推荐中考数学试题分类汇编知识点34与圆有关的位置关系
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系
2024中考数学一轮复习核心知识点精讲—圆的基本性质与圆有关的位置关系1.探索并了解点和圆、直线和圆以及圆和圆的位置关系.2.知道三角形的内心和外心.3.了解切线的概念,并掌握切线的判定和性质,会过圆上一点画圆的切线.考点1:点与圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
考点2:直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;r d=r r dd考点3:切线的性质与判定定理1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵MN OA ⊥且MN 过半径OA 外端∴MN 是⊙O 的切线2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
考点4:切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。
即:∵PA 、PB 是的两条切线∴PA PB =;PO 平分BPA∠考点5:三角形的内切圆和内心(1)三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
(2)三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
注意:内切圆及有关计算。
(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的距离相等。
(2)△ABC 中,∠C=90°,AC=b ,BC=a ,AB=c ,则内切圆的半径r=2cb a -+。
(3)S △ABC =)(21c b a r ++,其中a ,b ,c 是边长,r 是内切圆的半径。
2012年全国各地中考数学试卷分类汇编与圆有关的位置关系
2012年全国各地中考数学试卷分类汇编:与圆有关的位置关系 31.1 直线与圆的位置关系11.(2012山东省荷泽市,11,3)如图,PA 、PB 是⊙o 的切线,A 、B 为切点,AC 是⊙o的直径,若∠P=46∘,则∠BAC=______.【解析】因为PA 、PB 是⊙o 的切线,所以PA=PB ,OA ⊥PA ,又因∠P=46∘,所以∠PAB=67∘,所以∠BAC=∠OAP-∠PAB=90∘-67∘=23∘,【答案】23∘【点评】当圆外一点向圆引两条切线,可以利用切线长定理及切线的性质定理,利用等腰三角形的性质及及垂直的性质来计算角的度数.14.(2012连云港,14,3分)如图,圆周角∠BAC=55°,分别过B 、C 两点作⊙O 的切线,两切线相交于点P ,则∠BPC= °。
【解析】连结OB ,OC ,则OB ⊥PB ,OC ⊥PC 。
则∠BOC=110°,在四边形PBOC 中,根据四边形的内角和为360°,可得∠BPC=70°。
【答案】70【点评】本题考查了圆周角与圆心角的关系以及切线的性质。
14. (2012湖南湘潭,14,3分)如图,ABC 的一边AB 是⊙O 的直径,请你添加一个条件,使BC 是⊙O 的切线,你所添加的条件为 .【解析】根据切线的定义来判断,B C ⊥AB ,或∠ABC=900。
【答案】B C ⊥AB ,或∠ABC=900。
【点评】此题考查切线的定义。
圆的切线垂直于过切点的半径。
20. (2012浙江丽水8分,20题)(本题8分)如图,AB 为⊙O 的直径,EF 切⊙O 于点D ,过点B 作BH ⊥EF 于点H ,交⊙O 于点C ,连接BD.(1)求证:BD 平分∠ABH ;第14题图(2)如果AB=12,BC=8,求圆心O 到BC 的距离.【解析:】(1)欲证BD 平分∠ABH ,只需证∠OBD=∠DBH.连接OD ,则∠OBD=∠ODB ,为止只需证∠ODB=∠DBH 即可.(2)过点O 作OG ⊥BC 于点G ,在Rt △OBG 中,利用勾股定理即可求得OG 的值.【解】:(1)证明:连接OD.∵EF 是⊙O 的切线,∴OD ⊥EF.又∵BH ⊥EF ,∴OD ∥BH ,∴∠ODB=∠DBH.而OD=OB ,∴∠ODB=∠OBD ,∴∠OBD=∠DBH ,∴BD 平分∠ABH.(2)过点O 作OG ⊥BC 于点G ,则BG=CG=4,在Rt △OBG 中,OG=52462222=-=-BG OB .【点评】:已知圆的切线,常作过切点的半径构造直角三角形,以便于利用勾股定理求解问题.20.(2012福州,20,满分12分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D ,AD 交⊙O 于点E 。
中考复习——与圆有关的位置关系
与圆有关的位置关系知识点一、点与圆的位置关系1、点与圆的位置关系有 种,若圆的半径为r ,点P 到圆心的距离为d 。
则:点P 在圆内⇔ ;点P 在圆上⇔ ; 点P 在圆外⇔ 。
2、过三点的圆:⑴过同一直线上三点 作圆,过 三点,有且只有一个圆;⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的 ,外接圆的圆心叫做三角形的 ,这个三角形叫做这个圆的 。
⑶三角形外心的形成:三角形 的交点,外心的性质:到 相等。
知识点二、直线和圆的位置关系1、直线与圆的位置关系有 种:○1当直线和圆有两个公共点时,叫做直线和圆 ,这时直线叫圆的 线,; ○2当直线和圆有唯一公共点时,叫做直线和圆 ,这时直线叫圆的 线; ○3当直线和圆没有公共点时,叫做直线和圆 ,这时直线叫圆的 线。
2、设⊙O 的半径为r ,圆心O 到直线l 的距离为d ,则:直线l 与⊙O 相交r d _____⇔; 直线l 与⊙O 相切r d _____⇔; 直线l 与⊙O 相离r d _____⇔ 3、 切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的 。
【谈重点】根据这一定理,在圆中遇到切线时,常常连接圆心和切点,即可得垂直关系。
⑵判定定理:经过半径的 且 这条半径的直线是圆的切线。
【谈重点】在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r 来判定相切。
4、 切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间 的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点引圆的两条切线,它们的 相等,并且圆心和这一点的连线平分 的夹角5、 三角形的内切圆:⑴与三角形各边都 的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的 ; ⑵三角形内心的形成:是三角形 的交点;(3)内心的性质:到三角形各 的距离相等,内心与每一个顶点的连接线平分【谈重点】三类三角形内心都在三角形 若△ABC 三边为a 、b 、c 面积为s ,内切圆半径为r ,则s= ,若△ABC 为直角三角形,则r= 三、圆与圆的位置关系圆和圆的位置关系有 种,若⊙O 1半径为R ,⊙O 2半径为r ,圆心距为d ; 知识点 ○1当⊙O 1 与⊙O 2 外离⇔ ; ○2当⊙O 1 与⊙O 2 外切⇔ ; ○3当⊙O 1 与⊙O 2相交⇔ ; ○4当⊙O 1 与⊙O 2内切⇔ ; ○5当⊙O 1 与⊙O 2内含⇔ 。
中考数学试题分类汇编 知识点34 与圆有关的位置关系
知识点34 与圆有关的位置关系一、选择题1. (xx 四川泸州,10题,3分)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线y =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A. 3B. 2C.【答案】D 【解析】由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP ⊥BC 于点P ,此时PO=3,PA=2【知识点】一次函数,圆的切线,勾股定理2. (xx 四川内江,7,3)已知⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,圆心距O 1O 2=4cm ,则⊙O 1与⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切【答案】C【解析】解:∵3-2<O 1O 2<3+2,∴⊙O 1与⊙O 2的位置关系是相交.故选择C .【知识点】圆与圆的位置关系3. (xx 江苏无锡,8,3分) 如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的O 与边AB 、CD 分别交于点E 、F.给出下列说法:(1)AC 与BD 的交点是O 的圆心;(2)AF 与DE 的交点是O 的圆心;(3)BC 与O 相切.其中正确说法的个数是( )A.0B. 1C. 2D. 3【答案】C【思路分析】利用圆周角定理的推理确定O的圆心,进而判定(1)、(2)的正确性;连接OG,通过证明OG⊥BC 说明BC与O相切.【解题过程】∵矩形ABCD中,∴∠A=∠D=90°,∴AF与DE都是O的直径,AC与BD不是O的直径,∴AF与DE的交点是O的圆心,AC与BD的交点不是O的圆心,∴(1)错误、(2)正确.连接AF、OG,则点O为AF的中点,∵G是BC的中点,∴OG是梯形FABC的中位线,∴OG∥AB,∵AB⊥BC,∴OG⊥BC,∴BC与O相切.∴(3)正确.综上所述,正确结论有两个.【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定4.(xx·重庆B卷,10,4)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=3,则线段CD的长是()A.2 BC.32D【答案】B.【解析】如下图,连接OD,则由AD切⊙O于点D,得OD⊥AC.∵在Rt△AOD中,∠A=30°,AD=tan A=ODAD,∴OD=AD•,tanA=tan30°==2.∴AO=2OD=4,AB=OA+OB=6.∵∠AOD=90°-∠A=60°,∴∠ABD=12∠AOD=30°.∵BD平分∠ABC,∴∠ABC=2∠ABD=60°.∴∠C=90°=∠ADO.∴OD∥BC.∴AD AODC OB=42=.∴DC【知识点】圆圆的切线相似三角形5. (xx山东烟台,10,3分)如图四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD 的延长线上,则∠CDE的度数是()A.56° B.62° C.68° D.78°【答案】C【解析】∵点I是△ABC的内心,∴AI、CI是△ABC的角平分线,∴∠AIC=90°+12∠B=124°,∴∠B=68°.∵四边形ABCD是⊙O的内接四边形,∴∠CDE=∠B=68°,故选C.【知识点】三角形内心;圆内接四边形的性质;6.(xx四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.第9题答图【答案】B.【解析】如图,设△ABC的边长为a,由正三角形的面积公式得S△ABC=,∴==,解得a=2或-2(舍),∴BC=2.∵∠BAC=60°,BO=CO,∴∠BOC=120°,则∠BCO=30°.∵OH⊥BC,∴BH=BC=1,在Rt△BOH中,BO=BH÷cos30°=,所以圆的半径r=.则OF=.如图,正六边形内接于圆,且半径为,可知∠EOF=60°,在△EOF中,OE=OF,OD⊥EF,∴∠EOD=30°.在Rt △DOE 中,OD=OF ·cos30°=×=1.所以边心距为1. 【知识点】正多边形和圆1. (xx 湖北鄂州,8,3分)如图,PA 、PB 是⊙O 的切线,切点为A 、B ,AC 是⊙O的直径,OP 与AB 相交于点D ,连接BC .下列结论:①∠APB =2∠BAC ;②OP ∥BC ;③若tanC =3,则OP =5BC ;④AC 2=4OD ·OP .其中正确的个数为( )A .4个B .3个C .2个D .1个【答案】A .【思路分析】利用切线长定理证明Rt △APO ≌Rt △BPO ,再利用同角的余角相等,可证得∠AOP =∠C ,得到OP ∥BC ,∠APB =2∠BAC ,故①②正确;利用勾股定理和∠AOP =∠C ,可证得OP =()1122310101010522OA OA OA AC BC BC +====,故③正确;利用两角对应相等的两个三角形相似的判定定理证明△ABC ∽△PAO ,再通过等量代换可证得AC 2=4OD ·OP ,故④正确. 【解析】解:A 选项,设OP 与⊙O 交于点E ,∵ PA 、PB 是⊙O 的切线,∴PA =PB ,∠PAO =∠PBO =90°,则在Rt△APO 和Rt △BPO 中,∵OA OB AP BP ==⎧⎨⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APB =2∠APO =2∠BPO ,∠AOE =∠BOE ,∴∠AOP =∠C ,∴OP ∥BC ,故②正确;∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠BAC +∠C =90°,∵∠PAO =90°,∴∠APO +∠AOP =90°,即∠C +∠APO =90°,∴∠APO =∠BAC ,∴∠APB =2∠APO =2∠BAC ,故①正确;∵tanC =3,∴tan ∠AOP =3,则在Rt △ABC 中,3AB BC=,则AB =3BC ,故AC =()22310BC BC BC +=,在Rt △BPO 中,3APAO =,则AP =3OA ,故OP =()1122310101010522OA OA OA AC BC BC +====,故③正确;∵OA =OC ,OP ∥BC ,∴OD是△ABC 的中位线,∴OD =12BC ,BC =2OD ,在△ABC 和△P AO 中,∵∠OAP =∠ABC =90°,∠AOP=∠C ,∴△ABC ∽△PAO ,∴AC BC OP OA =,∴212AC OD OP AC =,∴4AC OD OP AC =,∴AC 2=4OD ·OP ,故④正确.故选A .【知识点】切线长定理;相似三角形的性质和判定;中位线定理;勾股定理;平形线的判定定理;全等三角形的判定定理2. (xx ·重庆A 卷,9,4)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C .若⊙O 的半径为4,BC =6,则PA 的长为 ( )A .4B .3C .3D .2.5【答案】A .【解析】如下图,连接OD .O DCA P∵PC 切⊙O 于点D ,∴OD ⊥PC .∵⊙O的半径为4,∴PO=PA+4,PB=PA+8.∵OD⊥PC,BC⊥PD,∴OD∥BC.∴△POD∽△PBC.∴OD POBC PB=,即4468PAPA+=+,解得PA=4.故选A.【知识点】圆;直线与圆的位置关系;切线的性质;相似三角形的判定与3. (xx河北省,15,2)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】设△ABC的AB边上的高为h,△MNI的MN边上的高为r,周长为a,则△ABC的内切圆半径为r.∴△ABC的面积=AB·h=(AB+BC+AC)·r.∴4h=9r.∴.∵△MNI∽△ABC,∴【知识点】三角形的内心,三角形相似4. (xx湖北宜昌,12,3分)如图,直线AB是O的切线,C为切点,//OD AB交O于点D,点E在O上,连接OC EC ED,,,则CED∠的度数为( )(第12题图)A.30°B.35° C.40°D.45°【答案】DOD AB,∴∠COD=90°,∴∠CED=45°,【解析】∵直线AB是O的切线,C为切点,∴∠OCB=90°,∵//故选择D.【知识点】圆的切线,圆心角,圆周角,平行线的性质.5. (xx广东省深圳市,10,3分)如图,一把直尺,80°的直角三角板和光盘如图摆放,A为60︒角与直尺交点,3AB=,则光盘的直径是( )A.3 B.33C.6D.63【答案】D.【思路分析】由切线长定理定理可得,∠CAO=∠OAB,从而求出∠BAO的度数,再在Rt△OAB中,用60°角的正切即可求出半径的长.【解析】解:如图,设圆心为点O,设另一个切点为点C,连接OA、OB、OC,则由切线长定理可得,∠CAO=∠OAB =12(180°-60°)=60°,则在Rt △OAB 中,tan ∠BAO =OBAB ,即tan 6033OB=︒=,解得OB =33,故直径为63.故选D .【知识点】切线的性质;切线长定理;锐角三角函数6.(xx 湖北荆门,9,3分)如图,在平面直角坐标系xOy 中,()4,0A ,()0,3B ,()4,3C ,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90后,I 的对应点I '的坐标为( )A .()2,3-B .()3,2- C.()3,2- D .()2,3-【答案】A.【解析】∵I 是△ABC 的内心,()4,0A ,()0,3B ,()4,3C ,∴I 的坐标为(3,2),∴将ABC ∆绕原点逆时针旋转90后,I 的对应点I ′的坐标为(-2,3).故选A.【知识点】三角形的内心,作图-旋转变换7. (xx 山东省泰安市,9,3)如图,BM 与O 相切于点B ,若140MBA ∠=,则ACB ∠的度数为( )A .40B .50C .60D .70【答案】A【解析】(1)根据圆的切线性质可知:∠OBM=90°从而求得∠ABO=50°;(2)连接OA 、OB ,可求得∠AOB 的度数;(3)根据圆周角性质定理可得结论.解:连接OA 、OB ,∵BM 与O 相切 ∴∠OBM=90°∵140MBA ∠= ∴∠ABO=50°∵OA=OB ∴∠ABO=∠BAO =50°∴∠AO B=80° ∴ACB ∠=40【知识点】圆的切线的性质,圆周角性质定理,等腰三角形性质二、填空题1. (xx 四川内江,24,6) 已知△ABC 的三边a ,b ,c 满足a +2b +|c -6|+28=41a -+10b ,则△ABC 的外接圆半径= .【答案】258【思路分析】将已知a +2b +|c -6|+28=41a -+10b 进行分组,配成完全平方式,利用平方数,绝对值的非负性求出a ,b ,c 的值,从而确定三角形的形状,然后求出外接圆半径.【解题过程】解:原式整理得:2b -10b +25+a -1-41a -+4+|c -6|=0,()25b -+()21a --41a -+4+|c -6|=0,()25b -+()212a --+|c -6|=0,∵()25b -≥0,()212a --≥0,|c -6|≥0,∴b =5,c =6,a =5,∴△ABC 为等腰三角形.如图所示,作CD ⊥AB ,设O 为外接圆的圆心,则OA =OC =R ,∵AC =BC =5,AB =6,∴AD =BD =3,∴CD =22AC AD -=4,∴OD =CD -OC =4-R ,在Rt △AOD 中,2R =23+()24R -,解得R =258. BCOD A【知识点】完全平方公式;绝对值;勾股定理;等腰三角形外接圆;2. (xx 安徽省,12,5分)如图,菱形ABOC 的AB ,AC 分别与⊙O 相切于点D,E 若点D 是AB 的中点,则∠DOE【答案】60° 【解析】连接OA ,根据菱形的性质得到△AOB 是等边三角形,根据切线的性质求出∠AOD ,同理计算即可.解:连接OA ,∵四边形ABOC 是菱形,∴BA=BO ,∵OA=OB ,∴△AOB 是等边三角形,∵AB 与⊙O 相切于点D ,∴OD ⊥AB ,∴∠AOD=12∠AOB=30°, 同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为:60.【知识点】切线的性质;菱形的性质.3. (xx 湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦CD AB ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OCF OEC ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB ,∴BC BD =,故①正确;∵∠A=30°,∴∠COB=60°,∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线,∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质4. (xx 江苏连云港,第14题,3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB于点P ,已知∠OAB =22°,则∠OCB =__________°.【答案】44【解析】解:连接OB .∵OA=OB,∴∠OBA=∠OAB=22°,∴∠AOB=136°,∵OC⊥OA,∴∠AOC=90°,∴∠COB=46°,∵CB 是⊙O的切线,∴∠OBC=90°,∴∠OCB=90°-46°=44°,故答案为:44°.【知识点】切线的性质;直角三角形的性质5. (xx江苏泰州,16,3分)如图,△ABC中,∠ACB=90°,sin A=513,AC=12,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心、PA'长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P的半径为.【答案】15625或10213【解析】设⊙P的半径为r,∵∠ACB=90°,∴BCAB=sin A=513,222BC AC AB+=,∵AC=12,∴BC=5,AB=13,由旋转得∠A′CB′=∠ACB=90°,∠A′=∠A,A′C= AC=12,B′C= BC=5,A′B′=AB=13,∴∠A′CB=180°,∴A′、C、B′三点共线,∵点P到直线BC的距离小于半径P′A,∴⊙P与直线BC始终相交,过点P作PD⊥AC于点D,则∠B′DP=∠B′CA′=90°,∵∠DB′P=∠CB′A′,∴△B′DP∽△B′CA′,∴PD PBA C A B'=''',∴13 1213 PD r-=,∴12(13)12121313rPD r-==-,当⊙P与AC边相切时,PD=PA′,∴121213r r-=,∴15625r=,延长A′B′交AB于点E,∵∠A+∠B=90°,∠A′=∠A,∴∠A′+∠B=90°,∴∠A′EB=90°,同上得122041313A E A B''==,当⊙P与AB边相切时,A′E=2PA′,∴10213r=,综上所述,⊙P的半径为15625或10213.【知识点】锐角三角函数,直线与圆的位置关系6.(xx 山东威海,16,3分)在扇形CAB 中,CD ⊥AB ,垂足为D ,⊙E 是△ACD 的内切圆,连接AE ,BE ,则∠AEB 的度数为______.E D C B A【答案】135°【解析】连接CE ,∵∠ADC =90°,∴∠DAC +∠DCA =90°;∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°;∵△AE ≌△EB ,∴∠AEB =∠AEC =135°.【知识点】三角形的内切圆、全等三角形的判定与性质7. (xx 四川省宜宾市,13,3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O 的半径为1,若用圆O 的外切正六边形的面积来近似估计圆O 的面积,S= .(结果保留根号)【答案】23 【解析】如图:根据题意可知OH=1,∠BOC=60°,∴△OBC为等边三角形,∴BHOHtan∠BOH,∴BH=33,∴S=12×33×1×12=23,故答案为23.【知识点】正多边形的计算;解直角三角形8. (xx浙江湖州,14,4)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.【答案】70°【解析】∵⊙O内切于△ABC,∴OB平分∠ABC.∵∠ABC=40°,∴∠OBD=20°.∴∠BOD=70°.故填70°.【知识点】三角形的内切圆,切线长定理9.(xx宁波市,17题,4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为___________M DAB CP【答案】3或【解析】解:(1)当⊙P与DC相切时,如图(1)所示,设BP=x,则PC=8-x;∵DC于圆相切,MD A∴PC=PM又∵M是AB中点∴BM=4在Rt△BMP中,根据勾股定理可得∵BM2+BP2=MP2∴x2+42=(8-x)2∴解得:x=3∴BP=3(2)如图(2)所有当⊙P与DA相切时过点P作PE⊥AD,交AD与点E∵⊙P与DA相切与点E∴EP=MP=8在Rt△BMP中,根据勾股定理可得∵BM2+BP2=MP2∴BP=综上所述:BP的值为3或【知识点】切线的判定、勾股定理10.(xx浙江温州,16,5).小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为32cm2,则该圆的半径为cm.MDAB CP(第17题图)图2图1【答案】8【思路分析】设小正六边形的中心为O 连接OP,OA,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积得小正六边形的边长为337所以得OP=7,在△OPB 中解三角形得到OB=8所以圆的半径为8 【解题过程】设小正六边形的中心为O,连接OP,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积为6个小等边三角形得设小正六边形的边长为x,所以每个小等边三角形的面积为243x ,得32494362=⨯x ,得x=337所以再利用四边形OCPD 为菱形得OP=73337=⨯,在△OPB 中解三角形,过点P 作PH ⊥OB 因为∠OBP=60°∠HPB=30°得到BH=2521=BP ,PH=235,所以在△OPH 中利用勾股定理得OH=211,所以OB=8所以圆的半径为8【知识点】圆的内接正六边形的性质,正六边形的面积,解三角形,菱形的性质和判定,等边三角形的判定和性质。
中考数学复习知识点34与圆有关的位置关系答案
6.
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 三、解答题
1. ( 2019 广东深圳, 23, 9 分) 已知在平面直角坐标系中,点
5. ( 2019 四川泸州, 11,3 分) 如图,等腰△ ABC 的内切圆 ⊙ O 与 AB, BC,CA 分别相切于点 D ,E, F,且
AB= AC= 5,BC =6,则 DE 的长是(
)
A.
B.
C.
D.
【答案】 D
【解析】 解:连接 OA、OE 、OB, OB 交 DE 于 H ,如图,
∵ DM 为 Rt△ ODC 斜边上的高,根据面积相等,
DM=
OD
DC
2
=
5,
OC
3
∴ BD=2DM= 4 5 . 3
过 D 作 DD′⊥ BC ,交于 BC 延长线于 D′,设 CD′=x 则 DD′2=4-x2
在 Rt△ DBD′中, BD′=2+x, DD′= 4 x2 , BD= 4 5 , 3
O
B
C
第 17 题图
【答案】 3 . 5
【解析】本题考查了切线长定理、等边三角形的性质、锐角三角函数等知识.设⊙
O 与 BC 边相切于点 D,连接
OB 、 OD .由等边三角形的性质得∠ ABC= 60°,再由切线长定理易求∠ OBC= 30°,而 OD = 3 ,从而由
OD
tan∠ OBD=
,得
BD =
理求出 CD′,由相似三角形的判定与性质可得
中考数学复习之与圆有关的位置关系,考点过关与基础练习题
34.与圆有关的位置关系➢知识过关1.点和圆的位置关系2.直线与圆的位置关系3.切线的判定与性质切线的定义:直线与圆有_____公共点时,这条直线是圆的切线.切线的性质:圆的切线垂直于过切点的______切线的判定:经过半径的外端并且______这条半径的直线是圆的切线.到圆心距离等于______的直线是圆的切线.➢考点分类考点1直线与圆的位置关系的判定例1如图所示,在Rt△ABC中,△C=90°,AC=3cm,BC=3cm,若OA=x cm,△O的半径为1cm,请问当x在什么范围内取值时,AC与△O相交、相切、相离?D考点2切线的判定例2 如图所示,AB是△O的直径,C是O上一点,直线MN经过点C,过点A作直线MN 的垂线,垂足为点D,且△BAC=△CAD.(1)求证:直线MN是△O的切线;(2)若CD=3,△CAD=30°,求△O的半径.考点3 切线的性质 例3 如图所示,在△O 中,点C 是直径AB 延长线上一点,过点C 作△O 的切线,切点为D ,连接BD.(1)求证:△A=△BDC(2)若CM 平分△ACD ,且分别交AD 、BD 于点M 、N ,当DM=1时,求MN 的长.➢ 真题演练1.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC =60°,P A =2,PC =4,则△ABC 的面积为( )A .43√3B .32√3C .2√3D .3√32.如图,四边形ABCD 是⊙O 的内接四边形,∠B =90°,∠BCD =120°,AB =4,BC =2,则AD 的长为( )A .2√3B .4−√3C .√3+1D .2+√33.如图,P A 、PB 、CE 分别与⊙O 相切于点A 、B 、D 点,若圆O 的半径为6,OP =10,则△PCE 的周长为( )A .10B .12C .16D .204.如图所示,点P 是⊙O 的半径OC 延长线上的一点,过点P 作⊙O 的切线,切点为A ,AB 是⊙O 的弦,连接AC ,BC ,若∠P AB =70°,则∠ACB 的大小为( )A .70°B .110°C .120°D .140°5.如图,在△ABC 中,∠A =60°,BC =12,若⊙O 与△ABC 的三边分别相切于点D ,E ,F ,且△ABC 的周长为32,则DF 的长为( )A .2B .3C .4D .66.如图,已知DC 是⊙O 的直径,点B 为CD 延长线上一点,AB 是⊙O 的切线,点A 为切点,且∠BAD =35°,则∠ADC =( )A .75°B .65°C .55°D .50°7.如图,PC 、PB 是⊙O 的切线,AB 是⊙O 的直径,延长PC ,与BA 的延长线交于点E ,过C 点作弦CD ,且CD ∥AB ,连接DO 并延长与圆交于点F ,连接CF ,若AE =2,CE =4,则CD 的长度为( )A .3B .4C .185D .2458.如图,四边形ABCD 内接于⊙O ,AE ⊥CB ,交CB 的延长线于点E .若BA 平分∠DBE ,AD =7,CE =√13,则AE 的长度为 .9.如图,四边形ABCD 内接于⊙O ,AB 为直径,AD =CD ,过点D 作DE ⊥AB 于点E ,连接AC 交DE 于点F .若sin ∠CAB =35,DF =5,则AB 的长为 .10.如图,P A、PB分别与⊙O相切于A、B两点,C为⊙O上一点连接AC、BC,若∠C=55°,则∠P的度数是°.11.如图,AB为圆O直径,∠DAB=∠ABC=90°,CD与圆O相切于点E,EF⊥AB于点F,EF交BD于点G,若AD=2,BC=6.(1)求CD的长度.(2)求EG的长度.(3)求FB的长度.12.如图,P A、PB、CD是⊙O的切线,点A、B、E为切点.(1)如果△PCD的周长为10,求P A的长;(2)如果∠P=40°,①求∠COD;②连AE,BE,求∠AEB.13.如图,P A、PB分别与⊙O相切于点A、B,PO的延长线交⊙O于点C,连接BC,OA.(1)求证:∠POA=2∠PCB;(2)若OA=3,P A=4,求tan∠PCB的值.➢ 课后练习1.如图,P A ,PB 是⊙O 的两条切线,A ,B 是切点,过半径OB 的中点C 作CD ⊥OB 交P A 于点D ,若PD =3,AD =5,则⊙O 的半径长为( )A .2√7B .4√2C .3√3D .2√52.如图,等边三角形ABC 的边长为4,⊙C 的半径为√3,P 为AB 边上一动点,过点P 作⊙C 的切线PQ ,切点为Q ,则PQ 的最小值为( )A .12B .√3C .2√3D .33.如图,点O 是矩形ABCD 对角线BD 上的一点,⊙O 经过点C ,且与AB 边相切于点E ,若AB =4,BC =5,则⊙O 的半径长为( )A .165B .258C .5√419D .44.如图,在△ABC 中,∠ACB =90°,AC =BC =√2,点D 是AB 边上一个动点,以点D 为圆心r 为半径作⊙D ,直线BC 与⊙D 切于点E ,若点E 关于CD 的对称点F 恰好落在AB 边上,则r 的值是( )A .√2−1B .1C .√2D .√2+15.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,如果∠D=30°,AB=4,那么线段CD的长是.6.如图,△ABD内接于⊙O,AD为直径,CD为⊙O的切线,连接BC,若CD=AD,AB =2,BC=2√13,则BD=.7.已知菱形ABCD的边长为4,∠BAD=60°,M是线段AD的中点,点P是对角线AC 上的动点,连接PM,以P为圆心,PM长为半径作⊙P,当⊙P与菱形ABCD的边相切时,AP的长为.8.如图,已知△ABC,以AB为直径的⊙O交AC于点E,交BC于点D,且BD=CD,DF ⊥AC于点F.给出以下四个结论:̂=DÊ;④∠A=2∠FDC.①DF是⊙O的切线;②CF=EF;③AE其中正确结论的序号是.9.如图,在Rt△ABC中,AC=BC=6,点O为边BC上一动点,连接OA.以O为圆心,OB为半径作圆,交OA于D,过D作⊙O的切线,交AC于点E.当⊙O与边AC相切时,CE的长为.10.如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,点Q为CA延长线上一点,延长QD交BC于点P,连接OD,∠ADQ=12∠DOQ.若AQ=AC,AD=4时,写出BP的长为.11.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆交于点D.(1)如图1,连接DB,求证:DB=DE;(2)如图2,若∠BAC=60°,求证:AB+AC=√3AD.12.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F.(1)若∠ABC=50°,∠ACB=75°,求∠BOC的度数;(2)若AB=13,BC=11,AC=10,求AF的长.➢冲击A+。
初中数学中考复习——与圆有关的位置关系
(五)三角形的内切圆和外接圆
1.与三角形三边都_相__切__的圆叫做三角形的 内切圆.内切圆的圆心是三角形三条_角____ 的交点,叫做三角形的_内__心___.
2.经过三角形的三个顶点可以作一个圆,这
个圆叫做三角形的_外__接__圆_,外接圆的圆心是
三角形三边的_垂__直_平__分__线___ 的交点,叫做这
证明:如图所示,连接OC、BC ∵⊙O的半径是3,PB=2 ∴OC=OB=3,OP=OB+BP=5 又∵PC=4 ∴在△OCP中OC2+PC2=OP2 ∴∠OCP=90°,即OC⊥PC ∴PC是⊙O的切线
6.(2016梅州)如图,点D在⊙O的直径AB的延长线 上,点C在⊙O上,AC=CD,∠ACD=120°. (1)求证:CD是⊙O的切线; (2)若⊙O的半径为2,求图中阴影部分的面积.
A.点A在圆上 B.点A在圆内 C.点A在圆外 D.无法确定
(二)直线与圆的位置关系
⊙O的半径为r,圆心O到直线的距离为d,则
直线与圆相离
d_>___r,__没__有__公共点;
直线与圆相切 共点; 直线与圆相交 共点.
d_=___r,有_一____个公 d_<___r,有__两____个公
练一练
2.从圆外一点可以引圆的_两____条切 线,它们的切线长_相__等__,这一点和 圆心的连线__平_分__两条切线的夹角.
练一练
1.如图,⊙O的半径为5,PA切⊙O于点A,∠P= 30°,则切线长PA为____5__3__. 2. (2018深圳) 如图,一把直尺、60°的直角三角
板和光盘如图摆放,A 为 60°角与直尺交点,
3,∠APO=30°,那么OP=_2___3_.
中考数学专题复习:与圆有关的位置关系
中考数学专题复习:与圆有关的位置关系【基础知识回顾】一、点与圆的位置关系:1、点与圆的位置关系有种,若圆的半径为r点P到圆心的距离为d则:点P在圆内<=> 点P在圆上<=>点P在圆外<=>2、过三点的圆:⑴过同一直线上三点作用,过三点,有且只有一个圆⑵三角形的外接圆:经过三角形各顶点的圆叫做三角形的外接圆的圆心叫做三角形的这个三角形叫做这个圆的⑶三角形外心的形成:三角形的交点,外心的性质:到相等【名师提醒:1、锐角三角形外心在三角形直角三角形的外心是锐角三角形的外心在三角形】一、直线与圆的位置关系:1、直线与圆的位置关系有种:当直线和圆有两个公共点时,叫做直线和圆直线叫圆的线,这的直线叫做圆的直线和圆没有公共点时,叫做直线和圆2、设Qo的半径为r,圆心o到直线l的距离为d,则:直线l与Qo相交<=>d r,直线l与Qo相切<=>d r直线l与Qo相离<=>d r3、切线的性质和判定:⑴性质定理:圆的切线垂直于经过切点的【名师提醒:根据这一定理,在圆中遇到切线时,常用连接圆心和切点,即可的垂直关系】⑵判定定理:经过半径的且这条半径的直线式圆的切线【名师提醒:在切线的判定中,当直线和圆的公共点标出时,用判定定理证明。
当公共点未标出时,一般可证圆心到直线的距离d=r来判定相切】4、切线长定理:⑴切线长定义:在经过圆外一点的圆的切线上,这点和切点之间的长叫做这点到圆的切线长。
⑵切线长定理:从圆外一点到圆的两条切线,它们的相等,并且圆心和这一点的连线平分的夹角5、三角形的内切圆:⑴与三角形各边都的圆,叫做三角形的内切圆,内切圆的圆心叫做三角形的⑵三角形内心的形成:是三角形的交点内心的性质:到三角形各的距离相等,内心与每一个顶点的连接线平分【名师提醒:三类三角形内心都在三角形若△ABC三边为a、b、c面积为s,内切圆半径为r,则s= ,若△ABC为直角三角形,则r= 】二、圆和圆的位置关系:圆和圆的位置关系有种,若Qo1半径为R,Qo2半径为r,圆心距外,则Qo1 与Qo2 外距<=> Qo1 与Qo2 外切<=>两圆相交<=> 两圆内切<=>两圆内含<=>【名师提醒:两圆相离无公共点包含和两种情况,两圆相切有唯一公共点包含和两种情况,注意题目中两种情况的考虑圆心同是两圆此时d= 】三、反证法:假设命题的结论,由此经过推理得出由矛盾判定所作的假设从而得到原命题成立,这种证明命题的方法叫反证法【名师提醒:反证法正题的关键是提出即假设所证结论的反面成立,择推理论证得出的矛盾可以与相矛盾,也可以与相矛盾,从而肯定原命题成立】【典型例题解析】考点一:切线的性质例1 (•永州)如图,AC是⊙O的直径,P A是⊙O的切线,A为切点,连接PC交⊙O于点B,连接AB,且PC=10,P A=6.求:(1)⊙O的半径;(2)cos∠BAC的值.例2 (•珠海)已知,AB是⊙O的直径,点P在弧AB上(不含点A、B),把△AOP沿OP对折,点A的对应点C恰好落在⊙O上.(1)当P、C都在AB上方时(如图1),判断PO与BC的位置关系(只回答结果);(2)当P在AB上方而C在AB下方时(如图2),(1)中结论还成立吗?证明你的结论;(3)当P、C都在AB上方时(如图3),过C点作CD⊥直线AP于D,且CD是⊙O的切线,证明:AB=4PD.考点:切线的性质;等边三角形的判定与性质;含30度角的直角三角形;圆心角、弧、弦的关系;圆周角定理.专题:几何综合题.分析:(1)PO与BC的位置关系是平行;(2)(1)中的结论成立,理由为:由折叠可知三角形APO与三角形CPO全等,根据全等三角形的对应角相等可得出∠APO=∠CPO,再由OA=OP,利用等边对等角得到∠A=∠APO,等量代换可得出∠A=∠CPO,又根据同弧所对的圆周角相等得到∠A=∠PCB,再等量代换可得出∠COP=∠ACB,利用内错角相等两直线平行,可得出PO与BC平行;(3)由CD为圆O的切线,利用切线的性质得到OC垂直于CD,又AD垂直于CD,利用平面内垂直于同一条直线的两直线平行得到OC与AD平行,根据两直线平行内错角相等得到∠APO=∠COP,再利用折叠的性质得到∠AOP=∠COP,等量代换可得出∠APO=∠AOP,再由OA=OP,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP三内角相等,确定出三角形AOP为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB 的一半,可得出PD为AB的四分之一,即AB=4PD,得证.解答:解:(1)PO与BC的位置关系是PO∥BC;(2)(1)中的结论PO∥BC成立,理由为:由折叠可知:△APO≌△CPO,又∵PC=OP=12 AB,∴PD=12AB,即AB=4PD.点评:此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,折叠的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.对应训练1.(•玉林)如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.(1)求证:AE平分∠CAB;(2)探求图中∠1与∠C的数量关系,并求当AE=EC时,tanC的值.考点:切线的性质;特殊角的三角函数值.专题:探究型.分析:(1)连接OE,则OE⊥BC,由于AB⊥BC,故可得出AB∥OE,进而可得出∠2=∠AEO,由于OA=OE,故∠1=∠AEO,进而可得出∠1=∠2;(2)由三角形外角的性质可知∠1+∠AEO=∠EOC,,因为∠1=∠AEO,∠OEC=90°,所以2∠1+∠C=90°;当AE=CE时,∠1=∠C,再根据2∠1+∠C=90°即可得出∠C的度数,由特殊角的三角函数值得出tanC即可.解答:(1)证明:连接OE,∵⊙O与BC相切于点E,∴OE⊥BC,∵AB⊥BC,∴AB∥OE,∴∠2=∠AEO,∵OA=OE,∴∠1=∠AEO,∴∠1=∠2,即AE平分∠CAB;(2)解:2∠1+∠C=90°,tanC=33.∵∠EOC是△AOE的外角,∴∠1+∠AEO=∠EOC,∵∠1=∠AEO,∠OEC=90°,∴2∠1+∠C=90°,当AE=CE时,∠1=∠C,∵2∠1+∠C=90°∴3∠C=90°,∠C=30°∴tanC=tan30°=33.点评:本题考查的是切线的性质、三角形外角的性质及等腰三角形的性质,在解答此类题目时要熟知“若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系”.2.(•泰州)如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O 相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=25,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.考点:切线的性质;等腰三角形的性质;勾股定理;直线与圆的位置关系;相似三角形的判定与性质.专题:计算题;几何综合题.分析:(1)连接OB,根据切线的性质和垂直得出∠OBA=∠OAC=90°,推出∠OBP+∠ABP=90°,∠ACP+∠CP A=90°,求出∠ACP=∠ABC,根据等腰三角形的判定推出即可;(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,P A=5-r,根据AB=AC推出52-r2=(25)2-(5-r)2,求出r,证△DPB∽△CP A,得出CP APPD BP,代入求出即可;(3)根据已知得出Q在AC的垂直平分线上,作出线段AC的垂直平分线MN,作OE⊥MN,求出OE<r,求出r范围,再根据相离得出r<5,即可得出答案.解答:解:(1)AB=AC,理由如下:连接OB.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;(2)延长AP交⊙O于D,连接BD,∵设圆半径为r,则OP=OB=r,P A=5-r,∴AB2=OA2-OB2=52-r2,AC2=PC2-P A2=(25)2-(5-r)2,∴52-r2=(25)2-(5-r)2,解得:r=3,∴AB=AC=4,∵PD是直径,∴∠PBD=90°=∠P AC,∵∠DPB=∠CP A,∴△DPB∽△CP A,∴CP AP PD BP=,∴2553 33BP-=+,解得:PB=655.∴⊙O的半径为3,线段PB的长为655;(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=12AC=12AB=12225r-;又∵圆O要与直线MN交点,∴OE=12225r-≤r,∴r≥5,又∵圆O与直线l相离,∴r<5,即5≤r<5.点评:本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.考点二:切线的判定例2 (•铁岭)如图,⊙O的直径AB的长为10,直线EF经过点B且∠CBF=∠CDB.连接AD.(1)求证:直线EF是⊙O的切线;(2)若点C是弧AB的中点,sin∠DAB= 35,求△CBD的面积.考点:切线的判定;圆周角定理;解直角三角形.专题:探究型.分析:(1)先由AB是⊙O的直径可得出∠ADB=90°,再根据∠ADC=∠ABC,∠CBF=∠CDB即可得出∠ABF=90°,故EF是⊙O的切线;(2)作BG⊥CD,垂足是G,在Rt△ABD中,AB=10,sin∠DAB= 35可求出BD的长,再由C是弧AB的中点,可知∠ADC=∠CDB=45°,根据BG=DG=BDsin45°可求出BG的长,由∠DAB=∠DCB 可得出CG的长,进而得出CD的长,利用三角形的面积公式即可得出结论.解答:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°即∠ADC+∠CDB=90°,∵∠ADC=∠ABC,∠CBF=∠CDB,∴∠ABC+∠CBF=90°即∠ABF=90°,∴AB⊥EF∴EF是⊙O的切线;(2)解:作BG⊥CD,垂足是G,在Rt△ABD中∵AB=10,sin∠DAB=3 5 ,又∵sin∠DAB=BD AB,∴BD=6∵C是弧AB的中点,∴∠ADC=∠CDB=45°,∴BG=DG=BDsin45°=6×22=32,∵∠DAB=∠DCB∴tan∠DCB=BGCG=34,∴CG=42,∴CD=CG+DG=42+32=72,∴S△CBD=12CD•BG=7232212⨯=.点评:本题考查的是切线的判定定理,涉及到圆周角定理、解直角三角形及三角形的面积公式,根据题意作出辅助线,构造出直角三角形是解答此题的关键.对应训练考点三:三角形的外接圆和内切圆例 4 (•阜新)如图,在△ABC中,BC=3cm,∠BAC=60°,那么△ABC能被半径至少为cm的圆形纸片所覆盖.考点:三角形的外接圆与外心;圆周角定理;锐角三角函数的定义.专题:计算题.分析:作圆O的直径CD,连接BD,根据圆周角定理求出∠D=60°,根据锐角三角函数的定义得出sin∠D= BCCD,代入求出CD即可.解答:解:作圆O的直径CD,连接BD,∵弧BC对的圆周角有∠A、∠D,∴∠D=∠A=60°,∵直径CD,∴∠DBC=90°,∴sin∠D=BC CD,即sin60°=3 CD,解得:CD=23,∴圆O的半径是3,故答案为:3.点评:本题考查了圆周角定理,三角形的外接圆与外心,锐角三角函数的定义的应用,关键是得出sin∠D= BCCD,题目比较典型,是一道比较好的题目.例5 (•玉林)如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN与AB,BC分别交于点M,N,若⊙O的半径为r,则Rt△MBN的周长为()A.r B.2r C.2r D.2r考点:三角形的内切圆与内心;矩形的判定;正方形的判定;切线长定理.专题:计算题.分析:连接OD、OE,求出∠ODB=∠DBE=∠OEB=90°,推出四边形ODBE是正方形,得出BD=BE=OD=OE=r,根据切线长定理得出MP=DM,NP=NE,代入MB+NB+MN得出BD+BE,求出即可.解答:解:连接OD、OE,∵⊙O是Rt△ABC的内切圆,∴OD⊥AB,OE⊥BC,∵∠ABC=90°,∴∠ODB=∠DBE=∠OEB=90°,∴四边形ODBE是矩形,∵OD=OE,∴矩形ODBE是正方形,∴BD=BE=OD=OE=r,∵⊙O切AB于D,切BC于E,切MN于P,∴MP=DM,NP=NE,∴Rt△MBN的周长为:MB+NB+MN=MB+BN+NE+DM=BD+BE=r+r=2r,故选C.点评:本题考查的知识点是矩形的判定、正方形的判定、三角形的内切圆和内心、切线长定理等,主要考查运用这些性质进行推理和计算的能力,题目比较好,难度也适中.对应训练4.(•台州)已知,如图1,△ABC中,BA=BC,D是平面内不与A、B、C重合的任意一点,∠ABC=∠DBE,BD=BE.(1)求证:△ABD≌△CBE;(2)如图2,当点D是△ABC的外接圆圆心时,请判断四边形BDCE的形状,并证明你的结论.考点:三角形的外接圆与外心;全等三角形的判定与性质;菱形的判定.专题:几何综合题;探究型.分析:(1)由∠ABC=∠DBE可知∠ABC+∠CBD=∠DBE+∠CBD,即∠ABD=∠CBE,根据SAS 定理可知△ABD≌△CBE;(2)由(1)可知,△ABD≌△CBE,故CE=AD,根据点D是△ABC外接圆圆心可知DA=DB=DC,再由BD=BE可判断出BD=BE=CE=CD,故可得出四边形BDCE是菱形.解答:(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBD=∠DBE+∠CBD,∴∠ABD=∠CBE,在△ABD与△CBE中,∵BA BCABD CBEBD BE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△CBE…4分(2)解:四边形BDEF是菱形.证明如下:同(1)可证△ABD≌△CBE,∴CE=AD,∵点D是△ABC外接圆圆心,∴DA=DB=DC,又∵BD=BE,∴BD=BE=CE=CD,∴四边形BDCE是菱形.点评:本题考查的是三角形的外接圆与外心、全等三角形的判定与性质及菱形的判定定理,先根据题意判断出△ABD≌△CBE是解答此题的关键.5.(•武汉)在锐角三角形ABC中,BC=5,sinA= 4 5 ,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.考点:三角形的内切圆与内心;三角形的面积;勾股定理;圆周角定理;解直角三角形.专题:计算题.分析:(1)作直径CD,连接BD,求出∠DBC=90°,∠A=∠D,根据sin∠A的值求出即可;(2)连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,求出BF⊥AC,AF=CF,根据sin∠A 求出BF\AF,求出AC,根据三角形的面积公式得出5×R+5×R+6×R=6×4,求出R,在△AIF中,由勾股定理求出AI即可.解答:(1)解:作直径CD,连接BD,∵CD是直径,∴∠DBC=90°,∠A=∠D,∵BC=5,sin∠A=4 5 ,∴sin∠D=BCCD=45,∴CD=25 4,答:三角形ABC外接圆的直径是254.(2)解:连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=5,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A=45=BFAB,∴BF=4,在Rt△ABF中,由勾股定理得:AF=CF=3,AC=2AF=6,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴12AB×R+12BC×R+12AC×R=12AC×BF,即5×R+5×R+6×R=6×4,∴R=3 2 ,在△AIF中,AF=3,IF=32,由勾股定理得:AI=352.答:AI的长是352.点评:本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.考点三:圆与圆的位置关系]例6(•毕节地区)第三十奥运会将于2012年7月27日在英国伦敦开幕,奥运会旗图案有五个圆环组成,如图也是一幅五环图案,在这个五个圆中,不存在的位置关系是()A.外离B.内切C.外切D.相交考点:圆与圆的位置关系.分析:根据两圆的位置关系易得到它们的位置关系有外切、外离、相交.解答:解:观察图形,五个等圆不可能内切,也不可能内含,并且有的两个圆只有一个公共点,即外切;有的两个圆没有公共点,即外离;有的两个圆有两个公共点,即相交.故选B.点评:本题考查了圆与圆的位置关系:若两圆的半径分别为R,r,圆心距为d,若d>R+r,两圆外离;若d=R+r,两圆外切;若R-r<d<R+r(R≥r),两圆相交;若d=R-r(R>r),两圆内切;若0≤d<R-r(R>r),两圆内含.对应训练6.(•德阳)在平面直角坐标系xOy中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有个.6.4考点:圆与圆的位置关系;坐标与图形性质;直线与圆的位置关系.分析:分两圆内切和两圆外切两种情况讨论即可得到⊙P的个数.解:如图,满足条件的⊙P有4个,故答案为4.点评:本题考查了圆与圆的位置关系、坐标与图形的性质及直线与圆的知识,能充分考虑到分内切和外切是解决本题的关键.【聚焦山东中考】1.(•济南)已知⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,若圆心距O1O2=5,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切考点:圆与圆的位置关系.分析:先根据一元二次方程根与系数的关系,可知圆心距=两圆半径之和,再根据圆与圆的位置关系即可判断.解答:解:∵⊙O1和⊙O2的半径是一元二次方程x2-5x+6=0的两根,∴两根之和=5=两圆半径之和,又∵圆心距O1O2=5,∴两圆外切.故选B.点评:此题综合考查一元二次方程根与系数的关系及两圆的位置关系的判断.圆和圆的位置与两圆的圆心距、半径的数量之间的关系:①两圆外离⇔d>R+r;②两圆外切⇔d=R+r;③两圆相交⇔R-r<d<R+r(R≥r);④两圆内切⇔d=R-r(R>r);⑤两圆内含⇔d<R-r(R>r).2.(•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别是4和6,O1O2=2,根据两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别是4和6,O1O2=2,∴O1O2=6-4=2,∴⊙O1与⊙O2的位置关系是内切.故选A.点评:此题考查了圆与圆的位置关系.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.3.(•泰安)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则BC的长为()A.πB.2πC.3πD.5π考点:切线的性质;弧长的计算.分析:连接OB,由于AB是切线,那么∠ABO=90°,而∠ABC=120°,易求∠OBC,而OB=OC,那么∠OBC=∠OCB,进而求出∠BOC的度数,在利用弧长公式即可求出BC的长.解答:解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠ABC=120°,∴∠OBC=30°,∵OB=OC,∴∠OCB=30°,∴∠BOC=120°,∴BC的长为nπr 180 =120×π×3 180 =2π,故选B.点评:本题考查了切线的性质、弧长公式,解题的关键是连接OB,构造直角三角形.4.(•潍坊)已知两圆半径r1、r2分别是方程x2-7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先解方程x2-7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵x2-7x+10=0,∴(x-2)(x-5)=0,∴x1=2,x2=5,即两圆半径r1、r2分别是2,5,∵2+5=7,两圆的圆心距为7,∴两圆的位置关系是外切.故选C.点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.5.(•济南)如图,在Rt△ABC中,∠B=90°,AB=6,BC=8,以其三边为直径向三角形外作三个半圆,矩形EFGH的各边分别与半圆相切且平行于AB或BC,则矩形EFGH的周长是.5.4848考点:切线的性质;勾股定理;矩形的性质.分析:首先取AC的中点O,过点O作MN∥EF,PQ∥EH,由题意可得PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG,PL,KN,OM,OQ分别是各半圆的半径,OL,OK是△ABC的中位线,又由在Rt△ABC中,∠B=90°,AB=6,BC=8,即可求得个线段长,继而求得答案.解答:解:取AC的中点O,过点O作MN∥EF,PQ∥EH,∵四边形EFGH是矩形,∴EH∥PQ∥FG,EF∥MN∥GH,∠E=∠H=90°,∴PQ⊥EF,PQ⊥GH,MN⊥EH,MN⊥FG, ∵AB∥EF,BC∥FG,∴AB∥MN∥GH,BC∥PQ∥FG,∴AL=BL,BK=CK,∴OL=12BC=12×8=4,OK=12AB=12×6=3,∵矩形EFGH的各边分别与半圆相切,∴PL=12AB=12×6=3,KN=12BC=12×8=4,在Rt△ABC中,AC= 22AB+BC=10,∴OM=OQ=12AC=5,∴EH=FG=PQ=PL+OL+OQ=3+4+5=12,EF=GH=MN=OM+OK+NK=5+3+4=12,∴矩形EFGH的周长是:EF+FG+GH+EH=12+12+12+12=48.故答案为:48.点评:此题考查了切线的性质、矩形的性质,三角形中位线的性质以及勾股定理等知识.此题难度较大,解题的关键是掌握辅助线的作法,注意数形结合思想的应用.6.(•菏泽)如图,P A,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= 度.6.23考点:切线的性质.专题:计算题.分析:由P A、PB是圆O的切线,根据切线长定理得到P A=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP 垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠P AB即可求出∠BAC的度数.解答:解:∵P A,PB是⊙O是切线,∴P A=PB,又∠P=46°,∴∠P AB=∠PBA=180-462=67°,又P A是⊙O是切线,AO为半径,∴OA⊥AP,∴∠OAP=90°,∴∠BAC=∠OAP-∠P AB=90°-67°=23°.故答案为:23。
中考复习——与圆有关的位置关系
典型例题精析
例1 (2011娄底)若⊙ O 的半径 5cm ,点到圆心 的距离为 4 c m ,那么点 A 与⊙ O 的位置关系 是( C ) A.点 A 在圆外
C.点 A 在圆内
B.点 A 在圆上
D.不能确定
例2 (2011舟山)如图, A B C 中,以 A B于点 D , A C D A B C . (1)求证:
三角形的内心与外心
1.三角形的三个顶点确定一个圆,这个圆叫 做三角形的外接圆,三角形和外接圆的圆心叫外 三边垂直平分线 心,是三角形______________的交点,它到三角 顶点 形_______的中离相等 2.与三角形各边都要相切的圆叫做三角 形的内切圆,内切圆的圆心叫做三角形的内心, 角平分线 是三角形____________的交点,到三角形 三边 _______的距离相等地.
中考总复习—— 与圆有关的位置关系
命题预测
本节主要考查与圆的位置关系、 直线与圆的位置关系、切线的性质及 判定、三角形的内切圆与外接圆的知 识等,其中点与圆的位置关系和切线 性质是江西近年考查重点,题型以选 择题和解答题为主.
中考知识清单
好好记住哦!
与圆有关的位置关系
1.点与圆的位置关系
位置关系 点在圆内 点在圆上 点在圆外
0
1
相交
2
内切
1
内含(同心 圆)
0
两圆公共 点个数 圆心距为d , d 半径分别为, R , r( R > r ) 外公切线的 条数
内公切线的 条数
Rr
Rr d Rr
d Rr
2
d Rr
d Rr d 0
0
2
2
12Βιβλιοθήκη 1000
中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)
中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。
中考数学复习《与圆有关的位置关系》考点及经典题型
中考数学复习《与圆有关的位置关系》考点及经典题型知识点一:与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r ⇔点在⊙O 内;(2)d =r ⇔点在⊙O 上;(3)d>r ⇔点在⊙O 外 . 2.直线和圆的位置关系直线和圆的位置关系位置关系[来源:Zxxk.Com][来源:Z+xx+k.Com]相离相切 相交 图形公共点个数0个1个 2个 数量关系 d >r d =r d <r变式练习1:已知:⊙O 的半径为2,圆心到直线l 的距离为1,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是1或3.变式练习2: 在Rt △ABC 中,∠C =90°,BC =3 cm ,AC =4 cm ,以点C 为圆心,以2.5 cm 为半径画圆,则⊙C 与直线AB 的位置关系是( A )A .相交B .相切C .相离D .不能确定知识点二 :切线的性质与判定1.切线的判定(1)与圆只有一个公共点 的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.注意:判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可. 注意:由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.变式练习:如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=40°,则∠C=________.【解析】如解图,连接OB,∵AB为⊙O的切线,点B是切点,∴∠OBA=90°,∵∠A=40°,∴∠BOA=50°,∴∠C=25°.2.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.注意:利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.3.切线长(1)定义:从圆外一点作圆的切线,这点与切点之间的线段长叫做这点到圆的切线长.(2)切线长定理:从圆外一点可以引圆的两条切线,两切线长相等,圆心与这一点的连线平分两条切线的夹角.变式练习1:如图,AB、AC、DB是⊙O的切线,P 、C、D为切点,如果AB=5,AC=3,则BD的长为2.变式练习2:如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.(1)证明:∵BD =BA ,∴∠BDA =∠BAD .又∵∠BDA =∠BCA ,∴∠BCA =∠BAD ;(2)解:∵AC 是⊙O 的直径,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得,AC =22AB BC =122+52=13,∵∠CBA =∠E =90°, ∠BDC =∠BAC ,∴△ACB ∽△DBE ,∴AB DE =ACBD ,∴DE =12×1213=14413;(3)证明:如解图,连接OB ,则OB =OC ,第4题解图∴∠OBC =∠OCB ,∵四边形ABCD 内接于⊙O ,∴∠BAD +∠BCD =180°,又∵∠BCE +∠BCD =180°,∴∠BCE =∠BAD ,由(1)知∠BCA =∠BAD ,∴∠BCE =∠BCA ,又∵∠BCA =∠OBC ,∴∠BCE =∠OBC ,∴OB ∥DE .∵BE ⊥DE ,∴OB ⊥BE ,∵OB 为⊙O 的半径,∴BE 是⊙O 的切线.变式练习3: 如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上一点,AC 平分∠FAB 交⊙O 于点C ,过点C 作CE ⊥DF ,垂足为点E.(1)求证:CE 是⊙O 的切线;(2)若AE =1,CE =2,求⊙O 的半径.(1)证明:连接CO ,∵OA =OC ,∴∠OCA =∠OAC ,∵AC 平分∠FAB ,∴∠CAE =∠OAC ,∴∠OCA =∠CAE ,∴OC ∥FD ,∵CE ⊥DF ,∴OC ⊥CE ,∴CE 是⊙O 的切线(2)解:连接BC ,在Rt △ACE 中,AC =AE 2+EC 2=22+12=5,∵AB 是⊙O 的直径,∴∠BCA =90°,∴∠BCA =∠CEA ,∵∠CAE =∠CAB ,∴△ABC ∽△ACE ,∴CA AB =AE AC ,∴5AB =15,∴AB =5,∴AO =2.5,即⊙O 的半径为2.5.变式练习4: 如图,AB 是⊙O 的直径,AC 切⊙O 于点A ,BC 交⊙O 于点D ,若∠C =70°,则∠AOD 的度数为( D )A .70°B .35°C .20°D .40°知识点四 :三角形与圆1.三角形的外接圆图形(1)相关概念:经过三角形各定点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形(2)圆心的确定:三角形三条垂直平分线的交点(3)外心的性质:到三角形的三个顶点的距离相 等2.三角形的内切圆(1)相关概念:与三角形各边都相切的圆叫三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫圆的外切三角形(2)圆心的确定:到三角形三条角平分线的交点(3)内心的性质:到三角形的三条边的距离相等3.内切圆半径与三角形边的关系:(1)任意三角形的内切圆(如图1),设三角形的周长为C ,则S △ABC=1/2C r.(2)直角三角形的内切圆(如图2)若从切线长定理推导,可得r=1/2(a+b+c);若从面积推导,则可得r=.这两种结论可在做选择题和填空题时直接应用.变式练习1:已知△ABC的三边长a=3,b=4,c=5,则它的外切圆半径是2.5.,第2题图)变式练习2:如图为4×4的网格图,A,B,C,D,O均在格点上,点O是( B ) A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心变式练习3:如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD,BE,CE,若∠CBD=32°,则∠BEC的度数为__122°__.,第3题图)知识点五:圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
中考数学专题复习《与圆有关的位置关系》知识点梳理及典例讲解课件
BC 与 ☉O 相 切 , ∴ ∠D = ∠ACB = 90°.∵ ∠BOC =
∠AOD , ∠AOD = ∠BAD , ∴ ∠BAD = ∠COB.∴
∠ABD = ∠CBD , 即 BD 是 ∠ABC ቤተ መጻሕፍቲ ባይዱ 平 分 线 . 又 ∵
OC⊥BC,OE⊥AB,∴ OC=OE.∵ OC是半径,∴ 点O
到AB的距离OE等于半径.∴ AB是☉O的切线.
90°,∴ ∠DAF=90°-∠AFD.∵ ∠AFD=∠BFE,
∴ ∠AFD=∠E.∴ ∠DAF=∠BAF.∴ AC平分∠DAB.
典例6 (2022·安徽)已知AB为☉O的直径,C为☉O上一点,D为BA的延
长线上一点,连接CD.
典例6图
(1) 如图①,若CO⊥AB,∠D=30°,OA=1,求AD的长.
中 , OB = + = 3 .∵ ∠ADO = ∠BCO =
90°, ∠AOD = ∠BOC , ∴ △AOD∽△BOC.∴
,即 = .∴
OD= .
=
典例8图答案
考点五
切线长定理与内切圆
典例9 如图,P为☉O外一点,PA,PB分别切☉O于点A,B,CD切☉O于
解:(1) ∵ OA=1=OC,CO⊥AB,∠D=30°,∴ OD= ·OC=
.∴ AD=OD-OA= -1.
(2) 如图②,若DC与☉O相切,E为OA上一点,且∠ACD=∠ACE.求
证:CE⊥AB.
解:(2) ∵ DC与☉O相切,∴ OC⊥CD,即∠ACD+∠OCA=90°.
∵ OA=OC,∴ ∠OCA=∠OAC.∵ ∠ACD=∠ACE,∴ ∠OAC+
初中数学知识归纳圆与圆之间的位置关系
初中数学知识归纳圆与圆之间的位置关系圆与圆之间的位置关系是初中数学中的一个重要内容,它涉及到圆的相交关系、包含关系以及外切关系等多个方面。
通过归纳总结,我们可以更好地理解和运用这些知识点。
一、相离关系当两个圆没有任何交点时,它们被称为相离的圆。
两个相离的圆之间的最大距离等于它们的半径之和。
二、外切关系如果两个圆的半径相等,并且它们的圆心之间的距离等于两个圆的半径之和,我们称这两个圆为外切的圆。
三、相交关系相交是指两个圆的内部空间存在公共点。
根据两个圆的圆心之间的距离和半径的关系,相交的情况又可以分为四种。
1.相交于两点当两个圆的圆心之间的距离小于两个圆的半径之和,并且大于两个圆的半径之差时,两个圆相交于两个点。
2.相切于外点当两个圆的圆心之间的距离等于两个圆的半径之和时,两个圆相切于外点。
3.相切于内点当两个圆的圆心之间的距离等于两个圆的半径之差时,两个圆相切于内点。
4.相切于公切线当两个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆的半径不相等时,两个圆相切于一条公切线。
四、内含关系如果一个圆的内部完全位于另一个圆内部,我们称这两个圆为内含的关系。
在内含的情况下,内含圆的半径小于包含圆的半径。
五、包含关系如果一个圆的外部完全包含另一个圆,我们称这两个圆为包含的关系。
在包含的情况下,包含圆的半径大于内含圆的半径。
通过对圆与圆之间的位置关系进行归纳整理,我们可以更好地理解和应用这些知识点。
在解决相关题目时,我们可以根据题目给出的条件和要求,运用这些位置关系进行分析和推理。
同时,我们还可以通过观察图形特点和运用相关定理来判断两个圆之间的位置关系,从而解决问题。
初中数学中的圆与圆之间的位置关系是一个基础而重要的内容,它不仅在几何学中有广泛的应用,而且在实际生活和工程中也有着重要的作用。
通过掌握和运用这些知识,我们可以更好地理解和应用数学,为解决实际问题提供有力的支持。
初三中考数学 与圆有关的位置关系
课时34.与圆有关的位置关系班级_________学号_________姓名_________【学习目标】1.理解点与圆、圆与圆的位置关系;2.掌握直线与圆的位置关系;3.掌握切线的性质和判定,并能进行相关的运算和证明。
【课前热身】1.两个圆的圆心都是O ,半径分别为r 1、r 2,且r 1<OA <r 2,那么点A 在 ( )A .⊙r 1内B .⊙r 2外C .⊙r 1外,⊙r 2内D .⊙r 1内,⊙r 2外 2.如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映 出的两圆位置关系有( )A .内切、相交B .外离、相交C .外切、外离D .外离、内切3.两圆半径分别为3和4,圆心距为7,则这两个圆( ) A .外切 B .相交 C .相离 D .内切4.如图,从圆O 外一点P 引圆O 的两条切线PA PB ,,切点分别为A B ,.如果60APB ∠=o ,8PA =,那么弦AB 的长是( )A .4B .8C .43D .83 【考点链接】1. 点与圆的位置关系共有三种:① ,② ,③ ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为:①d r ,②d r ,③d r.2. 直线与圆的位置关系共有三种:① ,② ,③ . 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d r ,②d r ,③d r.3. 圆与圆的位置关系共有五种:① ,② ,③ ,④ ,⑤ ;两圆的圆心距d 和两圆的半径R 、r (R≥r)之间的数量关系分别为:①d R -r ,②d R -r ,③ R -r d R +r ,④d R +r ,⑤d R +r.4. 圆的切线 过切点的半径;经过 的一端,并且 这条 的直线是圆的切线.5. 从圆外一点可以向圆引 条切线, 相等, 相等.6. 三角形的三个顶点确定 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 心,是三角形 的交点.7. 与三角形各边都相切的圆叫做三角形的 ,内切圆的圆心是三角形 的交点,叫做三角形的 . 【典例精析】例1.如图,在△ABC 中,AC=2cm,BC=4cm,CM 是AB 边上的中线。
与圆有关的位置关系-中考数学知识点分类汇编真题
知识点34 与圆有关的位置关系一、选择题1. (2018四川泸州,10题,3分)在平面直角坐标系内,以原点O 为原心,1为半径作圆,点P 在直线y =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )【答案】D【解析】由题可知,B (-2,0),C (0,32),P 为直线上一点,过P 作圆O 的切线PA ,连接AO ,则在Rt △PAO 中,AO=1,由勾股定理可得22AO PO PA -=,要想使PA 最小,要求PO 最小,所以过点O 作OP ⊥BC 于点P ,此时PO=3,PA=2【知识点】一次函数,圆的切线,勾股定理2. (2018四川内江,7,3)已知⊙O 1的半径为3cm ,⊙O 2的半径为2cm ,圆心距O 1O 2=4cm ,则⊙O 1与⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切 【答案】C【解析】解:∵3-2<O 1O 2<3+2,∴⊙O 1与⊙O 2的位置关系是相交.故选择C . 【知识点】圆与圆的位置关系3. (2018江苏无锡,8,3分) 如图,矩形ABCD 中,G 是BC 的中点,过A 、D 、G 三点的O 与边AB 、CD 分别交于点E 、F.给出下列说法:(1)AC 与BD 的交点是O 的圆心;(2)AF 与DE 的交点是O 的圆心;(3)BC 与O相切.其中正确说法的个数是( ) A.0 B. 1 C. 2 D. 3【答案】C【思路分析】利用圆周角定理的推理确定O的圆心,进而判定(1)、(2)的正确性;连接OG,通过证明OG⊥BC 说明BC与O相切.【解题过程】∵矩形ABCD中,∴∠A=∠D=90°,∴AF与DE都是O的直径,AC与BD不是O的直径,∴AF与DE的交点是O的圆心,AC与BD的交点不是O的圆心,∴(1)错误、(2)正确.连接AF、OG,则点O为AF的中点,∵G是BC的中点,∴OG是梯形FABC的中位线,∴OG∥AB,∵AB⊥BC,∴OG⊥BC,∴BC与O相切.∴(3)正确.综上所述,正确结论有两个.【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定4.(2018·重庆B卷,10,4)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.32D【答案】B.【解析】如下图,连接OD,则由AD切⊙O于点D,得OD⊥AC.∵在Rt△AOD中,∠A=30°,AD=,tan A=ODAD,∴OD=AD•,tanA=tan30°=3=2.∴AO=2OD=4,AB=OA+OB=6.∵∠AOD=90°-∠A=60°,∴∠ABD=12∠AOD=30°.∵BD平分∠ABC,∴∠ABC=2∠ABD=60°.∴∠C=90°=∠ADO.∴OD∥BC.∴AD AODC OB=42=.∴DC.【知识点】圆圆的切线相似三角形5. (2018山东烟台,10,3分)如图四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD 的延长线上,则∠CDE的度数是()A.56° B.62° C.68° D.78°【答案】C【解析】∵点I是△ABC的内心,∴AI、CI是△ABC的角平分线,∴∠AIC=90°+12∠B=124°,∴∠B=68°.∵四边形ABCD是⊙O的内接四边形,∴∠CDE=∠B=68°,故选C.【知识点】三角形内心;圆内接四边形的性质;6.(2018四川省德阳市,题号9,分值:3)已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.第9题答图【答案】B.【解析】如图,设△ABC的边长为a,由正三角形的面积公式得S△ABC=,∴==,解得a=2或-2(舍),∴BC=2.∵∠BAC=60°,BO=CO,∴∠BOC=120°,则∠BCO=30°.∵OH⊥BC,∴BH=BC=1,在Rt△BOH中,BO=BH÷cos30°=,所以圆的半径r=.则OF=.如图,正六边形内接于圆,且半径为,可知∠EOF=60°,在△EOF中,OE=OF,OD⊥EF,∴∠EOD=30°.在Rt△DOE中,OD=OF·cos30°=×=1.所以边心距为1.【知识点】正多边形和圆1. (2018湖北鄂州,8,3分)如图,PA 、PB 是⊙O 的切线,切点为A 、B ,AC 是⊙O的直径,OP 与AB 相交于点D ,连接BC .下列结论:①∠APB =2∠BAC ;②OP ∥BC ;③若tanC =3,则OP =5BC ;④AC 2=4OD ·OP .其中正确的个数为( )A .4个B .3个C .2个D .1个 【答案】A .【思路分析】利用切线长定理证明Rt △APO ≌Rt △BPO ,再利用同角的余角相等,可证得∠AOP =∠C ,得到OP ∥BC ,∠APB =2∠BAC ,故①②正确;利用勾股定理和∠AOP =∠C ,可证得OP =11522AC BC ====,故③正确;利用两角对应相等的两个三角形相似的判定定理证明△ABC ∽△PAO ,再通过等量代换可证得AC 2=4OD ·OP ,故④正确. 【解析】解:A 选项,设OP 与⊙O 交于点E ,∵ PA 、PB 是⊙O 的切线,∴PA =PB ,∠PAO =∠PBO =90°,则在Rt △APO和Rt △BPO 中,∵OA OBAP BP==⎧⎨⎩,∴Rt △APO ≌Rt △BPO (HL ),∴∠APB =2∠APO =2∠BPO ,∠AOE =∠BOE ,∴∠AOP =∠C ,∴OP ∥BC ,故②正确;∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠BAC +∠C =90°,∵∠PAO =90°,∴∠APO +∠AOP =90°,即∠C +∠APO =90°,∴∠APO =∠BAC , ∴∠APB =2∠APO =2∠BAC ,故①正确;∵tanC =3,∴tan ∠AOP =3,则在Rt △ABC 中,3AB BC=,则AB =3BC ,故AC ==,在Rt △BPO 中,3AP AO=,则AP =3OA ,故OP=11522AC BC ====,故③正确;∵OA =OC ,OP ∥BC ,∴OD 是△ABC 的中位线,∴OD =12BC ,BC =2OD ,在△ABC 和△P AO 中,∵∠OAP =∠ABC =90°,∠AOP =∠C ,∴△ABC ∽△PAO ,∴AC BC OP OA =,∴212AC OD OP AC =,∴4AC OD OP AC =,∴AC 2=4OD ·OP ,故④正确.故选A .【知识点】切线长定理;相似三角形的性质和判定;中位线定理;勾股定理;平形线的判定定理;全等三角形的判定定理2.(2018·重庆A卷,9,4)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C.若⊙O的半径为4,BC=6,则PA的长为()A.4 B..3 D.2.5【答案】A.【解析】如下图,连接OD.∵PC切⊙O于点D,∴OD⊥PC.∵⊙O的半径为4,∴PO=PA+4,PB=PA+8.∵OD⊥PC,BC⊥PD,∴OD∥BC.∴△POD∽△PBC.∴OD POBC PB=,即4468PAPA+=+,解得PA=4.故选A.【知识点】圆;直线与圆的位置关系;切线的性质;相似三角形的判定与3. (2018河北省,15,2)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】设△ABC的AB边上的高为h,△MNI的MN边上的高为r,周长为a,则△ABC的内切圆半径为r.∴△ABC的面积=AB·h=(AB+BC+AC)·r.∴4h=9r.∴.∵△MNI∽△ABC,∴【知识点】三角形的内心,三角形相似4. (2018湖北宜昌,12,3分)如图,直线AB是O的切线,C为切点,//OD AB交O于点D,点E在O 上,连接OC EC ED,,,则CED∠的度数为( )(第12题图)A.30° B.35° C.40° D.45°【答案】D【解析】∵直线AB 是O 的切线,C 为切点,∴∠OCB =90°,∵//OD AB ,∴∠COD =90°,∴∠CED =45°,故选择D.【知识点】圆的切线,圆心角,圆周角,平行线的性质.5. (2018广东省深圳市,10,3分)如图,一把直尺,80°的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是( )A .3B . . 6 D .【答案】D .【思路分析】由切线长定理定理可得,∠CAO =∠OAB ,从而求出∠BAO 的度数,再在Rt △OAB 中,用60°角的正切即可求出半径的长.【解析】解:如图,设圆心为点O ,设另一个切点为点C ,连接OA 、OB 、OC ,则由切线长定理可得,∠CAO =∠OAB =12(180°-60°)=60°,则在Rt △OAB 中,tan ∠BAO =OB AB,即t a n603OB =︒=解得OB =故直径为.故选D .【知识点】切线的性质;切线长定理;锐角三角函数6.(2018湖北荆门,9,3分)如图,在平面直角坐标系xOy 中,()4,0A ,()0,3B ,()4,3C ,I 是ABC ∆的内心,将ABC ∆绕原点逆时针旋转90后,I 的对应点I '的坐标为( )A .()2,3-B .()3,2- C.()3,2- D .()2,3- 【答案】A.【解析】∵I 是△ABC 的内心,()4,0A ,()0,3B ,()4,3C , ∴I 的坐标为(3,2),∴将ABC ∆绕原点逆时针旋转90后,I 的对应点I ′的坐标为(-2,3). 故选A.【知识点】三角形的内心,作图-旋转变换7. (2018山东省泰安市,9,3)如图,BM 与O 相切于点B ,若140MBA ∠=,则ACB ∠的度数为( )A .40B .50C .60D .70【答案】A【解析】(1)根据圆的切线性质可知:∠OBM=90°从而求得∠ABO=50°;(2)连接OA 、OB ,可求得∠AOB 的度数;(3)根据圆周角性质定理可得结论. 解:连接OA 、OB , ∵BM 与O 相切 ∴∠OBM=90°∵140MBA ∠= ∴∠ABO=50° ∵OA=OB ∴∠ABO=∠BAO =50° ∴∠AO B=80° ∴ACB ∠=40【知识点】圆的切线的性质,圆周角性质定理,等腰三角形性质 二、填空题1. (2018四川内江,24,6) 已知△ABC 的三边a ,b ,c 满足a +2b +|c -6|+28=10b ,则△ABC的外接圆半径= . 【答案】258【思路分析】将已知a +2b +|c -6|+28=10b 进行分组,配成完全平方式,利用平方数,绝对值的非负性求出a ,b ,c 的值,从而确定三角形的形状,然后求出外接圆半径.【解题过程】解:原式整理得:2b -10b +25+a -1-4+|c -6|=0,()25b -+2-+4+|c -6|=0,()25b -+)22+|c -6|=0,∵()25b -≥0,)22≥0,|c -6|≥0,∴b =5,c =6,a =5,∴△ABC 为等腰三角形.如图所示,作CD ⊥AB ,设O 为外接圆的圆心,则OA =OC =R ,∵AC =BC =5,AB =6,∴AD =BD =3,∴CD 4,∴OD =CD -OC =4-R ,在Rt △AOD 中,2R =23+()24R -,解得R =258.BCOA【知识点】完全平方公式;绝对值;勾股定理;等腰三角形外接圆;2. (2018安徽省,12,5分)如图,菱形ABOC 的AB ,AC 分别与⊙O 相切于点D,E 若点D 是AB 的中点,则∠DOE【答案】60°【解析】连接OA ,根据菱形的性质得到△AOB 是等边三角形,根据切线的性质求出∠AOD ,同理计算即可. 解:连接OA ,∵四边形ABOC 是菱形, ∴BA=BO , ∵OA=OB ,∴△AOB 是等边三角形, ∵AB 与⊙O 相切于点D , ∴OD ⊥AB ,∴∠AOD=12∠AOB=30°, 同理,∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°, 故答案为:60.【知识点】切线的性质;菱形的性质.3. (2018湖南岳阳,16,4分).如图,以AB 为直径的O 与CE 相切于点C ,CE 交AB 的延长线于点E ,直径18AB =,30A ∠=,弦C D A B ⊥,垂足为点F ,连接AC ,OC ,则下列结论正确的是 .(写出所有正确结论的序号)①BC BD =;②扇形OBC 的面积为274π;③OC F O E C ∆∆;④若点P 为线段OA 上一动点,则AP OP ⋅有最大值20.25.【答案】①③④.【解析】解:∵AB 是⊙O 的直径,且CD ⊥AB , ∴BC BD =,故①正确; ∵∠A=30°, ∴∠COB=60°, ∴扇形OBC=ππ227)2(360602=AB ··,故②错误; ∵CE 是⊙O 的切线, ∴∠OCE=90°,∴∠OCD=∠OFC ,∠EOC=∠COF ,∴OCF OEC ∆∆,故③正确;设AP=x ,则OP=9-x ,∴AP ·OP=x (9-x )=-x 2+9x =481)29(2+-x -, ∴当x =29时,AP ·OP 的最大值为481=20.25,故④正确. 故答案为①③④.【知识点】垂径定理,扇形面积计算公式,相似三角形的判定,二次函数的性质4. (2018江苏连云港,第14题,3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊥OA ,OC 交AB于点P ,已知∠OAB =22°,则∠OCB =__________°. 【答案】44【解析】解:连接OB .∵OA =OB ,∴∠OBA =∠OAB =22°,∴∠AOB =136°,∵OC ⊥OA ,∴∠AOC =90°,∴∠COB =46°,∵CB 是⊙O 的切线,∴∠OBC =90°,∴∠OCB =90°-46°=44°,故答案为:44°.【知识点】切线的性质;直角三角形的性质5. (2018江苏泰州,16,3分)如图,△ABC 中,∠ACB =90°,sin A =513,AC =12,将△ABC 绕点C 顺时针旋转90°得到△A′B′C ,P 为线段A′B′上的动点,以点P 为圆心、PA '长为半径作⊙P ,当⊙P 与△ABC 的边相切时,⊙P 的半径为 .【答案】15625或10213【解析】设⊙P 的半径为r ,∴BCAB=sin A=513,222BC AC AB+=,∵AC=12,∴BC=5,AB=13,由旋转得∠A′CB′=∠ACB=90°,∠A′=∠A,A′C= AC=12,B′C= BC=5,A′B′=AB=13,∴∠A′CB=180°,∴A′、C、B′三点共线,∵点P到直线BC的距离小于半径P′A,∴⊙P与直线BC始终相交,过点P作PD⊥AC于点D,则∠B′DP=∠B′CA′=90°,∵∠DB′P=∠CB′A′,∴△B′DP∽△B′CA′,∴PD PBA C A B'=''',∴13 1213 PD r-=,∴12(13)12121313rPD r-==-,当⊙P与AC边相切时,PD=PA′,∴121213r r-=,∴15625r=,延长A′B′交AB于点E,∵∠A+∠B=90°,∠A′=∠A,∴∠A′+∠B=90°,同上得122041313A E A B''==,当⊙P与AB边相切时,A′E=2PA′,∴10213r=,综上所述,⊙P的半径为15625或10213.【知识点】锐角三角函数,直线与圆的位置关系6.(2018山东威海,16,3分)在扇形CAB中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为______.【答案】135°【解析】连接CE,∵∠ADC=90°,∴∠DAC+∠DCA=90°;∵⊙E内切于△ADC,∴∠EAC+∠ECA=45°,∴∠AEC=135°;∵△AE≌△EB,∴∠AEB=∠AEC=135°.【知识点】三角形的内切圆、全等三角形的判定与性质7. (2018四川省宜宾市,13,3分)刘徽是中国古代卓越的数学家之一,他在《九章算术》中提出了“割圆术”,即用内接或外切正多边形逐步逼近圆来近似计算圆的面积,设圆O的半径为1,若用圆O的外切正六边形的面积来近似估计圆O的面积,S= .(结果保留根号)【答案】【解析】如图:根据题意可知OH=1,∠BOC=60°,∴△OBC为等边三角形,∴BHOHtan∠BOH,∴,∴S=121×1 2【知识点】正多边形的计算;解直角三角形8. (2018浙江湖州,14,4)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.【答案】70°【解析】∵⊙O内切于△ABC,∴OB平分∠ABC.∵∠ABC=40°,∴∠OBD=20°.∴∠BOD=70°.故填70°. 【知识点】三角形的内切圆,切线长定理9.(2018宁波市,17题,4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为___________【答案】3或【解析】解:(1)当⊙P 与DC 相切时,如图(1)所示,设BP=x ,则PC=8-x;∵DC 于圆相切,∴PC=PM 又∵M 是AB 中点 ∴BM=4在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2∴x 2+42=(8-x)2∴解得:x=3 ∴BP=3 (2)如图(2)所有 当⊙P 与DA 相切时过点P 作PE ⊥AD,交AD 与点E∵⊙P 与DA 相切与点E ∴EP=MP=8在Rt △BMP 中,根据勾股定理可得 ∵BM 2+BP 2=MP 2∴BP=综上所述:BP 的值为3或【知识点】切线的判定、勾股定理10. (2018浙江温州,16,5).小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2(第17题图)图2图1所示的图形.图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ 所在的直线经过点M ,PB=5cm ,小正六边形的面积为2cm 2,则该圆的半径为 cm.【答案】8【思路分析】设小正六边形的中心为O 连接OP,OA,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积得小正六边形的边长为337所以得OP=7,在△OPB 中解三角形得到OB=8所以圆的半径为8 【解题过程】设小正六边形的中心为O,连接OP,OB,OC,OD ,连接CP 得两个等边三角形,利用小正六边形的面积为6个小等边三角形得设小正六边形的边长为x,所以每个小等边三角形的面积为243x ,得32494362=⨯x ,得x=337所以再利用四边形OCPD 为菱形得OP=73337=⨯,在△OPB 中解三角形,过点P 作PH ⊥OB 因为∠OBP=60°∠HPB=30°得到BH=2521=BP ,PH=235,所以在△OPH 中利用勾股定理得OH=211,所以OB=8所以圆的半径为8【知识点】圆的内接正六边形的性质,正六边形的面积,解三角形,菱形的性质和判定,等边三角形的判定和性质。
最新中考数学-一轮复习:与圆有关的位置关系
与圆有关的位置关系基础知识知识点一、点与圆的位置关系1. 点和直线有三种位置关系:①点在圆外,即这个点到圆心的距离大于半径;②点在圆上,即这个点到圆心的距离等于半径;③点在圆内,即这个点到圆心的距离小于半径.2. 用数量关系表示位置关系:⊙O的半径为r,点P到圆心的距离OP=d,则有①点P在⊙O外d>r;②点P在⊙O上d=r;③点P在⊙O内d<r.知识点二、直线和圆的位置关系1.直线和圆的三种位置关系:(1)相离:直线和圆没有公共点,这时我们说这条直线和圆相离.(2)相切:直线和圆只有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.(3)相交:直线和圆有两个公共点,这时我们说这条直线和圆相交.2、直线和圆的位置关系的性质与判断:设圆的半径为r,圆心到直线的距离为d,则:①直线和圆相离 d < r②直线和圆相切 d = r③直线和圆相交 d > r.知识点三、切线的判定定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.在应用定理时,必须先弄清两个条件:一是经过半径的外端;二是垂直于这条半径,两者缺一不可.2. 切线的判定方法有以下几种:①可以直接应用定义:直线与圆有一个公共点时,直线是圆的切线.②圆心到直线的距离等于半径的直线是圆的切线.③切线的判定定理.当已知条件中没有指出圆与直线的公共点时,常运用方法②进行判定;当已知条件中明确指出圆与直线有公共点时,常运用判定定理进行判定.证题方法“有点连半径,无点作垂线”.知识点四、切线的性质定理与切线长定理1. 切线的性质定理:圆的切线垂直于过切点的半径.当已知圆的切线时,常常连接过切点的半径,得两线垂直关系. 2.切线长定理(1)切线长的定义:过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. (2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等. 知识点五、三角形的外接圆与外心1. 三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆.2. 三角形的外心:三角形外接圆的圆心,是三角形三条边垂直平分线的交点.这个点叫做三角形的外心.3. 三角形外心的性质:①三角形的外心是外接圆的圆心,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的;但一个圆的内接三角形却有无数个,这些三角形的外心重合.知识点六、三角形的内切圆与内心1.三角形的内切圆是指与三角形各边都相切的圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.任意一个三角形都有且只有一个内切圆.但一个圆的外切三角形有无数个.2. 三角形的内心:三角形内切圆的圆心,是三角形三条角平分线的交点,到三角形三边的距离相等. 常见结论:(1)Rt △ABC 的三条边分别为:a 、b 、c (c 为斜边),则它的内切圆的半径2ab cr ; (2)△ABC 的周长为l ,面积为S ,其内切圆的半径为r ,则12S lr . 知识点七、正多边形与圆的关系1. 正多边形的概念:各边相等,各角也相等的多边形叫做正多边形.2. 正多边形与圆的关系可以这样表述:把圆分成n (n≥3)等份,依次连接各分点所得的多边形就是这个圆的内接正n 边形.利用这一关系可以判定一个多边形是否是正多边形或作出一个正多边形.这个圆是这个正多边形的外接圆.正多边形的外接圆的圆心叫做这个正多边形的中心.外接圆的半径叫做这个正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.3. 对称性:①正多边形的轴对称性:正多边形都是轴对称图形,一个正n 边形共有n 条对称轴,每条对称轴都通过正n 边形的中心.②正多边形的中心对称性:边数为偶数的正多边形是中心对称图形,它的中心是对称中心. ③正多边形的旋转对称性:正多边形都是旋转对称图形,最小的旋转角等于中心角. 典型例题解析例1. 已知点P到⊙O上的点的最短距离为3cm,最长距离为5cm,则⊙O的半径为cm.例2. 已知⊙O的半径长为2cm,如果直线l上有一点P满足PO=2cm,那么直线l与⊙O的位置关系是()A.相切B.相交C.相离或相切D.相切或相交例3. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是.例4. (朝阳)如图,△MBC中,∠B=90°,∠C=60°,MB=23,点A在MB上,以AB为直径作⊙O与MC相切于点D,则CD的长为()A.2B.3C.2 D.3例5. (葫芦岛)如图,边长为a的正六边形内有一边长为a的正三角形,则SS阴影空白()A.3 B.4 C.5 D.6例6. 如图:⊙I是Rt△ABC的内切圆,∠C=90°,AC=6,BC=8,则⊙I的半径是.例7. (锦州)已知,⊙O为∆ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE 的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.(2)过点O作OH⊥AB,垂足为H,例8. (来宾)如图,AB为⊙O的直径,BF切⊙O于点B,AF交⊙O于点D,点C在DF上,BC交⊙O 于点E,且∠BAF=2∠CBF,CG⊥BF于点G.连接AE.(1) 直接写出AE与BC的位置关系;(2) 求证:△BCG∽△ACE ;(3) 若∠F=60°,GF=1,求⊙O得半径.巩固训练1. (青岛)直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥62. 在⊙O中,圆心O在坐标原点上,半径为210,点P的坐标为(4,5),那么点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不能确定3. 已知正三角形外接圆半径为3,这个正三角形的边长是()A.2 B.3 C.4 D.54. (天津)如图,AB是⊙O的弦,AC是⊙O的切线,A为切点,BC经过圆心.若∠B=25°,则∠C的大小等于()A.20°B.25°C.40°D.50°△放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面5. 如下图,将ABC△,能够完全覆盖这个三角形的最小圆面的半径是________.去覆盖ABC6. (曲靖)如图,正六边形ABCDEF的边长为2,则对角线AE的长是.7. (莱芜)如图,正五边形ABCDE中,连接AC、AD、CE,CE交AD于点F,连接BF,下列说法不正确的是()A. △CDF的周长等于AD+CDB. FC平分∠BFDC. AC2+BF2=4CD2D. DE2=EF·CE8. (广安)如图,矩形ABCD的长为6,宽为3,点O1为矩形的中心,⊙O2的半径为1,O1O2⊥AB于点P,O1O2=6,若⊙O2绕点P按顺时针方向旋转360°,在旋转过程中,⊙O2与矩形的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次9. (日照)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数kyx(k≠0)的图象经过圆心P,则k= .10. (德州)如图,⊙O的直径AB为10cm,弦BC为6cm,D、E分别是∠ACB的平分线与⊙O,AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC,AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.11. (河南)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线P A、PB,切点分别为点A、B.(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;(2)填空:①当DP= cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.12. (抚州)如图,在平面直角坐标系中,⊙P经过x轴上一点C,与y轴分别相交于A,B两点,连接AP 并延长分别交⊙P、x轴于点D、点E,连接DC并延长交y轴于点F,若点F的坐标为(0,1),点D的坐标为(6,-1).(1)求证:DC=FC.(2)判断⊙P与x轴的位置关系,并说明理由.(3)求直线AD的解析式.中考预测1. 在直角坐标平面内,点A的坐标为(1,0),点B的坐标为(a,0),圆A的半径为2.下列说法中不正确的是()A.当a=-1时,点B在圆A上B.当a<1时,点B在圆A内C.当a<-1时,点B在圆A外D.当-1<a<3时,点B在圆A内2. 如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A =30°,则∠C的大小是( )A.30°B.45°C.60°D.40°3. 如图,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(-3, 0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为()A.1 B.1或5 C.3 D.54. 如图,P为⊙O的直径BA延长线上一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD. 已知PC=PD=BC. 下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°. 其中正确的个数为()A. 4个B. 3个C. 2个D. 1个5. ⊙O的半径为R,点O到直线l的距离为d,R,d是方程x2-4x+m=0的两根,当直线l与⊙O相切时,m的值为.6. 直角三角形的两边长分别为16和12,则此三角形的外接圆半径是.7. 已知∠BAC=45°,一动点O在射线AB上运动(点O与点A不重合),设OA=x,如果半径为1的⊙O与射线AC只有一个公共点,那么x的取值范围是.8. 如图,两圆圆心相同,大圆的弦AB与小圆相切,AB=8,则图中阴影部分的面积是__________.(结果保留π)9. 如图,正方形ABCD的边长为2,⊙O的直径为AD,将正方形沿EC折叠,点B落在圆上的F点,则BE的长为.10. 如图,Rt△ABC中,∠ABC=90°.以AB的中点O为圆心、OA长为半径作半圆,交AC于点D.点E为BC的中点,连接DE.(1)求证:DE是该半圆的切线;(2)若∠BAC=30°,DE=2,求AD的长.11.如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE AC,垂足为E.(1)证明:DE为⊙O的切线;(2)连接OE,若BC=4,求△OEC的面积.12. 如图,AB 是⊙O 的直径,点C 在⊙O 上,与⊙O 相切, BD ∥AC . (1)图中∠OCD =_______°,理由是_____________________; (2)⊙O 的半径为3,AC =4,求OD 的长.13. 阅读材料:已知,如图(1),在面积为S 的△ABC 中, BC =a ,AC =b , AB =c ,内切圆O 的半径为r.连接OA 、OB 、OC ,△ABC 被划分为三个小三角形. ∵r c b a r AB r AC r BC S S S S OAB OAC OBC )(21212121++=⋅+⋅+⋅=++=△△△.. ∴cb a Sr ++=2.(1)类比推理:若面积为S 的四边形ABCD 存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB =a ,BC =b ,CD =c ,AD =d ,求四边形的内切圆半径r ;(2)理解应用:如图(3),在等腰梯形ABCD 中,AB ∥DC ,AB =21,CD =11,AD =13,⊙O 1与⊙O 2分别为△ABD 与△BCD 的内切圆,设它们的半径分别为r 1和r 2,求21r r 的值.参考答案:巩固训练∵∠ODE=∠DEA=90°,∴OD∥AC,∴11313222 OCES CE DE∆=⨯⨯=⨯=.13. 【解析】 (1)连接OA 、OB 、OC 、OD. ∵AOD COD BOC AOB S S S S S △△△△+++=dr cr br ar 21212121+++=r d c b a )(21+++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点34 与圆有关的位置关系
一、选择题
1. (2018四川泸州,10题,3分)在平面直角坐标系内,以原点为原心,1为半径作圆,点P在直线
上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()
A. 3
B. 2
C.
D.
【答案】D
【解析】由题可知,B(-2,0),C(0,),P为直线上一点,过P作圆O的切线PA,连接AO,则在Rt△PAO 中,AO=1,由勾股定理可得,要想使PA最小,要求PO最小,所以过点O作OP⊥BC于点P,
此时PO=,PA=
【知识点】一次函数,圆的切线,勾股定理
2.(2018四川内江,7,3)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置
关系是()
A.外离 B.外切 C.相交 D.内切
【答案】C
【解析】解:∵3-2<O1O2<3+2,∴⊙O1与⊙O2的位置关系是相交.故选择C.
【知识点】圆与圆的位置关系
3. (2018江苏无锡,8,3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的与边AB、CD分别交于点E、F.给出下列说法:(1)AC与BD的交点是的圆心;(2)AF与DE的交点是的圆心;(3)BC与
相切.其中正确说法的个数是()
A.0
B. 1
C. 2
D. 3
【答案】C
【思路分析】利用圆周角定理的推理确定的圆心,进而判定(1)、(2)的正确性;连接OG,通过证明OG⊥BC
说明BC与相切.
【解题过程】∵矩形ABCD中,
∴∠A=∠D=90°,
∴AF与DE都是的直径,AC与BD不是的直径,
∴AF与DE的交点是的圆心,AC与BD的交点不是的圆心,
∴(1)错误、(2)正确.
连接AF、OG,则点O为AF的中点,
∵G是BC的中点,
∴OG是梯形FABC的中位线,
∴OG∥AB,
∵AB⊥BC,
∴OG⊥BC,
∴BC与相切.
∴(3)正确.
综上所述,正确结论有两个.
【知识点】矩形的性质、圆周角定理的推论、梯形中位线的判定与性质、圆的切线的判定
4.(2018·重庆B卷,10,4)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半
径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()
A.2B. C. D.
【答案】B.
【解析】如下图,连接OD,则由AD切⊙O于点D,得OD⊥AC.。