2012年陕西省中考数学试题及答案
2012年全国中考数学试题分类解析汇编专题52:平面几何的综合
2012年全国中考数学试题分类解析汇编(159套63专题)专题52:平面几何的综合一、选择题1. (2012湖北鄂州3分)如图,四边形OABC 为菱形,点A 、B 在以O 为圆心的弧上,若OA=2,∠1=∠2,则扇形ODE 的面积为【 】A.π34B.π35C.π2D.π3【答案】A 。
【考点】菱形的性质,等边三角形的判定和性质,扇形面积的计算。
【分析】如图,连接OB .∵OA=OB=OC=AB=BC,∴∠AOB+∠BOC=120°。
又∵∠1=∠2,∴∠DOE=120°。
又∵OA=2,∴扇形ODE 的面积为21202 4 3603ππ⋅⋅=。
故选A 。
2. (2012湖南岳阳3分)如图,AB 为半圆O 的直径,AD 、BC 分别切⊙O 于A 、B 两点,CD 切⊙O 于点E ,AD 与CD 相交于D ,BC 与CD 相交于C ,连接OD 、OC ,对于下列结论:①OD 2=DE•CD; ②AD+BC=CD;③OD=OC;④S 梯形ABCD =CD•OA;⑤∠DOC=90°,其中正确的是【 】A .①②⑤ B.②③④ C.③④⑤ D.①④⑤【答案】A 。
【考点】切线的性质,切线长定理,相似三角形的判定与性质。
1052629【分析】如图,连接OE ,∵AD 与圆O 相切,DC 与圆O 相切,BC 与圆O 相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB ,AD∥BC。
∴CD=DE+EC=AD+BC。
结论②正确。
在Rt△ADO 和Rt△EDO 中,OD=OD ,DA=DE ,∴Rt△ADO≌Rt△EDO(HL )∴∠AOD=∠EOD。
同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC。
又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°。
结论⑤正确。
∴∠DOC=∠DEO=90°。
2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题
2012年全国中考数学试题分类解析汇编(159套63专题)专题58:开放探究型问题一、选择题二、填空题1. (2012陕西省3分)在同一平面直角坐标系中,若一个反比例函数的图象与一次函数y=2x+6-的图象无.公共点,则这个反比例函数的表达式是 ▲ (只写出符合条件的一个即可). 【答案】5y x=(答案不唯一)。
【考点】开放型问题,反比例函数与一次函数的交点问题,一元二次方程根与系数的关系。
【分析】设反比例函数的解析式为:k y x =, 联立y=2x+6-和k y x=,得k 2x+6x -=,即22x 6x+k 0-= ∵一次函数y=2x+6-与反比例函数k y x= 图象无公共点, ∴△<0,即268k 0<--(),解得k >92。
∴只要选择一个大于92的k 值即可。
如k=5,这个反比例函数的表达式是5y x=(答案不唯一)。
2. (2012广东湛江4分) 请写出一个二元一次方程组 ▲ ,使它的解是x=2y=1⎧⎨-⎩. 【答案】x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
【考点】二元一次方程的解。
【分析】根据二元一次方程解的定义,围绕x=2y=1⎧⎨-⎩列一组等式,例如: 由x +y=2+(-1)=1得方程x +y=1;由x -y=2-(-1)=3得方程x -y=3;由x +2y=2+2(-1)=0得方程x +2y=0;由2x +y=4+(-1)=3得方程2x +y=3;等等,任取两个组成方程组即可,如x+y=1x+2y=0⎧⎨⎩(答案不唯一)。
3. (2012广东梅州3分)春蕾数学兴趣小组用一块正方形木板在阳光做投影实验,这块正方形木板在地面上形成的投影是可能是▲ (写出符合题意的两个图形即可)【答案】正方形、菱形(答案不唯一)。
【考点】平行投影。
【分析】根据平行投影的特点:在同一时刻,平行物体的投影仍旧平行。
所以,在同一时刻,这块正方形木板在地面上形成的投影是平行四边形或特殊的平行四边形,例如,正方形、菱形(答案不唯一)。
2012年全国中考数学试题分类解析汇编专题59:新定义和跨学科问题
2012年全国中考数学试题分类解析汇编(159套63专题)专题59:新定义和跨学科问题一、选择题1. (2012浙江丽水、金华3分)如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是【】A【答案】【考点】【分析】2. (A.B.C.D.【答案】D。
【考点】跨学科问题,反比例函数的图象。
【分析】∵在公式I=UR中,当电压U一定时,电流I与电阻R之间的函数关系不反比例函数关系,且R为正数,∴选项D正确。
故选D。
3. (2012湖北随州4分)定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l 1、l 2的距离分别为a 、b ,则称有序非实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,3)的点的个数是【 】A .2B .1C . 4D .3【答案】C 。
【考点】新定义,点的坐标,点到直线的距离。
【分析】画出两条相交直线,到l 1的距离为2的直线有2条,到l 2的距离为3的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数:4. ( 】A .2I=R 【答案】【考点】【分析】5. (2012湖南益阳4分)在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T )随加热时间(t )变化的函数图象大致是【 】A .B .C .D .【答案】B。
【考点】跨学科问题,函数的图象。
【分析】根据在一个标准大气压下水加热到100℃后水温不会继续增加,而是保持100℃不变,据此可以6. (3)=(3,2),g(6,﹣5)【答案】【考点】【分析】7. (20122【】A.32B.25C.425D.254【答案】B。
【考点】新定义,求函数值。
【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当x=52时,在2≤x≤4之间,所以将x的值代入对应的函数即可求得y的值:112y===5x52。
2012年陕西省高考数学试卷(理科)答案与解析
2012年陕西省高考数学试卷(理科)参考答案与试题解析一、选择题1.(5分)(2012•陕西)集合M={x|lgx>0},N={x|x2≤4},则M∩N=()A.(1,2)B.[1,2)C.(1,2]D.[1,2]考点:对数函数的单调性与特殊点;交集及其运算.专题:计算题.分析:先求出集合M、N,再利用两个集合的交集的定义求出M∩N.解答:解:∵M={x|lgx>0}={x|x>1},N={x|x2≤4}={x|﹣2≤x≤2},∴M∩N={x|1<x≤2},故选C.点评:本题主要考查对数函数的单调性和特殊点,两个集合的交集的定义和求法,属于基础题.2.(5分)(2012•陕西)下列函数中,既是奇函数又是增函数的为()A.y=x+1 B.y=﹣x2C.D.y=x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:探究型.分析:对于A,非奇非偶;对于B,是偶函数;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|=,可判断函数既是奇函数又是增函数,故可得结论.解答:解:对于A,非奇非偶,是R上的增函数,不符合题意;对于B,是偶函数,不符合题意;对于C,是奇函数,但不是增函数;对于D,令f(x)=x|x|,∴f(﹣x)=﹣x|﹣x|=﹣f(x);∵f(x)=x|x|=,∴函数是增函数故选D.点评:本题考查函数的性质,考查函数的奇偶性与单调性的判断,属于基础题.3.(5分)(2012•陕西)设a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:复数的基本概念;必要条件、充分条件与充要条件的判断.专题:计算题.分析:利用“ab=0”与“复数为纯虚数”互为前提与结论,经过推导判断充要条件.解答:解:因为“ab=0”得a=0或b=0,只有a=0,并且b≠0,复数为纯虚数,否则不成立;复数=a﹣bi为纯虚数,所以a=0并且b≠0,所以ab=0,因此a,b∈R,i是虚数单位,则“ab=0”是“复数为纯虚数”的必要不充分条件.故选B.点评:本题考查复数的基本概念,充要条件的判断,考查基本知识的灵活运用.4.(5分)(2012•陕西)已知圆C:x2+y2﹣4x=0,l为过点P(3,0)的直线,则()A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能考点:直线与圆的位置关系.专题:计算题.分析:将圆C的方程化为标准方程,找出圆心C坐标和半径r,利用两点间的距离公式求出P与圆心C间的长,记作d,判断得到d小于r,可得出P在圆C内,再由直线l过P 点,可得出直线l与圆C相交.解答:解:将圆的方程化为标准方程得:(x﹣2)2+y2=4,∴圆心C(2,0),半径r=2,又P(3,0)与圆心的距离d==1<2=r,∴点P在圆C内,又直线l过P点,则直线l与圆C相交.故选A.点评:此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,两点间的距离公式,以及点与圆的位置关系,直线与圆的位置关系由d与r的关系来确定:当d<r时,直线与圆相交;当d=r时,直线与圆相切;当d>r时,直线与圆相离(d表示圆心到直线的距离,r为圆的半径).5.(5分)(2012•陕西)如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1,CA=CC1=2CB,则直线BC1与直线AB1夹角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:计算题.分析:根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.解答:解:分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)∴=(0,2,﹣1),=(﹣2,2,1)可得•=0×(﹣2)+2×2+(﹣1)×1=3,且=,=3,向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,设直线BC1与直线AB1夹角为θ,则cosθ==故选A点评:本题给出一个特殊的直三棱柱,求位于两个侧面的面对角线所成角的余弦之值,着重考查了空间向量的坐标运算和异面直线及其所成的角的概论,属于基础题.6.(5分)(2012•陕西)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,,中位数分别为m甲,m乙,则()A.,m甲>m乙B.,m甲<m乙C.,m甲>m乙D.,m甲<m乙考点:茎叶图;众数、中位数、平均数.专题:计算题.分析:直接求出甲与乙的平均数,以及甲与乙的中位数,即可得到选项.解答:解:甲的平均数甲==,乙的平均数乙==,所以甲<乙.甲的中位数为20,乙的中位数为29,所以m甲<m乙故选:B.点评:本题考查茎叶图,众数、中位数、平均数的应用,考查计算能力.7.(5分)(2012•陕西)设函数f(x)=xe x,则()A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点考点:利用导数研究函数的极值.专题:计算题.分析:由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点解答:解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选D点评:本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.(5分)(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有()A.10种B.15种C.20种D.30种考点:排列、组合及简单计数问题;计数原理的应用.专题:计算题.分析:根据分类计数原理,所有可能情形可分为三类,在每一类中可利用组合数公式计数,最后三类求和即可得结果解答:解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C点评:本题主要考查了分类和分步计数原理的运用,组合数公式的运用,分类讨论的思想方法,属基础题9.(5分)(2012•陕西)在△ABC中,角A,B,C所对边长分别为a,b,c,若a2+b2=2c2,则cosC的最小值为()A.B.C.D.考点:余弦定理.专题:计算题;压轴题.分析:通过余弦定理求出cosC的表达式,利用基本不等式求出cosC的最小值.解答:解:因为a2+b2=2c2,所以由余弦定理可知,c2=2abcosC,cosC==.故选C.点评:本题考查三角形中余弦定理的应用,考查基本不等式的应用,考查计算能力.10.(5分)(2012•陕西)如图是用模拟方法估计圆周率π的程序框图,P表示估计结果,则图中空白框内应填入()A.B.C.D.考点:循环结构.专题:计算题;压轴题.分析:由题意以及框图的作用,直接推断空白框内应填入的表达式.解答:解:法一:由题意以及程序框图可知,用模拟方法估计圆周率π的程序框图,M是圆周内的点的次数,当i大于1000时,圆周内的点的次数为4M,总试验次数为1000,所以要求的概率,所以空白框内应填入的表达式是.故选D.法二:随机输入xi∈(0,1),yi∈(0,1)那么点P(xi,yi)构成的区域为以O(0,0),A(1,0),B(1,1),C(0,1)为顶点的正方形.判断框内x2i+y2i≤1,若是,说说明点P(x i,y i)在单位圆内部(圆)内,并累计记录点的个数M若否,则说明点P(x i,y i)在单位圆内部(圆)外,并累计记录点的个数N第2个判断框i>1000,是进入计算此时落在单位圆内的点的个数为M,一共判断了1000个点那么圆的面积/正方形的面积=,即π12÷1=∴π=(π的估计值)即执行框内计算的是.故选D.点评:本题考查程序框图的作用,考查模拟方法估计圆周率π的方法,考查计算能力.二、填空题:把答案填写在答题卡相应的题号后的横线上(本大题共5小题,每小题5分,共25分)11.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为1+++++<.考点:归纳推理.专题:探究型.分析:由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n 的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式解答:解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<点评:本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式,本题考查了归纳推理考察的典型题,具有一般性12.(5分)(2012•陕西)(a+x)5展开式中x2的系数为10,则实数a的值为1.考点:二项式系数的性质.专题:计算题.分析:直接利用二项式定理的展开式的通项公式,求出x2的系数是10,得到方程,求出a 的值.解答:解:(a+x)5展开式中x2的系数为,因为(a+x)5展开式中x2的系数为10,所以=10,解得a=1,故答案为:1.点评:本题考查二项式定理系数的性质,考查计算能力.13.(5分)(2012•陕西)如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽为2米.考点:抛物线的应用.专题:计算题;压轴题.分析:先建立直角坐标系,将A点代入抛物线方程求得m,得到抛物线方程,再把y=﹣3代入抛物线方程求得x0进而得到答案.解答:解:如图建立直角坐标系,设抛物线方程为x2=my,将A(2,﹣2)代入x2=my,得m=﹣2∴x2=﹣2y,代入B(x0,﹣3)得x0=,故水面宽为2m.故答案为:2.点评:本题主要考查抛物线的应用.考查了学生利用抛物线解决实际问题的能力.14.(5分)(2012•陕西)设函数,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x﹣2y在D上的最大值为2.考点:利用导数研究曲线上某点切线方程;简单线性规划.专题:计算题;压轴题.分析:先求出曲线在点(1,0)处的切线,然后画出区域D,利用线性规划的方法求出目标函数z的最大值即可.解答:解:当x>0时,f′(x)=,则f′(1)=1,所以曲线y=f(x)及该曲线在点(1,0)处的切线为y=x﹣1,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域如下图阴影部分.z=x﹣2y可变形成y=x﹣,当直线y=x﹣过点A(0,﹣1)时,截距最小,此时z最大.最大值为2.故答案为:2.点评:本题主要考查了线性规划,以及利用导数研究函数的切线,同时考查了作图的能力和分析求解的能力,属于中档题.15.(5分)(2012•陕西)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若存在实数x使|x﹣a|+|x﹣1|≤3成立,则实数a的取值范围是﹣2≤a≤4.B.(几何证明选做题)如图,在圆O中,直径AB与弦CD垂直,垂足为E,EF⊥DB,垂足为F,若AB=6,AE=1,则DF•DB=5.C.(坐标系与参数方程)直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为.考点:绝对值不等式的解法;直线与圆相交的性质;与圆有关的比例线段;简单曲线的极坐标方程.专题:计算题;作图题;压轴题.分析:A;利用表示数轴上的x到a的距离加上它到1的距离,它的最大值等于3,作图可得实数a的取值范围.B;利用相交弦定理AE•EB=CE•ED,AB⊥CD可得DE=;在Rt△EDB中,由射影定理得:DE2=DF•DB=5,即得答案;C;将直线与圆的极坐标方程化为普通方程分别为:x=,(x﹣1)2+y2=1,从而可得相交弦长.解答:解:A.∵存在实数x使|x﹣a|+|x﹣1|≤3成立,而|x﹣a|+|x﹣1|表示数轴上的x到a的距离加上它到1的距离,又最大值等于3,由图可得:当表示a的点位于AB之间时满足|x﹣a|+|x﹣1|≤3,∴﹣2≤a≤4,故答案为:﹣2≤a≤4.B;∵AB=6,AE=1,由题意可得△AEC∽△DEB,DE=CE,∴DE•CE=AE•EB=1×5=5,即DE=.在Rt△EDB中,由射影定理得:DE2=DF•DB=5.故答案为:5.C;∵2ρcosθ=1,∴2x=1,即x=;又圆ρ=2cosθ的普通方程由ρ2=2ρcosθ得:x2+y2=2x,∴(x﹣1)2+y2=1,∴圆心(1,0)到直线x=的距离为,∴相交弦长的一半为=,∴相交弦长为.故答案为:.点评:本题A考查绝对值不等式的解法,绝对值的意义,求出|x﹣a|+|x﹣1|的最大值是3是解题的关键,考查作图与理解能力,属于中档题.本题B考查与圆有关的比例线段,掌握相交弦定理与射影定理是解决问题的关键,而C着重简单曲线的极坐标方程,化普通方程是关键,属于中档题.三、解答题16.(12分)(2012•陕西)函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为,(1)求函数f(x)的解析式;(2)设,则,求α的值.考点:由y=Asin(ωx+φ)的部分图象确定其解析式;三角函数的恒等变换及化简求值.专题:三角函数的图像与性质.分析:(1)通过函数的最大值求出A,通过对称轴求出周期,求出ω,得到函数的解析式.(2)通过,求出,通过α的范围,求出α的值.解答:解:(1)∵函数f(x)的最大值为3,∴A+1=3,即A=2,∵函数图象相邻两条对称轴之间的距离为,=,T=π,所以ω=2.故函数的解析式为y=2sin(2x﹣)+1.(2)∵,所以,∴,∵∴,∴,∴.点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,三角函数的恒等变换及化简求值,考查计算能力.17.(12分)(2012•陕西)设{a n}是公比不为1的等比数列,其前n项和为S n,且a5,a3,a4成等差数列.(1)求数列{a n}的公比;(2)证明:对任意k∈N+,S k+2,S k,S k+1成等差数列.考点:等比数列的通项公式;等差数列的性质.专题:综合题.分析:(1)设{a n}的公比为q(q≠0,q≠1),利用a5,a3,a4成等差数列结合通项公式,可得,由此即可求得数列{a n}的公比;(2)对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0,从而得证.解答:(1)解:设{a n}的公比为q(q≠0,q≠1)∵a5,a3,a4成等差数列,∴2a3=a5+a4,∴∵a1≠0,q≠0,∴q2+q﹣2=0,解得q=1或q=﹣2∵q≠1,∴q=﹣2(2)证明:对任意k∈N+,S k+2+S k+1﹣2S k=(S k+2﹣S k)+(S k+1﹣S k)=a k+2+a k+1+a k+1=2a k+1+a k+1×(﹣2)=0∴对任意k∈N+,S k+2,S k,S k+1成等差数列.点评:本题考查等差数列与等比数列的综合,熟练运用等差数列的性质,等比数列的通项是解题的关键.18.(12分)(2012•陕西)(1)如图,证明命题“a是平面π内的一条直线,b是π外的一条直线(b不垂直于π),c是直线b在π上的投影,若a⊥b,则a⊥c”为真.(2)写出上述命题的逆命题,并判断其真假(不需要证明)考点:向量语言表述线面的垂直、平行关系;四种命题;向量语言表述线线的垂直、平行关系.专题:证明题.分析:(1)证法一:做出辅助线,在直线上构造对应的方向向量,要证两条直线垂直,只要证明两条直线对应的向量的数量积等于0,根据向量的运算法则得到结果.证法二:做出辅助线,根据线面垂直的性质,得到线线垂直,根据线面垂直的判定定理,得到线面垂直,再根据性质得到结论.(2)把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.解答:证明:(1)证法一:如图,过直线b上任一点作平面α的垂线n,设直线a,b,c,n 对应的方向向量分别是,则共面,根据平面向量基本定理,存在实数λ,μ使得,则=因为a⊥b,所以,又因为a⊂α,n⊥α,所以,故,从而a⊥c证法二如图,记c∩b=A,P为直线b上异于点A的任意一点,过P做PO⊥π,垂足为O,则O∈c,∵PO⊥π,a⊂π,∴直线PO⊥a,又a⊥b,b⊂平面PAO,PO∩b=P,∴a⊥平面PAO,又c⊂平面PAO,∴a⊥c(2)逆命题为:a是平面π内的一条直线,b是π外的一条直线(b不垂直于α),c 是直线b在π上的投影,若a⊥c,则a⊥b,逆命题为真命题点评:本题考查用向量的方法证明线线垂直,利用线面垂直的判定和性质证明线线垂直,考查命题的逆命题的写法,本题是一个综合题目,是一个中档题.19.(12分)(2012•陕西)已知椭圆C1:+y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.(1)求椭圆C2的方程;(2)设O为坐标原点,点A,B分别在椭圆C1和C2上,=2,求直线AB的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程;椭圆的简单性质.专题:综合题;压轴题.分析:(1)求出椭圆的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(x A,y A),(x B,y B),根据,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用,即可求得直线AB的方程.解答:解:(1)椭圆的长轴长为4,离心率为∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率∴椭圆C2的焦点在y轴上,2b=4,为∴b=2,a=4∴椭圆C2的方程为;(2)设A,B的坐标分别为(x A,y A),(x B,y B),∵∴O,A,B三点共线,且点A,B不在y轴上∴设AB的方程为y=kx将y=kx代入,消元可得(1+4k2)x2=4,∴将y=kx代入,消元可得(4+k2)x2=16,∴∵,∴=4,∴,解得k=±1,∴AB的方程为y=±x点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,解题的关键是掌握椭圆几何量关系,联立方程组求解.20.(13分)(2012•陕西)某银行柜台设有一个服务窗口,假设顾客办理业务所需的时间互相独立,且都是整数分钟,对以往顾客办理业务所需的时间统计结果如下:办理业务所需的时间(分)1 2 3 4 5频率0.1 0.4 0.3 0.1 0.1从第一个顾客开始办理业务时计时.(1)估计第三个顾客恰好等待4分钟开始办理业务的概率;(2)X表示至第2分钟末已办理完业务的顾客人数,求X的分布列及数学期望.考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:综合题;压轴题.分析:(1)设Y表示顾客办理业务所需的时间,用频率估计概率,可得Y的分布列,A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟,由此可求概率;(2)确定X所有可能的取值,求出相应的概率,即可得到X的分布列及数学期望.解答:解:设Y表示顾客办理业务所需的时间,用频率估计概率,得Y的分布如下:Y 1 2 3 4 5P 0.1 0.4 0.3 0.1 0.1(1)A表示事件“第三个顾客恰好等待4分钟开始办理业务”,则时间A对应三种情形:①第一个顾客办理业务所需时间为1分钟,且第二个顾客办理业务所需的时间为3分钟;②第一个顾客办理业务所需的时间为3分钟,且第二个顾客办理业务所需的时间为1分钟;③第一个和第二个顾客办理业务所需的时间均为2分钟.所以P(A)=0.1×0.3+0.3×0.1+0.4×0.4=0.22(2)X所有可能的取值为:0,1,2.X=0对应第一个顾客办理业务所需的时间超过2分钟,所以P(X=0)=P(Y>2)=0.5;X=1对应第一个顾客办理业务所需的时间为1分钟且第二个顾客办理业务所需时间超过1分钟,或第一个顾客办理业务所需的时间为2分钟,所以P(X=1)=0.1×0.9+0.4=0.49;X=2对应两个顾客办理业务所需的时间均为1分钟,所以P(X=2)=0.1×0.1=0.01;所以X的分布列为X 0 1 2P 0.5 0.49 0.01EX=0×0.5+1×0.49+2×0.01=0.51.点评:本题考查概率的求解,考查离散型随机变量的分布列与期望,解题的关键是明确变量的取值与含义.21.(14分)(2012•陕西)设函数f n(x)=x n+bx+c(n∈N+,b,c∈R)(1)设n≥2,b=1,c=﹣1,证明:f n(x)在区间内存在唯一的零点;(2)设n=2,若对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,求b的取值范围;(3)在(1)的条件下,设x n是f n(x)在内的零点,判断数列x2,x3,…,x n的增减性.考点:数列与函数的综合;根的存在性及根的个数判断.专题:函数的性质及应用.分析:(1)根据fn()f n(1)=(﹣)×1<0,以及f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,由题意可得函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4,分当>1时、当﹣1≤﹣<0时、当0≤﹣≤1 时三种情况,分别求得b的取值范围,再取并集,即得所求.(3)证法一:先求出f n(x n)和f n+1(x n+1)的解析式,再由当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n(x n+1),且f n(x)在区间内单调递增,故有x n<x n+1,从而得出结论.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,由f n+1(x n)f n+1(1)<0可得f n+1(x)的零点在(x n,1)内,从而有x n<x n+1(n≥2),由此得出结论.解答:解:(1)由于n≥2,b=1,c=﹣1,fn(x)=x n+bx+c=x n+x﹣1,∴f n()f n(1)=(﹣)×1<0,∴f n(x)在区间内存在零点.再由f n(x)在区间内单调递增,可得f n(x)在区间内存在唯一的零点.(2)当n=2,函数f2(x)=x2+bx+c,对任意x1,x2∈[﹣1,1],有|f2(x1)﹣f2(x2)|≤4,故函数f2(x)在[﹣1,1]上的最大值与最小值的差M≤4.当>1时,即b>2或b<﹣2时,M=|f2(﹣1)﹣f2(1)|=2|b|>4,这与题设相矛盾.当﹣1≤﹣<0时,即0<b≤2时,M=f2(1)﹣=≤4 恒成立.当0≤﹣≤1 时,即﹣2≤b≤0时,M=f2(﹣1)﹣=≤4 恒成立.综上可得,﹣2≤b≤2.(3)证法一:在(1)的条件下,x n是f n(x)=x n+x﹣1在内的唯一零点,则有f n(x n)=+x n﹣1=0,f n+1(x n+1)=+x n+1﹣1=0.当x n+1∈时,f n(x n)=0=f n+1(x n+1)=+x n+1﹣1<+x n+1﹣1=f n (x n+1).由(1)知,f n(x)在区间内单调递增,故有x n<x n+1,故数列x2,x3,…,x n单调递增数列.证法二:设x n是f n(x)=x n+x﹣1在内的唯一零点,f n+1(x n)f n+1(1)=(+x n﹣1)×1=+x n﹣1<+x n﹣1=0,故f n+1(x)的零点在(x n,1)内,∴x n<x n+1(n≥2),故数列x2,x3,…,x n单调递增数列.点评:本题主要考查方程的根的存在性及个数判断,树立与函数的综合,体现了分类讨论、化归与转化的数学思想,属于难题.。
陕西省中考数学历年(2016-2022年)真题分类汇编专题 代数式
陕西省中考数学历年(2016-2022年)真题分类汇编专题代数式一、单选题(共8题;共16分)1.(2分)计算:2x⋅(−3x2y3)=()A.6x3y3B.−6x2y3C.−6x3y3D.18x3y3【答案】C【解析】【解答】解:2x⋅(−3x2y3)=2×(−3)×x⋅x2×y3=−6x3y3.故答案为:C.【分析】单项式乘单项式,积的系数等于原来两个单项式的系数的积,它的各个变数字母的幂指数,等于在原来两个单项式中相应的变数字母的幂指数的和,对于只在某一个单项式中含有的字母,则连同指数作为积的一个因式,据此计算.2.(2分)计算:(﹣23x2y)3=()A.﹣2x6y3B.827x6y3C.﹣827x6y3D.﹣827x5y4【答案】C【解析】【解答】解:(﹣23x2y)3=(−23)3⋅(x2)3⋅y3=−827x6y3.故答案为:C.【分析】先根据积的乘方运算法则计算,再根据幂的乘方运算法则进行计算即可,积的乘方,等于每个因式乘方的积.3.(2分)计算:(−3)0=()A.1B.0C.3D.−13【答案】A【解析】【解答】解:(−3)0=1。
故答案为:A。
【分析】任何一个不为0的数的0次幂都等于1。
4.(2分)下列计算正确的是()A.x2+3x2=4x4B.x2y•2x3=2x4yC.(6x2y2)÷(3x)=2x2D.(﹣3x)2=9x2【答案】D【解析】【解答】解:A、原式=4x2,错误;B、原式=2x5y,错误;C、原式=2xy2,错误;D、原式=9x2,正确,故选D【分析】A、原式合并得到结果,即可作出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可作出判断;C、原式利用单项式除以单项式法则计算得到结果,即可作出判断;D、原式利用积的乘方运算法则计算得到结果,即可作出判断.此题考查了整式的除法,合并同类项,幂的乘方与积的乘方,以及单项式乘单项式,熟练掌握运算法则是解本题的关键.5.(2分)计算:(a3b)−2=()A.1a6b2B.a6b2C.1a5b2D.−2a3b【答案】A【解析】【解答】解:(a3b)−2=1a6b2,故答案为:A.【分析】根据负整数指数幂的意义“任何一个不为0的数的负整数指数幂等于这个数的正整数指数幂的倒数.”和积的乘方法则“积的乘方等于把积中每一个因式分别乘方再把所得的幂相乘”可求解.6.(2分)下列计算正确的是()A.2a2⋅3a2=6a2B.(−3a2b)2=6a4b2C.(a−b)2=a2−b2D.−a2+2a2=a2【答案】D【解析】【解答】解:A. 2a2⋅3a2=6a4,故A不符合题意;B. (−3a2b)2=9a4b2,故B不符合题意;C. (a−b)2=a2−2ab+b2,故C不符合题意;D. −a2+2a2=a2,故D符合题意。
中考数学压轴题精选七及答案
2012年各地中考数学压轴题精选(61~70)61.【2012吉林】 26.问题情境如图,在x 轴上有两点(,0)A m ,(,0)B n (0n m >>).分别过点A ,点B 作x 轴的垂线,交抛物线2y x =于点C 、点D .直线OC 交直线BD 于点E ,直线OD 交直线AC 于点F ,点E 、点F 的纵坐标分别记为.E y 、F y .特例探究 填空:当1m =,2n =时,.E y =____,F y =______.当3m =,5n =时,.E y =____,F y =______. 归纳证明对任意m ,n (0n m >>),猜想.E y 与F y 的大小关系,并证明你的猜想 拓展应用.(1) 若将“抛物线2y x =”改为“抛物线2(0)y axa =>”,其它条件不变,请直接写出.E y 与F y 的大小关系.(2) 连接EF ,AE .当.3O F E O F E B S S =△四边形时,直接写出m 和n 的关系及四边形OFEA 的形状.[答案] 特例探究2,2;15,15.归纳证明 猜想E F y y =.证明(略)拓展应用(1)E F y y =.(2)四边形OFEA 是平行四边形.[考点] 一次函数、二次函数综合运用,函数图象上的点与函数解析式的关系,平行四边形的判定. [解析] 特例探究当1m =,2n =时,(1,1)C ,(2,4)D ,所以直线OC 的解析式为:y x =;直线OD 的解析式为:2y x =;此时解2x y x =⎧⎨=⎩,得(2,2)2E E y ⇒=.解12x y x=⎧⎨=⎩,得(1,2)2F F y ⇒=.所以,此时122E F y y ==⨯=当3m =,5n =时,(3,9)C ,(5,25)D ,所以直线OC 的解析式为:3y x =;直线OD 的解析式为:5y x =;此时解53x y x =⎧⎨=⎩,得(5,15)15E E y ⇒=.解35x y x=⎧⎨=⎩,得(3,15)15F F y ⇒=.所以,此时3515E F y y ==⨯=归纳证明 猜想:对任意m ,n (0n m >>),都有:E F y y =.证明:对任意m ,n (0n m >>)时,2(,)C m m ,2(,)D n n ,所以直线OC 的解析式为:y mx =;直线OD 的解析式为:y nx =;此时解x ny mx=⎧⎨=⎩,得(,)EE n mn y mn ⇒=.解x m y nx =⎧⎨=⎩,得(,)F F n mn y mn ⇒=. 所以,此时E F y y mn ==. 拓展应用(1)若将“抛物线2y x =”改为“抛物线2(0)y axa =>”,其它条件不变,仍然有:E F y y =.此时,2(,)C m am ,2(,)D n an ,所以直线OC 的解析式为:y amx =;直线OD 的解析式为:y anx =;此时解x n y amx =⎧⎨=⎩,得(,)E E n amn y amn ⇒=.解x my anx =⎧⎨=⎩,得(,)F F n amn y amn ⇒=.62.【2012济南】28.如图1,抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),与y 轴相交于点C ,⊙O 1为△ABC 的外接圆,交抛物线于另一点D . (1)求抛物线的解析式;(2)求cos ∠CAB 的值和⊙O 1的半径;(3)如图2,抛物线的顶点为P ,连接BP ,CP ,BD ,M 为弦BD 中点,若点N 在坐标平面内,满足△BMN ∽△BPC ,请直接写出所有符合条件的点N 的坐标.【考点】二次函数综合题. 【专题】【分析】(1)利用待定系数法求出抛物线的解析式;(2)如答图1所示,由△AOC 为等腰直角三角形,确定∠CAB =45°,从而求出其三角函数值;由圆周角定理,确定△BO 1C 为等腰直角三角形,从而求出半径的长度; (3)如答图2所示,首先利用圆及抛物线的对称性求出点D 坐标,进而求出点M 的坐标和线段BM 的长度;点B 、P 、C 的坐标已知,求出线段BP 、BC 、PC 的长度;然后利用△BMN ∽△BPC 相似三角形比例线段关系,求出线段BN 和MN 的长度;最后利用两点间的距离公式,列出方程组,求出点N 的坐标.【解答】解:(1)∵抛物线y =ax 2+bx +3与x 轴相交于点A (-3,0),B (-1,0),∴933030a b a b -+=⎧⎨-+=⎩,解得a =1,b =4,∴抛物线的解析式为:y =x 2+4x +3. (2)由(1)知,抛物线解析式为:y =x 2+4x +3, ∵令x =0,得y =3, ∴C (0,3),∴OC =OA =3,则△AOC 为等腰直角三角形, ∴∠CAB =45°, ∴cos ∠CAB =22. 在Rt △BOC 中,由勾股定理得:BC =221310+=. 如答图1所示,连接O 1B 、O 1B , 由圆周角定理得:∠BO 1C =2∠BAC =90°, ∴△BO1C 为等腰直角三角形, ∴⊙O 1的半径O 1B =22BC =5. (3)抛物线y =x 2+4x +3=(x +2)2-1, ∴顶点P 坐标为(-2,-1),对称轴为x = -2. 又∵A (-3,0),B (-1,0),可知点A 、B 关于对称轴x =2对称.如答图2所示,由圆及抛物线的对称性可知:点D 、点C (0,3)关于对称轴对称, ∴D (-4,3).又∵点M 为BD 中点,B (-1,0),∴M (52-,32), ∴BM =22533[(1)]()2222---+=; 在△BPC 中,B (-1,0),P (-2,-1),C (0,3), 由两点间的距离公式得:BP =2,BC =10,PC =25. ∵△BMN ∽△BPC ,∴ ==BM BN MNBP BC PC ,即322 21025==BN MN , 解得:3102=BN ,MN 35=. 设N (x ,y ),由两点间的距离公式可得:2222223(1)(10)253()()(35)22x y x y ⎧++=⎪⎪⎨⎪++-=⎪⎩, 解之得,117232x y ⎧=⎪⎪⎨⎪=⎪⎩,221292x y ⎧=⎪⎪⎨⎪=-⎪⎩∴点N 的坐标为(72,32-)或(12,92-). 【点评】本题综合考查了二次函数的图象与性质、待定系数法、圆的性质、相似三角形、勾股定理、两点间的距离公式等重要知识点,涉及的考点较多,试题难度较大.难点在于第(3)问,需要认真分析题意,确定符合条件的点N 有两个,并画出草图;然后寻找线段之间的数量关系,最终正确求得点N 的坐标.63.【2012达州】23.如图1,在直角坐标系中,已知点A (0,2)、点B (-2,0),过点B 和线 段OA 的中点C 作直线BC ,以线段BC 为边向上作正方形BCDE . (1)填空:点D 的坐标为( ),点E 的坐标为( ).(2)若抛物线2y ax bx c(a 0)=++≠经过A 、D 、E 三点,求该抛物线的解析式(3)若正方形和抛物线均以每秒5个单位长度的速度沿射线BC 同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动.①在运动过程中,设正方形落在y 轴右侧部分的面积为s ,求s 关于平移时间t (秒)的函数关系式,并写出相应自变量t 的取值范围.②运动停止时,求抛物线的顶点坐标【答案】解:(1)D (-1,3),E (-3,2)。
2012年高考数学理科陕西卷-答案
2012年普通高等学校招生全国统一考试(陕西卷)理科数学答案解析【解析】{|M x ={|1M N x =【提示】根据集合的表示法(描述法)即可求出集合的交集. 【考点】集合的基本运算(交集)1(2,2,1)AB ∴=-,1(0,2,BC =11cos ,AB BC =故选A .【提示】根据空间直角坐标系用空间向量即可求出异面直线夹角的余弦值.【解析】()(1f x '=1,)-+∞递增,.12)20C =.【解析】15r r T C +=【提示】根据二项式定理及其性质求出【考点】二项式定理【解析】1()f x x'=其中最优解是(0,1)-【提示】根据导函数求出切线方程,【解析】Rt DEF △DF BD , 又由相交弦定理得=155DE AE EB =⨯=,5DF BD ∴=.DF DB ,然后根据相交弦定理求出结果.(坐标系与参数方程)【答案】3 【解析】(Ⅰ)13A +=又函数图象相邻对称轴的距离为半个周期,π,(Ⅱ)2f α⎛⎫= ⎪⎝⎭62α-=⎪⎭π02α<<, 6α∴-<πα∴-=【答案】(Ⅰ)5a ,3a ,3q ,10a ≠(Ⅱ)证法一:(等差中项法)k +∈N ,证法二:(公式法)2(1)21k k a q S q-=-,21)(1k q a q ++0(2)q =-,【答案】(Ⅰ)证法一:(向量法)如图过直线b 上任一点作平面方向向量分别为a ,b ,c ,n ,则b ,c ,n 共面,使c b n λμ=+, 0a c a b n a b a n λμλμ∴=+=+=()()(), πa ⊂,πn ⊥, 0a n ∴=, 0a c ∴=,a c ∴⊥;证法二:(利用垂直关系证明)如图,c b A =,a b ⊥,PO b P =, c ⊂平面a c ∴⊥;32e =,21a ∴-216a ∴=,2OB OA =,O ∴,A ,∴设直线AB 方程为14k +2OB OA =,214x x ∴=216164k ∴=+1(1)2f f ⎛⎫ ⎪⎝⎭()f x ∴在又当x ∈。
2012年中考数学压轴题真题汇编动态综合型问
2012年中考数学压轴题真题汇编:动态综合型问题十、动态综合型问题1.(北京模拟)已知抛物线y =-x2+2x +m -2与y 轴交于点A (0,2m -7),与直线y =2x 交于点B 、C (B 在C 的右侧). (1)求抛物线的解析式;(2)设抛物线的顶点为E ,在抛物线的对称轴上是否存在一点F ,使得∠BFE =∠CFE ,若存在,求出点F 的坐标,若不存在,说明理由;(3)动点P 、Q 同时从原点出发,分别以每秒5个单位长度、每秒25个单位长度的速度沿射线OC 运动,以PQ 为斜边在直线BC 的上方作直角三角形PMQ (直角边分别平行于坐标轴),设运动时间为t 秒.若△PMQ 与抛物线y =-x2+2x +m -2有公共点,求t 的取值范围.2.(北京模拟)在平面直角坐标系中,抛物线y 1=ax2+3x +c 经过原点及点A (1,2),与x 轴相交于另一点B .(1)求抛物线y 1的解析式及B 点坐标;(2)若将抛物线y 1以x =3为对称轴向右翻折后,得到一条新的抛物线y 2,已知抛物线y 2与x 轴交于两点,其中右边的交点为C 点.动点P 从O 点出发,沿线段OC 向C 点运动,过P 点作x 轴的垂线,交直线OA 于D 点,以PD 为边在PD 的右侧作正方形PDEF . ①当点E 落在抛物线y 1上时,求OP 的长;②若点P 的运动速度为每秒1个单位长度,同时线段OC 上另一点Q 从C 点出发向O 点运动,速度为每秒2个单位长度,当Q 点到达O 点时P 、Q 两点停止运动.过Q 点作x 轴的垂线,与直线AC 交于G 点,以QG 为边在QG 的左侧作正方形QGMN .当t 为何值时,这两个正方形分3.(北京模拟)如图,在平面直角坐标系中,抛物线y =ax2+bx +4经过A (-3,0)、B (4,0)两点,且与y 轴交于点C ,点D 在x 轴的负半轴上,且BD =BC .动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的解析式;(2)若经过t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M ,使MQ +MA 的值最小?若存在,求出点M 的坐标;若不存在,请说明理由.4.(北京模拟)如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8.动点P 从点A 开始沿折线AC -CB -BA 运动,点P 在AC ,CB ,BA 边上运动的速度分别为每秒3,4,5个单位.直线l 从与AC 重合的位置开始,以每秒43个单位的速度沿CB 方向移动,移动过程中保持l ∥AC ,且分别与CB ,AB 边交于E ,F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 第一次回到点A 时,点P 和直线l 同时停止运动.(1)当t =5秒时,点P 走过的路径长为_________;当t =_________秒时,点P 与点E 重合; (2)当点P 在AC 边上运动时,将△PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在EF 上,点F 的对应点记为点N ,当EN ⊥AB 时,求t 的值;(3)当点P 在折线AC -CB -BA 上运动时,作点P 关于直线EF 的对称点Q .在运动过程中,若形成的四边形PEQF 为菱形,请直接写出t 的值.5.(北京模拟)在等腰梯形ABCD 中,AB ∥CD ,AB =10,CD =6,AD =BC =4.点P 从点B 出发,沿线段BA 向点A 匀速运动,速度为每秒2个单位,过点P 作直线BC 的垂线PE ,垂足为E .设点P 的运动时间为t (秒). (1)∠A =___________°;(2)将△PBE 沿直线PE 翻折,得到△PB ′E ,若△PB ′E 与梯形ABCD 重叠部分的面积为S ,求S 与t 之间的函数关系式,并求出S 的最大值;(3)在整个运动过程中,是否存在以点D 、P 、B ′为顶点的三角形为直角三角形?若存在,求出t的值;若不存在,请说明理由.E B M C A Pl F N B C A 备用图 A C B D P EB ′AC BD 备用图6.(北京模拟)已知二次函数y=-33mx2+3mx-2的图象与x轴交于点A(23,0)、点B,与y轴交于点C.(1)求点B坐标;(2)点P从点C出发以每秒1个单位的速度沿线段CO向O点运动,到达点O后停止运动,过点P作PQ∥AC交OA于点Q,将四边形PQAC沿PQ翻折,得到四边形PQA′C′,设点P的运动时间为t.①当t为何值时,点A′恰好落在二次函数y=-33mx2+3mx-2图象的对称轴上;②设四边形PQA′C′落在第一象限内的图形面积为S,求S关于t的函数关系式,并求出S的最大值.7.(北京模拟)已知梯形ABCD中,AD∥BC,∠A=120°,E是AB的中点,过E点作射线EF ∥BC,交CD于点G,AB、AD的长恰好是方程x2-4x+a2+2a+5=0的两个相等实数根,动点P、Q分别从点A、E出发,点P以每秒1个单位长度的速度沿AB由A向B运动,点Q以每秒2个单位长度的速度沿EF由E向F运动,设点P、Q运动的时间为t(秒).(1)求线段AB、AD的长;(2)如果t>1,求△DPQ的面积S与时间t之间的函数关系式;(3)是否存在△DPQ是直角三角形的情况,如果存在,求出时间t;如果不存在,请说明理由.8.(天津模拟)如图,在平面直角坐标系中,直y=-x+42交x轴于点A,交y轴于点B.在线段OA上有一动点P,以每秒2个单位长度的速度由点O向点A匀速运动,以OP为边作正方形OPQM交y轴于点M,连接QA和QB,并从QA和QB的中点C和D向AB作垂线,垂足分别为点F和点E.设P点运动的时间为t秒,四边形CDEF的面积为S1,正方形OPQM与四边形CDEF 重叠部分的面积为S2.(1)直接写出A点和B点坐标及t的取值范围;(2)当t=1时,求S1的值;(3)试求S2与t的函数关系式(4)直接写出在整个运动过程中,点C和点D9.(上海模拟)已知Rt△ABC中,∠ACB=90°,点P是边AB上的一个动点,连接CP,过点B 作BD⊥CP,垂足为点D.(1)如图1,当CP经过△ABC的重心时,求证:△BCD∽△ABC;(2)如图2,若BC=2厘米,cot A=2,点P从点A向点B运动(不与点A、B重合),点P的速度是5厘米/秒,设点P运动的时间为t秒,△BCD的面积为S平方厘米,求S关于t的函数解析式,并写出自变量t的取值范围;(3)在(2)的条件下,若△PBC是以CP为腰的等腰三角形,求△BCD的面积.CAP BD图1CAP BD图2CA B备用图ABDQPE F10.(重庆模拟)如图,已知△ABC 是等边三角形,点O 是AC 的中点,OB =12,动点P 在线段AB 上从点A 向点B 以每秒3个单位的速度运动,设运动时间为t 秒.以点P 为顶点,作等边△PMN ,点M ,N 在直线OB 上,取OB 的中点D ,以OD 为边在△AOB 内部作如图所示的矩形ODEF ,点E 在线段AB 上.(1)求当等边△PMN 的顶点M 运动到与点O 重合时t 的值; (2)求等边△PMN 的边长(用含t 的代数式表示);(3)设等边△PMN 和矩形ODEF 重叠部分的面积为S ,请直接写出当0≤t≤2秒时S 与t 的函数关系式,并写出对应的自变量t 的取值范围;(4)点P 在运动过程中,是否存在点M ,使得△EFM 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.11.(浙江某校自主招生)如图,正方形OABC 的顶点O 在坐标原点,且OA 边和AB 边所在直线的解析式分别为y =34x 和y =-4 3 x + 253. (1)求正方形OABC 的边长;(2)现有动点P 、Q 分别从C 、A 同时出发,点P 沿线段CB 向终点B 运动,速度为每秒1个单位,点Q 沿折线A →O →C 向终点C 运动,速度为每秒k 个单位,设运动时间为2秒.当k 为何值时,将△CPQ 沿它的一边翻折,使得翻折前后的两个三角形组成的四边形为菱形? (3)若正方形以每秒53个单位的速度沿射线AO 下滑,直至顶点B 落在x 轴上时停止下滑.设正方形在x 轴下方部分的面积为S ,求S 关于滑行时间t 的函数关系式,并写出相应自变量t 的取值范围.12.(浙江某校自主招生)如图,正方形/秒的速度向点B 匀速移动(点P 不与点A /秒的速度匀速移动.点P 、Q E .设点P 运动时间为t (秒).(1)当点Q 在线段BC 上运动时,点P (2)设△APE 的面积为S (cm 2),求S (3)当4<t <8时,求函数值S 的范围.A O D CB F E 备用图 AO DC BFE 备用图13.(浙江模拟)如图,菱形ABCD 的边长为6且∠DAB =60°,以点A 为原点、边AB 所在直线为x 轴且顶点D 在第一象限建立平面直角坐标系.动点P 从点D 出发沿折线D -C -B 向终点B 以每秒2个单位的速度运动,同时动点Q 从点A 出发沿x 轴负半轴以每秒1个单位的速度运动,当点P 到达终点时停止运动.设运动时间为t ,直线PQ 交边AD 于点E . (1)求出经过A 、D 、C 三点的抛物线解析式;(2)是否存在时刻t ,使得PQ ⊥BD ?若存在,求出t 值,若不存在,请说明理由; (3)设AE 长为y ,试求y 与t 之间的函数关系式;(4)若F 、G 为DC 边上两点,且点DF =FG =1,试在对角线DB 上找一点M 、抛物线对称轴上找一点N ,使得四边形FMNG 周长最小并求出周长最小值.14.(浙江模拟)如图,直线y =-x +5和直线y =kx -4交于点C (3,m ),两直线分别交y 轴于点A 和点B ,一平行于y 轴的直线l 从点C 出发水平向左平移,速度为每秒1个单位,运动时间为t ,且分别交AC 、BC 于点P 、Q ,以PQ 为一边向左侧作正方形PQDE . (1)求m 和k 的值;(2)当t 为何值时,正方形的边DE 刚好在y 轴上?(3)当直线l 从点C 出发开始运动的同时,点M 也同时在线段AB 上由点A 向点B 以每秒4个单位的速度运动,问点M 从进入正方形PQDE 到离开正方形持续的时间有多长?15.OA 在x 轴的正半轴上,点B 坐标为(3,1),以OB 所在直线为对称轴将△OAB 作轴对称变换得△OCB .动点P 从点O 出发,沿线段OA 向点A 运动,动点Q 从点C 出发,沿线段CO 向点O 运动.P 、Q 两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t (秒). (1)求∠AOC 的度数; (2)记四边形BCQP 的面积为S (平方单位),求S 与t(3)设PQ 与OB 交于点M .①当△OMQ 为等腰三角形时,求t 的值. ②探究线段OM 长度的最大值,说明理由.16.(浙江模拟)已知直线y =43x +4与x 轴、y 轴分别相交于点A 、B ,点C 从O 点出发沿射线OA 以每秒1个单位长度的速度匀速运动,同时点D 从A 点出发沿AB 以每秒1个单位长度的速度向B 点匀速运动,当点D 到达B 点时C 、D 都停止运动.点E 是CD 的中点,直线EF ⊥CD 交y 轴于点F ,点E ′与E 点关于y 轴对称.点C 、D 的运动时间为t (秒). (1)当t =1时,AC =___________,点D 的坐标为(_____,_____(2)设四边形BDCO 的面积为S ,当0<t <3时,求S 与t (3)当直线EF 与△ABO 的一边垂直时,求t 的值;(3)当△EFE ′为等腰直角三角形时,直接写出t 的值.17.(浙江模拟)如图1,矩形ABCD 中,AB=21,AD =12,E 是CD 边上的一点,DE =16,M 是BC 边的中点,动点P 从点A 出发,沿边AB 以每秒1个单位长度的速度向终点B 运动.设动点P 的运动时间是t 秒. (1)求线段AE 的长;(2)当△ADE 与△PBM 相似时,求t 的值;(3)如图2,连接EP ,过点P 作PH ⊥AE 于H . ①当EP 平分四边形PMEH 的面积时,求t 的值;②以PE 为对称轴作线段BC 的轴对称图形B ′C ′,当线段B ′C ′ 与线段AE 有公共点时,写出t 的取值范围(直接写出答案).18.(浙江模拟)如图,抛物线与x 轴交于A (6,0)、B (19,0)两点,与y 轴交于点C (0,8),直线CD ∥x 轴交抛物线于另一点D .动点P 、Q 分别从C 、D 两点同时出发,速度均为每秒1个单位,点P 向射线DC 方向运动,点Q 向射线BD 方向运动,设P 、Q 运动的时间为t (秒),AQ 交CD 于E .(1)求抛物线的解析式;(2)求△APQ 的面积S 与t 的函数关系式;(3)连接BE .是否存在某一时刻t ,使得∠AEB =∠BDC ?D A CE B M P 图1 D A C E B M P H 图2 D A CE B M 备用图若存在,求出t 的值;若不存在,请说明理由.19.(浙江模拟)如图,抛物线y =ax2+bx +c (a >0)交x 轴于A 、B 两点(A 在B 的左侧),交y 轴于C 点,已知B 点坐标为(8,0),tan ∠ABC =1 2,△ABC 的面积为8.(1)求抛物线的解析式;(2)直线EF (EF ∥x 轴,且分别交y 轴、线段CB 于E 、F 两点)从C 点开始,以每秒1个单位的速度向下运动,与x 轴重合时停止运动;同时动点P 从B 点出发沿线段BO 以每秒2个单位的速度向终点O 运动,连接FP ,设运动时间为t 秒.是否存在t 的值,使以P 、B 、F 为顶点的三角形与△ABC 相似?若存在,求出t 的值;若不存在,请说明理由;(3)在(2)的条件下,连接AC 交EF 于点G .当t 为何值时,A 、P 、F 、G 所围成的图形是平行四边形、等腰梯形和等腰直角三角形.20.(浙江模拟)已知:如图,在平面直角坐标系中,△ABC 为等腰三角形,直线AC 的解析式为y =-2x +6,将△AOC 沿直线AC 折叠,点O 落在平面内的点E 处,直线AE 交x 轴于点D . (1)求直线AD 解析式;(2)动点P 从点B 出发,以每秒1个单位的速度沿x 轴正方向匀速运动,点Q 是射线CE 上的点,且∠P AQ =∠BAC .设点P 运动时间为t 秒,△POQ 的面积为S ,求S 与t 之间的函数关系式;(3)在(2)的条件下,直线CE 上是否存在一点F ,使以点F 、A 、D 、P 为顶点的四边形是平行四边形?若存在,求出t 值及Q21.(江苏无锡)如图,菱形ABCD 的边长为2cm ,∠DAB s 的速度,沿AC 向C 作匀速运动;与此同时,点Q 也从A 作匀速运动.当P 运动到C 点时,P 、Q 都停止运动.设点P 运动的时间为t s . (1)当P 异于A 、C 时,请说明PQ ∥BC ;(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?C22.(江苏苏州)如图,正方形ABCD 的边AD 与矩形EFGH 的边FG 重合,将正方形ABCD 以lcm /s 的速度沿FG 方向移动,移动开始前点A 与点F 重合.在移动过程中,边AD 始终与边FG 重合,连接CG ,过点A 作CG 的平行线交线段GH 于点P ,连接PD .已知正方形ABCD 的边长为lcm ,矩形EFGH 的边FG 、GH 的长分别为4cm 、3cm .设正方形移动时间为x (s ),线段GP 的长为y (cm ),其中0≤x≤2.5.(1)试求出y 关于x 的函数关系式,并求当y =3时相应x 的值;(2)记△DGP 的面积为S 1,△CDG 的面积为S 2,试说明S 1-S 2是常数;(3)当线段PD 所在直线与正方形ABCD 的对角线AC 垂直时,求线段PD 的长.23.(江苏连云港)如图,甲、乙两人分别从A (1,3)、B (6,0)两点同时出发,点O 为坐标原点.甲沿AO 方向、乙沿BO 方向均以4km /h 的速度行走,t h 后,甲到达M 点,乙到达N 点.(1)请说明甲、乙两人到达O 点前,MN 与AB 不可能平行. (2)当t 为何值时,△OMN ∽△OBA ?(3)甲、乙两人之间的距离为MN 的长,设s =MN 2,求s 与t 之间的函数关系式,并求甲、乙两人之间距离的最小值.24.(江苏南通)如图,在△ABC 中,AB =AC =10厘米,BC =12厘米,D 是BC 的中点.点P 从B 出发,以a 厘米/秒(a >0)的速度沿BA 匀速向点A 运动,点Q 同时以1厘米/秒的速度从D 出发,沿DB 匀速向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设它们运动的时间为t 秒.(1)若a =2,△BPQ ∽△BDA ,求t 的值;FECBDA Q P(2)设点M 在AC 上,四边形PQCM 为平行四边形.①若a =52,求PQ 的长; ②是否存在实数a ,使得点P 在∠ACB 的平分线上?若存在,请求出a 的值;若不存在,请说明理由.25.(江苏宿迁)如图,在平面直角坐标系xO y 中,已知直线l 1:y =12x 与直线l 2:y =-x +6相交于点M ,直线l 2与x 轴相交于点N . (1)求M 、N 的坐标;(2)在矩形ABCD 中,已知AB =1,BC =2,边AB 在x 轴上,矩形ABCD 沿x 轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD 与△OMN 的重合部分的面积为S ,移动的时间为t (从点B 与点O 重合时开始计时,到点A 与点N 重合时计时结束).直接写出S 与自变量t 之间的函数关系式(不需要给出解答过程);(3)在(2)的条件下,当t 为何值时,S 的值最大?并求出最大值.26.(江苏模拟)已知抛物线与x 轴交于B 、C (1,0)两点,与y 轴交于点A ,顶点坐标为(52,-2716).P 、Q 分别是线段AB 、OB 上的动点,它们同时分别从点A 、O 向B 点匀速运动,速度均为每秒1个单位,设P 、Q 运动时间为t (0≤t ≤4).(1)求此抛物线的解析式,并求出P 点的坐标(用t 表示);(2)当△OPQ 面积最大时求△OBP 的面积; (3)当t 为何值时,△OPQ 为直角三角形?(4)△OPQ 是否可能为等边三角形?若可能请求出t 的值;若不可能请说明理由,并改变Q 点的运动速度,使△OPQ 为等边三角形,求出Q 点运动的速度和此时t 的值. 27.(江苏模拟)如图,在梯形纸片ABCD 中,BC ∥AD ,∠A +∠D =90°,tan A =2,过点B 作BH ⊥AD 于H ,BC =BH =2.动点F 从点D 出发,以每秒1个单位的速度沿DH 运动到点H 停止,在运动过程中,过点F 作FE ⊥AD 交折线D -C -B 于点E ,将纸片沿直线EF 折叠,点C 、D 的对应点分别是点C 1、D 1.设F 点运动的时间是t (秒). (1)当点E 和点C 重合时,求t 的值;(2)在整个运动过程中,设△EFD 1或四边形EFD 1C 1与梯形ABCD 重叠部分面积为S ,求S 与t之间的函数关系式和相应自变量t 的取值范围;(3)平移线段CD ,交线段BH 于点G ,交线段AD 于点P .在直线BC 上存在点Q ,使△PGQ 为等腰直角三角形?若存在,求出线段QB 的长;若不存在,说明理由.28.(江苏模拟)如图1,直线l :y =-34x +3分别交x 轴、y 轴于B 、A 两点,等腰Rt △CDE 的斜边C D 在x 轴上,且C D =6.若直线l 以每秒3个单位的速度向上匀速运动,同时点C 从(6,0)开始以每秒2个单位的速度向右匀速运动(如图2),设运动后直线l 分别交x 轴、y 轴于N 、M 两点,以OM 、ON 为边作如图所示的矩形OMPN .设运动时间为t 秒. (1)求运动后点E 、点N 的坐标(用含t 的代数式表示);(2)设矩形OMPN 与运动后的△CDE 的重叠部分面积为S ,求S 与t 的函数关系式,并写出相应的t 的取值范围;(3)若直线l 和△CDE 运动后,直线l 上存在点Q 使∠OQC =90°,则当在线段MN 上符合条件的点Q 有且只有两个时,求t 的取值范围.(4)若H 是MP 的中点,当△PHE 为等腰三角形时,求出所有符合条件的t 值.29.(江苏模拟)如图,抛物线y =ax2+bx +c 的顶点为C (0,-3),与x 轴交于点A 、B (A 在B 的左侧),连接AC 、BC ,得等边△ABC .点P 从点B 出发,以每秒1个单位的速度向点A 运动,同时点Q 从点C 出发,以每秒3个单位的速度向y 轴负方向运动,连接PQ 交射线BC 于点D ,当点P 到达点A 时,点Q 停止运动.设运动时间为t 秒.(1)求抛物线的解析式;(2)设△PQC 的面积为S ,求S 关于t的函数关系式;(3)以点P 为圆心,PB 为半径的圆与射线BC 交于点E ,试说明:在点P 运动的过程中,线段DE 的长是一定值,并求出该定值.30.(河北)如图,点A (-5,0),B (-3,0),点C 在y 轴的正半轴上,∠CBO =45°,CD ∥AB ,∠CDA =90°.点P从点Q (4,0)出发,沿x 轴向左以每秒1个单位长的速度运动,运动时间为t 秒.D 1 A B C F ED H A B C D H 备用图备用图(1)求点C 的坐标; (2)当∠BCP =15°,求t 的值;(3)以点P 为圆心,PC 为半径的⊙P 随点P 的运动而变化,当⊙P 与四边形ABCD 的边(或边所在的直线)相切时,求t 的值.31.(河北模拟)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =6.点P 从点A 出发沿AB 以每秒2个单位长的速度向点B 匀速运动;点Q 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动.运动过程中DE 保持垂直平分PQ ,且交PQ 于点D ,交折线PB -BC 于点E .点P 、Q 同时出发,当点P 到达点B 时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒. (1)当t =______________秒,直线DE 经过点B ;当t =______________秒,直线DE 经过点A ; (2)四边形DPBE 能否成为直角梯形?若能,求t 的值;若不能,请说明理由; (3)当t 为何值时,点E 是BC 的中点?(4)以E 为圆心,EC 长为半径的圆能否与AB 、AC 、PQ 同时相切?若能,直接写出t 的值;若不能,请说明理由.32.(山东青岛)如图,在Rt △ABC 中,∠C =90º,AC =6cm ,BC =8cm ,D 、E 分别是AC 、AB 的中点,连接DE .点P 从点D 出发,沿DE 方向匀速运动,速度为1cm /s ;同时,点Q 从点B 出发,沿BA 方向匀速运动,速度为2cm /s ,当点P 停止运动时,点Q 也停止运动.连接PQ ,设运动时间为t (s )(0<t<4).解答下列问题: (1)当t 为何值时,PQ ⊥AB ?(2)当点Q 在B 、E 之间运动时,设五边形PQBCD 的面积为y (cm 2),求y 与t 之间的函数关系式; (3)在(2)的情况下,是否存在某一时刻t ,使PQ 分四边形BCDE 两部分的面积之比为S △PQE ∶S五边形PQBCD=1∶29?若存在,求出此时t 的值以及点E 到PQ 的距离h ;若不存在,请说明理由.33.(山东烟台)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1,0),C (3,0),D (3,4),以A 为顶点的抛物线y =ax2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点BAB C 备用图E DBP运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P ,Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E . (1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ⊥AD 于F ,交抛物线于点G .当t 为何值时,△ACG 的面积最大?最大值为多少?(3)在动点P ,Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C ,Q ,E ,H 为顶点的四边形为菱形?请直接写出t34.(山东模拟)把Rt △ABC 和Rt △DEF 按图1摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠BAC =∠DEF =90°,∠ABC =45°,BC=9,DE =6,EF =8.如图2,△DEF 从图1的位置出发,以1个单位/秒的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△DEF 的顶点F 出发,以3个单位/秒的速度沿FD 向点D 匀速移动.当点P 移动到点D 时,P 点停止移动,△DEF 也随之停止移动.DE 与AC 相交于点Q ,连接BQ 、PQ ,设移动时间为t (s ).(1)设△BQE 的面积为y ,求y 与t 之间的函数关系式,并写出自变量t 的取值范围; (2)当t 为何值时,三角形DPQ 为等腰三角形?(3)是否存在某一时刻t ,使P 、Q 、B 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.35.(山东模拟)如图,在△ABC 中,AB =AC =10cm ,BD ⊥AC 于D ,且BD =8cm .点M 从点A 出发,沿AC 方向匀速运动,速度为2cm /s ;同时直线PQ 由点B 出发沿BA 方向匀速运动,速度为1cm /s ,运动过程中始终保持PQ ∥AC ,直线PQ 交AB 于P ,交BC 于Q ,连接PM ,设运动时间为t (s ).(1)当四边形PQCM 是等腰梯形时,求t 的值;(2)当点M 在线段PC 的垂直平分线上时,求t 的值;(3)当t 为何值时,①△PQM 是等腰三角形;②△PQM 是直角三角形;(4)是否存在时刻t ,使以PM 为直径的圆与BC 相切?若存在,求出t 的值;若不存在,请说明理由.(E ) A B D C F 图1 A B DE F 图2PQC36.(内蒙古包头、乌兰察布)如图,在Rt △ABC 中,∠C =90°,AC =4cm ,BC =5cm ,点D 在BC 上,且CD =3cm .现有两个动点P 、Q 分别从点A 和点B 同时出发,其中点P 以l cm /秒的速度沿AC 向终点C 运动;点Q 以1.25cm /秒的速度沿BC 向终点C 运动.过点P 作PE ∥BC 交AD 于点E ,连接EQ .设动点运动时间为t 秒(t >0).(1)连接DP ,经过1秒后,四边形EQDP(2)连接PQ ,在运动过程中,不论t 取何值时,总有线段PQ 与线段AB (3)当t 为何值时,△EDQ 为直角三角形. 37.(内蒙古呼伦贝尔)如图①,在平面直角坐标系内,Rt △ABC ≌Rt △FED ,点C 、D 与原点O 重合,点A 、F 在y 轴上重合,∠B =∠E =30°,AC =FD =3.△FED 不动,△ABC 沿直线BE 以每秒1个单位的速度向右平移,直到点B 与点E 重合为止,平移过程中AB 与EF 的交点为M . (1)求出图①中点B 的坐标;(2)如图②,当x =4秒时,求出过F 、M 、A 三点的抛物线的解析式;此抛物线上有一动点P ,以点P 为圆心,以2为半径的⊙P 在运动过程中是否存在与y 轴相切的情况,若存在,直接写出P 点的坐标;若不存在,请说明理由;(3)设移动x 秒后两个三角形重叠部分的面积为S ,求出整个运动过程中S 与x 的函数关系式.38.(哈尔滨模拟)如图,在平面直角坐标系中,O 为坐标原点,Rt △OAB 的直角边OA 在x 轴正半轴上,且OA =4,AB =2,将△OAB 沿某条直线翻折,使OA 与y 轴正半轴的OC 重合.点B 的对应点为点D ,连接AD 交OB 于点E . (1)求AD 所在直线的解析式:(2)连接BD ,若动点M 从点A 出发,以每秒2个单位的速度沿射线AO 运动,线段AM 的垂直平分线交直线AD 于点N ,交直线BD 子Q ,设线段QN 的长为y (y ≠0),点M 的运动时间为t 秒,求y 与t 之问的函数关系式(直接写出自变量t 的取值范围);(3)在(2)的条件下,连接MN ,当t 为何值时,直线MN 与过D 、E 、O 三点的圆相切,并求备用图图① 图②39.(哈尔滨模拟)如图,在平面直角坐标系中,直线y =x +b 与x 轴交于点A ,与正比例函数y =-43x 的图象交于点B ,过B 点作BC ⊥y 轴,点C 为垂足,C (0,8). (1)求直线AB 的解析式;(2)动点M 从点A 出发沿线段AO 以每秒1个单位的速度向终点O 匀速移动,过点M 作x 轴的垂线交折线A -B -O 于点P .设M 点移动的时间为t 秒,线段BP 的长为d ,求d 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,动点Q 同时从原点O 出发,以每秒1个单位的速度沿折线O -C -B 向点B 移动,当动点M 停止移动时,点Q 同时停止移动.当t 为何值时,△BPQ 是以BP 为一腰的等腰三角形?40.(哈尔滨模拟)如图,直线y =43x +12分别与x 轴、y 轴交于点A 、B ,直线BC 交x 轴于点C ,且AB =AC .(1)求直线BC 的解析式;(2)点P 从点C 出发沿线段CO 以每秒1个单位的速度向点O 运动,过点P 作y 轴的平行线,分别交直线BC 、直线AB 于点Q 、M ,过点Q 作QN ⊥AB 于点N .设点P 的运动时间为t (秒),线段MN 的长为d ,求d 与t 的函数关系式,并直接写出自变量t 的取值范围;(3)若经过A 、N 、Q 三点的圆与直线BC 交于另一点K ,当t 为何值时,KQ :AQ =10 :10?41.(哈尔滨模拟)如图,直线y =-kx +6k (k>0)与x 轴、y 轴交于点A 、B ,且△AOB 的面积是24.(1)求直线AB 的解析式;(2)点P 从点O 出发,以每秒2个单位的速度沿折线OA -AB 运动;同时点E 从点O 出发,以每秒1个单位的速度沿y 轴正半轴运动,过点E 作与x 轴平行的直线l ,与线段AB 相交于点F ,备用图备用图当点P 与点F 重合时,点P 、E 均停止运动.连接PE 、PF ,设△PEF 的面积为S ,点P 运动的时间为t 秒,求S 与t 的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,过P 作x 轴的垂线,与直线l 相交于点M ,连接AM ,当tan ∠MAB =12时,求t 的值.42.(哈尔滨模拟)如图,在平面直角坐标系中,O 为坐标原点,点A 在x 轴的正半轴上,△AOB 为等腰三角形,且OA =OB ,过点B 作y 轴的垂线,垂足为D ,直线AB 的解析式为y =-3x +30,点C 在线段BD 上,点D 关于直线OC 的对称点在腰OB 上. (1)求点B 坐标;(2)点P 从点B 出发,以每秒1个单位的速度沿折线BC -CO 运动;同时点Q 从点O 出发,以每秒1个单位的速度沿对角线OB 向终点B 运动,当一点停止运动时,另一点也随之停止运动.设△PQC 的面积为S ,运动时间为t ,求S 与t 的函数关系式,并写出自变量t 的取值范围; (3)在(2)的条件下,连接PQ ,设PQ 与OB 所成的锐角为α,当α=90°-∠AOB 时,求t 的值.43.(哈尔滨模拟)如图,在平面直角坐标系中,点A (256,0),点B (3,4),将△OAB 沿直线OB 翻折,点A 落在第二象限内的点C 处. (1)求点C 的坐标;(2)动点P 从点O 出发,以每秒5个单位的速度沿OB 向终点B 运动,连接AP ,将射线AP 绕着点A 逆时针旋转与y 轴交于一点Q ,且旋转角α=12∠OAB .设线段OQ 的长为d ,点P 运动的时间为t 秒,求d 与t 的函数关系式(直接写出时间t 的取值范围);(3)在(2)的条件下,连接CP .点P 在运动的过程中,是否存在CP ∥AQ ,若存在,求此时t 的值,并辨断点B 与以点P 为圆心,OQ 长为半径的⊙P 的位置关系;若不存在,请说明理由.。
历年陕西省中考数学试卷(含答案)
2017年陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.02.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.3.(3分)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m 的值为()A.2 B.8 C.﹣2 D.﹣84.(3分)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°5.(3分)化简:﹣,结果正确的是()A.1 B.C. D.x2+y26.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.7.(3分)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<28.(3分)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.9.(3分)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.510.(3分)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)在实数﹣5,﹣,0,π,中,最大的一个数是.12.(3分)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.tan38°15′≈.(结果精确到0.01)13.(3分)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为.14.(3分)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.三、解答题(本大题共11小题,共78分)15.(5分)计算:(﹣)×+|﹣2|﹣()﹣1.16.(5分)解方程:﹣=1.17.(5分)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)18.(5分)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)19.(7分)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.20.(7分)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)21.(7分)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:品种产量(斤/每棚)销售价(元/每斤)成本(元/每棚)项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.22.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.23.(8分)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.24.(10分)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n 关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.25.(12分)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D 作DE⊥AB交于点E,又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)2017年陕西省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•陕西)计算:(﹣)2﹣1=()A.﹣ B.﹣ C.﹣ D.0【分析】原式先计算乘方运算,再计算加减运算即可得到结果.【解答】解:原式=﹣1=﹣,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(3分)(2017•陕西)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(3分)(2017•陕西)若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为()A.2 B.8 C.﹣2 D.﹣8【分析】运用待定系数法求得正比例函数解析式,把点B的坐标代入所得的函数解析式,即可求出m的值.【解答】解:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选:A.【点评】本题考查了一次函数图象上点的坐标特征.解题时需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.(3分)(2017•陕西)如图,直线a∥b,Rt△ABC的直角顶点B落在直线a上,若∠1=25°,则∠2的大小为()A.55°B.75°C.65°D.85°【分析】由余角的定义求出∠3的度数,再根据平行线的性质求出∠2的度数,即可得出结论.【解答】解:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a∥b,∴∠2=∠3=65°.故选:C.【点评】本题考查的是平行线的性质,解题时注意:两直线平行,同位角相等.5.(3分)(2017•陕西)化简:﹣,结果正确的是()A.1 B.C. D.x2+y2【分析】原式通分并利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==.故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.6.(3分)(2017•陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为()A.3 B.6 C.3 D.【分析】根据勾股定理求出AB,根据等腰直角三角形的性质得到∠CAB′=90°,根据勾股定理计算.【解答】解:∵∠ACB=∠AC′B′=90°,AC=BC=3,∴AB==3,∠CAB=45°,∵△ABC和△A′B′C′大小、形状完全相同,∴∠C′AB′=∠CAB=45°,AB′=AB=3,∴∠CAB′=90°,∴B′C==3,故选:A.【点评】本题考查的是勾股定理的应用、等腰直角三角形的性质,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.7.(3分)(2017•陕西)如图,已知直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(﹣2,0),则k的取值范围是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<2【分析】首先根据直线l2与x轴的交点为A(﹣2,0),求出k、b的关系;然后求出直线l1、直线l2的交点坐标,根据直线l1、直线l2的交点横坐标、纵坐标都大于0,求出k的取值范围即可.【解答】解:∵直线l2与x轴的交点为A(﹣2,0),∴﹣2k+b=0,∴解得∵直线l1:y=﹣2x+4与直线l2:y=kx+b(k≠0)的交点在第一象限,∴解得0<k<2.故选:D.【点评】此题主要考查了两条直线的相交问题,以及一次函数图象的点的特征,要熟练掌握.8.(3分)(2017•陕西)如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD 的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.B.C.D.【分析】根据S△ABE =S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【解答】解:如图,连接BE.∵四边形ABCD是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt△ADE中,AE===,∵S△ABE =S矩形ABCD=3=•AE•BF,∴BF=.故选B.【点评】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.9.(3分)(2017•陕西)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5 B.C.5 D.5【分析】连接OA、OB、OP,根据圆周角定理求得∠APB=∠C=30°,进而求得∠PAB=∠APB=30°,∠ABP=120°,根据垂径定理得到OB⊥AP,AD=PD,∠OBP=∠OBA=60°,即可求得△AOB是等边三角形,从而求得PB=OA=5,解直角三角形求得PD,即可求得PA.【解答】解:连接OA、OB、OP,∵∠C=30°,∴∠APB=∠C=30°,∵PB=AB,∴∠PAB=∠APB=30°∴∠ABP=120°,∵PB=AB,∴OB⊥AP,AD=PD,∴∠OBP=∠OBA=60°,∵OB=OA,∴△AOB是等边三角形,∴AB=OA=5,则Rt△PBD中,PD=cos30°•PB=×5=,∴AP=2PD=5,故选D.【点评】本题考查了圆周角定理、垂径定理、等边三角形的判定和性质以及解直角三角形等,作出辅助性构建等边三角形是解题的关键.10.(3分)(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【分析】先利用配方法求得点M的坐标,然后利用关于原点对称点的特点得到点M′的坐标,然后将点M′的坐标代入抛物线的解析式求解即可.【解答】解:y=x2﹣2mx﹣4=x2﹣2mx+m2﹣m2﹣4=(x﹣m)2﹣m2﹣4.∴点M(m,﹣m2﹣4).∴点M′(﹣m,m2+4).∴m2+2m2﹣4=m2+4.解得m=±2.∵m>0,∴m=2.∴M(2,﹣8).故选C.【点评】本题主要考查的是二次函数的性质、关于原点对称的点的坐标特点,求得点M′的坐标是解题的关键.二、填空题(本大题共4小题,每小题3分,共12分)11.(3分)(2017•陕西)在实数﹣5,﹣,0,π,中,最大的一个数是π.【分析】根据正数大于0,0大于负数,正数大于负数,比较即可.【解答】解:根据实数比较大小的方法,可得π>>0>>﹣5,故实数﹣5,,0,π,其中最大的数是π.故答案为:π.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(3分)(2017•陕西)请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为64°.B.tan38°15′≈ 2.03.(结果精确到0.01)【分析】A:由三角形内角和得∠ABC+∠ACB=180°﹣∠A=128°,根据角平分线定义得∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB);B:利用科学计算器计算可得.【解答】解:A、∵∠A=52°,∴∠ABC+∠ACB=180°﹣∠A=128°,∵BD平分∠ABC、CE平分∠ACB,∴∠1=∠ABC、∠2=∠ACB,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=64°,故答案为:64°;B、tan38°15′≈2.5713×0.7883≈2.03,故答案为:2.03.【点评】本题主要考查三角形内角和定理、角平分线的定义及科学计算器的运用,熟练掌握三角形内角和定理、角平分线的定义是解题的关键.13.(3分)(2017•陕西)已知A,B两点分别在反比例函数y=(m≠0)和y=(m≠)的图象上,若点A与点B关于x轴对称,则m的值为1.【分析】设A(a,b),则B(a,﹣b),将它们的坐标分别代入各自所在的函数解析式,通过方程来求m的值.【解答】解:设A(a,b),则B(a,﹣b),依题意得:,所以=0,即5m﹣5=0,解得m=1.故答案是:1.【点评】本题考查了反比例函数图象上点的坐标特征,关于x轴,y轴对称的点的坐标.根据题意得=0,即5m﹣5=0是解题的难点.14.(3分)(2017•陕西)如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.【点评】本题主要考查了全等三角形的判定及其性质、正方形的判定及其性质等几何知识点的应用问题;解题的关键是作辅助线,构造全等三角形和正方形.三、解答题(本大题共11小题,共78分)15.(5分)(2017•陕西)计算:(﹣)×+|﹣2|﹣()﹣1.【分析】根据二次根式的性质以及负整数指数幂的意义即可求出答案.【解答】解:原式=﹣+2﹣﹣2=﹣2﹣=﹣3【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.16.(5分)(2017•陕西)解方程:﹣=1.【分析】利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.【解答】解:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.【点评】此题是解分式方程,主要考查了解分式方程的方法和完全平方公式,平方差公式,解本题的关键是将分式方程转化为整式方程.17.(5分)(2017•陕西)如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【分析】根据题意可知,作∠BDC的平分线交BC于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.18.(5分)(2017•陕西)养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在C区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【分析】(1)先根据A区间人数及其百分比求得总人数,再根据各区间人数之和等于总人数、百分比之和为1求得C区间人数及D区间百分比可得答案;(2)根据中位数的定义求解可得;(3)利用样本估计总体思想求解可得.【解答】解:(1)本次调查的总人数为10÷5%=200,则20~30分钟的人数为200×65%=130(人),D项目的百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017•陕西)如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【分析】根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.【解答】证明:∵四边形ABCD是正方形,∴∠ADF=CDE=90°,AD=CD.∵AE=CF,∴DE=DF,在△ADF和△CDE中,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE,在△AGE和△CGF中,,∴△AGE≌△CGF(AAS),∴AG=CG.【点评】本题考查了正方形的性质,利用全等三角形的判定与性质是解题关键,又利用了正方形的性质.20.(7分)(2017•陕西)某市一湖的湖心岛有一棵百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【分析】作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x 米,再由锐角三角函数的定义即可得出结论.【解答】解:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.21.(7分)(2017•陕西)在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:产量(斤/每棚)销售价(元/每斤)成本(元/每棚)品种项目香瓜2000128000甜瓜450035000现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【分析】(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.【解答】解:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000,(2)由题意得,7500x+6800≥100000,∴x≥4,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.【点评】此题是一次函数的应用,主要考查了一次函数的应用以及解一元一次不等式,解题的关键是:(1)根据数量关系,列出函数关系式;(2)根据题意建立不等式,是一道基础题目.22.(7分)(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【分析】(1)根据题意可以得到小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率;(2)根据题意可以写出所有的可能性,从而可以解答本题.【解答】解:(1)由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是:=,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是;(2)由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:.【点评】本题考查列表法与树状图法、概率公式,解答本题的关键是明确题意,写出所有的可能性,利用概率的知识解答.23.(8分)(2017•陕西)如图,已知⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时,(1)求弦AC的长;(2)求证:BC∥PA.【分析】(1)连接OA,由于PA是⊙O的切线,从而可求出∠AOD=60°,由垂径定理可知:AD=DC,由锐角三角函数即可求出AC的长度.(2)由于∠AOP=60°,所以∠BOA=120°,从而由圆周角定理即可求出∠BCA=60°,从而可证明BC∥PA【解答】解:(1)连接OA,∵PA是⊙O的切线,∴∠PAO=90°∵∠P=30°,∴∠AOD=60°,∵AC⊥PB,PB过圆心O,∴AD=DC在Rt△ODA中,AD=OA•sin60°=∴AC=2AD=5(2)∵AC⊥PB,∠P=30°,∴∠PAC=60°,∵∠AOP=60°∴∠BOA=120°,∴∠BCA=60°,∴∠PAC=∠BCA∴BC∥PA【点评】本题考查圆的综合问题,涉及切线的性质,解直角三角形,平行线的判定等知识,综合程度较高,属于中等题型.24.(10分)(2017•陕西)在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B 的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB 为边,且以A、B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【分析】(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P 点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.【解答】解:(1)∵C1、C2关于y轴对称,∴C1与C2的交点一定在y轴上,且C1与C2的形状、大小均相同,∴a=1,n=﹣3,∴C1的对称轴为x=1,∴C2的对称轴为x=﹣1,∴m=2,∴C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)在C2的函数表达式为y=x2+2x﹣3中,令y=0可得x2+2x﹣3=0,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0);(3)存在.∵AB的中点为(﹣1,0),且点P在抛物线C1上,点Q在抛物线C2上,∴AB只能为平行四边形的一边,∴PQ∥AB且PQ=AB,由(2)可知AB=1﹣(﹣3)=4,∴PQ=4,设P(t,t2﹣2t﹣3),则Q(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(2,﹣3),Q(﹣2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(2,﹣3),Q(﹣2,﹣3).【点评】本题为二次函数的综合应用,涉及待定系数法、对称的性质、函数图象与坐标轴的交点、平行四边形的性质、方程思想及分类讨论思想等知识.在(1)中由对称性质求得a、n的值是解题的关键,在(2)中注意函数图象与坐标轴的交点的求法即可,在(3)中确定出PQ的长度,设P点坐标表示出Q点的坐标是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.(12分)(2017•陕西)问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为4;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D。
2012年全国中考数学试题分类解析汇编专题:38等腰(边)三角形
2012年全国中考数学试题分类解析汇编(159套63专题)专题:38等腰(边)三角形一、选择题1. (2012宁夏区3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是【】A.13 B.17 C.22 D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边。
∴这个三角形的周长为9+9+4=22。
故选C。
2. (2012广东肇庆3分)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为【】A.16 B.18 C.20 D.16或20【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8-4<8<8+4,符合题意。
∴此三角形的周长=8+8+4=20。
故选C。
3. (2012江苏常州2分)已知三角形三边的长分别为4,9,则这个等腰三角形的周长为【】A.13B.17C.22D.17或22【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】由三角形三边的长分别为4,9,知三角形三边的长分别为4,4,9或4,9,9,但由于4,4,9与三角形的构成条件“两边之和大于第三边,两边之差小于第三边”不符,因此,三角形三边的长只能分别为4,9,9 ,周长为22。
故选C。
4. (2012江苏徐州3分)如果等腰三角形的两边长分别为2和5,则它的周长为【】A.9 B.7 C.12D.9或12【答案】C。
【考点】等腰三角形的性质,三角形三边关系。
【分析】根据等腰三角形的性质,如果等腰三角形的两边长分别为2和5,则另一边可能是2或5。
2012年全国中考数学试题分类解析汇编(159套63专题)专题16_一次函数(正比例函数)的图像和性质(附答案)
2012年全国中考数学试题分类解析汇编(159套63专题)专题16:一次函数(正比例函数)的图像和性质一、选择题1. (2012山西省2分)如图,一次函数y=(m ﹣1)x ﹣3的图象分别与x 轴、y 轴的负半轴相交于A .B ,则m 的取值范围是【 】A . m >1B . m <1C . m <0D . m >02. (2012陕西省3分)下列四组点中,可以在同一个正比例函数图象上的一组点是【 】 A .(2.-3),(-4,6) B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)3. (2012陕西省3分)在同一平面直角坐标系中,若一次函数y x 3=-+与y 3x 5=-图象交于点M ,则点M 的坐标为【 】A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)4. (2012浙江温州4分)一次函数y=-2x+4图象与y 轴的交点坐标是【 】 A. (0, 4) B. (4, 0) C. (2, 0) D. (0, 2 )5. (2012江苏苏州3分)若点(m ,n )在函数y=2x+1的图象上,则2m-n 的值是【 】 A.2 B.-2 C.1 D. -16. (2012江苏徐州3分)一次函数y=x -2的图象不经过【 】 A .第一象限 B .第二象限 C .第三象限D .第一象限7. (2012福建宁德4分)一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4的图象的交点不可能...在【 】A .第一象限B .第二象限C .第三象限D .第四象限8. (2012福建泉州3分)若y kx 4=-的函数值y 随着x 的增大而增大,则k 的值可能是下列的【 】.A .4- B.21-C.0D.3 9. (2012湖南娄底3分)对于一次函数y=﹣2x+4,下列结论错误的是【 】 A . 函数值随自变量的增大而减小 B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)10. (2012四川乐山3分)若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是【 】A .B .C .D .11. (2012四川南充3分)下列函数中是正比例函数的是【 】( A )y=-8x(B )y=8x-( C )y=5x 2+6 (D )y= -0.5x-112. (2012辽宁沈阳3分)一次函数y=-x+2的图象经过【 】A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 13. (2012山东滨州3分)直线1y x =-不经过【 】A .第一象限B .第二象限C .第三象限D .第四象限14. (2012江西南昌3分)已知一次函数y=kx+b (k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过【 】 A . 第一象限 B . 第二象限C . 第三象限D .第四象限15. (2012吉林长春3分)有一道题目:已知一次函数y=2x+b ,其中b <0,…,与这段描述相符的函数图像可能是【 】二、填空题1. (2012上海市4分)已知正比例函数y=kx (k≠0),点(2,﹣3)在函数上,则y 随x 的增大而 ▲ (增大或减小).2. (2012浙江湖州4分)一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为 ▲3. (2012江苏南京2分)已知一次函数y kx k 3=+-的图像经过点(2,3),则k 的值为 ▲4. (2012湖南长沙3分)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 ▲ .5. (2012湖南永州3分)一次函数y=﹣x+1的图象不经过第 ▲ 象限.6. (2012湖南怀化3分)如果点()()1122P 3,y ,P 2,y 在一次函数y 2x 1=-的图像上,则1y ▲ 2y .(填“>”,“<”或“=”)7. (2012湖南衡阳3分)如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行且经过点A (1,﹣2),则kb= ▲ .8. (2012湖南株洲3分)一次函数y=x+2的图象不经过第▲ 象限.9. (2012贵州贵阳4分)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第▲ 象限.10. (2012江西省3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则其图像不经过...第▲ 象限。
陕西省中考数学真题试题(含答案)
一、选择题:(本大题共10题,每题3分,满分30分)1、-711的倒数是A.711B.-711C.117D.-1172、如图,是一个几何体的表面展开图,则该几何体是A.正方体B.长方体C.三棱柱D.四棱锥3、如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有A.1个B.2个C.3个D.4个4、如图,在矩形ABCD中,A(-2,0),B(0,1).若正比例函数y=kx的图像经过点C,则k的取值为A.-12B.12C.-2 D.2第2题图第3题图第4题图5、下列计算正确的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-46、如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.2 2 C.823D.3 2第6题图第8题图第9题图7、若直线l1经过点(0,4),l2经过(3,2),且l1与l2关于x轴对称,则l1与l2的交点坐标为A.(-2,0) B.(2,0) C.(-6,0) D.(6,0)8、如图,在菱形ABCD中,点E、F、G、H分别是边AB、BC、CD和DA的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是yC BA O xA .AB =2EF B .AB =2EFC .AB =3EFD .AB =5EF9、如图,△ABC 是⊙O 的内接三角形,AB =AC ,∠BCA =65°,作CD ∥AB ,并与○O 相交于点D ,连接BD ,则∠DBC 的大小为A .15°B .35°C .25°D .45°10、对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在A .第一象限B .第二象限C .第三象限D .第四象限二、填空题:(本大题共4题,每题3分,满分12分)11、比较大小:3<10(填<,>或=).12、如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则AFE 的度数为72°13、若一个反比例函数的图像经过点A (m ,m )和B (2m ,-1),则这个反比例函数的表达式为y =4x14、点O 是平行四边形ABCD 的对称中心,AD >AB ,E 、F 分别是AB 边上的点,且EF =12AB ;G 、H 分别是BC 边上的点,且GH =13BC ;若S 1,S 2分别表示∆EOF 和∆GOH 的面积,则S 1,S 2之间的等量关系是2S 1=3S 2第12题图第14题图二、解答题(共11小题,计78分.解答应写出过程)15.(本题满分5分)计算:(-3)×(-6)+|2-1|+(5-2π)0解:原式=32+2-1+1=4 2 16.(本题满分5分) 化简:⎝⎛⎭⎪⎫a +1a -1-a a +1÷3a +1a 2+a解:原式=3a +1(a +1)(a -1)×a (a +1)3a +1=aa -117.(本题满分5分)如图,已知在正方形ABCD 中,M 是BC 边上一定点,连接AM ,请用尺规作图法,在AM 上求作一点P ,使得△DPA ∽△ABM (不写做法保留作图痕迹)解:如图,P 即为所求点. 18、(本题满分5分)如图,AB ∥CD ,E 、F 分别为AB 、CD 上的点,且EC ∥BF ,连接AD ,分别与EC 、BF 相交与点G 、H ,若AB =CD ,求证:AG =DH .证明:∵AB ∥CD ,∴∠A =∠D ∵CE ∥BF ,∴∠AHB =∠DGC 在∆ABH 和∆DCG 中,∵⎩⎪⎨⎪⎧∠A =∠D∠AHB =∠DGC AB =CD ∴∆ABH ≌∆DCG (AAS ),∴AH =DG ∵AH =AG +GH ,DG =DH +GH ,∴AG =HD19.(本题满分7分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试.根据测试成绩分布情况,他们将全部测试成绩分成A 、B 、C 、D 四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表(第19题图)依据以上统计信息,解答下列问题: (1)求得m=30,n =19%;(2)这次测试成绩的中位数落在B 组; (3)求本次全部测试成绩的平均数.解:测试的平均成绩=2581+5543+5100+2796200=80.1.20.(本题满分7分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A ,在他们所在的岸边选择了点B ,使得AB 与河岸垂直,并在B 点竖起标杆BC ,再在AB 的延长线上选择点D 竖起标杆DE ,使得点E 与点C 、A 共线.已知:CB ⊥AD ,ED ⊥AD ,测得BC =1m ,DE =1.5m ,BD =8.5m .测量示意图如图所示.请根据相关测量信息,求河宽AB .解:∵CB ⊥AD ,ED ⊥AD , ∴∠CBA =∠EDA =90° ∵∠CAB =∠EAD ∴∆ABC ∽∆ADE ∴AD AB =DEBC ∴AB +8.5AB =1.51组别 分数/分 频数 各组总分/分A 60<x ≤70 38 2581B 70<x ≤80 72 5543C 80<x ≤90 60 5100D 90<x ≤100m2796A nD、15%B 36%C 30%∴AB =17,即河宽为17米. 21.(本题满分7分)经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:根据上表提供的信息,解答下列问题:(1)已知今年前五个月,小明家网店销售上表中规格的红枣和小米共3000kg ,获得利润4.2万元,求这前五个月小明家网店销售这种规格的红枣多少袋;(2)根据之前的销售情况,估计今年6月到10月这后五个月,小明家网店还能销售上表中规格的红枣和小米共2000kg ,其中,这种规格的红枣的销售量不低于600kg .假设这后五个月,销售这种规格的红枣味x (kg ),销售这种规格的红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后五个月,小明家网店销售这种规格的红枣和小米至少获得总利润多少元.解:(1)设前五个月小明家网店销售这种规格的红枣a 袋,销售小米b 袋,根据题意列方程得:a +2b =3000,(60-40)a +(54-38)b =42000,解得:a =1500,b =750∴前五个月小明家网店销售这种规格的红枣1500袋,销售小米750袋 (2)根据题意得:y =(60-40)x +(54-38)×2000-x2=12x +16000y 随x 的增大而增大,∵x ≥600,∴当x =600时,y 取得最小值,最小值为y =12×600+16000=23200∴小明家网店销售这种规格的红枣和小米至少获得总利润23200元. 22.(本题满分7分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是-2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.(第22题图)解:(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为120°360°=13; (2)由(1)可知,该转盘转出“1”“3”“-2”的概率相同,均为13,所有可能性如下表所示: 第一次 第二次 1-2 3 1 (1,1) (1,-2) (1,3) -2 (-2,1) (-2,-2) (-2,3) 3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为923.(本题满分8分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC 、BC 相交于点M 、N .(1)过点N 作⊙O 的切线NE 与AB 相交于点E ,求证:NE ⊥AB ; (2)连接MD ,求证:MD =NB .23题图 23题解图(1) 解:(1)如图,连接ON∵CD 是Rt △ABC 斜边AB 上的中线 ∴AD =CD =DB ∴∠DCB =∠DBC 又∵∠DCB =∠ONC ∴∠ONC =∠DBC ∴ON ∥AB∵NE 是⊙O 的切线,ON 是⊙O 的半径 ∴∠ONE =90°∴∠NEB =90°,即NE ⊥AB ;(2)如解图(1)所示,由(1)可知ON ∥AB ,O 为⊙O 的圆心,∴OC =OB ,∠CMD =90°∴CN =NB =12CB ,MD ∥CB又∵D 是AB 的中点,∴MD =12CB∴MD =NB .24.(本题满分10分)已知抛物线L :y =x 2+x -6与x 轴相交于A 、B 两点(点A 在点B 的左侧),并与y 轴相交于点C .(1)求A 、B 、C 三点的坐标,并求出△ABC 的面积;(2)将抛物线向左或向右平移,得到抛物线L ´,且L ´与x 轴相交于A ´、B ´两点(点A ´在点B ´的左侧),并与y 轴交于点C ´,要使△A ´B ´C ´和△ABC 的面积相等,求所有满足条件的抛物线的函数表达式.解:(1)当y =0时,x 2+x -6=0,解得x 1=-3,x 2=2;当x =0时,y =-6 ∴A (-3,0),B (2,0),C (0,6) ∴S △ABC =12AB ·OC =12×5×6=15;(2)将抛物线向左或向右平移时,A´、B´两点间的距离不变,始终为5,那么要使△A´B´C´和△ABC的面积相等,高也只能是6设A(a,0),则B(a+5,0),y=(x-a)(x-a-5),当x=0时,y=a2+5a当C点在x轴上方时,y=a2+5a=6,a=1或a=-6,此时y=x2-7x-6或y=x2+7x-6;当C点在x轴下方时,y=a2+5a=-6,a=-2或a=-3,此时y=x2-x-6或y=x2+x-6(与圆抛物线重合,舍去);所以,所有满足条件的抛物线的函数表达式为:y=x2-7x-6,y=x2+7x-6,y=x2-x-6.25.(本题满分12分)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、BC是某新区的三条规划路其中,AB=6km,AC=3km,∠BAC =60°,BC所对的圆心角为60°.新区管委会想在BC路边建物资总站点P,在AB、AC路边分别建物资分站点E、F.也就是,分别在BC线段AB和AC上选取点P、E、F.由于总站工作人员每天要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷环保和节约成本要使得线段PE、EF、FP之和最短,试求PE+EF+FP的最小值(各物资站点与所在道路之间的距离、路宽均忽略不计).图①图②图③解:(1)R=AB=AC=5;(2)如25题解图(2)所示,连接MO并延长交⊙O于N,连接OP显然,MP≤OM+OP=OM+ON=MN,ON=13,OM=132-122=5,MN=18∴PM的最大值为18;25题解图(2) 25题解图(3)(3)假设P点即为所求点,分别作出点P关于AB、AC的对称点P´、P"连接PP´、P´E,PE,P"F,PF,PP"由对称性可知PE+EF+FP=P´E+EF+FP"=P´P",且P´、E、F、P"在一条直线上,所以P´P"即为最短距离,其长度取决于PA的长度25题解图(4)作出弧BC的圆心O,连接AO,与弧BC交于P,P点即为使得PA最短的点∵AB=6km,AC=3km,∠BAC=60°,∴∆ABC是直角三角形,∠ABC=30°,BC=3 3 BC所对的圆心角为60°,∴∆OBC是等边三角形,∠CBO=60°,BO=BC=3 3∴∠ABO=90°,AO=37,PA=37-3 3∠P´AE=∠EAP,∠PAF=∠FAP",∴∠P´AP"=2∠ABC=120°,P´A=AP",∴∠AP´E =∠AP"F=30°∵P´P"=2P´A cos∠AP´E=3P´A=321-9所以PE+EF+FP的最小值为321-9km.。
全国各地2012年中考数学分类解析(159套)专题3 整式
2012年全国中考数学试题分类解析汇编(159套63专题)专题3:整式一、选择题1. (2012上海市4分)在下列代数式中,次数为3的单项式是【 】A . xy 2B . x 3+y 3C . .x 3yD ..3xy【答案】A 。
【考点】单项式的次数。
【分析】根据单项式的次数定义可知:A 、xy 2的次数为3,符合题意;B 、x 3+y 3不是单项式,不符合题意;C 、x 3y 的次数为4,不符合题意;D 、3xy 的次数为2,不符合题意。
故选A 。
2. (2012重庆市4分)计算)2ab 的结果是【 】 A .2ab B .2a b C .22a b D .2ab【答案】C 。
【考点】幂的乘方与积的乘方。
【分析】根据幂的乘方与积的乘方运算法则直接得出结果:原式=22a b 。
故选C 。
3. (2012安徽省4分)计算32)2(x -的结果是【 】A.52x -B. 68x -C.62x -D.58x -【答案】B 。
【考点】积的乘方和幂的运算【分析】根据积的乘方和幂的运算法则可得:233236(2)(2)()8x x x -=-=-。
故选B 。
4. (2012安徽省4分)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是【 】A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元【答案】B 。
【考点】列代数式。
【分析】根据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%)。
故选B 。
5. (2012山西省2分)下列运算正确的是【 】A .B .C . a 2a 4=a 8D . (﹣a 3)2=a 6 【答案】D 。
【考点】算术平方根,实数的运算,同底数幂的乘法,幂的乘方与积的乘方。
2012年陕西省中考数学试卷-答案
【提示】作OM AB ⊥于M ,ON CD ⊥于N ,连接OP ,OB ,OD ,首先利用勾股定理求得OM 的长,然后判定四边形OMPN 是正方形,求得正方形的对角线的长即可求得OM 的长. 【考点】垂径定理,勾股定理. 10.【答案】B
【解析】解:当0x =时,6y =-,故函数图象与y 轴交于点(0,6)C -,当0y =时,260x x --=,即(2)
x +(3)0x -=,解得2x =-或3x =,即(2,0)A -,(3,0)B ;
由图可知,函数图象至少向右平移2个单位恰好过原点,故||m 的最小值为2.故选B.
【提示】计算出函数与x 轴、y 轴的交点,将图象适当运动,即可判断出抛物线移动的距离及方向. 【考点】二次函数图象与几何变换.
B 卷
B:2.47
【解析】解:A.
1
故答案为:41.
补全图形如图所示:
∴湖心岛上迎宾槐C处与凉亭A处之间的距离约为207米.
1234567 2345678 3456789 45678910 567891011 6789101112
=;
∴OM AN。
历年陕西省中考数学试卷及答案
最新中考模拟题 数学试卷第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,计30分)1.如果零上5 ℃记做+5 ℃,那么零下7 ℃可记作( ) A .-7 ℃ B .+7 ℃ C .+12 ℃ D .-12 ℃ 2.如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是( )3.计算23)5(a -的结果是( )A .510a -B .610aC .525a -D .625a4.某中学举行歌咏比赛,以班为单位参赛,评委组的各位评委给九年级三班的演唱打分情况(满分100分)如下表,从中去掉一个最高分和一个最低分,则余下的分数的平均分是( )分数(分) 89 92 95 96 97 评委(位) 12211 A .92分B .93分C .94分D .95分5.如图,在BE AD ABC ,中,∆是两条中线,则=∆∆ABC EDC S S :( )A .1∶2B .2∶3C .1∶3D .1∶46.下列四组点中,可以在同一个正比例函数图象上的一组点是( ) A .(2.-3),(-4,6) B .(-2,3),(4,6) C .(-2,-3),(4,-6) D .(2,3),(-4,6) 7.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE AB ⊥,垂足为E ,若=130ADC ∠︒,则AOE ∠的大小为( )A .75°B .65°C .55°D .50° 8.在同一平面直角坐标系中,若一次函数533-=+-=x y x y 与图象交于点M ,则点M 的坐标为( ) A .(-1,4) B .(-1,2) C .(2,-1) D .(2,1)9.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .32D .2410.在平面直角坐标系中,将抛物线62--=x x y 向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则m 的最小值为( )A .1B .2C .3D .6第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:()2cos 45-38+1-2=︒ .12.分解因式:3223-2+=x y x y xy .13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分. A .在平面内,将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过的面积为 .B .用科学计算器计算:7sin 69︒≈ (精确到0.01).14.小宏准备用50元钱买甲、乙两种饮料共10瓶.已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买 瓶甲饮料.15.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是 (只写出符合条件的一个即可).16.如图,从点()02A ,发出的一束光,经x 轴反射,过点()43B ,,则这束光从点A 到点B 所经过路径的长为 .三、解答题(共9小题,计72分.解答应写过程) 17.(本题满分5分) 化简:22a bb a b a b a b a b--⎛⎫÷⎪+-+⎝⎭-. 18.(本题满分6分)如图,在ABCD 中,ABC ∠的平分线BF 分别与AC 、AD 交于点E 、F . (1)求证:AB AF =; (2)当35AB BC ==,时,求AEAC的值.19.(本题满分7分)某校为了满足学生借阅图书的需求,计划购买一批新书.为此,该校图书管理员对一周内本校学生从图书馆借出各类图书的数量进行了统计,结果如下图.请你根据统计图中的信息,解答下列问题:(1)补全条形统计图和扇形统计图;(2)该校学生最喜欢借阅哪类图书?(3)该校计划购买新书共600本,若按扇形统计图中的百分比来相应地确定漫画、科普、文学、其它这四类图书的购买量,求应购买这四类图书各多少本?20.(本题满分8分)如图,小明想用所学的知识来测量湖心岛上的迎宾槐与岸上的凉亭间的距离,他先在湖岸上的凉亭A 处测得湖心岛上的迎宾槐C处位于北偏东65︒方向,然后,他从凉亭A处沿湖岸向正东方向走了100、、在同一水平面上).请你米到B处,测得湖心岛上的迎宾槐C处位于北偏东45︒方向(点A B C利用小明测得的相关数据,求湖心岛上的迎宾槐C处与湖岸上的凉亭A处之间的距离(结果精确到1米).(参考数据:,,,,sin250.4226cos250.9063tan250.4663sin650.9063︒≈︒≈︒≈︒≈,)cos650.4226tan65 2.1445︒≈︒≈21.(本题满分8分)科学研究发现,空气含氧量y (克/立方米)与海拔高度x (米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米. (1)求出y 与x 的函数表达式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少? 22.(本题满分8分)小峰和小轩用两枚质地均匀的骰子做游戏,规则如下:每人随机掷两枚骰子一次(若掷出的两枚骰子摞在一起,则重掷),点数和大的获胜;点数和相同为平局. 依据上述规则,解答下列问题:(1)随机掷两枚骰子一次,用列表法求点数和为2的概率;(2)小峰先随机掷两枚骰子一次,点数和是7,求小轩随机掷两枚骰子一次,胜小峰的概率. (骰子:六个面分别刻有1、2、3、4、5、6个小圆点的立方块.点数和:两枚骰子朝上的点数之和.) 23.(本题满分8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ,垂足为N . (1)求证:=OM AN ;(2)若O 的半径=3R ,=9PA ,求OM 的长. 24.(本题满分10分)如果一条抛物线()2=++0y ax bx c a ≠与x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是 三角形;(2)若抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,求b 的值;(3)如图,△OAB 是抛物线()2=-+''>0y x bx b 的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD ?若存在,求出过O C D 、、三点的抛物线的表达式;若不存在,说明理由. 25.(本题满分12分) 如图,正三角形ABC 的边长为3+3.(1)如图①,正方形EFPN 的顶点E F 、在边AB 上,顶点N 在边AC 上.在正三角形ABC 及其内部,以A 为位似中心,作正方形EFPN 的位似正方形''''EFPN ,且使正方形''''EFPN 的面积最大(不要求写作法);(2)求(1)中作出的正方形''''EFPN 的边长; (3)如图②,在正三角形ABC 中放入正方形DEMN 和正方形EFPH ,使得DE EF 、在边AB 上,点P N 、分别在边CB CA 、上,求这两个正方形面积和的最大值及最小值,并说明理由.参考答案1、【答案】A【解析】通过题意我们可以联想到数轴,零摄氏度即原点,大于零摄氏度为正方向,数值为正数, 小于零摄氏度为负数.故选A . 2、【答案】C【解析】三视图主要考查学生们的空间想象能力,是近几年中考的必考点,从图中我们可以知道正 面为三个正方形,(下面两个,上面一个),左视图即从左边观看,上边有一个正方形,下 面两个正方体重叠,从而看到一个正方形,故选C . 3、【答案】D【解析】本题主要考查了数的乘方以及幂的乘方,从整体看,外边是个平方,那么这个数肯定是正 数,排除A ,C ,然后看到5的平方,是25,3a 的平方是6a ,积为625a ,选D . 4、【答案】C【解析】统计题目也是年年的必考题,注重学生们的实际应用能力,根据题目规则,去掉一个最高 分和一个最低分,也就是不算89分和97分,然后把其余数求平均数,得到94分.其实这 种计算有个小技巧,我们看到都是90多分,所以我们只需计算其个位数的平均数,然后再 加上90就可以快速算出结果.个位数平均数为45)62522(=÷+⨯+⨯,所以其余这些数 的平均数为94分.故选C . 5、【答案】D【解析】本题主要考查了三角形的中位线的性质,由题意可知,ED 为ABC ∆的中位线,则面积比 =∆∆ABC EDC S S :4:1)21()(22==AB ED ,故选D . 6、【答案】A【解析】本题考查了一次函数的图象性质以及应用,若干点在同一个正比例函数图像上,由kx y =, 可知,y 与x 的比值是相等的,代进去求解,可知,A 为正确解.选A . 7、【答案】B【解析】本题考查了菱形的性质,我们知道菱形的对角线互相平分且垂直,外加OE AB ⊥,即可得 出︒=︒⨯=∠⨯=∠=∠651302121ABC OBE AOE .选B . 8、【答案】D【解析】一次函数交点问题可以转化为二元一次方程组求解问题,解得x=2,y=1.选D . 9、【答案】C 【解析】本题考查圆的弦与半径之间的边角关系,连接OB ,OD ,过O 作OH AB ⊥,交AB 于点H . 在OBH Rt ∆中,由勾股定理可知,OH =3,同理可作AB OE ⊥,OE =3,且易证 OPH OPE ∆≅∆,所以OP =23,选C . 10、【答案】B【解析】本题考查了抛物线的平移以及其图像的性质,由)2)(3(62+-=--=x x x x y ,可知其与 x 轴有两个交点,分别为()()30-20,,,.画图,数形结合,我们得到将抛物线向右平移2个单位,恰好使得抛物线经过原点,且移动距离最小.选B . 11、【答案】【解析】原式=22⨯⨯12、【答案】()2-xy x y【解析】()()2322322-2-2-x y x y xy xy x xy y xy x y +=+=13、A 【答案】23π【解析】将长度为4的线段AB 绕它的中点M ,按逆时针方向旋转30°,则线段AB 扫过部分的形状为半径为2,圆心角度数为30°的两个扇形,所以其面积为230222=3603ππ⨯⨯. B 【答案】2.4714、【答案】3【解析】设小宏能买x 瓶甲饮料,则买乙饮料()10-x 瓶.根据题意,得 ()7+410-50x x ≤ 解得133x ≤ 所以小宏最多能买3瓶甲饮料.15、【答案】18=y x (只要=k y x 中的k 满足9>2k 即可) 【解析】设这个反比例函数的表达式是=ky x()0k ≠.由==-2+6ky xy x ⎧⎪⎨⎪⎩,,得22-6+=0x x k . 因为这个反比例函数与一次函数的图象没有交点,所以方程22-6+=0x x k 无解. 所以()2=-6-42=36-8<0k k ∆⨯,解得9>2k .16、【解析】方法一:设这一束光与x 轴交与点C ,过点C 作x 轴的垂线CD ,过点B 作BE x ⊥轴于点E .根据反射的性质,知ACO BCE ∠=∠.所以Rt ACORt BCE ∆∆.所以=AO BECO CE. 已知=2AO ,=3BE ,+=4OC CE ,则23=4-CE CE. 所以12=5CE ,8=5CO .由勾股定理,得AC =BC =+AB AC BC方法二:设设这一束光与x 轴交与点C ,作点B 关于x 轴的对称点'B ,过'B 作'B D y ⊥轴 于点D .由反射的性质,知'A C B ,,这三点在同一条直线上. 再由对称的性质,知'=BC BC . 则=+=''AB AC CB AC CB AB +=.由题意易知=5AD ,'=4BD ,由勾股定理,得AB =AB AB17、【答案】解:原式=(2)()()()()2a b a b b a b a ba b a b a b---++⋅+--=22222()(2)a ab ab b ab b a b a b --+----=224()(2)a aba b a b ---=2(2)()(2)a ab a b a b ---=2aa b-. 18、【答案】解:(1)如图,在ABCD 中,//AD BC , ∴23∠=∠.∵BF 是ABC ∠的平分线, ∴12∠=∠. ∴13∠=∠. ∴AB AF =.(2)23AEF CEB ∠=∠∠=∠,, ∴△AEF ∽△CEB , ∴35AE AF EC BC ==,∴38AE AC =. 19、【答案】解:(1)如图所示一周内该校学生从图书馆借出各类图书数量情况统计图(2)该学校学生最喜欢借阅漫画类图书.(3)漫画类:600×40%=240(本),科普类:600×35%=210(本), 文学类:600×10%=60(本),其它类:600×15%=90(本). 20、【答案】解:如图,作CD AB ⊥交AB 的延长线于点D ,则4565BCD ACD ∠=︒∠=︒,. 在Rt △ACD 和Rt △BCD 中, 设AC x =,则sin 65AD x =︒, cos65BD CD x ==︒.∴100cos65sin65x x +︒=︒.∴100207sin 65cos65x =≈︒-︒(米). ∴湖心岛上的迎宾槐C 处与凉亭A 处之间距离约为207米.21、【答案】解:(1)设+y kx b =,则有299,2000235.b k b =⎧⎨+=⎩解之,得4125299.k b ⎧=-⎪⎨⎪=⎩,∴4299125y x =-+. (2)当1200x =时,41200299260.6125y =-⨯+=(克/立方米).∴该山山顶处的空气含氧量约为260.6克/立方米. 22、【答案】解:(1)随机掷两枚骰子一次,所有可能出现的结果如右表:右表中共有36种等可能结果,其中点数和 为2的结果只有一种. ∴P (点数和为2)=136. (2)由右表可以看出,点数和大于7的结果 有15种.∴P (小轩胜小峰)= 1536=512.23、【答案】解:(1)证明:如图,连接OA ,则OA AP ⊥. ∵MN AP ⊥, ∴//MN OA . ∵//OM AP ,∴四边形ANMO 是矩形. ∴=OM AN .(2)连接OB ,则OB BP ⊥.∵=OA MN ,=OA OB ,//OM AP , ∴=OB MN ,=OMB NPM ∠∠. ∴Rt OBM Rt MNP ∆≅∆. ∴=OM MP .设=OM x ,则=9-NP x .在Rt MNP ∆中,有()222=3+9-x x .∴=5x .即=5OM . 24、【答案】解:(1)等腰(2)∵抛物线()2=-+>0y x bx b 的“抛物线三角形”是等腰直角三角形,∴该抛物线的顶点224b b ⎛⎫ ⎪⎝⎭,满足2=24b b ()>0b .∴=2b .(3)存在.如图,作△OCD 与△OAB 关于原点O 中心对称, 则四边形ABCD 为平行四边形.当=OA OB 时,平行四边形ABCD 为矩形. 又∵=AO AB ,∴△OAB 为等边三角形. 作AE OB ⊥,垂足为E . ∴=AE 3OE .∴()2''=3'>042b b b ⋅. 骰子2 骰子11 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 91056 7 8 910 116 78910 11 12。
全国各地2012年中考数学分类解析(159套)专题29:投影与视图
2012年全国中考数学试题分类解析汇编(159套63专题)专题29:投影与视图一、选择题1. (2012北京市4分)下图是某个几何体的三视图,该几何体是【】A.长方体 B.正方体 C.圆柱 D.三棱柱【答案】D。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,由于主视图和左视图为矩形,可得为柱体,俯视图为三角形可得为三棱柱。
故选D。
2. (2012天津市3分)右图是一个由4个相同的正方体组成的立体图形,它的三视图是【】【答案】A。
【考点】简单组合体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
从正面看可得从左往右2列正方形的个数依次为1,2;从左面看可得到从左往右2列正方形的个数依次为2,1;从上面看可得从上到下2行正方形的个数依次为1,2。
故选A。
3. (2012安徽省4分)下面的几何体中,主(正)视图为三角形的是【】A. B. C.D.【答案】C。
【考点】判断立体图形的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,根据这几个常见几何题的视图可知:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形。
故选C。
4. (2012山西省2分)如图所示的工件的主视图是【】A. B. C. D.【答案】B。
【考点】简单组合体的三视图。
【分析】从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形。
故选B。
5. (2012海南省3分)如图竖直放置的圆柱体的俯视图是【】A.长方体 B.正方体 C.圆 D.等腰梯形【答案】C。
【考点】简单组合体的三视图。
【分析】找到从上面看所得到的图形即可:从上面看易得是圆。
故选C。
6. (2012陕西省3分)如图,是由三个相同的小正方体组成的几何体,该几何体的左视图是【】A. B. C. D.【答案】C。