幂函数指数函数和对数函数·反函数

合集下载

指数函数、对数函数、幂函数

指数函数、对数函数、幂函数

指数函数、对数函数、幂函数作者:来源:《数学金刊·高考版》2013年第03期指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位. 从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题. 题目多以指数函数、对数函数、幂函数为载体的复合函数来考查函数的性质. 若它们与其他知识点交汇命题,则难度会加大.■指数函数与对数函数互为反函数,运算可相互转化,性质可相互理解,方法可相互借鉴.(1)学会指数式与对数式的相互转化;(2)结合指数、对数的“互反”性质记忆有关的概念、图象和性质. (3)若底是参数时,则一定要区分底是大于1还是小于1的情况,与对数有关的问题还要紧扣对数函数的定义域.■■ 若已知函数f(x)=ax,xA. 0,■B. (0,1)C. ■,1D. (0,3)破解思路本题的考查意图:一是解决指数函数的相关问题时,要对底数a进行讨论;二是考虑分段函数的单调性问题,这是学习的一个难点,应紧扣定义理解.经典答案由条件知, f(x)在R上为减函数,则0■ 若已知函数f(x)=log■1-■,其中0(1)证明:f(x)是(a,+∞)上的减函数;(2)解不等式f(x)>1.破解思路证明函数单调性的常用方法有定义法:一般是作差、分解、判断;导数法:若f (x)在某个区间A内有导数,则f ′(x)≥0(x∈A)?圳f(x)在A内为增函数;f ′(x)≤0(x∈A)?圳f(x)在A内为减函数.经典答案(1)任取x1,x2∈(a,+∞),且x10,因此有f(x1)>f(x2),所以f(x)是(a,+∞)上的减函数.(2)由已知01可得log■1-■>logaa,则0■1. 设集合A={x0≤xA. log■■,1B. (log32,1)C. ■,1D. 0,■2. 已知函数f(x)=xlnx.(1)求函数f(x)的单调区间;(2)若函数F(x)=■在[1,e]上的最小值为■,求a的值.。

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数(解析版))

幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念根式的概念符号表示备注如果nxa ,那么x 叫做a 的n 次方根1nn N且当n 为奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数na零的n 次方根是零当n 为偶数时,正数的n 次方根有两个,它们互为相反数(0)na a 负数没有偶次方根(2).两个重要公式①)0()0(||aa a a a aann;②a a nn)((注意a 必须使na 有意义)。

2.有理数指数幂(1)幂的有关概念①正数的正分数指数幂:(0,,1)mnmn a a am nN n 、且;②正数的负分数指数幂: 11(0,,1)mnmnmnaam nN naa 、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质①a r a s=a r+s(a>0,r 、s ∈Q ); ②(a r )s=a rs(a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 3.指数函数的图象与性质n 为奇数n 为偶数y=a xa>1 0<a<1图象定义域R 值域(0,+)性质(1)过定点(0,1)(2)当x>0时,y>1; x<0时,0<y<1 (2) 当x>0时,0<y<1; x<0时, y>1 (3)在(-,+)上是增函数(3)在(-,+)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的观点(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a n n =)((注意a 一定使n a 存心义)。

2.有理数指数幂 (1)幂的相关观点 ①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且; ②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没存心义.注:分数指数幂与根式能够互化,往常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q ); ②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );.n 为奇数 n 为偶数3.指数函数的图象与性质 y=a x a>10<a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x>0时,y>1; x<0时,0<y<1(2) 当x>0时,0<y<1; x<0时, y>1(3)在(-∞,+∞)上是增函数 (3)在(-∞,+∞)上是减函数注:如下图,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,怎样确立底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即不论在轴的左边仍是右边,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的观点 (1)对数的定义假如(01)x a N a a =>≠且,那么数x 叫做认为a 底,N 的对数,记作log N a x =,此中a 叫做对数的底数,N 叫做真数。

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

高中数学 第二章 指数函数、对数函数和幂函数 2.2.3 对数函数的图象和性质 第1课时 反函数及对

2.2.3 对数函数的图象和性质第1课时反函数及对数函数的图象和性质[学习目标] 1.理解对数函数的概念.2.初步掌握对数函数的图象及性质.3.会类比指数函数,研究对数函数的性质.[知识]1.作函数图象的步骤为列表、描点、连线.另外也可以采取图象变换法.2.指数函数y=a x(a>0且a≠1)的图象与性质.a>10<a<1 图象定义域R值域(0,+∞)性质过定点过点(0,1),即x=0时,y=1函数值的变化当x>0时,y>1;当x<0时,0<y<1当x>0时,0<y<1;当x<0时,y>1 单调性是R上的增函数是R上的减函数[预习导引]1.对数函数的概念把函数y=log a x(x>0,a>0,a≠1)叫作(以a为底的)对数函数,其中x是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质a>10<a<1 图象性质定义域(0,+∞)值域R过点过点(1,0),即x=1时,y=0函数值的变化当0<x<1时,y<0;当x>1时,y>0当0<x<1时,y>0;当x>1时,y<0单调性是(0,+∞)上的增函数是(0,+∞)上的减函数3.反函数(1)对数函数y=log a x(a>0且a≠1)与指数函数y=a x(a>0,且a≠1)互为反函数.(2)要寻找函数y=f(x)的反函数,可以先把x和y换位,写成x=f(y),再把y解出来,表示成y=g(x)的形式,如果这种形式是唯一确定的,就得到f(x)的反函数g(x).要点一对数函数的概念例1 指出下列函数哪些是对数函数?(1)y=3log2x;(2)y=log6x;(3)y=log x3;(4)y=log2x+1.解(1)log2x的系数是3,不是1,不是对数函数.(2)符合对数函数的结构形式,是对数函数.(3)自变量在底数位置上,不是对数函数.(4)对数式log2x后又加1,不是对数函数.规律方法判断一个函数是对数函数必须是形如y=log a x(a>0且a≠1)的形式,即必须满足以下条件(1)系数为1.(2)底数为大于0且不等于1的常数.(3)对数的真数仅有自变量x.跟踪演练1 若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定答案 A解析设对数函数的解析式为y=log a x(a>0且a≠1),由题意可知log a4=2,∴a2=4,∴a =2,∴该对数函数的解析式为y=log2x.要点二对数函数的图象例2 如图所示,曲线是对数函数y =log a x 的图象,已知a 取3,43,35、110,则相应于c 1、c 2、c 3、c 4的a 值依次为( )A.3、43、35、110B.3、43、110、35C.43、3、35、110D.43、3、110、35 答案 A解析 方法一 先排c 1、c 2底的顺序,底都大于1,当x >1时图低的底大,c 1、c 2对应的a 分别为3、43.然后考虑c 3、c 4底的顺序,底都小于1,当x <1时底大的图高,c 3、c 4对应的a 分别为35、110.综合以上分析,可得c 1、c 2、c 3、c 4的a 值依次为3、43、35、110.故选A.方法二 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以c 1、c 2、c 3、c 4对应的a 值分别为3、43、35、110,故选A.规律方法 函数y =log a x (a >0且a ≠1)的底数变化对图象位置的影响.观察图象,注意变化规律:(1)上下比较:在直线x =1的右侧,a >1时,a 越大,图象向右越靠近x 轴,0<a <1时a越小,图象向右越靠近x 轴.(2)左右比较:比较图象与y =1的交点,交点的横坐标越大,对应的对数函数的底数越大. 跟踪演练2 (1)函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1) D .(-1,1)(2)如图,若C 1,C 2分别为函数y =log a x 和y =log b x 的图象,则( )A .0<a <b <1B .0<b <a <1C .a >b >1D .b >a >1 答案 (1)D (2)B解析 (1)令x +2=1,即x =-1, 得y =log a 1+1=1,故函数y =log a (x +2)+1的图象过定点(-1,1).(2)作直线y =1,则直线与C 1,C 2的交点的横坐标分别为a ,b ,易知0<b <a <1. 要点三 对数函数的定义域例3 (1)函数f (x )=11-x +lg(1+x )的定义域是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)∪(1,+∞) D.(-∞,+∞) (2)若f (x )=121log (21)x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫-12,+∞ C.⎝ ⎛⎭⎪⎫-12,0∪(0,+∞) D.⎝ ⎛⎭⎪⎫-12,2 答案 (1)C (2)C解析 (1)由题意知⎩⎪⎨⎪⎧1+x >0,1-x ≠0,解得x >-1且x ≠1.(2)由题意有⎩⎪⎨⎪⎧2x +1>0,2x +1≠1,解得x >-12且x ≠0.规律方法 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性地解不等式. 跟踪演练3 (1)函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1] (2)函数y =lgx +1x -1的定义域是( )A .(-1,+∞) B.[-1,+∞)C .(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞) 答案 (1)B (2)C解析 (1)因为y =x ln(1-x ),所以⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1.(2)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,x -1≠0,解得x >-1且x ≠1,故函数的定义域为(-1,1)∪(1,+∞),故选C. 要点四 反函数例4 求下列函数的反函数:(1)y =2x -5;(2)y =x1-x ;(3)y =1+e 2x . 解 (1)从x =2y -5中解得y =x +52,即为所求;(2)从x =y 1-y 中解得y =xx +1,即为所求;(3)从x =1+e 2y 移项得x -1=e 2y .两端取自然对数得到ln(x -1)=y2,解得y =2ln(x -1),即为所求.规律方法 要找寻函数y =f (x )的反函数,可以先把x 和y 换位,写成x =f (y ),再把y 解出来,表示成y =g (x )的形式.如果这种形式是唯一确定的,就得到了f (x )的反函数g (x ).既然y =g (x )是从x =f (y )解出来的,必有f (g (x ))=x ,这个等式也可以作为反函数的定义. 跟踪演练4 y =ln x 的反函数是________. 答案 y =e x解析 由y =ln x ,得x =e y ,所以反函数为y =e x.1.下列函数是对数函数的是( ) A .y =log a (2x ) B .y =log 22xC .y =log 2x +1D .y =lg x 答案 D解析 选项A 、B 、C 中的函数都不具有“y =log a x (a >0且a ≠1)”的形式,只有D 选项符合. 2.函数f (x )=11-x +lg(3x +1)的定义域是( )A .(-13,+∞) B.(-∞,-13)C .(-13,13)D .(-13,1)答案 D解析 由⎩⎪⎨⎪⎧1-x >0,3x +1>0,可得-13<x <1.3.函数y =a x与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象形状可能是( )答案 A解析 函数y =-log a x 恒过定点(1,0),排除B 项; 当a >1时,y =a x是增函数,y =-log a x 是减函数,排除C 项,当0<a <1时,y =a x是减函数,y =-log a x 是增函数,排除D 项,A 项正确.4.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 答案 (2,1)解析 函数图象过定点,则与a 无关, 故log a (x -1)=0,所以x -1=1,x =2,y =1, 所以y =log a (x -1)+1过定点(2,1). 5.函数y =lg x 的反函数是________. 答案 y =10x解析 由反函数的定义知x =10y,故反函数为y =10x.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.一、基础达标1.函数y =log a x 的图象如图所示,则a 的值可以是( )A .0.5B .2C .eD .π 答案 A解析 ∵函数y =log a x 的图象单调递减,∴0<a <1,只有选项A 符合题意. 2.函数f (x )=lg(x -1)+4-x 的定义域为( ) A .(1,4] B .(1,4) C .[1,4] D .[1,4) 答案 A解析 由⎩⎪⎨⎪⎧x -1>0,4-x ≥0,解得1<x ≤4.3.在同一坐标系中,函数y =log 3x 与y =13log x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称 答案 B解析 ∵y =13log x =-log 3x ,∴函数y =log 3x 与y =13log x 的图象关于x 轴对称.4.如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b 答案 D解析 y =log a x 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log b x ,y =log c x 的图象在(0,+∞)上都是下降的,因此b ,c ∈(0,1),又易知c >b ,故a >c >b .5.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤0,log 2x ,x >0,那么f (f (18))的值为( )A .27 B.127C .-27 D .-127答案 B解析 f (18)=log 218=log 22-3=-3,f (f (18))=f (-3)=3-3=127.6.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 答案 -32解析 设f (x )=log a x (a >0,且a ≠1), 则-3=log a 8,∴a =12.∴f (x )=log 12x ,f (22)=log 12(22)=-log 2(22)=-32.7.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log (x +1)(16-4x ).解 (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解之得x >2且x ≠3.∴函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解之得-1<x <0或0<x <4. ∴函数定义域为(-1,0)∪(0,4). 二、能力提升8.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a 等于( )A .2B .-2 C.12 D .-12答案 B解析 ∵函数f (x )=log 2x 的反函数为y =2x,即g (x )=2x. 又∵g (a )=14,∴2a=14,∴a =-2.9.若函数f (x )=log a (x +b )的图象如图,其中a ,b 为常数,则函数g (x )=a x+b 的图象大致是( )答案 D解析 由函数f (x )=log a (x +b )的图象可知,函数f (x )=log a (x +b )在(-b ,+∞)上是减函数.所以0<a <1且0<b <1.所以g (x )=a x+b 在R 上是减函数,故排除A ,B.由g (x )的值域为(b ,+∞).所以g (x )=a x+b 的图象应在直线y =b 的上方,故排除C. 10.若log 2a 1+a21+a<0,则a 的取值X 围是____________.答案 ⎝ ⎛⎭⎪⎫12,1解析 当2a >1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a <1.∵1+a >0,∴1+a 2<1+a , ∴a 2-a <0,∴0<a <1,∴12<a <1.当0<2a <1时,∵log 2a 1+a21+a <0=log 2a 1,∴1+a 21+a >1.∵1+a >0,∴1+a 2>1+a , ∴a 2-a >0,∴a <0或a >1,此时不合题意.综上所述,a ∈⎝ ⎛⎭⎪⎫12,1. 11.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值X 围. 解 (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2.由图象知:函数f (x )为单调增函数,当0<a <2时,恒有f (a )<f (2).∴所求a 的取值X 围为(0,2). 三、探究与创新12.求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解 因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1,所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132.13.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的word 11 / 11 表达式,并画出大致图象.解 ∵f (x )为R 上的奇函数,∴f (0)=0. 又当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=lg(1-x ).又f (-x )=-f (x ),∴f (x )=-lg(1-x ),∴f (x )的解析式为f (x )=⎩⎪⎨⎪⎧lg x +1,x >0,0,x =0,-lg 1-x ,x <0,∴f (x )的大致图象如图所示:。

(完整)指数函数、对数函数、幂函数图像与性质

(完整)指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式 (1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa n n ;②a a n n =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:0,,1)m na a m n N n *=>∈>、且。

②正数的负分数指数幂: 10,,1)mnm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算. (2)有理数指数幂的性质 ①a r a s=a r+s(a>0,r 、s ∈Q). ②(a r )s=a rs(a>0,r 、s ∈Q)。

③(ab )r=a r b s(a 〉0,b>0,r ∈Q )。

. 3.指数函数的图象与性质n 为奇数n 为偶y=a xa 〉1 0〈a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x 〉0时,y>1。

x 〈0时,0<y<1(2) 当x>0时,0<y 〈1。

x<0时, y>1(3)在(—∞,+∞)上是增函数(3)在(—∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b ,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1〉d 1>1〉a 1>b 1,∴c>d 〉1>a 〉b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log N a x =,其中a 叫做对数的底数,N 叫做真数。

数学高考知识点幂函数

数学高考知识点幂函数

数学高考知识点幂函数数学高考知识点:幂函数幂函数是高考数学中非常重要的一个知识点,它是指形如y=x^a的函数,其中a是一个实数。

在高考中,幂函数常常会与其他函数进行比较或者求解方程等相关问题,因此熟练掌握幂函数的性质和应用是非常重要的。

一、幂函数的性质1. 幂函数的定义域:幂函数y=x^a的定义域是所有使得x^a有意义的实数x。

2. 幂函数的奇偶性:当指数a为偶数时,幂函数具有关于y轴的对称性,即f(-x) = f(x)。

当指数a为奇数时,幂函数关于原点对称,即f(-x) = -f(x)。

3. 幂函数的单调性:当指数a大于0时,幂函数在定义域上是递增的;当指数a小于0时,幂函数在定义域上是递减的。

4. 幂函数的图像:幂函数的图像呈现出如下特点:当a>1时,幂函数在∞处增加,0处取到最小值;当0<a<1时,幂函数在∞处减小,0处取到最大值;当a<0时,幂函数在定义域上是奇函数,图像关于原点对称。

二、幂函数的应用1. 幂函数与对数函数的关系:幂函数和对数函数是互为反函数的,即y=x^a和y=loga(x)是一对反函数。

这一性质在解决指数方程和对数方程时非常有用。

2. 幂函数的极限:对于幂函数y=x^a,当x趋近于正无穷时,幂函数趋近于正无穷;当x趋近于负无穷时,幂函数趋近于零。

这一性质在求解极限时常常会被用到。

3. 幂函数的应用:幂函数在物理学、生物学、经济学等领域具有广泛的应用。

例如,在物理学中,速度和加速度的计算常常涉及到幂函数的运算。

三、幂函数在高考中的常见题型解析1. 求解方程:高考经常出现要求解幂函数方程的题目,在解这类问题时,我们可以利用幂函数和对数函数互为反函数的特性,将幂函数方程转化为对数方程进行求解。

2. 判断性质:高考中会出现判断幂函数性质的题目,例如给出一个函数的图像,要求判断该函数的奇偶性、单调性等。

在解这类问题时,我们需要运用幂函数的性质和图像特点进行分析。

最全的高中幂-指数-对数-三角函数知识点总结

最全的高中幂-指数-对数-三角函数知识点总结

1.幂函数知识点总结一、幂函数(power function ):函数y x α= (x 是自变量,α是常数)二、幂函数的性质对于幂函数,我们只研究 11,2,3,,12α=- 时的图象与性质.1232,,,y x y x y x y x ==== 和 1y x -=共同性质:图像都过点(1,1)不同性质:α为奇数时幂函数为奇函数;α为偶数时幂函数为偶函数。

2.指数函数知识点总结本节知识点(1)指数函数的概念 (2)指数函数的图象和性质 (3)指数函数的定义域和值域 (4)指数函数的单调性及其应用 (5)指数函数的图象变换知识点一 指数函数的概念一般地,函数x a y =(0>a 且1≠a )叫做指数函数,其中x 是自变量,函数的定义域是R .1.为什么规定“0>a 且1≠a ”?答:若0=a ,则当0>x 时,0=x a ,当x ≤0时,x a 无意义;若0<a ,则对于x 的某些值,x a 无意义,如函数()xy 2-=,当 41,21=x 时,函数无意义;若1=a ,则对任意的∈x R ,都有1=x a ,没有研究的必要.基于上面的原因,在指数函数的定义中,规定0>a 且1≠a .上面的定义,是形式定义.2.为什么指数函数的定义域是R ?答:对于指数幂来说,当底数大于0时,指数已经由整数指数推广到了实数指数,所以在指数函数的定义里面,自变量的取值范围是全体实数,即函数的定义域为R .3.指数函数的结构特征指数函数的定义是形式上的定义,其函数解析式的结构具有非常明显的特征,如下:(1)指数中只有一个自变量x ,而不是含自变量的多项式; (2)x a 的系数必须为1,不能是其它的数字,也不能含有自变量; (3)底数a 必须满足0>a 且1≠a 的一个常数.根据上面的三个特征,可以判断一个函数是否为指数函数,也可以在已知指数函数的前提下,求参数的值或参数的取值范围.知识点二 指数函数的图象和性质一般地,指数函数x a y =(0>a 且1≠a )的图象和性质如下表所示:(1)当10<<a 时,若0<x ,则恒有1>y ;若0>x ,则恒有10<<y ; (2)当1>a 时,若0<x ,则恒有10<<y ;若0>x ,则恒有1>y . 1. 指数函数图象的画法对于指数函数x a y =(0>a 且1≠a ),当0=x 时,1=y ;当1=x 时,a y =;当1-=x 时,a y 1=.所以指数函数的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.在画指数函数图象的草图时,应抓住以上三个关键点作图.(1)由于指数函数x a y =(0>a 且1≠a )的图象经过点()a ,1,所以指数函数的图象与直线1=x 的交点的纵坐标等于函数的底数.交点的位置越高,底数a 就越大.(2)由于指数函数x a y =(0>a 且1≠a )的图象经过点⎪⎭⎫ ⎝⎛-a 1,1,所以指数函数的图象与直线1-=x 的交点的纵坐标等于底数的倒数.交点的位置越高,a1越大,底数就越小.2. 函数x a y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象的关系在同一平面直角坐标系中,函数xa y =(0>a 且1≠a )与函数xa y ⎪⎭⎫⎝⎛=1(0>a 且1≠a )的图象关于y 轴对称.即两个指数函数底数互为倒数,图象关于y 轴对称.如下图所示,指数函数xy 2=与xy ⎪⎭⎫ ⎝⎛=21的图象关于y 轴对称.(1)指数函数x a y =(0>a 且1≠a )与函数x a y -=(0>a 且1≠a )的图象关于x 轴对称.如上右图所示,指数函数x y 2=与函数x y 2-=的图象关于x 轴对称.(2)指数函数x a y =(0>a 且1≠a )与函数x a y --=(0>a 且1≠a )(即xa y ⎪⎭⎫⎝⎛-=1)的图象关于原点对称(成中心对称).如下图所示,指数函数x y 2=与函数x y --=2(即xy ⎪⎭⎫⎝⎛-=21)的图象关于原点对称.3.与指数函数有关的恒过定点问题由于指数函数x a y =(0>a 且1≠a )的图象恒过定点()1,0,因此我们讨论与指数函数有关的函数的图象过定点的问题时,只需令指数等于0,解出相应的y x ,,即为定点坐标.4.指数函数x a y =(0>a 且1≠a )的底数a 对函数图象的影响 底数a 与1的大小关系决定了指数函数图象的“升”与“降”:(1)当1>a 时,指数函数的图象是上升的,函数是R 上的增函数.底数越大,函数图象在y 轴右侧部分越接近于y 轴,即图象越陡,说明函数值增长得越快; (2)当10<<a 时,指数函数的图象是下降的,函数为R 上的减函数.底数越小,函数图象在y 轴左侧部分越接近于y 轴,即函数图象越陡,说明函数值减小得越快.根据上面的介绍,在上图中,各个指数函数的底数之间的大小关系为:01>>>>>>>f e d c b a .前面已经提到,因为指数函数x a y =(0>a ,且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1,所以直线1=x 与指数函数图象的交点即为点()a ,1,交点的纵坐标等于指数函数的底数,故底数越大,交点的位置越高.于是有下面的结论:结论 底数a 的大小决定了指数函数图象相对位置的高低:不论是1>a 还是10<<a ,在第一象限内底数越大,函数图象越靠上.简记为:在y 轴右侧,底大图y = 1高.另外,直线1-=x 与指数函数图象的交点为⎪⎭⎫ ⎝⎛-a 1,1(即()1,1--a ),交点的纵坐标等于底数的倒数,故底数越小,倒数越大,交点的位置越高.简记为:在y 轴左侧,底大图低.5.指数函数x a y =(0>a 且1≠a )与x b y =(0>b 且1≠b )的图象特点 (1)若1>>b a ,则当0<x 时,总有10<<<x x b a ;当0=x 时,总有1==x x b a ;当0>x 时,总有1>>x x b a ;(2)若10<<<a b ,则当0<x 时,总有1>>x x a b ;当0=x 时,总有1==x x b a ;当0>x 时,总有10<<<x x a b .综上所述,当0>x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a >;当0<x ,0>>b a ,且1≠a ,1≠b 时,总有x x b a <.6. 指数函数x a y =(0>a 且1≠a )的图象和性质再说明 指数函数x a y =(0>a 且1≠a )的定义域是R ,值域是()+∞,0. 图象:(1)若1>a ,当-∞→x 时,0→y ,即x 的值越小,函数的图象越接近于x 轴,但不相交;(2)若10<<a ,当+∞→x 时,0→y .即x 的值越大,函数的图象越接近于x 轴,但不相交.因此,x 轴(即直线0=y )是指数函数x a y =(0>a 且1≠a )的图象的一条渐近线. 性质:(1)若1>a ,则当0>x 时,总有1>y ,即函数图象y 轴右侧的部分在直线1=y 的上方;当0<x 时,总有10<<y ,即函数图象y 轴左侧的部分在直线1=y 和x 轴之间.(2)若10<<a ,则当0>x 时,总有10<<y ,即函数图象y 轴右侧的部分在直线1=y 和x 轴之间;当0<x 时,总有1>y ,即函数图象y 轴左侧的部分在直线1=y 的上方.知识点三 指数函数的定义域和值域1 定义域(1)指数函数x a y =(0>a 且1≠a )的定义域为R .(2)函数()x f a y =(0>a 且1≠a )的定义域与函数()x f 的定义域相同. (3)函数()x a f y =的定义域与函数()x f 的定义域不一定相同. 例如,函数()x x f =的定义域为[)+∞,0,而函数x a y =的定义域为R. 注意:求指数型复合函数的定义域时,先观察函数是()x a f y =型还是()x f a y =型. 2 值域(1)指数函数x a y =(0>a 且1≠a )的值域为()+∞,0.(2)求形如()x f a y =的函数的值域时,设()x f t =,先求出()x f 的值域(即t 的范围),然后根据函数t a y =的单调性,即可求出函数()x f a y =的值域.(3)求形如()x a f y =的函数的值域时,转化为求()+∞∈=,0x a t 时,函数()t f y =的值域.知识点四 指数函数的单调性及其应用1 单调性当1>a 时,函数x a y =在R 上为增函数;当10<<a 时,函数x a y =在R 上为减函数.利用这一性质,可以判断复合函数()x f a y =的单调性,判断的依据是:同增异减.如下表:结合底数a 的范围来确定函数()x f a y =的单调性.确定的依据是:同增异减. 2 单调性的应用 (1)应用于比较大小类型一 比较同底数不同指数的幂的大小,利用指数函数的单调性进行比较; 类型二 比较不同底数同指数的幂的大小,借助于函数的图象比较大小,或者借助于口诀:在y 轴右侧(即0>x )底大图高(函数值大),在y 轴左侧,底小图高; 类型三 比较不同底数不同指数的幂的大小,利用中间量(如0和1)并结合函数的单调性比较大小. (2)应用于解简单不等式不等式可化为()()x g x f a a <的形式,利用指数函数的单调性,将不等式转化为()()x g x f <(当1>a 时)或()()x g x f >(当10<<a 时),然后进行求解.3.对数函数及其性质知识点总结本节知识点(1)对数函数的概念; (2)对数函数的图象及其性质; (3)与对数函数有关的函数的定义域; (4)与对数函数有关的函数的值域;(5)与对数函数有关的函数的单调性及其应用; (6)与对数函数有关的函数的奇偶性; (7)反函数.知识点一 对数函数的概念一般地,函数x y a log =(0>a 且1≠a )叫做对数函数,其中x 是自变量,函数的定义域是()+∞,0. 对数函数概念的理解 (1)形如x y a log =;(2)底数a 满足0>a 且1≠a ; (3)真数是x ,而不是含x 的表达式; (4)函数的定义域为()+∞,0. 两种特殊的对数函数特别地,以10为底的对数函数x y lg =叫做常用对数函数;以无理数e 为底的对数函数x y ln =叫做自然对数函数.知识点二 对数函数的图象及其性质一般地,对数函数x y a log =(0>a 且1≠a )的图象和性质如下表所示:(+∞,0对数函数x y a log =(0>a 且1≠a )的图象经过三个关键点:()0,1,()1,a 和⎪⎭⎫⎝⎛-1,1a .利用对数函数图象的三个关键点,可以快速地作出对数函数图象的简图. 特别提醒指数函数x a y =(0>a 且1≠a )的图象经过三个关键点:()1,0,()a ,1和⎪⎭⎫ ⎝⎛-a 1,1.根据这三个关键点,可以快速地作出指数函数图象的简图.不难得出:在同一平面直角坐标系中,对数函数x y a log =(0>a 且1≠a )图象的三个关键点与指数函数x a y =(0>a 且1≠a )图象的三个关键点关于直线x y =对称.底数对对数函数图象的影响 (1)对数函数的对称性结论 函数x y a log =(0>a 且1≠a )的图象与函数x y a1log =(0>a 且1≠a )的图象关于x 轴对称.事实上,x x x y a a alog log log 111-===-,因为函数()x f y =与函数()x f y -=的图象关于x 轴对称,所以函数x y a log =与函数x y a1log =的图象关于x 轴对称.观察在同一平面直角坐标系在,分别画出函数x y 2log =,x y 3log =,x y 21log =和x y 31log =的图象,如图所示,体会对数函数图象的对称性.(2)底数a 决定对数函数的单调性 当1>a 时,对数函数的图象从左到右是上升的,函数在()∞+0上为增函数;当10<<a 时,对数函数的图象从左到右是下降的,函数在()∞+0上为减函数.(3)底数a 的大小决定对数函数图象相对位置的高低不论是1>a ,还是10<<a ,在第一象限内,取相同的函数值时,图象所对应的对数函数的底数从左到右逐渐变大.(1)上下比较 在直线1=x 的右侧,a 越大,图象越靠近x 轴;当10<<a 时,a 越小,图象越靠近x 轴.(2)左右比较 比较图象与直线1=y 的交点,交点的横坐标越大,对应的函数的底数越大.注意 若比较图象与直线1-=y 的交点,交点的横坐标越大,对应的函数的底数越小.说明 在平面直角坐标系中,对数函数x y a log =的图象与直线1=y 的交点为()1,a ,即交点的横坐标等于对数函数的底数,故在第一象限内,交点的横坐标越大,对数函数的底数就越大;对数函数x y a log =与直线1-=y 的交点为⎪⎭⎫⎝⎛-1,1a ,故在= log 13x12x3x2x第四象限内,交点的横坐标越大(即a1越大),对数函数的底数反而越小. 关于对数函数函数值正负的判断根据对数函数的图象,当1>a ,1>x ,或10<<a ,10<<x 时,函数值0>y ,简记为同区间为正;当1>a ,10<<x ,或10<<a ,1>x 时,函数值0<y ,简记为异区间为负.即同区间为正,异区间为负.特别地,当1=x 时,0=y ,即对数函数的图象恒过点()0,1. 指数函数与对数函数的关系指数函数与对数函数的性质的比较如下表所示:知识点三 与对数函数有关的函数的定义域(1)对数函数x y a log =的定义域为()+∞,0. (2)形如()()x f y x g log =的函数,其定义域由()()()⎪⎩⎪⎨⎧≠>>100x g x g x f 确定.(3)形如()x f y a log =的函数的定义域,必须保证每一部分都有意义. 知识点四 对数型函数的值域(1)对数函数x y a log =(0>a 且1≠a )的值域利用函数的单调性求解; (2)求形如()x f y a log =的复合函数的值域,先求出()x f 的值域,然后结合对数函数的单调性求出函数()x f y a log =的值域;(3)求形如()x f y a log =的复合函数的值域,其中复合函数()x f y a log =一般是关于x a log 的二次函数,故可以采用换元法求解,注意新元的取值范围. 知识点五 与对数函数有关的函数的单调性及其应用 1.对数值大小的比较(1)同底数的利用函数的单调性; (2)同真数的利用函数的图象;(3)底数与真数都不同的,利用中间数0和1(介值法). 2.解简单的对数不等式(1)底数确定时,利用对数函数的单调性求解; (2)当底数不确定时,注意对底数进行分类讨论.注意 求解时注意“定义域优先”的原则,要保证每个真数都大于0.点评 简单的对数不等式经过适当的变形一般都可化为()()x g x f a a log log <的形式,当1>a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧<>>x g x f x g x f 00;当10<<a 时,不等式可转化为()()()()⎪⎩⎪⎨⎧>>>x g x f x g x f 0. 3.对数型复合函数的单调性对数型复合函数一般分为两类:()x f y a log =型和()x f y a log =型.(1)研究()x f y a log =型复合函数的单调性,令x t a log =,则只需研究x t a log =及()t f y =的单调性即可;(2)研究()x f y a log =型复合函数的单调性,首先由()0>x f 确定函数的定义域,然后判断()x f t =在定义域上的单调性,再结合对数函数的单调性,判断函数()x f y a log =的单调性,其核心是:同增异减.4.三角函数知识点总结一、基础概念 1、正角、负角和零角正角:按逆时针方向旋转形成的角 负角:按顺时针方向旋转形成的角 零角:不作任何旋转形成的角正角 负角 零角2、象限角、轴线角象限角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在第几象限就说这个角是第几象限角.轴线角:点O 与坐标原点重合,OA 与x 轴正半轴重合,当终边OB 落在坐标轴上就说这个角是轴线角,这个角不属于任何项限3、角的集合:与任意角α终边相同的角构成一个集合 {}Z k k ∈⋅+=,360 αββ常见结论:(1)第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}Z k k k ∈+<<+⋅,36018090360αα第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z(2)终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z 终边在x y =上的角的集合为{}Z k k ∈⋅+=,18045 αα 终边在x y -=上的角的集合为{}Z k k ∈⋅+=,180135 αα(3)任何一个象限角有可能是正角,也有可能是负角;任何轴线角有可能是正角、负角、零角; 小于 90的角不一定是锐角; 大于 90的角不一定是钝角; 终边相同的角不一定相等4、已知α是第几象限角,确定nα)(Z n ∈所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为nα终边所落在的区域。

幂函数指数函数和对数函数·反函数

幂函数指数函数和对数函数·反函数

幂函数、指数函数和对数函数•反函数教学目标1.使学生正确理解反函数的概念,初步掌握求反函数的方法.2.培养学生分析问题、解决问题的能力及抽象概括的能力.3.使学生思维的深刻性进一步完善.教学重点与难点教学重点是求反函数的技能训练.教学难点是反函数概念的理解.教学过程设计一、揭示课题师:今天我们将学习函数中一个重要的概念一一反函数.(板书:反函数1.反函数的概念)二、讲解新课师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢?生:可以构成一个函数.师:为什么是个函数呢?生:在y允许取值范围内的任一值,按照法则f:= ?都有唯一的x与之相对应.师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?生:应该是笈= 3^.师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x 表示自变量,用字母y表示因变量,故这个函数的解析式又可以写成y=号.这样改动之后,带来这样一个问题,即丫 =号和笈=与1是不是同一函数呢?生:是.师:能具体解释一下吗?生:从函数三要素的角度看,y =号和笈=”具有相同的定义域和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数.师:既然是相同的,我们就把7 ="称作函数y = 2x + l的反函数,同样,函数y = U有没有反函数呢?生:有.就是y=2x+1.师:对.也就是说函数y = 2x + l与函数¥ 二”是互为反函数的.那么,是不是所有函数都会有反函数呢?生:不是所有函数都有反函数.师:能举个例子说明吗?生:如函数y=X2,W y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数.师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.通过对几个具体函数的研究,了解了什么是反函数,把前面对函数y=2x+1 的反函数的研究过程一般化,概括起来就可以得到反函数的定义.由于这个定义比较长,所以我们一起阅读书上相关内容.(板书:(1)反函数的定义)(要求学生打开书第60页第二自然段,请一名同学朗读这一段内容.为帮助学生理解定义中的描述,教师可以再以一个具体函数为例解释y = f (x)和笈⑸之间的关系,同时应指出定义中“如果”二字的含义表示不是所有函数都有反函数.)对于反函数有了初步的了解之后,下面进一步对这个特殊的函数概念作点深入研究.(板书:(2)对概念的理解.)师:反函数的“反”字应当是相对原来给出的函数而言的,那么它们之间有什么关系呢?不妨以刚才的两个函数7 = 2x + lfly ="为例加以研究.生:对应法则不同.师:能否说得再具体点,怎么不同?生:这两个函数的对应法则中,x与y的位置换位.(研究两函数间的关系应从函数三要素角度入手研究,老师可适当引导学生向三要素靠拢.)师:还有什么联系吗?生:y 二"的定义域和值域分别是y = 2x +1的值域和定义域.师:根据刚才我们的讨论,可以发现反函数的三要素是由原来函数决定的,当给出的函数确定下来后,其反函数的三要素也就确定下来了,可以简记为“三定”.把这种确定关系具体化,也就是反函数的“反”字体现在什么地方呢?生:反函数的定义域就是原来函数的值域;反函数的值域就是原来函数的定义域;反函数的对应法则就是把原来函数对应法则中x与y的位置互换.师:由此我们可以看到反函数的“反”实际体现为“三反”.在这“三反” 中,起决定作用的就是x与y的反置,正是由于它们位置的改变,才把相应取值反置,从而引起另外两“反”.(板书:2.“三定”,民“三反”)师:从函数概念的角度来看,我们明确了原来函数与其反函数间的关系,当然还可以从其它方面入手进行研究,如:一个函数有没有反函数?若有反函数,它的性质如何?与原来函数的性质有什么关系?通过前面几个例子可以发现,上述问题中,原来函数的性质起着决定性作用,而且反函数的性质也与原来函数的性质相关.由于函数和反函数有如此密切的关系,它已成为进一步研究函数的重要方面.当我们研究某个函数性质时,如果这个函数有反函数,就可以在两者中择其简而研究之,这就增加了函数的研究方法.师:对反函数概念作了较全面认识之后,自然提出这样一个问题:如果一个函数存在反函数,如何去求这个函数的反函数呢?一起看这样二个题目.例1求y =・6卢O)的反函数.生:(板书)解由y = ,得所以,所求反函数为y =(在表述上不规范之处,先暂时不追究,待例2解完之后再一起讲评.)例2 求f (x)=x2+1 (xNl)的反函数.生:(板书)解由y = f(Q =x2 +1,得又笈31,所以^ =后五故f'1 (x) = Vx -1.师:下面请同学对两个例题的表述作个评价.生:例2所求的反函数是错误的,应为H (Q =G (x>2).师:这和黑板上所得的函数有什么不同吗?生:两个函数的定义域分别是xN1和xN2,所以是不同的两个函数.师:为什么是7 = Jx -1 呢?生:因为反函数的定义域应是原来给出函数f(X)的值域,而f(X)的值域应为y32,故所求反函数应为f/(Q Cx>2).师:说得很好.根据我们对反函数的认识,反函数的定义域就是原来给出函数的值域.所以要求出反函数的定义域,就必须先求出原来函数的值域.那么例2的求解过程应当怎样调整呢?生Sy = f (x) =x2 +1,得炉=丫-1,又G1,所以x = Jy-l.因为f (Q =x2 +1 (x>l)的值域为物y32},所以f" GO =瓜口(x^2).师:通过刚才的讨论,我们发现并解决了例2反函数的存在问题,同时也注意到求反函数必须明确指出其定义域,以保证结论的正确性.除此之外,还有什么问题吗?生:为什么没有在例1中求原来所给函数的值域呢?师:请同学们针对这个问题讨论一下.生:因为原来所给的函数的值域是y/0,这和所求出的反函数的定义域是x 力0为结论是一致的,所以没有出错.师:此题出现的这种结论的一致性,应当说是一种偶然,而不是必然.因此,在求反函数的过程中,必须要求出原来所给函数的值域,并且在最后结果中注明反函数的定义域.那么,例1的规范书写过程应如何调整呢?生:(板书)解由y = 笈壬0,得笈= -2.又y = -2 (才0)的值域为{y|yx y x/0, y£R},所以,所求反函数为y = -1 (才0).师:通过刚才对两个具体例子的讨论,能否总结一下求用解析式表达的函数的反函数的基本步骤呢?(板书:2.求反函数的步骤)生:首先从解析式中解出x,其次求出所给函数的值域,最后再改写为习惯的表示形式.师:把这几步用简单的几个字来概括一下.1.反解:既把解析式看作x的方程,求出反函数的解析式;2.互换:既求出所给函数的值域并把它改换为反函数的定义域;3.改写:将函数写成y=f-1(x)的形式.(板书:1.反解2.互换3 .改写.)师:下面通过几个练习来看看同学们是否真正理解这三个基本步骤.三、巩固练习练习求下列函数的反函数.1. f (x) =-|x + 2, xE (-8, 3).(由一个学生在黑板上完成.)解由y = f (Q =|x + 2,得所以(由一个学生在黑板上完成,两题同时进行,其余学生在笔记本上完成,教师巡视.)解由y=x2-x+1,得x2-x+1-y=0,又y=s?T + l 的值域为所以(待全体学生完成之后,结合黑板上学生的表述及其它学生解答中出现的问题进行讲评.)师:先看黑板上同学的表述有没有问题,请加以纠正.(一学生在黑板上加以改正)由y=x2-x+1,得x2-x+1-y=0,所以笈互1.又冷!,所以又y = 5?-x + l (G3)的值域为{巾》永,故所求反函数为师:经过改正,两个题目在表述上已经没有问题了.下面结合其它同学求解中出现的一些问题,谈几点注意.(1)求反函数的过程中必有一步是求出原来所给函数的值域.求值域的方法有很多,如果所给函数是常见函数如一次函数、二次函数等,不妨从“形”的角度求值域会比较方便直观.(2)解关于x的一元二次方程有两个根,必须根据题目所给条件对x进行取舍,保留符合条件的唯一解.(3)这两个题目在反函数符号的使用上是有区别的,题目给出f (x)这个符号,则反函数可以用f-1(x)来表示,否则只能用文字叙述的形式.四、小结1.反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,因此认识它应从三要素角度进行研究.2.一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.3.求反函数实际上就是办两件事,一是解一个关于自变量x的方程,二是求一个函数的值域.五、作业课本习题P65习题六第3题(1),(3),第4题.课堂教学设计说明反函数这节课是一节概念课,因此这节课的成败关键是反函数概念的建立.反函数是函数中一个特殊现象,对这个概念的研究是对函数概念和函数性质在认识上的深化和提高,所以学生对这个知识的学习是有一定的知识基础和认识基础的,故应以学生的主体参与为主线,且是在教师主导作用下的思维和参与.学生的思维是从问题开始的,因此本节课的起点应是一个有较大思维空间的问题,所以在设计时选择从一个具体函数入手提供研究反函数的原则,让学生在这个原则之下自己选择研究方法,进行探讨.在研究过程中,针对学生出现的障碍,适时、适当加以点拨,将学生思维引向正轨.反函数概念的建立的关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识.在教学设计中,教师采用从具体的例子出发,用学生最熟悉的知识,最明显的事例,帮助学生找到研究方法的角度,再逐步概括抽象出反函数的意义.这样也便于分散难点,突出重点.对一个概念的理解往往要通过某种具体的操作来体现,操作的灵活熟练程度也能体现出对概念理解的深度.因此这节课对反函数概念的理解最终是落在求反函数技能的形成和训练上,在设计中教师采用让学生尝试、调整、概括、小结,最终形成求反函数基本步骤.在实践中,鼓励学生大胆尝试,不怕失败,在知识的学习过程中,教训有时比经验更深刻.在这节课的教学设计中,从始至终都尽量让学生能够主动思考问题,提出问题,分析问题并解决问题,在积极活跃的思维过程中,不断提高学生的数学能力和数学素养.。

知识讲解_指数函数、对数函数、幂函数综合_基础

知识讲解_指数函数、对数函数、幂函数综合_基础

指数函数、对数函数、幂函数综合【要点梳理】要点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的nn 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当na =;当n,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1mnm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)rsr sa a a+= (2)()r s rsa a = (3)()rr rab a b =要点二、指数函数及其性质 1.指数函数概念 一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R .2.指数函数函数性质:要点三、对数与对数运算 1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>. 2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a Na N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且 要点四、对数函数及其性质1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.要点五、反函数 1.反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.2.反函数的性质(1)原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.(2)函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.(3)若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.(4)一般地,函数()y f x =要有反函数则它必须为单调函数. 要点六、幂函数 1.幂函数概念形如()y x R αα=∈的函数,叫做幂函数,其中α为常数. 2.幂函数的性质(1)图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.(2)过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).(3)单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. 【典型例题】类型一:指数、对数运算 例1.化简与计算下列各式 (1)10220.531222(0.01)54--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)()20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪⎪⎝⎭⎝⎭;(3)5332332323323134)2(248aa a a ab aaab b b a a ⋅⋅⨯-÷++--.【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)1615;(2)100;(3)2a . 【解析】 (1)原式=1122141149100⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭ =1+11610-=1615;(2)原式=122322516437390.12748-⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭ =5937100331648++-+=100(3) 原式=51312121323131231313123133133131)()(2)2()2()(])2()[(a a a a ab a b b a a b a a ⋅⋅⨯-÷+⋅+- 23231616531313131312)2(a a a a aa ba ab a a =⨯⨯=⨯-⨯-=.【总结升华】化简要求同初中要求,注意结果形式的统一,结果不能同时含有根式和分数指数,也不能既有分母又含有负指数;一般地,进行指数幂运算时,化负指数为正指数,化根式为分数指数幂,化小数位分数等,便于进行乘、除、乘方、开方运算,以达到化繁为简的目的;举一反三:【变式一】化简下列各式:(1)133241116()()8()100481----+⋅;. 【答案】(1)-27;(2【解析】(1)1313332424111681()()8()10048()10048116----+⋅=-+⨯ 344310648()106427272⎛⎫=-+⨯=-+=- ⎪⎝⎭;133⎫=1)1)=-=-=例2. 已知:4x =,求:111244311422111x x xx x xx -+⋅⋅+++的值.【思路点拨】先化简再求值是解决此类问题的一般方法. 【答案】2 【解析】111244311422111x x xx x xx -+⋅⋅+++11441411122411111x x x x x x x ⎛⎫+ ⎪-⎝⎭=⋅⋅+⎛⎫++ ⎪⎝⎭1111442211122211111111x xx x x x xx x --=⋅⋅+=+=-+=++∴ 当4x =时,111112442231142211421x x xx x x xx -+⋅⋅+===++.【总结升华】解题时观察已知与所求之间的关系,同时乘法公式要熟练,直接代入条件求解繁琐,故应先化简变形,创造条件简化运算. 解题时,要注意运用下列各式.11112222a b a b a b ⎛⎫⎛⎫+-=- ⎪⎪⎝⎭⎝⎭,2111122222a b a a b b ⎛⎫±=±+ ⎪⎝⎭;112112333333a b a a b b a b ⎛⎫⎛⎫±+=± ⎪⎪⎝⎭⎝⎭例3.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++. 【答案】(1)12-;(2)1;(3)3;(4)14.【解析】(1)原式=122221log 12log log 22-⎫===-; (2)原式=()()22lg 2lg 5lg 2lg 2lg 5lg 53lg 2lg 5+-++=()2lg10lg5lg 23lg 2lg53lg 2lg5⎡⎤⋅+-+⎣⎦=1-3lg 2lg5+3lg 2lg5=1(3)原式=()22lg52lg 2lg51lg 2lg 2++++=()2lg5lg 2lg5lg 2(lg 2lg5)++++=2+lg5lg 2+=3;【总结升华】这是一组很基本的对数运算的练习题,虽然在考试中这些运算要求并不高,但是数式运算是学习数学的基本功,通过这样的运算练习熟练掌握运算公式、法则,以及学习数式变换的各种技巧. 【变式1】552log 10log 0.25+=( )A.0B.1C.2D.4 【答案】C【解析】552log 10log 0.25+=25555log 10log 0.25log (1000.25)log 252+=⨯==. 【变式2】(1)2(lg 2)lg 2lg50lg 25+⋅+;(2)3948(log 2log 2)(log 3log 3)+⋅+. 【答案】(1)2;(2)54. 【解析】(1) 原式22(lg 2)(1lg5)lg 2lg5(lg 2lg51)lg 22lg5=+++=+++ (11)lg 22lg52(lg 2lg5)2=++=+=;(2) 原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+ 3lg 25lg352lg36lg 24=⋅=.类型二:指数函数、对数函数、幂函数的图象与性质例4.已知函数3log ,0,()2,0,x x x f x x >⎧=⎨≤⎩ 则1(())9f f =( )A.4B.14C.-4D.-14【答案】B【解析】1)12(log )2(23=-=f ,0((2))22f f e ==. 【总结升华】利用指数函数、对数函数的概念,求解函数的值.举一反三:【变式一】已知函数221,1,(),1,x x f x x ax x ⎧+<⎪=⎨+≥⎪⎩若((0))4f f a =,则实数a 等于( ).A.12B. 45 C. 2 D. 9 【答案】C .【解析】1,()21,(0)2x x f x f <=+∴= ,由((0)f f a=,则有(2)4f a =.21,(),442x f x x ax a a ≥=+∴=+ ,2a ∴=,选C .例5.函数1()f x x=的定义域( ) . A.(][),42,-∞-+∞ B.()()4,00,1- C.[)(]4,00,1- D. [)()4,00,1- 【答案】D【解析】220,320,340,0.x x x x x ≠⎧⎪-+≥⎪⎨--+≥>【总结升华】以对数函数、幂函数为背景的函数定义域问题,一直是高考命题的热点.解答这类问题关键是紧扣真数大于零、底数大于零且不等于1,偶次根号大于等于零、分母不为零. 例12-xA .B .C .D .【答案】B【解析】先作出2(0)x y x =≥的图象,然后作出这个图象关于y 轴对称的图象,得到||2x y =的图象,再把||2x y =的图象右移一个单位,得到12-=x y 的图象,故选B例7. 函数)86(log 231+-=x x y 的单调递增区间是( )A .(3,+∞)B .(-∞,3)C .(4,+∞)D .(-∞,2)【思路点拨】这是一个内层函数是二次函数,外层函数是对数函数的复合函数,其单调性由这两个函数的单调性共同决定,即“同增异减”。

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。

指对幂函数知识点总结

指对幂函数知识点总结

指对幂函数知识点总结在数学的学习中,指对幂函数是非常重要的一部分内容。

下面咱们就来好好梳理一下指对幂函数的相关知识点。

一、指数函数指数函数的一般形式为$y = a^x$($a > 0$ 且$a ≠ 1$),其中$a$ 是底数,$x$ 是指数。

1、定义域指数函数的定义域为$R$,也就是全体实数。

2、值域当$a > 1$ 时,函数的值域为$(0, +\infty)$;当$0 < a <1$ 时,函数的值域同样为$(0, +\infty)$。

3、单调性若$a > 1$,则函数在$R$ 上单调递增;若$0 < a < 1$,则函数在$R$ 上单调递减。

4、图像特点(1)当$a > 1$ 时,指数函数的图像过点$(0,1)$,且从左到右逐渐上升。

(2)当$0 < a < 1$ 时,指数函数的图像过点$(0,1)$,且从左到右逐渐下降。

5、指数运算性质(1)$a^m × a^n = a^{m + n}$(2)$(a^m)^n = a^{mn}$(3)$(ab)^n = a^n b^n$二、对数函数对数函数是指数函数的反函数,一般形式为$y =\log_a x$($a > 0$ 且$a ≠ 1$),其中$a$ 是底数,$x$ 是真数。

1、定义域当$a > 1$ 时,定义域为$(0, +\infty)$;当$0 < a <1$ 时,定义域也是$(0, +\infty)$。

2、值域对数函数的值域为$R$。

3、单调性当$a > 1$ 时,函数在$(0, +\infty)$上单调递增;当$0 <a < 1$ 时,函数在$(0, +\infty)$上单调递减。

4、图像特点(1)对数函数的图像都过点$(1,0)$。

(2)当$a > 1$ 时,图像从左到右逐渐上升;当$0 < a <1$ 时,图像从左到右逐渐下降。

5、对数运算性质(1)$\log_a (MN) =\log_a M +\log_a N$(2)$\log_a \frac{M}{N} =\log_a M \log_a N$(3)$\log_a M^n = n \log_a M$6、指对数互化若$a^b = N$,则$\log_a N = b$ 。

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数图像与性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且。

②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q )。

②(a r )s =a rs (a>0,r 、s ∈Q )。

③(ab)r =a r b s (a>0,b>0,r ∈Q )。

. 3.指数函数的图象与性质n 为奇数 n 为偶数y=a x a>1 0<a<1图象定义域 R值域 (0,+∞)性质(1)过定点(0,1) (2)当x>0时,y>1。

x<0时,0<y<1(2) 当x>0时,0<y<1。

x<0时, y>1(3)在(-∞,+∞)上是增函数 (3)在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x ,(2)y=b x,(3),y=c x (4),y=d x 的图象,如何确定底数a,b,c,d 与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c 1>d 1>1>a 1>b 1,∴c>d>1>a>b 。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数 1、对数的概念 (1)对数的定义如果(01)x a N a a =>≠且,那么数x 叫做以a 为底,N 的对数,记作log Na x =,其中a 叫做对数的底数,N 叫做真数。

(完整版)指数函数、对数函数和幂函数知识点归纳

(完整版)指数函数、对数函数和幂函数知识点归纳

一、 幂函数1、幂的有关概念正整数指数幂:...()n na a a a n N =∈ 零指数幂:01(0)a a =≠负整数指数幂:1(0,)p p a a p N a -=≠∈分数指数幂:正分数指数幂的意义是:(0,,,1)mn mna a a m n N n =>∈>且 负分数指数幂的意义是:11(0,,,1)mnm nmnaa m n N n aa-==>∈>且2、幂函数的定义一般地,函数ay x =叫做幂函数,其中x 是自变量,a 是常数(我们只讨论a 是有理数的情况). 3、幂函数的图象幂函数a y x =当11,,1,2,332a =时的图象见左图;当12,1,2a =---时的图象见上图: 由图象可知,对于幂函数而言,它们都具有下列性质:a y x =有下列性质:(1)0a >时:①图象都通过点(0,0),(1,1);②在第一象限内,函数值随x 的增大而增大,即在(0,)+∞上是增函数. (2)0a <时:①图象都通过点(1,1);②在第一象限内,函数值随x 的增大而减小,即在(0,)+∞上是减函数; ③在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近. (3)任何幂函数的图象与坐标轴至多只有一个交点; (4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点.二、指数函数①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R ; 2)函数的值域为),0(+∞;3)当10<<a 时函数为减函数,当1>a 时函数为增函数。

4)有两个特殊点:零点(0,1),不变点(1,)a .5)抽象性质: ()()(),()()/()f x y f x f y f x y f x f y +=⋅-=三、对数函数如果b a N =(0a >,1a ≠),那么b 叫做以a 为底N 的对数,记作log a N b =log b a a N N b =⇔=(0a >,1a ≠,0N >).1.对数的性质()log log log a a a MN M N =+. log log log aa a MM N N=-. log log n a a M n M =.(00M N >>,,0a >,1a ≠)b mnb a n am log log =( a, b 〉 0且均不为1) 2.换底公式:log log log m a m NN a = ( a 〉 0 , a ¹ 1 ;0,1m m >≠)常用的推论:(1)log log 1a b b a ⨯= ;1log log log =⋅⋅a c b c b a .(2)log log m na a nb b m=(a 、0b >且均不为1).1log log 1N N a a mn n m==. (3)01log =a ,1log =a a (4)对数恒等式N a N a =log .一、对数函数的图像及性质① 函数log a y x =(0a >,1a ≠)叫做对数函数② 对数函数的性质:定义域:(0,)+∞; 值域:R; 过点(1,0),即当1x =时,0y =.当0a >时,在(0,+∞)上是增函数;当01a <<时,在(0,+∞)上是减函数.二、对数函数与指数函数的关系对数函数log a y x =与指数函数x y a =图像关于直线y x =对称. 指数方程和对数方程主要有以下几种类型:()()log ,log ()()f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)()()()(),log ()log ()()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)。

指数函数、对数函数、幂函数的图像及性质

指数函数、对数函数、幂函数的图像及性质

指数函数、对数函数、幂函数的图像与性质(一)指数与指数函数1.根式(1)根式的概念(2).两个重要公式①⎪⎩⎪⎨⎧⎩⎨⎧<-≥==)0()0(||a a a a a aa nn ;②a a nn =)((注意a 必须使n a 有意义)。

2.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂:0,,1)mnaa m n N n *=>∈>、且;②正数的负分数指数幂: 10,,1)m nm naa m n N n a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。

(2)有理数指数幂的性质 ①a r a s=a r+s(a>0,r 、s ∈Q); ②(a r )s=a rs(a>0,r 、s ∈Q); ③(ab)r=a r b s(a>0,b>0,r ∈Q);. 3.指数函数的图象与性质n 为奇数 n 为偶数y=a x a>1 0<a<1图象定义域R值域(0,+∞)性质(1)过定点(0,1)(2)当x>0时,y>1;x<0时,0<y<1(2) 当x>0时,0<y<1;x<0时, y>1(3)在(-∞,+∞)上是增函数(3)在(-∞,+∞)上是减函数注:如图所示,是指数函数(1)y=a x,(2)y=b x,(3),y=c x(4),y=d x的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即c1>d1>1>a1>b1,∴c>d>1>a>b。

即无论在轴的左侧还是右侧,底数按逆时针方向变大。

(二)对数与对数函数1、对数的概念(1)对数的定义如果(01)xa N a a=>≠且,那么数x叫做以a为底,N的对数,记作log Nax=,其中a 叫做对数的底数,N叫做真数。

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数

幂函数、指数函数和对数函数一、幂函数1、函数k x y =〔k 为常数,Q k ∈〕叫做幂函数2、单调性: 当k>0时,单调递增;当k<0时,单调递减3、幂函数的图像都经过点〔1,1〕二、指数函数1、xa y =〔0>a 且1≠a 〕叫做指数函数,定义域为R ,x 作为指数2、指数函数的值域:),(∞+03、指数函数的图像都经过点〔0,1〕4、当a>1时,为增函数;当0<a<1时,为减函数5、指数函xa y =数的图像:a>1 0<a<1三、对数1、如果a(a>0,且a ≠-1〕的b 次幂等于N ,即N a b=,那么b 叫做以a 为底N 的对数,记作b N a =log ,其中,a 叫做底数,N 叫做真数2、零与负数没有对数,即N>03、对数恒等式:N aNa =log4、(重点强调〕a>0,且a ≠-1,N>05、常用对数:以十为底的对数,记作lg N6、自然对数:以e 为底的对数,记作in N7、对数的运算性质:如果a>0,a ≠1,M>0,N>0,那么(1)N M MN a a a log log )(log += (2)N M NMa a alog log log -= (3)M n M a n a log log = 8、对数换底公式:)01,01,(log log log >≠>≠>=N b b a o a NNN b a b ,,其中9、指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b四、反函数1、对于函数)(x f y =,设它的定义域为D ,值域为A ,如果A 中任意一个值y ,在D 中总有唯一确定的x 值与它对应〔即一个x 对应一个y 〕,且满足)(x f y =,这样得到的x 关于y 的函数叫做)(x f y =的反函数,记作)(1y f x -=,习惯上,自变量用x 表示,而函数用y 表示,说以把它改写为))((1A x x fy ∈=-函数)(x f y = 反函数)(1x f y -=定义域 D A 值域AD3、函数)(x f y =的图像与反函数)(1x f y -=的图像关于直线x y =对称五、对数函数1、函数)1,0(log ≠>=a a x y a 且叫做对数函数,是指数函数的反函数2、对数函数的图像都在y 轴的右方3、对数函数的图像都经过点〔1,0〕4、当a,x 范围相同时,y>0;当a,x 范围不同是,y<0,〔范围指的是0<x<1和x>1两个范围〕5、对数函数)1,0(log ≠>=a a x y a 且的图像6、对数函数的定义域:x>07、对数函数的单调性:当a>1时,单调递增;当0<a<1时,单调递减六、简单指数方程指数里含有未知数的方程叫做指数方程1、819252=+-x x(1)将方程化为同底数幂的形式:225992=+-x x2252=+-∴x x 解得:5,021==x x(2)指对互换:281log 2592==+-x x ,解得:5,021==x x2、0155252=-⋅-x x换元法:令)05>=t t x(,则原方程化为01522=--t t ,解得:(舍)3,521-==t t 1,55==∴x x3、11235-+=x x两边同取以十为底的对数,得:1123lg 5lg -+=xx ,3lg )1)(1(5lg )1+-=+∴x x x (0)3lg 3lg 5)(lg 1(=+-+∴x x ,解得:5log 13lg 5lg 113+=+=-=x x 或七、简单对数方程对数符号后面含有未知数的方程叫做对数方程〔解对数方程须检验,真数>0〕1、化为同底:2)532(log 2)1(=-++x x x2)1(2)1()1(log )532(log +=-+++x x x x x ,532)1(22-+=+x x x062=-+x x ,3,221-==x x经检验,x=2为原方程的解2、换元:1log 325log 225=-x x令t x =25log ,则t x 125log =,所以原方程化为:1312=-t t0232=-+∴t t ,解得32,121=-=t t当1-=t 时,1log 25-=x ,251=∴x当32=t 时,32log 25=x ,3165=∴x经检验,它们都是原方程的根 所以原方程的解为321165,32==x x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂函数、指数函数和对数函数·反函数
教学目标
1.使学生正确理解反函数的概念,初步掌握求反函数的方法.
2.培养学生分析问题、解决问题的能力及抽象概括的能力.
3.使学生思维的深刻性进一步完善.
教学重点与难点
教学重点是求反函数的技能训练.
教学难点是反函数概念的理解.
教学过程设计
一、揭示课题
师:今天我们将学习函数中一个重要的概念——反函数.
(板书:反函数 1.反函数的概念)
二、讲解新课
师:什么是反函数呢?让我们一起来思考这样一个问题:在函数y=2x+1中,如果把x当作因变量,把y当作自变量,能否构成一个函数呢?
生:可以构成一个函数.
师:为什么是个函数呢?
一的x与之相对应.
师:根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数y=2x+1是存在反函数的.这个反函数的解析式是怎样的呢?
师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x 表示自变量,用字母y表示因变量,故这个函数的解析式又可以
是不是同一函数呢?
生:是.
师:能具体解释一下吗?
和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数.
生:有.就是y=2x+1.
那么,是不是所有函数都会有反函数呢?
生:不是所有函数都有反函数.
师:能举个例子说明吗?
生:如函数y=x2,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1,则对应x=±1,因此不能构成函数,说明它没有反函数.
师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.
通过对几个具体函数的研究,了解了什么是反函数,把前面对函数y=2x+1的反函数的研究过程一般化,概括起来就可以得到反函数的定义.由于这个定义比较长,所以我们一起阅读书上相关内容.(板书:(1)反函数的定义)
(要求学生打开书第60页第二自然段,请一名同学朗读这一段内容.
为帮助学生理解定义中的描述,教师可以再以一个具体函数为例解

的含义表示不是所有函数都有反函数.)
对于反函数有了初步的了解之后,下面进一步对这个特殊的函数概念作点深入研究.
(板书:(2)对概念的理解.)
师:反函数的“反”字应当是相对原来给出的函数而言的,那么它
加以研究.
生:对应法则不同.
师:能否说得再具体点,怎么不同?
生:这两个函数的对应法则中,x与y的位置换位.
(研究两函数间的关系应从函数三要素角度入手研究,老师可适当引导学生向三要素靠拢.)
师:还有什么联系吗?
师:根据刚才我们的讨论,可以发现反函数的三要素是由原来函数决定的,当给出的函数确定下来后,其反函数的三要素也就确定下来了,可以简记为“三定”.把这种确定关系具体化,也就是反函数的“反”字体现在什么地方呢?
生:反函数的定义域就是原来函数的值域;反函数的值域就是原来函数的定义域;反函数的对应法则就是把原来函数对应法则中x与y的位置互换.
师:由此我们可以看到反函数的“反”实际体现为“三反”.在这“三反”中,起决定作用的就是x与y的反置,正是由于它们位置的改变,才把相应取值反置,从而引起另外两“反”.
(板书:a.“三定”,b.“三反”)
师:从函数概念的角度来看,我们明确了原来函数与其反函数间的关系,当然还可以从其它方面入手进行研究,如:一个函数有没有反函数?若有反函数,它的性质如何?与原来函数的性质有什么关系?通过前面几个例子可以发现,上述问题中,原来函数的性质起着决定性作用,而且反函数的性质也与原来函数的性质相关.
由于函数和反函数有如此密切的关系,它已成为进一步研究函数的重要方面.当我们研究某个函数性质时,如果这个函数有反函数,就可以在两者中择其简而研究之,这就增加了函数的研究方法.
师:对反函数概念作了较全面认识之后,自然提出这样一个问题:如果一个函数存在反函数,如何去求这个函数的反函数呢?一起看这样二个题目.
生:(板书)
(在表述上不规范之处,先暂时不追究,待例2解完之后再一起讲评.)
例2求f(x)=x2+1(x≥1)的反函数.
生:(板书)
师:下面请同学对两个例题的表述作个评价.
师:这和黑板上所得的函数有什么不同吗?
生:两个函数的定义域分别是x≥1和x≥2,所以是不同的两个函数.
生:因为反函数的定义域应是原来给出函数f(x)的值域,而f(x)
师:说得很好.根据我们对反函数的认识,反函数的定义域就是原来给出函数的值域.所以要求出反函数的定义域,就必须先求出原来函数的值域.那么例2的求解过程应当怎样调整呢?
师:通过刚才的讨论,我们发现并解决了例2反函数的存在问题,同时也注意到求反函数必须明确指出其定义域,以保证结论的正确性.除此之外,还有什么问题吗?
生:为什么没有在例1中求原来所给函数的值域呢?
师:请同学们针对这个问题讨论一下.
生:因为原来所给的函数的值域是y≠0,这和所求出的反函数的定义域是x ≠0为结论是一致的,所以没有出错.
师:此题出现的这种结论的一致性,应当说是一种偶然,而不是必然.因此,在求反函数的过程中,必须要求出原来所给函数的值域,并且在最后结果中注明反函数的定义域.那么,例1的规范书写过程应如何调整呢?
生:(板书)
≠0,y∈R},所以,所求反函数为
师:通过刚才对两个具体例子的讨论,能否总结一下求用解析式表达的函数的反函数的基本步骤呢?
(板书:2.求反函数的步骤)
生:首先从解析式中解出x,其次求出所给函数的值域,最后再改写为习惯的表示形式.
师:把这几步用简单的几个字来概括一下.
1.反解:既把解析式看作x的方程,求出反函数的解析式;
2.互换:既求出所给函数的值域并把它改换为反函数的定义域;
3.改写:将函数写成y=f-1(x)的形式.
(板书:1.反解2.互换3.改写.)
师:下面通过几个练习来看看同学们是否真正理解这三个基本步骤.
三、巩固练习
练习求下列函数的反函数.
(由一个学生在黑板上完成.)
所以
(由一个学生在黑板上完成,两题同时进行,其余学生在笔记本上完成,教师巡视.)
解由y=x2-x+1,得
x2-x+1-y=0,
(待全体学生完成之后,结合黑板上学生的表述及其它学生解答中出现的问题进行讲评.)
师:先看黑板上同学的表述有没有问题,请加以纠正.
(一学生在黑板上加以改正)由y=x2-x+1,得
x2-x+1-y=0,
师:经过改正,两个题目在表述上已经没有问题了.下面结合其它同学求解中出现的一些问题,谈几点注意.
(1)求反函数的过程中必有一步是求出原来所给函数的值域.求值域的方法有很多,如果所给函数是常见函数如一次函数、二次函数等,不妨从“形”的角度求值域会比较方便直观.
(2)解关于x的一元二次方程有两个根,必须根据题目所给条件对x进行取舍,保留符合条件的唯一解.
(3)这两个题目在反函数符号的使用上是有区别的,题目给出f(x)这个符号,则反函数可以用f-1(x)来表示,否则只能用文字叙述的形式.
四、小结
1.反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,因此认识它应从三要素角度进行研究.
2.一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.
3.求反函数实际上就是办两件事,一是解一个关于自变量x的方程,二是求一个函数的值域.
五、作业
课本习题P65习题六第3题(1),(3),第4题.
课堂教学设计说明
反函数这节课是一节概念课,因此这节课的成败关键是反函数概念的建立.
反函数是函数中一个特殊现象,对这个概念的研究是对函数概念和函数性质在认识上的深化和提高,所以学生对这个知识的学习是有一定的知识基础和认识基础的,故应以学生的主体参与为主线,且是在教师主导作用下的思维和参与.
学生的思维是从问题开始的,因此本节课的起点应是一个有较大思维空间的问题,所以在设计时选择从一个具体函数入手提供研究反函数的原则,让学生在这个原则之下自己选择研究方法,进行探讨.在研究过程中,针对学生出现的障碍,适时、适当加以点拨,将学生思维引向正轨.
反函数概念的建立的关键在于让学生能从两个函数关系的角度去认识它,从而深化对函数概念的认识.在教学设计中,教师采用从具体的例子出发,用学生最熟悉的知识,最明显的事例,帮助学生找到研究方法的角度,再逐步概括抽象出反函数的意义.这样也便于分散难点,突出重点.
对一个概念的理解往往要通过某种具体的操作来体现,操作的灵活熟练程度也能体现出对概念理解的深度.因此这节课对反函数概念的理解最终是落在求反函数技能的形成和训练上,在设计中教师采用让学生尝试、调整、概括、小结,最终形成求反函数基本步骤.在实践中,鼓励学生大胆尝试,不怕失败,在知识的学习过程中,教训有时比经验更深刻.
在这节课的教学设计中,从始至终都尽量让学生能够主动思考问题,提出问题,分析问题并解决问题,在积极活跃的思维过程中,不断提高学生的数学能力和数学素养.。

相关文档
最新文档