k 8)(7-b )2=2, ⇒⎩⎪⎨⎪⎧(1-k 8)(5-b )2=0,(1-k 8)(7-b )2=1,⇒⎩⎪⎨⎪⎧ b =5,k =6. (2)当P =Q 时,有2(1-6t )(x -5)2=211-x 2, 即(1-6t )(x -5)2=11-x 2⇒2(1-6t )=22-x (x -5)2=17-(x -5)(x -5)2 =17(x -5)2-1x -5. 令m =1x -5,则2(1-6t )=17m 2-m . ∵x ≥9,∴m ∈(0,14]. 当m =14时,2(1-6t )取最大值1316,故t ≥19192, 即税率的最小值为19192.(1)本题利用已知函数模型解决实际问题,首先利用给出的函数图象,通过待定系数法确定函数关系式,再利用函数关系式求最值,求最值时注意自变量的取值范围.(2)对于题中已给出数学模型问题,只要解数学模型即可,较常用的方法是待定系数法解模型,然后利用相应的解析式及对应函数的性质解决实际问题.[变式训练2] 灌满开水的热水瓶放在室内,如果瓶内开水原来的温度是θ1度,室内气温是θ0度,t 分钟后,开水的温度可由公式θ=θ0+(θ1-θ0)e -kt 求得,这里,k 是一个与热水瓶类型有关的正的常量.现有一只某种类型的热水瓶,测得瓶内水温为100℃,过1小时后又测得瓶内水温变为98℃.已知某种奶粉必须用不低于85℃的开水冲调,现用这种类型的热水瓶在早上六点灌满100℃的开水,问:能否在这一天的中午十二点用这瓶开水来冲调上述奶粉?(假定该地白天室温为20℃)解:根据题意,有98=20+(100-20)e-60k , 整理得e -60k =3940. 利用计算器,解得k =0.000 422 2.故θ=20+80e -0.000 422 2t .从早上六点至中午十二点共过去6小时,即360分钟.当t =360时,θ=20+80e -0.000 422 2×360=20+80e -0.152,由计算器算得θ≈88℃>85℃,即能够在这一天的中午十二点用这瓶开水来冲调奶粉.类型三 拟合函数模型的应用题[例3] 某个体经营者把开始六个月试销A ,B 两种商品的逐月投资与所获纯利润列成下表:该经营者准备下月投入12万元经营这两种产品,但不知投入A ,B 两种商品各多少万元才合算.请你帮助制定一个资金投入方案,使得该经营者能获得最大利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两个有效数字).[分析] 只给出数据,没明确函数关系,这样就需要准确的画出散点图.然后根据图形选择合适的函数模型来解决实际问题.[解] 以投资额为横坐标,纯利润为纵坐标,在平面直角坐标系中画出散点图,如图所示.观察散点图可以看出,A 种商品的所获纯利润y 与投资额x 之间的变化规律可以用二次函数模型进行模拟,如图①所示.取(4,2)为最高点,则y =a (x -4)2+2,再把点(1,0.65)代入,得0.65=a (1-4)2+2,解得a =-0.15,所以y =-0.15(x -4)2+2. B 种商品所获纯利润y 与投资额x 之间的变化规律是线性的,可以用一次函数模型进行模拟,如图②所示.设y =kx +b ,取点(1,0.25)和(4,1)代入,得⎩⎪⎨⎪⎧ 0.25=k +b ,1=4k +b ,解得⎩⎪⎨⎪⎧ k =0.25,b =0.所以y =0.25x .即前六个月所获纯利润y 关于月投资A 种商品的金额x 的函数关系式是y =-0.15(x -4)2+2;前六个月所获纯利润y 关于月投资B 种商品的金额x 的函数关系式是y =0.25x .设下月投入A ,B 两种商品的资金分别为x A ,x B (万元),总利润为W (万元),那么⎩⎪⎨⎪⎧ x A +x B =12,W =y A +y B =-0.15(x A -4)2+2+0.25x B .所以W =-0.15(x A -196)2+0.15×(196)2+2.6. 当x A =196≈3.2(万元)时,W 取最大值,约为4.1万元,此时x B ≈8.8(万元). 即该经营者下月把12万元中的3.2万元投资A 种商品,8.8万元投资B 种商品,可获得最大利润约为4.1万元.拟合数据,建立函数模型解决实际问题的一般步骤:根据收集到的数据作出散点图,然后根据散点图的形状,选用比较接近的可能的函数模型来描述所涉及的数量之间的关系,然后利用待定系数法确定出具体的函数解析式,若符合实际,可用此函数模型解释问题,若不符合实际,则继续选择模型,重复操作过程.[变式训练3] 我国2014年至2017年国内生产总值(单位:万亿元)如下表所示:(2)利用得出的关系式求生产总值,与表中实际生产总值比较.解:(1)画出函数图象,如图所示,从函数的图象可以看出,画出的点近似地落在一条直线上,设所求的一次函数为y =kx +b (k ≠0).把点(0,8.206 7)和(3,10.239 8)的坐标代入上式,解方程组,得⎩⎪⎨⎪⎧ k =0.677 7,b =8.206 7.因此所求的函数关系式为y =0.677 7x +8.206 7.(2)由得到的关系式计算出2015年和2016年的国内生产总值分别为0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元).与实际的生产总值相比,误差不超过0.1万亿元.1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h (cm)与燃烧时间t (h)的函数关系用图象表示为图中的( B )解析:由题意h =20-5t,0≤t ≤4.结合图象知应选B.2.“红豆生南国,春来发几枝?”如图给出了红豆生长时间t (月)与枝数y (枝)的散点图,那么红豆生长时间与枝数的关系用下列哪个函数模型拟合最好( C )A .y =t 3B .y =log 2tC .y =2tD .y =2t 2 解析:符合指数函数模型.3.将进货单价为8元的商品按10元/个销售时,每天可卖出100个,若此商品的销售单价涨1元,日销售量就减少10个,为了获取最大利润,此商品的销售单价应定为14元.解析:设销售单价应涨x 元,则实际销售单价为(10+x )元,此时日销售量为(100-10x )个,每个商品的利润为(10+x )-8=2+x (元),∴总利润y =(2+x )(100-10x )=-10x 2+80x +200=-10(x -4)2+360(0<x <10,且x ∈N *).∴当x =4时y 有最大值,此时单价为14元.4.在不考虑空气阻力的情况下,火箭的最大速度v 米/秒和燃料的质量M 千克、火箭(除燃料外)的质量m 千克的函数关系式是v =2 000·ln(1+M m ).当燃烧质量是火箭质量的e 6-1倍时,火箭的最大速度可达12千米/秒.解析:当v =12 000时,2 000·ln(1+M m )=12 000,∴ln(1+M m )=6,∴M m =e 6-1.5.某学校准备购买一批电脑,在购买前进行的市场调查显示:在相同品牌、质量与售后服务的条件下,甲、乙两公司的报价都是每台6 000元.甲公司的优惠条件是购买10台以上的,从第11台开始按报价的七折计算,乙公司的优惠条件是均按八五折计算.(1)分别写出在两公司购买电脑的总费用y 甲,y 乙与购买台数x 之间的函数关系式;(2)根据购买的台数,你认为学校应选择哪家公司更合算?解:(1)y 甲=⎩⎪⎨⎪⎧ 6 000x (0≤x ≤10,x ∈N ),60 000+4 200(x -10)(x ≥11,x ∈N )=⎩⎪⎨⎪⎧ 6 000x (0≤x ≤10,x ∈N ),4 200x +18 000(x ≥11,x ∈N ),y 乙=5 100x (x ∈N ),(2)当x ≤10时,显然y 甲>y 乙;当x >10时,令y 甲>y 乙,即4 200x +18 000>5 100x ,解得x <20.答:当购买的台数不超过20台时,应选择乙公司,当购买台数超过20台时,应选择甲公司.——本课须掌握的三大问题1.函数模型的应用实例主要包括三个方面:(1)利用给定的函数模型解决实际问题;(2)建立确定性的函数模型解决实际问题;(3)建立拟合函数模型解决实际问题.2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.学习至此,请完成课时作业261。

高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1(2021年整理)

高中数学 第三章 函数的应用 3.2.2 函数模型的应用实例学案 新人教A版必修1(2021年整理)

陕西省西安市高中数学第三章函数的应用3.2.2 函数模型的应用实例学案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省西安市高中数学第三章函数的应用3.2.2 函数模型的应用实例学案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省西安市高中数学第三章函数的应用3.2.2 函数模型的应用实例学案新人教A版必修1的全部内容。

3.2.2函数模型的应用实例学习过程一、复习提问我们学过的一次函数、二次函数、指数函数、对数函数、幂函数的一般形式是什么?二、新课例3、一辆汽车在某段路程中的行驶速度与时间的关系如图所示。

(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行 驶这段路程时汽车里程表读数skm 与时间th 的函数解析式,并作出檅应的图象。

解:(1)阴影部分面积为:50×1+80×1+90×1+75×1+65×1=36阴影部分面积表示汽车在5小时内行驶的路程为360km.(2)根据图有:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤+-<≤+-<≤+-<≤+-<≤+=542299)4(65432224)3(75322134)2(90212054)1(8010200450t t t t t t t t t t s 画出它的函数图象P121。

在解决实际问题过程中,函数图象能够发挥很好的作用,因 此,我们应当注意提高读图的能力.本例题是分段函数是刻画现实问题的重要模型。

2019-2020学年高中数学 第三章 函数的应用 3.2.2 函数模型及其应用学案2新人教A版必修1.doc

2019-2020学年高中数学 第三章 函数的应用 3.2.2 函数模型及其应用学案2新人教A版必修1.doc
探究2.指数(对数)型函数建模问题
甲、乙两城市现有人口总数为100万人,甲城市人口的年自然增长率为1.2%,乙城市每年增长人口1.3万.试解答下面的问题:
(1)写出两城市的人口总数y(万人)与年份x(年)的函数关系式;
(2)计算10年、20年、30年后两城市的人口总数(精确到0.1万人);
探究3.分段函数模型的应用
某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为5t- t2(万元).
(1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;
2019-2020学年高中数学第三章函数的应用3.2.2函数模型及其应用学案2新人教A版必修1
学习目标
掌握函数模型确定的函数应用题基本步骤
重点难点
掌握函数模型确定的函数应用题基本步骤
方法
自主探究
一、探知部分:解模型确定的函数应用题的基本步骤
二、探究部分:
探究1.一次函数与二次函数模型
某校高一(2)班共有学生51人,据统计原来每人每年用于购买饮料的平均支出是a元,若该班全体学生改饮某品牌的桶装纯净水,经测算和市场调查,其年总费用由两部分组成,一部分是购买纯净水的费用,另一部分是其他费用228元,其中,纯净水的销售价x(元/桶)与年购买总量y(桶)之间满足如图所示关系.
(1)求y关于x的函数关系式;
(2)当a=120时,若该班每年需要纯净水380桶,请你根据提供的信息比较,该班全体学生改饮桶装纯净水的年总费用与该班全体学生购买饮料的年总费用,哪一种更少?说明你的理由;

高中数学第三章函数的应用3.1函数与方程第2课时预习导航学案新人教A版必修4.doc

高中数学第三章函数的应用3.1函数与方程第2课时预习导航学案新人教A版必修4.doc

3.1 函数与方程
预习导航
一、二分法的概念
对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
名师点拨二分法就是通过不断地将所选区间(a,b)一分为二,逐步地逼近零点的方法,即找到零点附近足够小的区间,根据所要求的精确度,用此区间内的某个数值近似地表示真正的零点.
自主思考1能用二分法求图象连续的任何函数的近似零点吗?
提示:不能.能用二分法求零点的函数需具备两个条件:①图象连续;②零点左右两边的函数值异号.所以,若满足条件①而不满足条件②,则仍不能用二分法求零点.
二、用二分法求函数f(x)的零点近似值的步骤
1.确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;
2.求区间(a,b)的中点c;
3.计算f(c):
若f(c)=0,则c就是函数的零点;
若f(a)·f(c)<0,则令b=c〔此时零点x0∈(a,c)〕;
若f(c)·f(b)<0,则令a=c〔此时零点x0∈(c,b)〕.
4.判断是否达到精确度ε:
即若|a-b|<ε,则得到零点的近似值为a(或b);否则重复2~4.
自主思考2用二分法求函数零点时,如何决定步骤的结束?
提示:看清题目的精确度,当零点所在区间的两个端点值之差的绝对值小于精确度ε时,则二分法步骤结束.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第三章函数的应用3-2函数模型及其应用第2课时预习导航学案新人教A版必修1
预习导航
1.利用已知函数模型解决问题;
2.建立恰当的函数模型,并利用所得函数模型解释有关现象,对某些发展趋势进行预测.
二、应用函数模型解决问题的基本过程
名师点拨在应用题中列出函数解析式的三种方法:
解答应用题的实质是要转化题意,寻找所给条件中含有的相等关系,用等式把变量联系起来,然后再整理成函数的解析式的形式.常用的方法有:
(1)待定系数法:若题目给出了函数模型,则可用待定系数法求出函数解析式中相关参数的值,从而得到确定的函数解析式.
(2)归纳法:先让自变量x取一些特殊值,计算出相应的函数值,从中发现规律,再推广到一般情形,从而得到函数解析式.
(3)方程法:用x,y表示自变量及其他相关的量,根据问题的实际意义,运用掌握的数学、物理等方面的知识,列出关于x,y的二元方程;把x看成常数,解方程得y(即函数关系式),此种方法形式上和列方程解应用题类似,故称为方程法.
自主思考解决未知函数模型的实际问题的关键是什么?提示:关键是选择或建立恰当的数学模型.。

相关文档
最新文档