气流床煤气化工工艺技术分析

合集下载

气流床加压气化工艺介绍

气流床加压气化工艺介绍

气流床加压气化工艺介绍一、工艺原理本煤气化技术属气流床加压气化工艺。

浓度60.5%的水煤浆通过煤浆给料泵加压与高压氧气(纯度99.6%)通过四个对称布置在气化炉中上部同一水平面的工艺喷嘴对喷进入气化炉燃烧室。

对喷撞击后形成6个特征各异的流动区,即射流区、撞击区、撞击流股、回流区、折返流区和管流区组成。

利用煤的部分氧化释放出热量,维持在该煤种灰熔点温度以上进行气化反应。

炉内温度约1350℃,反应过程非常迅速,一般在4—10秒内完成。

(1)射流区:流体从喷嘴以较高速度喷出后,由于湍流脉动,射流将逐渐减弱,直至与相邻射流边界相交。

同时受撞击区较高压力的作用,射流速度衰减加快,射流扩张角也随之加大,此后为撞击区。

(2)撞击区:当射流边界交汇后,在中心部位形成相向射流的剧烈碰撞运动,该区域静压较高,且在撞击区中心达到最高。

此点即为驻点,射流轴线速度为零,由于相向流股的撞击作用,射流速度沿径向发生偏转,径向速度(即沿设备轴向速度)逐渐增大。

撞击区内速度脉动剧烈,湍流强大、混合作用好。

(3)撞击流股:四股流体撞击后,流体沿反应器轴向运动,分别在撞击区外的上方和下方形成了流动方向相反,特征相同的两个流股。

在这个区域中,撞击流股具有与射流相同的性质,即流股对周边流体也有卷吸作用,使该区域宽度沿轴向逐渐增大,轴向速度沿径向衰减,直至轴向速度沿径向分布平缓。

(4)回流区:由于射流和撞击流股都具有卷吸周边流体的作用,故在射流区边界和撞击流股边界,出现在回流区。

(5)折返流区:沿反应器轴线向上运动的流股对拱顶形成撞击流,近炉壁沿着轴线折返朝下运动。

(6)管流区:在炉膛下部,射流、射流撞击、撞击流股,射流撞击壁面等特征消失,轴向速度沿径向分布保持不变,形成管流区。

水煤浆、氧气进入气化室后,相继进行雾化、传热、蒸发、脱挥发份、燃烧、气化等六个物理和化学过程,前五个过程速度较快,已基本完成,而气化反应除在上述五区中进行外,主要在管流区中进行。

流化床煤气化技术的分析研究进展

流化床煤气化技术的分析研究进展

流化床煤气化技术的研究进展煤气化技术有多种分类法,按煤的进料状态可分为干块进料、干粉进料和煤浆进料。

煤层中燃料运动状态,可分为固定床<亦称移动床)、流化床、气流床和熔融床. 按床层压力等级,可分为低压< < 0.3MPa)、中压<0.3 MPa ~4.5 MPa)和高压< > 4.5MPa)。

按排渣状态,可分为干法<固态)、熔聚和熔渣<液态)。

目前,应用较广泛的煤气化技术有如下几种:1)加压固定床气化技术加压鲁奇炉是典型的加压固定床气化技术,技术成熟,能利用高灰分煤,并且能在2.41 MPa 压力下运行,适合合成液体燃料合成所需要的操作压力,可节约投资和能耗,但过程中产生大量的焦油和酚。

为克服上述缺点,又进行了新的开发,主要技术升级包括进一步提高压力、提高温度和两段引气。

2)流化床气化技术温克勒气化工艺是典型的流化床技术,最早用于工业生产,第一台工业生产装置于1926 年投入运行。

这种炉型存在严重的缺陷,只能利用高活性褐煤,排灰含碳多,飞灰带出碳损失严重,致使碳利用率降低。

针对这些问题开发了新的流化床技术,如高温温克勒<HTW)、灰熔聚气化<KRW ,U-gas)和循环流化床气化工艺。

3)水煤浆气流床气化技术水煤浆气流床气化又称湿法进料气流床气化,其中Texaco 炉是一种率先实现工业化的水煤浆气流床气化技术,其进料方式简单,工程问题较少,具有大的气化能力,可以实现高压力<8 MPa ~ 10MPa)操作。

但冷煤气效率较低,氧耗较高。

为了降低过程氧耗,提高冷煤气效率,在Texaco 气化技术基础上发展了两段进煤煤气化工艺。

4)干粉进料气流床气化技术干粉进料气流床气化技术相对湿法进料具有氧耗低,煤种适应广和冷煤气效率高等优点. 其代表技术有Shell,Prenflo 和日立气流床等。

Shell SCGP 工艺是在K-T炉的基础上所开发的加压K-T气化炉。

气流床气化工艺

气流床气化工艺

气流床气化工艺
气流床气化工艺是一种高效的能源转化技术,它可以将各种固体燃料转化为可燃气体,如煤、木材、废弃物等。

这种技术的优点在于它可以将废弃物转化为能源,减少了废弃物的数量,同时也减少了对传统能源的依赖。

气流床气化工艺的基本原理是将固体燃料放入气流床中,通过高温气流的作用,将燃料分解成可燃气体。

这种技术的优点在于它可以在不使用氧气的情况下进行气化,从而减少了氧气的消耗,同时也减少了氧气的污染。

气流床气化工艺的应用范围非常广泛,可以用于生产燃气、合成气、液体燃料等。

在燃气生产方面,气流床气化工艺可以将煤、木材等固体燃料转化为燃气,从而减少了对传统燃气的依赖。

在合成气方面,气流床气化工艺可以将煤、木材等固体燃料转化为合成气,从而用于化学工业、石化工业等领域。

在液体燃料方面,气流床气化工艺可以将煤、木材等固体燃料转化为液体燃料,从而用于汽车、船舶等领域。

气流床气化工艺的发展前景非常广阔,它可以为我们提供更加清洁、高效的能源转化技术。

同时,气流床气化工艺也可以为我们解决废弃物处理的问题,从而减少了对环境的污染。

因此,我们应该加强对气流床气化工艺的研究和开发,推广其应用,为我们的经济发展和环境保护做出贡献。

二段式干煤粉气流床气化技术的模拟研究与分析

二段式干煤粉气流床气化技术的模拟研究与分析

二段式干煤粉气流床气化技术的模拟研究与分析徐越1, 吴一宁1, 危师让2(1. 西安交通大学能源与动力工程学院,陕西西安710049;2. 国电热工研究院, 陕西西安710032)摘要: 提出了将煤的热解模型、气固间非均相反应模型和气相间均相反应模型与ASPEN PLUS图形建模法相结合的二段式干煤粉气流床气化工艺的模拟计算方法,并对其性能进行了模拟研究与分析。

模拟研究表明,二段式干煤粉气流床气化工艺可以降低出口煤气的温度,为简化工艺过程,降低煤气冷却器的几何尺寸提供了可能。

采用该气化方式可以提高气化炉的冷煤气效率2~6个百分点。

关键词:煤气化;二段式气化工艺;气化炉;干煤粉气流床1 引言煤的气化技术是洁净煤燃烧技术的关键。

现有已商业化的干煤粉加压气化技术几乎均采用一级气化。

为使气化炉出口热煤气中的熔融态灰渣凝聚,多采用急冷的方式以实现凝渣的目的。

这一过程增加了能量损失,使干煤粉气化过程的冷煤气效率有所降低。

而采用增加辐射废锅受热面来冷却炉内煤气的方法会引起气化炉体积增大,制造成本增加,并易引起炉膛出口结渣。

为了解决这一问题,进一步提高干煤粉气化过程的冷煤气效率,提出了一种二段式干煤粉加压气化的概念[1]。

本文在干粉加压气流床气化性能模拟模型[2]基础上,提出了二段式干煤粉气流床气化过程的模拟方法,并对其性能进行了模拟研究,结果表明二段式干煤粉气流床气化技术有可能较大幅度地提高气化炉的冷煤气效率。

2 气化炉模型2.1 概述在二段式干煤粉气流床气化炉中,一段气化区,由于在富氧环境中,反应区的温度很高,煤粉加热速度极快,可以认为煤粉中的水分瞬间蒸发;同时,由于热解速度大大高于煤粉的燃烧及气化反应速度,因此将此过程进行简化处理[3,4],只考虑起主导作用的半焦与H2、O2、CO2、H2O之间的气固间非均相反应过程,以及同时发生的气相间均相反应过程。

在二段气化区,由于在煤粉进入时只加入水蒸气,反应所需要的热量来自一段反应区的高温煤气,在缺氧的环境下,煤粉发生热解反应后的热解产物没有与氧发生氧化燃烧,只是作为气固间非均相反应中的气相部分与半焦发生反应。

煤转化技术:气流床气化法

煤转化技术:气流床气化法
①煤种适应广(干法粉煤、气流床) ②能源利用率高(高温、加压热效率高;碳转化率高) ③设备单位产气能力高(加压、设备单位容积产气能力高) ④环境效益好(富产物少,属洁净煤工艺)
⑵ Shell煤气化工艺流程及气化炉
流程简述: ①煤粉制备和送料系统
经预破碎后进入煤的干燥系统,使煤中的水分小于2%,然后进入 磨煤机中被制成煤粉,磨煤机是在常压下运行,制成粉后用N2气送入 煤粉仓中。然后进入加压锁斗系统。再用高压N2气,以较高的固气比 将煤粉送至4个气化炉喷嘴,煤粉在喷嘴里与氧气(95%纯度)混合并与 蒸汽一起进入气化炉反应。 ②气化
b:燃烧气化: 燃烧:C+O2→CO2+Q 气化:C+H2O→CO+H2-Q;CO2+C→CO-Q; 燃烧:O2+H2→H2O+Q; CO+O2→CO2+Q ; c:气化(氧气耗尽时): C+H2O→CO+H2-Q; CO2+C→CO-Q; CO+H2→CH4+H2O+Q; 最后生成以CO、H2、CO2、 H2O为主要成分的湿煤气及熔渣。
• 下面是两张结渣图片供参考:
shell气化炉内渣层对保护耐火层理和水冷壁管至关重要,以 下一张照片是停车中温降过快造成的垮渣,一张是炉内温度波动 (高温)造成的渣层损坏。将容易烧蚀损坏原来被渣层保护的耐火 衬里和金属销钉,当保护层减薄到一定程度时,将失去对水冷壁的 保护,伤害到本体,气化炉反应热平衡也将失衡。
⑶气化炉
膜式水冷壁
向火侧附着一层耐火材料(以渣抗渣) 内壁衬里设有水冷管副产部分蒸汽
内筒和外筒 环形空间: 容纳水、蒸汽输入和出的管路、利于检修
高压容器外壳
筒上部为燃烧室(气化区) 下部为熔渣激冷室

气流床煤气化技术分析

气流床煤气化技术分析
Keywords :coal gasification ;coal water slurry ;dry pulverized在我国能源结构中 结构比较简单 ;④产气量大 ;⑤热量利用率高,冷煤气效率
仍占有主导地位,怎样合理使用煤炭资源成为我国煤炭资源 处理的首要问题。在煤炭利用技术中,煤气化技术作为煤炭 能源转化的基础技术,在煤炭能源使用方面占有重要的地位。
Shell 工艺技术特点如下 : (1)原料煤适用范围较宽,煤种适应性强,如褐煤、烟煤、 无烟煤等各种煤均可使用;对煤的性质,如粒度、结焦性、灰分、 水分、硫分、氧分等含量均不敏感。 (2)气化炉为水冷壁式,基本消除频繁检修、炉内耐火 衬里更换频繁和耗费昂贵的弊端。单台气化炉产气能力大, 具有高效、大型化和长周期运行的显著特点。 (3) 具 有 较 高 的 热 效 率, 碳 转 化 率 可 高 达 99%, 原 料 煤能量回收率高,冷煤气效率可达 86%,比煤耗可达 600kg/ 1 000m3(CO+H2), 比 氧 耗 为 365m3O2/1 000m3(CO+H2), 粗 煤气成分中,CO+H2 的比例可达 86%[2]。 2.2 航天炉HT-L粉煤加压气化技术
可达 70%~75% ;⑥有效气成分高,干基有效气中(CO+H2)≥ 80%(φ)[1] ;⑦碳转化率高,最高可达 96%。
1.2 新型(对置式多喷嘴)水煤浆加压气化
按照燃料在气化炉内的运动状态,煤气化工艺技术一般
新型(对置式多喷嘴)水煤浆加压气化技术是华东理工
分为三种类型 :移动床(也被称为固定床)、流化床和气流 大学开发的目前最先进的水煤浆气化技术之一。多喷嘴对置
GEGP 工艺 :合成气有效气(CO+H2)≥ 76% ; 晋华炉工艺 :合成气中有效气(CO+H2)≥ 80%[4] ; HT-L 工艺 :合成气中有效气(CO+H2)为 86%~92%[3]。 3.4 耗煤量和耗氧量 不同气化技术的原料(煤、氧气)消耗指标(如比煤耗和 比氧耗)主要取决于原料煤的进料形式和气化炉结构,对于 GEGP 和晋华炉同属于水煤浆湿法进料,气化炉均为气流床和 单烧嘴顶喷形式,因此,其原料煤和氧气消耗量接近,比煤 耗约 610kg/km3(CO+H2),比氧耗约 390~405m3/km3(CO+H2)。 航天炉 HT-L 采用粉煤气力输送进料,省去水煤浆加压气 化技术中水气化所需负荷,降低比氧耗和比煤耗,比煤耗约 550kg/km3(CO+H2),比氧耗约 310m3/km3(CO+H2)。 3.5 对下游装置的影响 GEGP 工艺 :气化装置出口 CO 干基含量约 52%,H2 干基 含量约 31%,由于采用全激冷流程,水气比约为 1.3~1.4,足 以满足下游变换反应对水蒸气的需要,且流程设置按耐硫中 温变换串低温变换比较顺畅。 晋华炉工艺 :气化装置出口 CO 干基含量约 52%,H2 干 基含量约 31%,由于采用废锅 + 激冷流程,水气比可调控范 围 0.5~1.0,具体可根据下游变换对合成气水气比的要求来调 整,实现在满足下游化工合成的基础上最大限度地回收合成 气中的高品位热量。 航天炉 HT-L 工艺 :气化装置出口合成气中 CO 高达 60%, 由于是 4.0MPaG 气化,则合成气中水气比约 0.9,基于高 CO 含量和中等比例水气比的特点,对于本项目下游合成气 H2/CO 要求,变换装置在设计和运行时需要特别注意防止超温的问 题,针对该工况,变换装置多采用多级变换炉串联工艺(双 等温、等温 + 绝热等流程),同时还需要可靠的变换炉急冷气 措施。 3.6 热量回收方法 GEGP 工艺 :可选用激冷流程和废锅 + 激冷两种流程,其 中绝大多数采用激冷流程。 晋华炉工艺 :可采用废锅 + 激冷流程,废锅回收的高品位 显热约相当于原料煤低温热值 15%,同时副产 10.0~12.0MPaG 高压饱和蒸汽,过热后可用于驱动空分透平。 航天炉 HT-L 工艺 :可采用激冷流程和废锅 + 激冷流程两 种,其中绝大部分为激冷流程。 3.7 装置投资 GEGP 工艺 :由于 GEGP 工艺烧嘴有效周期短,故需考虑 备炉。 晋华炉工艺 :气化炉为可靠的水冷壁结构 + 组合式烧嘴, 可考虑不留备炉,减少装置投资。 HT-L 工艺 :气化炉为可靠的水冷壁结构 + 组合式烧嘴, 可考虑不留备炉,减少装置投资。

气流床粉煤气化技术及其应用研究

气流床粉煤气化技术及其应用研究

气流床粉煤气化技术及其应用研究摘要:研究气流床工艺,对粉煤气化的工艺要点进行说明,介绍了煤粉干燥、原料输送、气化、洗涤与渣水处理工艺。

在研究中,重点明确气化工艺应用思路,通过优化水冷壁气化炉、应用一体化复合喷嘴、改造输送系统、落实节能理念,使得粉煤气化效率得以提升。

经过优化后装置性能更加稳定,且具有较高的耐腐蚀、耐高温能力,能够实现对劣质煤的清洁高效应用。

关键词:气流床;粉煤气化技术;应用现阶段,大规模、多系列气流床项目成为化工领域发展的主要方向,通过对气流床工艺技术的升级,能够满足最新发展要求,确保环保节能理念在化工生产行业中被贯彻落实。

以往单喷嘴、单一供料线路的气化工艺方案缺点明显,当系统装置出现问题后,容易出现长时间停车的问题,使得系统运行稳定性受到影响。

中安联合公司气化装置,采用SE东方炉煤气化工艺方案,通过做好装置升级,使得煤粉气化效率获得显著提升。

1气流床粉煤气化工艺说明中安联合气化装置采用SE东方炉粉煤气化工艺,具体包括磨煤及干燥、粉煤加压及输送、气化及洗涤、除渣、灰水处理及气化公用工程等单元,该装置的总体规模较大、气化系列多,因此,有关人员可在技术条件允许范围内,对气化装置进行优化。

对气化工艺进行优化配置主要遵循以下思路:一是根据功能区进行布置,坚持各区域装置功能集中原则,为管理提供便利;二是采取流程式布置方案,需要相关人员根据工艺流程与物料要求,对粉煤气化装置进行布局,以降低物料反复运输成本,使得系统中各装置的能耗得以降低[1]。

在气流床工艺优化中,中安联合气化装置重点关注制磨煤及干燥、除渣、灰水处理等工艺,通过设置5台磨煤机,对粉煤进行集中供应,同时对渣水处理单元进行优化,整合公用溢流槽设备,使得系统装置占地面积减少,降低成本支出。

该装置中的粉煤制备单元技术较为成熟,核心设备为磨煤机,原料为甲烷烃尾气,干燥处理工艺则选用热风炉高温惰性气体,通过对以上设备与工艺手段的应用,可促使煤粉的外水含量低于2%,粒度则小于200μm。

§ 4.4 气流床气化工艺

§ 4.4 气流床气化工艺


添加 剂
原 煤
高浓度湿磨
水煤浆
封闭式湿磨设备
煤浆的制备和输送
非封闭式湿磨设备
需要指出的是,不管是哪一种制浆工艺,都是耗能 大户。因此,为了减少磨矿功耗,磨矿前,除特殊情 况(如用粉煤或煤泥制浆)外.都必须经过破碎,预先 破碎到粒度小于30mm,然后经过带称送人磨粉机。 研磨好的煤浆首先要进入一均化罐· 然后用泵送到气化 炉。煤浆是否能够顺利进入气化炉,在泵功率确定的 前提下,取决于煤浆的浓度和颗粒的粒度.这又集中 体现在煤浆的黏度上,为降低黏度可采用加入添加剂 的方法以降低黏度。
水煤浆和氧气喷入气化炉后,生成以CO、氢气为主要成分 的粗煤气。灰渣采用液态排渣
水煤浆气化制煤气的特点
优点 缺点 ①气化原料范围广 ①炉内耐火砖侵蚀严重,更换费用高,增加生产成本 ②与干粉进料相比较,安全并易控制 ②喷嘴使用周期短,停炉更换喷嘴影响生产连续运行 ③工艺技术成熟,流程简单;设备布置紧凑,运转率高; ③水煤浆含水高,氧耗和煤耗比干法高 气化炉结构简单,内部无机械传动装置,操作性能好 ⑤对管道及设备材料要求高,工程投资大 ④操作弹性大,碳转化率高 ⑤粗煤气质量好,用途广 ⑥气化压力范围广 ⑦生产能力大 ⑧污染少,环保性能较好

添加 剂
返料
高浓度湿磨
水煤浆
湿筛
封闭式湿磨设备
煤浆的制备和输送
非封闭式湿磨设备
如图所示是非封闭式湿磨 系统。该法中,煤一次通 过磨机,所制取的煤浆同 时能够满足粒度和浓度的 要求。煤在磨机中的停留 时问相对长一些,这样可 以保证较大的颗粒尽可能 不太多。要达到合格的研 磨,选择适当的磨机就变 得很重要,最合适的是用 充填球或棒的滚筒磨机, 妥善选择磨机长度、球径 及球数,使得煤通过磨机 时一次即能达到高浓度的 煤浆,并具有所需要的粒 度。

煤气化技术工艺介绍(一)

煤气化技术工艺介绍(一)

煤气化技术经过150多年的发展,形成了上百种炉型,这些炉型有多种分类方法,最常用的还是按气化炉内原料煤与气化剂的接触方式不同来划分为固定床、流化床和气流床技术三种类型。

固定床气化固定床气化的煤质适应范围较广,除黏结性较强的烟煤外,从褐煤到无烟煤均可气化。

固定床气化的缺点是单炉产气量略小,反应温度较低,蒸汽的分解率低,气化装置需要大量的蒸汽。

气化装置所产生的废水中还含有大量的酚、氨、焦油,污水处理工序流程长,投资高。

由于出气化炉的煤气中的甲烷含量较高,对于煤制城市煤气或天然气项目,有较高的优势。

固定床炉型特点:①粗合成气中CH4含量高达5~12%。

②要求入炉煤粒(块)度为6-50mm。

③单炉生产规模相对较小,占地面积大。

④废水中因含焦油、酚氨等有机物,处理难度较大,处理成本高。

流化床气化流化床首次工业化大规模应用是温克勒用于粉煤气化,此法在1922年获得专利之后,就广泛应用于化工合成、冶金、干燥、燃烧、换热等工业过程中。

流化床炉型特点:①床层温度均匀,传质传热效率高,对高灰和高灰熔点劣质碎粉煤适应性强。

②产品煤气中基本不含有焦油和酚类物质,废水量小且易处理。

③对入炉煤的活性要求很高。

U-gas、灰熔聚和HTW 炉采取了一些改进的设计可以适当提高气化反应温度,理论上有助于提高低活性煤种的适应性问题,但是到目前为止还缺乏无烟煤应用的成功经验。

④对煤的颗粒度要求较高,且气体中带出细粉过多,影响了碳转化率。

⑤流化床气化在锅炉和燃气生产上应用较为广泛,但是生产化工合成气的大型工业经验相对较少。

气流床气化气流床气化是最清洁,也是效率最高的煤气化类型。

原料煤在1200-1700℃时被氧化,高温保证了煤的完全气化,煤中的矿物质成为熔渣后离开气化炉。

气流床所使用的煤种要比移动床和流化床的范围更广泛。

使用氧气可以使气化更有效,并可避免水煤气被氮气稀释,水煤气的热值也将高于空气氧化炉所产生的水煤气的热值。

气流床气化单炉产量大、气化压力和效率高,适用于甲醇、醋酸、合成氨、IGCC 等大型、超大型的化工装置,也可为大型的石油化工装置提供氢气。

气流床气化工艺

气流床气化工艺

气流床气化工艺气流床气化工艺是一种先进的生物质能源转化技术,通过在高温气流中将固体生物质转化为可燃气体,同时产生热能。

这一技术在能源利用和环保方面有着重要的应用前景,对于推动清洁能源发展、减少化石能源消耗具有重要意义。

气流床气化工艺的原理是利用高温气流对生物质进行气化反应,将生物质中的碳、氢、氧等元素转化为可燃气体,主要成分包括一氧化碳、氢气、甲烷等。

这些可燃气体可以用作燃料供给发电机组发电,也可以用于工业生产中的燃烧或化学反应。

在气流床气化工艺中,生物质被送入气化炉中,通过控制气化温度、气化压力和气流速度等参数,实现生物质的快速热解和气化过程。

在高温气流的作用下,生物质中的大分子有机物被分解成小分子气体,并释放出热能。

同时,气化炉中的气氛是还原性的,有利于生成一氧化碳等可燃气体。

气流床气化工艺与传统燃煤发电相比具有诸多优势。

首先,生物质是可再生资源,气化过程不会增加二氧化碳等温室气体的排放量,有利于减少对环境的污染。

其次,气流床气化技术可以实现生物质资源的高效利用,提高能源利用效率。

再者,气化产生的可燃气体可以替代天然气、煤炭等传统燃料,降低能源成本,减少对非可再生资源的依赖。

气流床气化技术在生物质能源、城市垃圾处理、工业废物处理等领域得到了广泛应用。

在生物质能源领域,气流床气化技术可以处理各类生物质原料,如秸秆、木屑、废弃木材等,实现生物质能源的高效利用。

在城市垃圾处理领域,气流床气化技术可以将垃圾转化为可燃气体和灰渣,实现垃圾资源化利用。

在工业废物处理领域,气流床气化可以处理各类有机废物,减少废物排放对环境的影响。

总的来说,气流床气化工艺是一种具有广阔应用前景的生物质能源转化技术。

通过将生物质转化为可燃气体,实现能源利用和环保的双重目标,有助于推动清洁能源发展,减少对化石能源的依赖。

随着技术的不断进步和应用领域的拓展,气流床气化技术将在未来发挥更加重要的作用,为可持续发展做出贡献。

第六章 气流床气化工艺

第六章 气流床气化工艺

第六章气流床气化工艺气流床气化法是20世纪50年代初发展起来的新一代煤气化技术,最初代表炉型为K—T炉。

之后随着shell、Texaco等一批新型工艺的开发,气流床气化技术因其出色的生产能力和气化效率,在世界范围内得到了广泛的应用,尤其是在燃气联合循环中。

目前绝大多数IGCC电站所选的是气流床气化炉,主要炉型为Texaco、Shell、E-Gas(原Destec)以及Prenflo 等。

第一节概述表6-2 三种气化技术比较二气流床气化原理1 气化原理(1)粉煤的干燥及裂解与挥发物的燃烧气化•可以认为煤粉中的残余水分瞬间快速蒸发,同时发生快速的热分解脱除挥发分,生成半焦和气体产物(CO 、及其他碳氢化合物)。

•生成的气体产物中的可燃成分在富氧条件下,迅速与氧气发生燃烧反应,并放出大量的热,使粉煤夹带流温度急剧升高,并维持气化反应的进行。

42222CH N S H CO H 、、、、n m H C 22242222222222222222)2/()2/()2/()4/(CO O H O CH OH O H CO O CO H n mCO O m H C O H n mCO O n m H C n m n m +=+=+=++=++=++(6-1)(6-2)(6-3)(6-4)(6-5)二气流床气化原理1 气化原理(2)固体颗粒与气化剂(氧气、水蒸气)间的反应•氧与剩余焦粒发生燃烧和气化反应。

•炽热的半焦与水蒸气进行还原反应,生成CO 和。

2H CO O C CO O C 22222=+=+2222222CO H O H C CO H O H C +=++=+(6-6)(6-7)(6-8)(6-9)二气流床气化原理1 气化原理(3)生成的气体与固体颗粒间的反应•高温的半焦颗粒,除与气化剂水蒸气和氧气进行气化反应外,与反应生成气也存在气化反应。

•煤中的硫,在高温还原性气体存在的条件下,与和CO 反应生成和。

气流床煤气化工工艺技术分析38

气流床煤气化工工艺技术分析38

气流床煤气化工工艺技术分析摘要:随着人们对气化产品需求的不断增加,对煤气化效率和环保要求的不断提高,作为新一代煤炭转化利用的主要技术,气流床煤气化技术的必将会得到更为广泛的应用。

气流床煤气化工艺性能稳健优化与控制的研究对于提高煤炭的清洁高效,保证气化生产的经济、稳定、安全运行有着重要意义。

关键词:气流床;煤气化工;工艺技术引言煤气化是洁净、高效利用煤炭的主要方法之一,是许多能源高新技术的关键环节。

煤气化有完全气化和部分气化(煤的干馏技术)两种途径。

由于受到煤种和产品综合发展的制约,部分气化只能满足局部的需要;而我国煤炭资源中有一半以上煤种适合完全气化,因此煤制气技术的立足点应放在完全气化方面。

1 气化过程的主要反应1.1 热解过程的主要反应煤热解的化学反应异常复杂,其间反应途径甚多。

煤热解反应通常包括裂解和缩聚两大类反应。

在热解前期以裂解反应为主,而热解后期以缩聚反应为主。

一般来讲,热解反应的宏观形式为:1.1.1 裂解反应根据煤的结构特点,裂解反应大致有四类。

1)桥键断裂生成自由基。

桥键的作用在于联系煤的结构单元,在煤的结构中,主要的桥键有:- CH2 - CH2 -,- CH2 -,- CH2 -O-,-O-,-S-S-等。

它们是煤结构中最薄弱的环节,受热后很容易裂解生成自由基。

并在此后与其他产物结合,或自身相互结合。

2)脂肪侧链的裂解。

煤中的脂肪侧链受热后容易裂解,生成气态烃,如CH4,C2H6,C2H4等。

3)含氧官能团的裂解。

-OH煤中含氧官能团的稳定性顺序为:-CH>=C=O>-COOH羟基(-OH)最稳定,在高温和有氢存在时,可生成水。

碳基(=C-O)在400℃左右可裂解生成一氧化碳。

羧基(-COOH)在200℃以上即能分解,生成二氧化碳。

含氧杂环在500℃以上也有可能断开,放出一氧化碳。

4)低分子化什物的裂解。

煤中以脂肪结构为主的低分子化合物受热后熔化,并不断裂解,生成较多的挥发性产物。

第五章流化床气化工艺分析

第五章流化床气化工艺分析


三 加压流化床气化的特点
1.压力对流化床的流体力学影响 (1)对阻力的影响 流化床的阻力降等于单位截面上床层的重力。 当加入的固体原料数量恒定,且他们的膨胀度相 同时,压力的变化,对流化床的阻力没有影响。

三 加压流化床气化的特点
1.压力对流化床的流体力学影响 (2)床层膨胀度的影响


当气流的重量流量不变时,随着压力的提高床层膨胀 度α 急剧下降。为了使α 达到保证正规流化所必需的值, 则须提高气体的线速度即增加鼓风量。同时也使气体在床 层中的停留时间相应增加,从而为强化气化过程创造了条 件。而且,一般情况下加压流化床的工作状态比常压下稳 定。
三 加压流化床气化的特点
1.压力对流化床的流体力学影响 (3)对带出物带出条件的影响

2.压力对流化床气化过程的影响
(1) 加压流化床与常压流化床相比,压力对气 化过程最大的影响是使气化炉的生产能力得到了很 大的提高。
三 加压流化床气化的特点

2.压力对流化床气化过程的影响
(2)加压气化有利于提高煤气组成中的有效成分。压力 的提高,有利于甲烷的生成反应,故在压力煤气中,甲烷 含量均高于常压煤气,使煤气热值得到相应提高。甲烷生 成热的释放,降低了气化的氧耗。如若氧气用量不变,则 炉温可得到相应提高,在灰熔点允许的范围内,炉温的适 当提高则有利于一氧化碳和氢气的生成,并可部分抵消因 压力增加,对该两反应造成的不利影响。

四 对原料的要求
流化床气化一般要求原煤破碎成<10mm粒径的煤, <1mm粒径细粉应控制10%以下,经过干燥除去大部分外 在水分,进气化炉的煤含水量<5%为宜。 试验证明流化床更适合活性高的褐煤、长焰煤和弱黏 烟煤,气化贫煤、无烟煤、焦粉时需提高气化温度和增加 煤粒在气化内的停留时间。 固体干法排渣,为防止炉内结渣除保持一定的流化速 度外,要求煤的灰熔点ST应大于1250℃,气化炉操作温度 (表温)一般选定在比ST温度低150~200℃的温度下操作 比较安全。

气流床气化生产工艺流程组织GSP粉煤气化工艺

气流床气化生产工艺流程组织GSP粉煤气化工艺
上一页 下一页 返回
项目六 气流床气化生产工艺流程组织— GSP粉煤气化工艺
在主烧嘴的出口,氧气呈旋转的方向离开主烧嘴出口,跟外面的煤粉充 分接触进行气化反应。
4.烧嘴冷却水系统 烧嘴冷却水系统是对受强烈热辐射的组合烧嘴、气化炉支撑板和燃烧室
高温原料气出口处的导管进行冷却。 5.水冷壁冷却水系统 水冷壁冷却水系统是对内表面跟高温原料气直接接触的水冷壁、烧嘴支
2.工艺过程 激冷室过来的黑水,压力约为4. 2 MPa,温度约为158℃。在闪蒸系统里,
通过两级闪蒸罐的减压和蒸发,把黑水温度降到约70 ℃,并释放出溶 解在黑水里的大部分气体。之后,黑水送往澄清池进行除灰和再循环利 用。闪蒸释放出来的气体成为酸性气,经冷却后送往焚烧炉。
上一页 下一页 返回
项目六 气流床气化生产工艺流程组织— GSP粉煤气化工艺
上一页 下一页 返回
项目六 气流床气化生产工艺流程组织— GSP粉煤气化工艺
(4)主烧嘴 主烧嘴的作用是在气化炉正常生产压力4. 1 MPa时,把煤粉和氧气输入
气化炉燃烧室进行气化反应,以生成以氢气和一氧化碳为主的原料气。 在组合烧嘴里,主烧嘴位于点火烧嘴的外面,整个点火烧嘴套在主烧嘴 里面。主烧嘴的内表面跟点火烧嘴的外表面形成的环状空间,构成了主 烧嘴输氧的通道,输氧通道与其外面的环状输煤通道之间,是一个带有 冷却水夹套的管壁。在输煤管道的外面,同样也是一个带有冷却水夹套 的管壁。主烧嘴带有两个冷却水夹套的目的是防止气化炉燃烧室内的高 温对主烧嘴外表面的高温辐射。 三根煤粉输送管线在主烧嘴煤粉通道里的出口,均切线进入环状的煤粉 通道,以确保煤粉的均匀分布。
8.合成气洗涤 气体洗涤单元是将来自气化炉被激冷水充分饱和的粗合成气在本单元进
一步用水洗涤除尘、除卤,洗涤后的合成气作为产品送往变换装置。 (四)闪蒸单元 1.目的与特点

气流床气化技术特点

气流床气化技术特点

气流床气化技术特点煤气化是发展洁净煤技术的重要途径。

目前已实现工业化的煤气化技术主要有固定(移动)床气化技术、流化床气化技术和气流床气化技术。

而1000 t/d 以上规模的煤气化装置基本都是采用的气流床气化技术,该技术已成为国内外大规模、高效率煤气化技术的首选技术1、气流床气化技术特点气流床气化又称同向气化或并流气化,属高温气化范围。

以过热蒸汽和氧气为气化剂,携带煤浆或煤粉颗粒通过特殊喷嘴高速喷入气化炉内,瞬间发生火焰反应,气化反应区温度高达2000 ℃,煤粉立即气化,转化为煤气和熔渣,出炉煤气温度1400 ℃左右。

其主要特点如下:(1)气化温度高、强度大,混合充分,(气化强度高,生产能力大)气化炉中部温度为1500~1600 ℃,气体停留时间约为1.0~1.5 s(2)煤种适应性强,气化指标好,有效成分高(更宜选用活性高、地质年龄低、粒度较细、低灰熔点和低灰分的煤)。

灰的质量分数>30%、灰熔点FT(流动温度)在1450 ℃以上时,则运转困难。

(3)耗氧量大;采用煤粉气力输送能耗大,设备磨损严重。

(4)出炉煤气温度很高,显热损失大;此法的缺点是飞灰带出物的质量分数约为10%之多(5)需配套余热回收及除尘等辅助装置。

(6)对于干粉煤气化技术,煤灰的粘温特性是非常重要的指标,它与气化炉水冷壁渣层特性具有很大的关联性,一般希望粘温曲线比较平缓,以便气化炉的操作窗口较大。

否则,厚度薄的渣层将缩短气化炉水冷壁的寿命,厚度厚的渣层将容易造成堵渣,严重时要停炉处理。

(7)均匀的原料煤是保证一体化现代煤化工装置连续、稳定运行的重要条件,由于煤炭品质的不均匀性,现代煤气化技术要求,最好对原料煤进行均质化,而均质化又受到场地和操作成本的限制。

因此,希望选定的煤气化技术能适应特定的原料煤,并对煤质波动有较强的适应性。

水煤浆和干粉煤技术为主的加压气流床技术由于技术先进,气化压力较高,符合大型化要求,近年来发展较快。

水煤浆加压气流床气化的代表性技术包括GEGP(原Texaco)、多元料浆、多喷嘴对置和E-GAS。

加压气流床煤气化单元技术及工艺选择分析

加压气流床煤气化单元技术及工艺选择分析

加压气流床煤气化单元技术及工艺选择分析发布时间:2021-03-22T09:07:25.013Z 来源:《基层建设》2020年第28期作者:窦存玉[导读] 摘要:作为多项单元技术的有机复合体,加压气流床煤气化技术具备气体有效成分高、处理能力大、气化温度高、气化效率高等优势,相关研究也因此大量涌现。

国家能源集团神华新疆化工有限公司新疆乌鲁木齐 831404摘要:作为多项单元技术的有机复合体,加压气流床煤气化技术具备气体有效成分高、处理能力大、气化温度高、气化效率高等优势,相关研究也因此大量涌现。

基于此,文章将简单对比加压气流床单元技术,并深入探讨加压气流床工艺选择路径,希望由此能够为相关业内人士带来一定启发。

关键词:加压气流床;单元技术;工艺选择引言水煤浆是我国洁净煤计划发展中的一项重要技术,其作为洁净煤燃料和气化原料,一直受到国家及地方政府部门的重视。

在我国目前不少煤化工合成气生产企业都在选择适合自己的气化工艺技术,有不少想采用气流床气化工艺。

本文提供的情况,希望对这些企业在选择技术时能有所借鉴,同时,给技术的开发商提供技术改进方面的帮助。

一、加压气流床煤气化工艺介绍多元料浆加压气化专利技术,合格水煤浆滤去大颗粒,通过低压煤浆泵送到气化岗位。

制浆岗位送来的煤浆进入煤浆槽,再送入到工艺烧嘴中。

由空分装置送来的纯度为99.6%以上、压力为8.55MPa的氧气与水煤浆经工艺烧嘴,喷入到气化炉内燃烧室中进行氧化还原、裂解反应后生成粗煤气。

粗煤气沿下降管进入激冷室水浴后,熔渣在水中淬冷固化并沉入气化炉激冷室底部,较大颗粒的灰渣经破渣机破碎后,再由锁斗系统排出;粗煤气与水直接接触进行冷却、除灰后,沿下降管与上升管之间的环隙上升,经激冷室上部折流板折流,分离出部分粗水煤气中夹带的水分后,由气化炉旁侧的出气口引出,送往文丘里。

粗水煤气中夹杂的细小灰粒随同粗水煤气一同进入到洗涤塔中进行水浴,粗水煤气中夹带的大部分细灰留在水中,水浴后的粗水煤气经下降管和导气管间的环隙上升,经过升气罩后进入到碳洗塔上部的塔板。

气流床煤气化技术特点

气流床煤气化技术特点

气流床煤气化技术1、Texaco水煤浆加压气化技术Texaco气化工艺最早开发于20世纪40年代后期。

由美国德士古(Fexaco)石油公司开发,该技术现属美国GE公司所拥有,又称为GE气化技术,国外已于20世纪80年代成功用于商业运行,1983年美国EASTMAN生产甲醇、醋酸酐,1984年日本UBE生产氨;1984年、1996年美国在Coo l‐water和Tampa建成IGCC装置;我国鲁南化肥厂于1993年建成首套德士古气化装置用于生产氨。

兖矿鲁南化肥厂的德士古气化装置,是我国从国外引进的第一套德士古煤炭气化装置,采用水煤浆进料在加压下来生产合成氨的原料气体。

目前Texaco气化装置在第二代气流床技术中,建设装置最多、商业运行时间最长、用于化工生产技术成熟可靠。

德士古气化是第二代气流床水煤浆气化技术的代表,以水煤浆单烧嘴顶喷进料,耐火砖热壁炉,激冷流程为主。

(1)Texaco水煤浆气化工艺原理Texaco水煤浆气化属气流床气化工艺技术,即水煤浆与气化剂(纯氧)在气化炉内特殊喷嘴中混合,高速进入气化炉反应室,遇灼热的耐火砖瞬间燃烧,直接发生火焰反应。

微小的煤粒与气化剂在火焰中作并流流动,煤粒在火焰中来不及相互熔结而急剧发生部分氧化反应,反应在数秒内完成。

在上述反应时间内,放热反应和吸热反应几乎是同时进行的,因此产生的煤气在离开气化炉之前,碳几乎全部参与了反应。

在高温下所有干馏产物都迅速分解转变为均相水煤气的组分,因而生成的煤气中只含有极少量的CH4。

Texaco水煤浆气化炉所得煤气中含有CO、H2、CO2和H2O四种主要组分,它们存在平衡关系:CO+H2O⇋ CO2+H2。

在气化炉的高温条件下,上述反应很快达到平衡,因此气化炉出口的煤气组成相当于该温度下一氧化碳水蒸气转化反应的平衡组成。

(2)Texaco水煤浆气化主要设备①Texaco气化炉气化炉为一直立圆筒形钢制耐压容器,内壁衬以高质量的耐火材料,可以防止热渣和粗煤气的侵蚀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气流床煤气化工工艺技术分析
发表时间:2018-10-18T16:09:37.403Z 来源:《防护工程》2018年第12期作者:李刚[导读] 随着人们对气化产品需求的不断增加,对煤气化效率和环保要求的不断提高,作为新一代煤炭转化利用的主要技术,气流床煤气化技术的必将会得到更为广泛的应用。

气流床煤气化工艺性能稳健优化与控制的研究对于提高煤炭的清洁高效,保证气化生产的经济、稳定、安全运行有着重要意义。

李刚
解化清洁能源开发有限公司解化化工分公司云南开远 661600摘要:随着人们对气化产品需求的不断增加,对煤气化效率和环保要求的不断提高,作为新一代煤炭转化利用的主要技术,气流床煤气化技术的必将会得到更为广泛的应用。

气流床煤气化工艺性能稳健优化与控制的研究对于提高煤炭的清洁高效,保证气化生产的经济、稳定、安全运行有着重要意义。

关键词:气流床;煤气化工;工艺技术引言
煤气化是洁净、高效利用煤炭的主要方法之一,是许多能源高新技术的关键环节。

煤气化有完全气化和部分气化(煤的干馏技术)两种途径。

由于受到煤种和产品综合发展的制约,部分气化只能满足局部的需要;而我国煤炭资源中有一半以上煤种适合完全气化,因此煤制气技术的立足点应放在完全气化方面。

1 气化过程的主要反应 1.1 热解过程的主要反应
煤热解的化学反应异常复杂,其间反应途径甚多。

煤热解反应通常包括裂解和缩聚两大类反应。

在热解前期以裂解反应为主,而热解后期以缩聚反应为主。

一般来讲,热解反应的宏观形式为: 1.1.1 裂解反应
根据煤的结构特点,裂解反应大致有四类。

1)桥键断裂生成自由基。

桥键的作用在于联系煤的结构单元,在煤的结构中,主要的桥键有:- CH2 - CH2 -,- CH2 -,- CH2 -O-,-O-,-S-S-等。

它们是煤结构中最薄弱的环节,受热后很容易裂解生成自由基。

并在此后与其他产物结合,或自身相互结合。

2)脂肪侧链的裂解。

煤中的脂肪侧链受热后容易裂解,生成气态烃,如CH4,C2H6,C2H4等。

3)含氧官能团的裂解。

-OH煤中含氧官能团的稳定性顺序为:-CH>=C=O>-COOH 羟基(-OH)最稳定,在高温和有氢存在时,可生成水。

碳基(=C-O)在400℃左右可裂解生成一氧化碳。

羧基(-COOH)在200℃以上即能分解,生成二氧化碳。

含氧杂环在500℃以上也有可能断开,放出一氧化碳。

4)低分子化什物的裂解。

煤中以脂肪结构为主的低分子化合物受热后熔化,并不断裂解,生成较多的挥发性产物。

通常煤在热解过程中释出挥发分的次序依次为:H2O,CO2,CO,C2H6,CH4,焦油,H2。

上述热分解产物通常称为一次分解产物。

1.1.2 二次热分解反应
一次热分解产物中的挥发件成分在析出过程中,如受到更高温度的作用,就会产生二次热分解反应。

主要的二次热分解反应有以下四类:裂解反应、芳构化反应、加氢反应、缩合反应。

因此,煤热解产物的组成不仅与最终加热温度有关,还与是否发生二次热分解反应有很大关系。

在煤热解的后期以缩聚反应为主。

当温度在550-600℃范围内时,主要是胶质体再固化过程中的缩聚反应,反应的结果是生成了半焦。

当温度更高时,芳香结构脱氢缩聚,即从半焦转变为焦炭。

1.2 气化过程的主要反应
气化反应按反应物相态的不同而划分为两种类型的反应,即非均相反应和均相反应。

前者是气化剂或气态反应产物与固体煤的反应;后者是气态反应产物之间相互反应或与气化剂的反应。

在气化装置中,由于气化剂的不同而发生不同的气化反应,亦存在平行反应和连串反应。

煤气化反应一般分为三种类型碳一氧之间的反应、水蒸气分解反应和甲烷生成反应。

1.2.1 碳一氧之间的反应碳与氧之间的化学反应主要有: C+O2=CO2
2C+O2=2CO
C+CO2=2CO
2CO+O2=2CO2
上述反应中,碳与二氧化碳之间的反应C+CO2=2CO是一较强的吸热反应需在高温条件才能进行反应。

除此反应外,其他三个反应均为放热反应。

1.2.2 碳与水蒸气的反应
在一定温度下,碳与水蒸气之间发生下列反应: C+H2O=C0+H2
C+2H2O=C02+2H2
上述两反应均为吸热反应。

反应生成的一氧化碳可进一步和水蒸气发生如下一氧化碳变换反应:CO+H2O=CO2+H2 该反应为一放热反应。

1.2.3 甲烷生成反应
煤气中的甲烷,一部分来自煤中挥发物的热分解,另一部分则是气化炉内的碳与煤气中的氢气反应以及气体产物之间反应的结果。

C+2H2=CH4
3H2+CO=CH4+2H2O
2CO+2H2=CH4+CO2
CO2+4H2=CH4+2H2O
上述生成甲烷的反应,均为放热反应。

1.2.4 煤炭中还含有少量元素氮(N)和硫(S)等
它们与气化剂以及反应中生成的气态反应产物之间可能进行的反应如下: S+O2=SO2
SO2+3H2=H2S+2H2O
SO2+2CO=S+2CO2
2H2S+SO2=3S+2H2O
C+2S=CS2
CO+S=COS
N2+3H2=2NH3
N2+H2O+2C0=2HCN+1.5O2
N2+xO2=2NOx
由此产生了煤气中的含硫和含氟产物。

这些产物有可能产生腐蚀和污染,在气体净化时必须除去。

其中含硫化合物主要是H2S,COS、CS2和其他含硫化合物仅占次要地位。

在含氮化合物中,NH3是主要产物,NOx(主要是NO以及微量的NO2)和HCN为次要产物。

上述反应对气化反应的化学平衡及能量平衡并不起重要作用。

气化反应为煤炭气化的基本化学反应。

不同气化过程即由上述或其中部分反应以串联或平行的方式组合而成。

上述反应方程式指出了反应的初终状态,能用来进行物料衡算和热量街算,同时也能用来计算由这些反应方程
式所表示反应的平衡常数。

但是,这些反应力程式并不能说明反应本身的机理。

2 气流床煤气化工艺性能主要评价指标
2.1 有效气体成分含量
煤气是CO、H2、CO2、CH4、N2、NOx、H2S、SO2等多组分混合气体,同时还含有未完全反应的O2和水蒸气,CO和H2是煤气中的主要成分气体,其总量一般在70%以上。

对于煤气燃烧利用而言,CO和H2是煤气中关键的可燃成分,增加CO和H2的含量,可以提高煤气的热值。

同时,对于合成氨、甲醇等煤化工工业而言,CO和H2是重要的原料气。

在煤化工生产过程中煤气中的CO需先经变换工段与水发生变换反应,生成H2和CO2,再对CO2进行脱除,H2用于氨/醇合成。

因此,CO%,H2%以及(CO+H2)%反映了煤气的有效成分的结构构成,是煤气质量效果评价的极为重要指标。

其计算公式如下: 2.2 煤气化消耗指标
煤气化消耗指标是反应气化过程经济性的评价指标。

煤气化消耗指标是指生产单位煤气有效成分(CO+H2)所消耗的煤炭量或气化剂量。

工业上,单位煤气有效成分常采用1000m3的(CO+H2)为单位。

煤气消耗指标主要包括比煤耗、比氧耗、比汽耗。

其计算公式如下:考察上述煤气化性能评价指标,可以看出这些气化性能评价指标并不完全独立。

其中有效气体含量指标(CO+H2)%与CO%和H2%完全相关,而各类消耗指标比煤耗、比氧耗和比汽耗与产气率、碳转化率及己知的工艺条件如投煤量、氧量和蒸汽量等相关。

鉴于此,本文研究所涉及的煤气化性能评价指标仅取相互独立的评价指标,具体为CO%、H2%、产气率和碳转化率。

结语
要实现煤化工,煤气化工艺是必不可少的技术基础与关键。

由于煤气化装置的投资巨大,因此企业在确定煤气化工艺项目的时候一定要进行多方面的考虑,要充分考虑到能否实现其竞争能力。

在选择煤种原料的时候也一定要作出多方面的综合比较,比如原料煤种以及技术投资方面进行综合评估。

力求将各种风险降低。

参考文献
[1]汪寿建.国内外新型煤化工及煤气化技术发展动态分析[J]化肥设计,2011.
[2]张金阳.煤气化工艺选择之我见[J]河南化工,2014.
[3]张荣林.基于煤气化工艺技术的选择与评述[J].化肥设计,2015.。

相关文档
最新文档