分块矩阵的概念和运算
§4 矩阵的分块运算

下页
返回
3. 乘法 设A为m × l矩阵 , B为l × n矩阵 , 分块成 A11 L A1t B11 L B1r A= M M , B = M M , A L A B L B st s1 tr t1 其中 Ai1 , Ai 2 , L , Ait 的列数分别等于 B1 j , B2 j , L , Btj的行数 , 那么
o
上页
下页
返回
1 3 例1 设 A = 0 0 0
2 5 0 0 0
0 0 0 0 1 2 0 −1 0 0
解 把A进行分块得 1 2 , 其中A1 = 3 5 1 2 3 A2 = 0 − 1 4 . 0 0 1
且A1−1
0 0 3 , 求A−1 . 4 1 1 3 A = 0 0 0
B −1 − B −1 DC −1 . 因此 A −1 = O C −1
O A = O B−1 另外 A−1 O B O
−1
上页
下页
返回
1 0 例3 设 A = 0 0
ቤተ መጻሕፍቲ ባይዱ
解
4 3 ; 求 A −1 2 1 1 2 3 利用分块法 A = 0 1 2 0 0 1 0 0 0 2 1 0 0 3 2 1 0
B3 = [0 1 1 b].
上页 下页 返回
一、分块矩阵
总体思想:对于行数和列数较高的矩阵 中 总体思想:对于行数和列数较高的矩阵A中,为了简化 运算,在矩阵A中 用横、竖虚线, 运算,在矩阵 中,用横、竖虚线,将A分成若干 分成若干 小块,视每一块为一元素进行相应的运算, 小块,视每一块为一元素进行相应的运算,然后再 对每一小块进行相应的运算,降阶运算, 对每一小块进行相应的运算,降阶运算,此法称为 矩阵分块法。 矩阵分块法。 具体做法是:将矩阵 用若干条纵 用若干条纵、 具体做法是:将矩阵A用若干条纵、横虚线分成许多个 小矩阵,每一个小矩阵称为矩阵A的子块, 小矩阵,每一个小矩阵称为矩阵 的子块,以子块 为元素的形式上的矩阵称为分块矩阵 分块矩阵. 为元素的形式上的矩阵称为分块矩阵 其中C1 = [a 1], 又如 C 2 = [0 0], a 1 0 0 0 a 0 0 C 1 C 2 A= 0 a 0 0 = C C 1 0 b 1 3 4 C 3 = 1 0 , C 4 = b 1 . 0 1 0 1 1 b 1 b
《线性代数》分块矩阵

A12
A22
其中,子块
1 0 A11 0 1
A21 4 0
A12
1 3
2 4
0 0
A22 2 1 1
有时候,也常把矩阵按列分块:
a11 a12
A
a21
a22
am1
am2
a1n
a2n
β1,
β2 ,
amn
, βn
称之为列分块矩阵,其中 βj (a1j , a2 j , , amj )T
C13 C23
4 2
1
A11 (0, 0),
A12 (5),
A21
0
1 ,
A22
2
,
1 B11 5,
2 B12 3
14,
1 B13 0 ,
B21 0,
B22 0
2,
B23 0
AB
C
C11 C21
C12 C22
C13 C23
其中
C11 A11B11 A12B21 (0
4 分块矩阵 (Partitional matrices)
4.1 分块矩阵的概念
用若干条横线和纵线把矩阵A分成若干小块,每一个小
块作为一个矩阵,称为A的子块(或子矩阵). 把A的每一个子
块作为一个元素构成的矩阵称为分块矩阵. 例如
1
A
0
4
0 1 0
1 3 2
2 4 1
0 0 1
A11 A21
AT
A11T A12T
A2T1 A2T2
ArT1 ArT2
例2.
A1Ts A2Ts
ArsT
1 0 0
1 A 0
0
0 1 0
分块矩阵的概念和运算

-1 3
例4
-2 3 0 0
求A=
1 0 0
-2 0 0
0 1 2
5 02的逆矩 A-阵 1
- 2 3 0 0
解
A
=
1 0 0
-2 0 0
0 1 2
502=
A11 o
o A22
A1-11 =--12 --23
A-1 22
=-52
-12
A-1
=
A1-11 o
Ao2-12=
-2 -1 0 0
10 1 3 01 2 4 0 0 -1 0 0 0 0 -1
, B=1 20 02 600 31
0 0
,
0 -2 0 1
用分块矩阵计算kA,A+B及AB。
解:将矩阵A,B进行分块:A= I C ,B= D O ,
O -I
FI
7 -1 1 3
则
AB=
IC O -I
D O = D +CF C = 14 4 2 4 。
0 8 5
032=A O O1
O A2 O
O A O3=B O1
O B2
分块对角矩阵的性质
A11
设A
=
A22
是为分块对角矩阵
Arr
则
(1)
A1k1
Ak =
A2k2
其中 k是自然数
Arkr
( 2 ) |A |= |A 1 |• 1 |A 2 |• 2 |A r|r
(3) A可逆的充分必对 要任 条i(意 1件 i是 r),Aii可逆,
,
B=l2B21
B22
Ast
lt Bt1 Bt2
B1r
分块矩阵及其运算

矩阵及其 运算
1
第二章 矩阵概念及其运算
第三节 分块矩阵(Block matrix) 及其运算
分块矩阵的概念 分块矩阵的运算 问题与思考
2
一、分块矩阵的概念
将矩阵A用若干条纵线和横线分成许多小矩阵,每个小 矩阵称为A的一个子块.以这些子块为元素的形式上的矩阵 称为分块矩阵.
例如矩阵:
a11 a12 a13 a14
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
1 0 1 0
B
1 1
2 0
0 4
1 1
B
1 1
2 0
Байду номын сангаас
0 1 4 1
1 1 2 0
1 1 2 0
1 0 1 0
B
A a21 a31
a22 a32
a23 a33
a24
a34
记为 A11
A21
其中
A11
a11 a21
a12 a22
a13 a23
;
A12
a14 a24
;
A12
A22
A21 a31 a32 a33 ;
A22 a34
3
注: 任一矩阵A有多种分块方法,较特殊的分块有:
1)将矩阵A视为一个子块的分块矩阵; A
k 1
7
3.分块矩阵的转置
设矩阵A分块如下:
A11
分块矩阵初等行变换求秩的不等式

在数学中,分块矩阵初等行变换求秩的不等式是一个重要的概念。
通过对分块矩阵进行初等行变换,我们可以得到一个新的矩阵,并通过对这个新矩阵进行求秩,得到一些重要的不等式关系。
接下来,我将会详细探讨这一主题,并按照从简到繁的方式进行解释。
一、分块矩阵的定义让我们回顾一下分块矩阵的定义。
一个分块矩阵是由若干个子矩阵组成的大矩阵。
通常情况下,这些子矩阵可以是任意大小的矩阵,它们之间通过分块符号进行分割。
一个分块矩阵可以表示为:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]其中 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别是子矩阵。
这种表示方法在矩阵分析和线性代数中经常被使用,特别是在矩阵的运算和性质分析中。
二、分块矩阵初等行变换接下来,让我们来探讨分块矩阵的初等行变换。
我们知道,在矩阵的运算中,初等行变换是一种通过交换行、数乘行、行加减倍数行来改变矩阵的运算方法。
对于分块矩阵,我们可以运用相似的方法进行初等行变换。
对于一个分块矩阵:\[ A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22}\end{bmatrix} \]我们可以对其中的子矩阵 \(A_{11}\)、\(A_{12}\)、\(A_{21}\)、\(A_{22}\) 分别进行初等行变换,如交换行、数乘行、行加减倍数行等操作。
通过这些初等行变换,我们可以得到一个经过变换的新矩阵。
三、求秩的不等式关系有了经过初等行变换的新矩阵,我们可以通过对其进行求秩来得到一些不等式关系。
根据矩阵求秩的性质,我们可以得到如下的不等式关系:\[ rank(A) + rank(B) - n \leq rank \begin{pmatrix} A & B\end{pmatrix} \leq rank(A) + rank(B) \]其中,\(rank(A)\) 和 \(rank(B)\) 分别表示矩阵 \(A\) 和 \(B\) 的秩,\(n\) 表示矩阵的列数。
矩阵分块法

A1r Asr
A11 A
As1
A1r
Asr
其运算律与数乘矩阵相同.
λ为数,那末
3.分块矩阵的乘法.
设A为 m×l 矩阵,B为l×n矩阵,分块成
A11 A12
A
Ai1
Ai2
As1
As 2
A1t
B11 B1 j B1r
Ait
§4. 矩阵分块法
一、分块矩阵的定义
把一个阶数较高的矩阵,用若干条横线和竖 线分成若干小块 , 每一小块都叫做矩阵的子块 , 以子块为元素的矩阵称为分块矩阵.
例如:将3×4矩阵
A
a11 a21
a12 a22
a13 a23
a14 a24
a31 a32 a33 a34
分块形式如下:
A22 A12
a11 a12
1
a21
a22
a31 a32
A21 A11
a13 a23
a14 a24
2
a11 a21
a12 a13 a22 a23
a14 a24
a33 a34
a31
a32 a33
a34
A11 A21
A12 A22
A13 A23
3
a11 a21
a12 a22
a13 a23
0 0 1 1
6.分块矩阵的应用
设A为m×n矩阵,将A按行分块,得
1
A
2
m
其中 i (i 1,2, , m) 是A的第 i 行.
将A按列分块,得
A =( β1, β2,…, βn ).
其中 βj ( j = 1, 2, … ,n ). 是 A 的第 j 列. 对于线性方程组
分块矩阵

2
O
1 11
2
2 2
M M
m
m
m
m
(2)以对角阵n右乘矩阵Amn时 把A按列分块 有
AAmmnnn n(a(a1,1a, a2,2,,a, an)n)1 12 2mm((1a1a1,1, 2a2a2,2,,, nanan)n)
例4 设ATAO 证明AO
证明 设A(aij)mn 把A用列向量表示为A(a1 a2 an) 则
例5 设4阶矩阵A α, γ2, γ3, γ4 , B β, γ2, γ3, γ4 ,其中
α, β, γ2, γ3, γ4均为4行1列的分块矩阵,已知 A 4, B 1,
则 AB
.
解 A B α, γ2, γ3, γ4 + β,γ2,γ3,γ4 =α+β, 2γ2, 2γ3, 2γ4
AT
A
a1T a2T
anT
(a1,
a2,
an
)
a1T a1 a2T a1
anT a1
a1T a2 a2T a2
anT a2
a1T an a2T an
anT an
因为ATAO 所以
aiT
ai
(ai1,
ai2,
,
ain)
ai1 ai2
ain
ai21 ai22 ai2n 0 (i1 2 n) 从而ai1ai2 ain0(i1 2 n) 即AO
A12 L A22 L
A1s
A
2s
M M M
Ar1 A r2 L Ars
AT
A1T1 A1T2 M
A
T 21
L
A
T 22
L
A
T
分块矩阵

引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法。
类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。
以这些子块为元素的矩阵就称为分块矩阵。
线形代数以其独特的理论体系和解题技巧而引人入胜。
在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。
第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵。
对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。
于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。
这种分割法称为矩阵的分块。
二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。
若采用相同的分块法。
A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ ,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。
分块矩阵的概念

As
i 1,2,L , s.
a1 j
按列分块 A
A1, A2 ,L
, An ,其中
Aj
a2 j M
,
j 1,2,L ,n. anj
一、分块矩阵的运算
1、加法 设 A, B 是两个 m n 矩阵,对它们
用同样的分法分块:
A11 A
As1
A1r
B11
, B
A1t
A2t L
Ast
例1 设
1 0 0 0
A
0 1
1 2
0 1
00 ,
1 1 0 1
求 AB.
1 0 1 0
B
1 1
2 0
0 4
1 1
,
1 1 2 0
解 把A, B分块成
1 0
A
0
1
1 0
0 1
E
E
,
1 0 1 0
B
1 1
2 0
0 4
1 1
1 1 2 0
,
O
Bs
A1 B1
则 A B
A2 B2
O
,
O
O
As
BS
A1B1
AB
A2 B2
O
O
.
O
As BS
(2) 准对角矩阵
A1
A
A2
O O
O
As
可逆
Ai 0,i 1,L , s Ai可逆,i 1,L , s
且
A11
A1
A21
O
O
O
As1
5 0 0
AB
Cs1 Csr
分块矩阵的概念及运算

19
2.3.3 分块初等阵
分块单位阵 一次初等变换 分块初等阵
Em
En
(1)
0 Em
En 0
或
0 En
Em 0
换法:
倍法:
(2)
P 0
0 En
或
Em 0
0 P
消法:
(3)
Em K
0 En
或
Em 0
K En
20
对分块矩阵进行一次初等行(列)变换, 相当于给它左(右)乘以一个相应的分 块初等矩阵:
30
例5
1 x1 y1
计算 x2 y1
x1 y2 1 x2 y2
x1 yn x2 yn
解
1 x1 y1 x1 y2 x2 y1 1 x2 y2
xn y1 xn y2
xn y1
xn y2
x1 yn
x1 y1
x2 yn
En
x2
y1
1 xn yn
xn
y1
1 xn yn
x1 y2
x1 yn
1.
3A AB
0 5B
3A 5B
33 A (5)3 B 234 53
2.
0 AB
3A 5B
(1)33
3A 5B
0 AB
(1)33
3A
AB
33 A (1)3 A B 235
14
尤其要注意 AmpBpn 0 时的特殊情况:
*例4
AB A(B1, B2 , , Bn ) A为一子块
(AB1, AB2, , ABn)
A21
A12
A22
a31 a32 a33 a34
特殊 A ——视为一个子块
分块矩阵初等变换的妙用

分块矩阵初等变换的妙用分块矩阵是线性代数中常用的重要工具之一,它在矩阵运算和变换中有广泛的应用。
在实际应用中,我们经常遇到大规模矩阵的运算和变换,而分块矩阵可以通过对矩阵进行分块处理,使得复杂的运算变得简单直观。
本文将介绍分块矩阵初等变换的妙用,探讨其在线性代数中的重要作用。
一、分块矩阵初等变换的基本概念分块矩阵是将一个矩阵按照行或列进行划分,每个小块可以是一个数、一个向量、一个行/列向量,也可以是一个矩阵。
分块矩阵初等变换是指对分块矩阵进行的行/列交换、数乘、行/列加减操作。
在分块矩阵初等变换中,我们通常有以下三种基本操作:1. 行/列交换:即将两行/列进行互换。
2. 数乘:即将矩阵的某一行/列中的元素乘以一个非零数。
3. 行/列加减:即将矩阵的某一行/列加上或减去另一行/列的若干倍。
通过这些基本操作,我们可以对分块矩阵进行各种变换,从而达到简化运算、求解方程组、矩阵的相似变换等目的。
1. 矩阵的分块运算分块矩阵初等变换可以简化矩阵的运算。
对于一个大规模矩阵进行求逆运算时,可以将其分块为多个小规模的矩阵,然后对每个小矩阵进行求逆运算,最后组合起来,避免了对整个大矩阵进行求逆的复杂运算。
这样一来,不仅简化了运算,还提高了计算效率。
2. 方程组的求解分块矩阵初等变换也常用于解决方程组。
对于形如AX=B的线性方程组,其中A是一个大规模矩阵,B是一个向量,X是未知向量。
我们可以将矩阵A根据其特点进行分块处理,比如按照系数矩阵的形式进行分块,然后通过初等变换将系数矩阵化为上三角矩阵或对角矩阵,从而简化了方程组的求解过程。
3. 矩阵的相似变换在线性代数中,矩阵的相似变换是一个重要的概念。
而分块矩阵初等变换可以帮助我们更直观地理解矩阵的相似性。
通过对分块矩阵进行初等变换,我们可以将一个矩阵化为对角阵或者标准型,从而得到矩阵的一些特征信息,如特征值、秩等,为矩阵的进一步研究提供了便利。
4. 线性变换的表示在线性代数中,我们经常需要研究线性变换的性质和特点。
分块矩阵的乘法运算

分块矩阵的乘法运算分块矩阵的乘法运算是线性代数中的一个重要概念。
在实际应用中,我们经常需要对大规模的矩阵进行运算,而分块矩阵的乘法可以显著提高计算效率和降低内存消耗。
我们需要了解什么是分块矩阵。
分块矩阵是指将一个大矩阵划分为若干个小矩阵,并按照一定规则进行组合。
这样做的好处是可以简化计算过程,提高运算效率。
例如,我们可以将一个n×n的矩阵划分为四个n/2×n/2的小矩阵,然后对这些小矩阵进行运算,最后将结果组合起来。
接下来,我们来看一下分块矩阵的乘法规则。
假设有两个分块矩阵A和B,它们的维度分别为m×n和n×p。
分块矩阵的乘法运算可以表示为AB=C,其中C是一个m×p的矩阵。
具体的计算过程如下:1. 将矩阵A和B分块,得到分块矩阵的形式。
例如,将矩阵A划分为大小为m×k的子矩阵,将矩阵B划分为大小为k×p的子矩阵。
2. 对每个子矩阵进行乘法运算,得到中间结果。
3. 将中间结果按照一定规则组合起来,得到最终的结果矩阵C。
需要注意的是,分块矩阵的乘法运算并不是简单地将对应位置的子矩阵相乘,而是需要根据分块矩阵的特性进行一定的规则组合。
具体的规则取决于划分的方式和矩阵的性质。
分块矩阵的乘法运算在实际应用中有很多优势。
首先,它可以减少内存消耗。
当我们需要对大规模矩阵进行运算时,直接对整个矩阵进行操作会占用大量的内存空间。
而分块矩阵的乘法可以将运算过程分解为多个小矩阵的运算,从而减少内存的使用。
分块矩阵的乘法可以提高计算效率。
由于分块矩阵的乘法运算可以将大规模的运算任务分解为多个小规模的运算任务,这样可以利用多核计算的优势,同时也可以进行并行计算,提高运算速度。
分块矩阵的乘法还可以简化计算过程。
对于某些特殊的矩阵,例如对角矩阵或者稀疏矩阵,可以通过适当的分块方式将乘法运算转化为更简单的运算,从而减少计算量。
在实际应用中,分块矩阵的乘法广泛应用于科学计算、信号处理、图像处理等领域。
13__分块矩阵、几种特殊方阵的运算

对称阵与反称阵关于矩阵的线性运算封闭, 而对矩阵的乘法不具封闭性。
课堂练习: 1. 设A、B均为n阶上(下)三角矩阵,试证AB也为
n阶上(下)三角矩阵。(书P25第一题)
证明:(不妨证上三角矩阵的情形)
设
a11
A
0
a12
a22
a1n
a
2
n
b11
B
0
b12
b22
作用: ①简化高阶矩阵运算 ②简化运算的表达形式 ③看清结构
例如
a
A
0 1
0
1 a 0 1
0 0 b 1
0 0 1 b
B1 B2 B3
,
即
a
A
0 10
1 a
0 1
0 0
b 1
0 0 b1
B1 BB32
a
A
0 1
1 a 0
0 0 b
0 0
C1
1 C3
C2 , C4
0 1 1 b
2
nn1
n 2
0
0
n
用数学归纳法证明
当 n 2 时,显然成立.
假设n k 时成立,则 n k 1 时,
k
kk 1
k
k
2
1
k
2
1
0
An1 Ak A 0 k
kk1 0 1 ,
0
0
k
0
0
n1
0
n 1n
n1
n 1n n1
2
n 1n
,
0
0
n1
所以对于任意的 n
nn 1 n2
2
第四节 分块矩阵

1 0 24 A2 4 = 24 = 6 4 1 2 0 , 4 2
上页 下页 返回 结束
3 4 4 −3 A= 0 0 0 0
上页 下页 返回 结束
A1n A1 , n 4) 若 A = O O ; 则A = As n As
As −1 A1 , 则 A −1 = N 5) 若 A = N ; A −1 A 1 s
O A B∗
上页 下页 返回 结束
例6 设
0 0 625 0 0 625 0 0 3 A1 O A4 = 4 , A = 2 0 ., 解 令 A= , 其中 A1 = 4 0−3 0 2 162 0 2 O A2 0 0 64 16 A18 O 8 8 8 8 8 8 16 A = , A = A1 A2 = A1 A2 = 10 O A2 8
0 0 0 0 1 2 0 0 1 2 0 0 3 0 0 2 1 0 0 1 35
A
B
A
0 0 0 1 0 0 3 都是分块对角阵. 都是分块对角 分块对角阵 0 0 1 0 2 2 0
B
上页
下页
返回
结束
分块对角矩阵具有下述性质: 分块对角矩阵具有下述性质: 1) A = A1 A2 L As ;
第二章 矩阵及其运算
第四节 分块矩阵
zxs
什么是分块矩阵 分块矩阵的运算 基本应用
上页
下页
分 块 矩 阵

分块矩阵
3. 分块矩阵的乘积
设A为m×s矩阵,B为s×n矩阵,即 AB有意义.在对A,B进行分块时,为使 分块矩阵的乘积AB有意义,要使左乘矩阵 A的列的分法与右乘矩阵B的行的分法相同, 至于A的行的分法与B的列的分法则无任何 要求.即
分块矩阵
【例2-18】
分块矩阵
把A分成具有特殊子块的分块矩阵,并求分块矩阵 A与B的乘积.
分块矩阵
其中E3和E2分别表示3阶和2阶单位矩阵,而 上述矩阵也可以采用另外的分块方法.例如,令
分块矩阵
则有
矩阵的分块方式可以是任意的,但要根据原矩阵的结 构特点和运算内容的需要来选择适当的分块方法,既要使 子块在参与运算时有意义,又要为运算的方便考虑,这才 是矩阵分块的目的.
分块矩阵
二、 分块矩阵的基本运算
分块矩阵
分块矩阵
为使分块乘积AB有意义,把B分块成
分块矩阵分块矩阵4. 分 Nhomakorabea矩阵的转置
求分块矩阵的转置时,不但要把分块矩阵的行与列互换, 同时每一个子块也要做转置.
分块矩阵
分块矩阵
分块矩阵
分块矩阵
上述对角分块矩阵具备下列运算规律: (1)同结构的对角分块矩阵的和、积仍是对角分块矩阵.
分块矩阵
(2)对角分块矩阵的行列式具有下述性质:
分块矩阵
【例2-19】
分块矩阵
谢谢聆听
分块矩阵
分块矩阵
为了计算简便或理论研究的需要,有 时我们需要将一个行数和列数较多的大型矩 阵划分为若干块小矩阵,使大矩阵的运算问 题转化成小矩阵的运算问题,这种做法称为 矩阵分块.它是矩阵运算中的一种简化技巧, 也是处理阶数较高的矩阵的重要方法.
分块矩阵
一、 分块矩阵的概念
分块矩阵的运算法则

分块矩阵的运算法则
具体做法是:将矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为A的一个子块,以子块为元素的矩阵称为分块矩阵。
行列式有很多重要的性质,其中有一条是:互换两行(列)的位置,行列式的值反号。
将等式矩阵B的第一行依次与前面m行交换,交换到整个矩阵的第一行,共交换m次;同理,矩阵B的第二行也依次与前面m行进行交换到整个矩阵的第二行要完成整个行变换,需要交换完矩阵B的n行。
所以总的互换行位置的次数为:mn次。
子矩阵是一种与上面所述矩阵分块定义不同的矩阵,本质上它也是原有矩阵的一部分,只不过子矩阵的下标并不连续。
(实对称矩阵或Hermite矩阵)二次型:zTAz或aHAx,刻画矩阵的正定性(方阵)行列式:刻画矩阵的奇异性;等于特征值之积(方阵)特征值:刻画矩阵的奇异性(是否存在0特征值)刻画矩阵的正定性刻画对角元素之和。
矩阵分块求行列式

矩阵分块求行列式摘要:1.矩阵分块的概念与意义2.求行列式的基本方法回顾3.矩阵分块求行列式的原理与步骤4.分块矩阵的性质与计算优势5.实际应用案例分析6.总结与拓展正文:在矩阵计算中,矩阵分块求行列式是一种常见的技巧。
所谓矩阵分块,就是将一个大型矩阵划分为若干个小型矩阵,以便于计算和分析。
这种方法在实际应用中具有很高的实用价值,尤其在处理大规模矩阵问题时,能够大大提高计算效率。
首先,我们来回顾一下求行列式的基本方法。
对于一个二维矩阵A,其行列式表示为:|A| = a11*a22 - a12*a21其中,a11, a12, a21, a22分别为矩阵A的第一行第二列、第一行第三列、第二行第三列和第二行第二列的元素。
接下来,我们来探讨矩阵分块求行列式的原理与步骤。
假设有一个分块矩阵:A = [A11 A12 | A21 A22]其中,A11、A12、A21、A22为小型矩阵。
根据分块矩阵的性质,我们可以将行列式|A|表示为:|A| = |A11| * |A22| - |A12| * |A21|这样,我们就可以利用分块矩阵的性质,将原矩阵的行列式转化为若干个小矩阵的行列式之差。
在实际计算过程中,这种方法可以大大简化计算复杂度。
分块矩阵在计算方面的优势在于,它将原矩阵划分为多个小块,从而使得矩阵的存储、计算和分析变得更为简单。
此外,分块矩阵还具有以下性质:1.分块矩阵的转置等于分块矩阵各块的转置之积。
2.分块矩阵的逆矩阵等于各块的逆矩阵之乘。
3.分块矩阵的行列式等于各块行列式的乘积。
这些性质为矩阵分块求行列式提供了理论依据。
在实际应用中,矩阵分块求行列式的方法具有广泛的应用价值。
例如,在线性方程组求解、矩阵对角化、线性变换等领域,矩阵分块求行列式都发挥着重要作用。
以下是一个简单案例:已知线性方程组:2x + 3y - z = 14x - 5y + 2z = 36x + 7y - 3z = 5我们可以将其写成矩阵形式:A = [2 3 -1 | 4 -5 2]b = [1 3 5]利用矩阵分块求行列式的方法,我们可以先求解小型矩阵的行列式,再计算线性方程组的解。