2014年1月浙江省普通高中学业水平考试数学试题卷
2014年普通高等学校招生全国统一考试(浙江卷)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。
[精品]2014年浙江省普通高中学业水平考试及答案
2014年浙江省普通高中业水平考试模拟试卷考生须知:1全卷分试卷Ⅰ、Ⅱ和答卷Ⅰ、Ⅱ,试卷共 页,有五大题,满分为100分。
考试时间90分钟。
2试卷Ⅰ、Ⅱ的答案必须做在答卷Ⅰ、Ⅱ的相应位置上,做在试卷上无效。
3请用蓝、黑墨水或圆珠笔将姓名、准考证号分别填写在答卷Ⅰ、Ⅱ的相应位置上,用铅笔将答卷Ⅰ上的准考证号和名称所对应的括号和方框内涂黑。
4本卷可能用到的相对原子质量: H-1 H-4 -12 N-14 O-16 F-56 N-23 -355 I-127试 卷 I一、选择题(本题有24小题,每小题只有一个选项正确,每题2分,共48分)1. 2012年7月,瑞士一家研究机构称在前巴勒斯坦国总统阿拉法特的遗物中发现了钚元素的痕迹,钚是一种毒性很强的元素,该机构称阿拉法特很有可能死于钚中毒。
Pu 23994是钚的一种具有放射性的核素,下列关于Pu 23994的说法中正确的是A .质量是239B .核外电子239 .质子是145 D .中子是94 2.电子的发现是以下哪位家A .阿伏伽德罗B .卢瑟福 .门捷列夫 D .汤姆孙3.下列用语表达不正确的是A .氟离子的结构示意图:B .二氧碳的结构式:O==O. 氯钠的电子式:D .硫酸钠的电离方程式:N 2SO 4=2N ++SO 42-4.分类法是一种行之有效、简单易行的方法,人们在认识事物时可以采取多种分类方。
下列关于“H 3OON”的分类不正确的是A .合物B .氧物 .有机物 D .钠盐5.当光束通过鸡蛋清水溶液时,从侧面观察到一条光亮的“通路”,说明鸡蛋清水溶液是A.溶液 B.胶体.悬浊液 D.乳浊液6.电解质有强弱之分,以下物质属于强电解质的是A.H2O B.2.NH3·H2O D.N7.在某酸性无色透明溶液中能大量共存的离子组是A. A3+、Ag+、NO3-、- B.Mg2+、NH4+、NO3-、-. B2+、+、O32-、- D.2+、N+、NO3-、SO42-8.下列说法正确的是A.L、N、元素的原子核外电子层随着核电荷的增加而减少B.第二周期元素从L到F,非金属性逐渐减弱.因为比N容易失去电子,所以比N的还原性强D.O与S为同主族元素,且O比S的非金属性弱9.用固体N配制250L 1/L的N溶液,下列仪器中不需要使用的是A.250L容量瓶 B.烧瓶.玻璃棒 D.胶头滴管10.下列物质中,分子的空间结构为正四面体的是A.甲烷 B.乙烯.乙炔D.苯11.下列物质中属于共价合物的是A.H B.NOH .MgO D.I212.下图表示某有机反应过程的示意图,该反应的类型是A.取代反应B.加成反应.聚合反应 D.酯反应13.下列物质和新制(OH)2共热,有红色沉淀产生的是A.油脂B.乙醇.葡萄糖 D.乙酸14.下列方程式中,正确的是A .实验室用浓盐酸与MO 2反应制2:MO 2 +2H ++2-=2↑+M 2+ +H 2OB .氢氧钡溶液与稀硫酸反应:B 2++SO 42-=BSO 4↓.2氢气和1 氧气合生成2 液态水,放出5716J 热量的热方程式2H 2(g) +O 2(g)= 2H 2O() ΔH=- 5716 J·-1D .醋酸溶液与水垢中的O 3反应:O 3+2H +=2++H 2O +O 2↑ 15.用N A 表示阿伏加德罗常的值,下列叙述正确的是A .224 L O 2中含有氧分子的个为2N AB .56g F 与足量氯气反应转移的电子为2N A .4 g 氦气中含有氦原子的个为N A D .1 ·L -1 Mg 2溶液中含有氯离子个为2N A16.、b 、c 、d 均为短周期元素,它们在周期表中的位置如图所示。
2014高考数学浙江卷
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C UA.∅B.{}2C.{}5D.{}5,2 2. 已知i 是虚数单位,R b a ∈,,则“1==b a ”是“()i bi a 22=+”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 3. 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A.290cm B.2129cm C.2132cm D.2138cm 4. 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D..向左平移12π个单位5. 在()()4611y x ++的展开式中,记nmy x 项的系数为()n m f ,,则()()()()=+++3,02,11,20,3f f f fA.45B.60C.120D. 210 6. 已知函数()c bx ax x x f +++=23,且()()()33210≤-=-=-≤f f f ,则A.3≤cB.63≤<cC.96≤<cD.9>c 7. 在同一直角坐标系中,函数()()0≥=x x x f a,()x x g a log =的图像可能是A. B. C. D.(第3题图)8. 记{}⎩⎨⎧<≥=y x y y x x y x ,,,max ,{}⎩⎨⎧<≥=yx x y x y y x ,,,min ,设b a,为平面向量,则A.{}{}b a b a b a ,min ,min ≤-+ B.{}{}b a b a b a ,min ,min ≥-+ C.{}2222,max b aba b a +≤-+ D.{}2222,max b aba b a +≥-+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球()3,3≥≥n m ,从乙盒中随机 抽取()2,1=i i 个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()2,1=i i ξ; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为()2,1=i p i . 则A.()()2121,ξξE E p p <>B.()()2121,ξξE E p p ><C.()()2121,ξξE E p p >>D.()()2121,ξξE E p p <<10. 设函数()21x x f =,()()222x x x f -=,()x x f π2sin 313=,99,,2,1,0,99==i ia i . 记()()()()()()3,2,1,9899101=-++-+-=k a f a f a f a f a f a f I k k k k k k k 2. 则A.321I I I <<B.312I I I <<C.231I I I <<D.123I I I <<二、填空题:本大题共7小题,每小题4分,共28分。
2014年浙江省数学学业水平考试模拟试题
2014年1月浙江省普通高中学业水平测试数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至3页,非选择题部分第4页。
满分100分,考试时间110分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分 (共60分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写 在试卷和答题纸规定的位置上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上. 参考公式: 球的表面积公式 S =4πR 2球的体积公式 V =43πR 3,其中R 表示球的半径 锥体的体积公式 V =13Sh 其中S 表示锥体的底面积,h 表示锥体的高柱体的体积公式 V =Sh其中S 表示柱体的底面积,h 表示柱体的高 台体的体积公式 V =13h (S 1S 2) 其中S 1,S 2分别表示台体的上、下底面积, h 表示台体的高一、 选择题:本大题共25小题,1-15题每小题5分,16-25每小题3分,共60分. 1.设全集U ={1,2,3,4},则集合A ={1, 3},则C U A = (A){1, 4} (B){2, 4} (C){3, 4} (D){2, 3}2.sin 60= (A)21 (B)22 (C)23 (D)13.函数()lg(1)f x x =-的定义域为 (A) {x |x <1}(B){x |x >1|}(C){x ∈R|x ≠0}(D){x ∈R|x ≠1}4.若直线y =kx +2的斜率为2,则k =(A)-2(B)2(C)21-(D)215.若函数f(x)为, 则f[f(1)]=(A)0 (B)1 (C)2(D)36.以矩形的一边所在的直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体是(A)球(B)圆台(C)圆锥(D)圆柱7.圆x2+y2-4x+6y+3=0的圆心坐标是(A)(2, 3) (B)(-2, 3) (C)(2, -3) (D)( -2, -3) 8.等比数列{a n}中,a3=16,a4=8,则a1=(A)64 (B)32 (C)4 (D)29.函数1()f x xx=-(A)是奇函数,但不是偶函数(B)既是奇函数,又是偶函数(C)是偶函数,但不是奇函数(D)既不是奇函数,又不是偶函数10.函数)6cos(2)(π+=xxf,x∈R的最小正周期为(A)4π(B)2π(C)π(D)2π11.“a=b”是“a2=b2”的(A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分又不必要条件12.设a, b, c是两两不共线的平面向量,则下列结论中错误..的是(A) a+b=b+a(B) a⋅b=b⋅a(C) a+(b+c)=(a+b)+c(D) a(b⋅c)=(a⋅b)c13.若tanα=21,tanβ=31,则tan(α+β)=(A)75(B)65(C)1 (D)214.若非零实数a, b满足a>b,则(A)ba11<(B)2211ba>(C)a2>b2(D)a3>b3 15.在空间中,下列命题正确的是(A)与一平面成等角的两直线平行(B)垂直于同一平面的两平面平行(C)与一平面平行的两直线平行(D)垂直于同一直线的两平面平行16.双曲线192522=-yx的渐近线方程为(A)3x±4y=0 (B) 4x±3y=0 (C) 3x±5y=0 (D)5x±3y=017.某几何体的三视图如图所示,则该几何体的体积是(A)π34(C)π38(D)π310正视图侧视图218.计算202sin 22.51-的结果是(A) 2- (B) 2(C)(D)19.将函数)3sin(π-=x y 的图象上所有点的横坐标缩短到原来的21倍(纵坐标不变),得到的图象所对应的函数是(A))32sin(π-=x y (B))322sin(π-=x y (C))321sin(π-=x y (D))621sin(π-=x y20.函数f (x )=log(1-x )的图象为21.如图几何体,SA =SC =AB =BC ,则直线SB 与AC 所成角的大小是 (A)30º(B)45º (C)60º (D)90º 22.若{a n }无穷等比数列,则以下可能不是....等比数列的是 (A) {a 2n }(B) {a 2n-1} (C) {a n ⋅a n +1} (D) {a n +a n +1}23.若正实数x ,y 满足1911x y+=+,则x +y 的最小值是 (A)15 (B) 16(C)18(D) 1924.M 是空间直角坐标系Oxyz 中任一点(异于O ),若直线OM 与x O y 平面,yoz 平面,zox 平面所成的角的余弦值分别为p , q , r ,则p 2+q 2+r 2=(A)41(B)1 (C) 2 (D)49 25.在椭圆)0(12222>>=-b a by a x 中,F ,A ,B 分别为其左焦点,右顶点,上顶点,O 为坐标原点,M 为线段OB 的中点,若△FMA 为直角三角形,则该椭圆的离心率为(A)25-(B)215- (C)552 (D)55(A)-1ABC(第21题)S非选择题部分 (共40分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 三、填空题(本题有5小题,每小题2分,共10分) 26.计算lg 2lg50+= .27.不等式x 2 -2x <0的解集是 .28.设S n 是等差数列{a n }的前n 项和,若a 1= -2,S 4=10,则公差d = . 29.已知A(-1,2),B(3,4),C(4,-6),若抛物线y 2=ax 的焦点恰好是△ABC 的重心,则a= .30.若不等式组⎪⎪⎩⎪⎪⎨⎧≤+-≥+-≤+≤-002020b y ax y x y x y x 所表示的平面区域的边界是菱形,则ab = .四、解答题(本题有4小题,共30分)31.(本题7分) 在锐角△ABC 中,角A , B , C 所对的边分别为a , b , c . 已知b =2,c =3,sin A =322. 求△ABC 的面积及a 的值. 32.(本题7分) 已知函数()()x x f x x a a -=+ ( 10≠>a ,a ).(1) 证明)(x f 为奇函数; (2) 若)(x f 的图象经过点(1,25),求a 的值. 33.(本题7分)已知三棱柱ABC —A 1B 1C 1的侧棱与底面ABC 垂直,且AA 1=4,AC =BC =2,∠ACB =90°. (1) 证明:AC ⊥平面BCC 1B 1.(2) 求直线BB 1与平面AB 1C 所成角的正切值;34.(本题8分) 已知抛物线2y mx =的焦点到准线的距离为1,且它的开口向右.(1) 求m 的值.(2) 若P 是抛物线上的动点,点B,C 在y 轴上,圆(x -1)2 +y 2 =1内切于△PBC ,求△PBC 面积的最小值.ABC1A 1B 1C。
2014年浙江卷(理科数学)
2014年普通高等学校招生全国统一考试理科数学(浙江卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{}2U x N x =∈≥,集合{}25A x N x =∈≥,则U C A =A.∅B.{}2C.{}5D.{}2,5 2.已知i 是虚数单位,a ,b R ∈,则“1a b ==”是“2()2a bi i +=”的 A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A.290cm B.2129cm C.2132cm D.2138cm4.为了得到函数sin 3cos3y x x =+的图像,可以将函数3y x =的图像A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m n x y 项的系数为(,)f m n ,(3,0)(2,1)f f +(1,2)(0,3)f f ++=正视图侧视图俯视图A .45B .60C .120D .210 6.已知函数32()f x x ax bx c =+++,且0(1)(2)(3)3f f f ≤-=-=-≤,则 A.3c ≤ B.36c <≤ C.69c <≤ D.9c > 7.在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是8.记{},x x y max x y y x y ≥⎧=⎨<⎩,{},y x ymin x y n x y ≥⎧=⎨<⎩,设a r ,b r 为平面向量,则A.{}{,}max a b a b min a b +-≤,r r r r r r B.{}{,}max a b a b min a b +-≥,r r r r r rC.2222{}min a b a b a b +-≤+,r r r r r rD.2222{}min a b a b a b +-≥+,r r r r r r 9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(3m ≥,3n ≥)从乙盒中随机抽取i (1i =,2)个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为i ξ(1i =,2);(b )放入i 个球后,从甲盒中取1个球是红球的概率记为i p (1i =,2).则 A.12p p >,12()()E E ξξ< B.12p p <,12()()E E ξξ> C.12p p >,12()()E E ξξ> D.12p p <,12()()E E ξξ< 10.设函数21()f x x =,22()2()f x x x =-,31()sin 23f x x π=,99i ia =,0i =,1,2,L ,99,10119998()()()()()()k k I f a f a f a f a f a f a =-+-++-L ,1k =,2,3,则A.123I I I <<B.213I I I <<C.132I I I <<D.321I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 .12.随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= .13.当实数x ,y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 .14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答).15.设函数22()0x x x f x xx ⎧+<=⎨-≥⎩,若(())2f f a ≤,则实数a 的取值范围是 . 16.设直线30x y m -+=(0m ≠)与双曲线22221x y a b-=(0a b >>)两条渐近线分别交于点A ,B ,若点(,0)P m 满足PA PB =,则该双曲线的离心率是 . 17.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,=25AC m ,BCM ∠30=o ,则tan θ的最大值三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本小题满分14分)在ABC ∆中,A ,B ,C 所对的边分别为a ,b ,c ,已知a b ≠,c =22cos cos cos cos A B A A B B -=(Ⅰ)求角C 的大小;(Ⅱ)若4sin 5A =,求ABC ∆的面积.19.(本小题满分14分)已知数列{}n a 和{}n b满足123n b n a a a a ⋅⋅⋅⋅=L (n N *∈).若{}n a 为等比数列,且12a =,326b b =+. (Ⅰ)求n a 与n b ; (Ⅱ)设11n n nc a b =-(n N *∈),记数列{}n c 的前n 项和为n S . ①求n S ;②求正整数k ,使得对任意n N *∈,均有k n S S ≥. 20.(本小题满分15分)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=o ,2AB CD ==,1DE BE ==,AC =. (Ⅰ)证明:DE ⊥平面ACD , (Ⅱ)求二面角B AD E --的大小.ABCDE21.(本小题满分15分)如图,设椭圆C :22221x y a b+=(0a b >>)动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(Ⅰ)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(Ⅱ)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -.22.(本小题满分14分)已知函数3()3f x x x a =+-(a R ∈).(Ⅰ)若()f x 在[1,1]-上的最大值和最小值分别记为()M a ,()m a ,求()()M a m a -; (Ⅱ)设b R ∈,若[]2()4f x b +≤对[1,1]x ∈-恒成立,求3a b +的取值范围.。
2014年普通高等学校招生全国统一考试数学理试题(浙江卷)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+D.2222min{||,||}||||a b a b a b +-≤+ 9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值三.解答题:本大题共5小题,共72分。
2014年1月浙江省普通高中学业水平考试110份
2014年1月浙江省普通高中学业水平考试语文试题一.选择题(本大题共18题,每小题3分,共54分)1.下面加点字的读音全都正确的一项是()A.骸骨(hài)屋檐(yán)搭档(dàng)步履蹒跚(pán)B.尘芥(jiâ)脑髓(suǐ)树梢(xiāo)天理昭彰(zhào)C.攻讦(jiã)慰藉(jí)蝙蝠(piān)跌宕起伏(dàng)D.伺候(sì)租赁(lìn)寥廓(guō)邯郸学步(dān)2.下面句中没有别字的一项是()A.辟如在园中最为落寞的时间,一群雨燕便出来高歌,把天地都唱得沧凉。
B.角落里的画架上绷着一副空白的画布,它在那儿静侯杰作的落笔,已经多年了。
C.凝神一看,貌似平静的海面却有海浪拍打着礁石,溅起几尺高的洁白晶莹的水花。
D.为有效控量、妨堵、治霾,天津实施无偿摇号与有偿竞价相结合的汽车限牌措施。
3.依次填入下列句子横线处的词语,恰当的一项是()① 这是独处的妙处,我且_____这无边的荷塘月色好了。
② 在日常生活中,用话语交流信息、______情感,从没像今天这样便捷。
③ 获得这么多发明专利后,他非但没有自满,______更加用心钻研。
A.受用勾通而且 B.受用沟通反而C.承受勾通反而 D.承受沟通而且4.下列句子中加点的成语运用不恰当的一项是()A.冯小刚把影片中最重要的角色给了葛优,其他人成了举重若轻的角色。
B.中国梦不可能一蹴而就,它指向的远大目标需要你我一步一步去实现。
C.在全社会开始重视汉字读写的背景下,一些相关的电视节目应运而生。
D.科技带来的变化,并不总是那么立竿见影,但它会渐渐地作用于生活。
5.下列句子没有语病的一项是()A.“细胞打印”技术还在目前试验阶段,但可能用于人的未来器官培植。
B.去年物价总体保持稳定,数据表明12月CPI在不到3%左右运行。
2014年普通高等学校招生全国统一考试(浙江卷)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U ={x ∈N |x ≥2},集合A ={x ∈N |x 2≥5},则∁U A =( ) A .∅ B .{2} C .{5} D .{2,5}2.已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A .90 cm 2B .129 cm 2C .132 cm 2D .138 cm 24.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2cos 3x 的图象( ) A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位5.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .2106.已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >97.在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )8.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2 D .max{|a +b |2,|a -b |2}≥|a |2+|b |29.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个蓝球(m ≥3,n ≥3),从乙盒中随机抽取i (i =1,2)个球放入甲盒中.(1)放入i 个球后,甲盒中含有红球的个数记为ξi (i =1,2);(2)放入i 个球后,从甲盒中取1个球是红球的概率记为p i (i =1,2). 则( )A .p 1>p 2,E (ξ1)<E (ξ2)B .p 1<p 2,E (ξ1)>E (ξ2)C .p 1>p 2,E (ξ1)>E (ξ2)D .p 1<p 2,E (ξ1)<E (ξ2)10.设函数f 1(x )=x 2,f 2(x )=2(x -x 2),f 3(x )=13|sin 2πx |,a i =i99,i =0,1,2,…,99.记I k=|f k (a 1)-f k (a 0)|+|f k (a 2)-f k (a 1)|+…+|f k (a 99)-f k (a 98)|,k =1,2,3.则( )A .I 1<I 2<I 3B .I 2<I 1<I 3C .I 1<I 3<I 2D .I 3<I 2<I 1二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运行后输出的结果是________.12.随机变量ξ的取值为0,1,2.若P (ξ=0)=15,E (ξ)=1,则D (ξ)=________.13.当实数x ,y 满足{ x +2y -4≤0, x -y -1≤0, x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).15.设函数f (x )={ x 2+x ,x <0, -x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是________.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m,0)满足|P A |=|PB |,则该双曲线的离心率是________.17.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B .(1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.19.(本题满分14分)已知数列{a n }和{b n }满足a 1a 2a 3…a n =(2)b n (n ∈N *).若{a n }为等比数列,且a 1=2,b 3=6+b 2.(1)求a n 与b n ;(2)设c n =1a n -1b n (n ∈N *).记数列{c n }的前n 项和为S n .①求S n ;②求正整数k ,使得对任意n ∈N *,均有S k ≥S n .20.(本题满分15分)如图,在四棱锥A -BCDE 中,平面ABC ⊥平面BCDE ,∠CDE =∠BED =90°,AB =CD =2,DE =BE =1,AC = 2.(1)证明:DE ⊥平面ACD ;(2)求二面角B -AD -E 的大小.21.(本题满分15分)如图,设椭圆C :x 2a 2+y 2b 2=1(a >b >0),动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用a ,b ,k 表示点P 的坐标;(2)若过原点O 的直线l 1与l 垂直,证明:点P 到直线l 1的距离的最大值为a -b .22.(本题满分14分)已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.解析:选B 由题意知U ={x ∈N |x ≥2},A ={x ∈N |x ≥5},所以∁U A ={x ∈N |2≤x <5}={2}.故选B.2.解析:选A 当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.3.解析:选D 由三视图画出几何体的直观图,如图所示,则此几何体的表面积S =S 1-S正方形+S 2+2S 3+S斜面,其中S 1是长方体的表面积,S 2是三棱柱的水平放置的一个侧面的面积,S 3是三棱柱的一个底面的面积,则S =(4×6+3×6+3×4)×2-3×3+3×4+2×12×4×3+5×3=138(cm 2),选D.4.解析:选C 因为y =sin 3x +cos 3x =2cos ⎝⎛⎭⎫3x -π4=2cos 3⎝⎛⎭⎫x -π12,所以将函数y =2cos 3x 的图象向右平移π12个单位后,可得到y =2cos ⎝⎛⎭⎫3x -π4的图象,故选C. 5.解析:选C 由题意知f (3,0)=C 36C 04,f (2,1)=C 26C 14,f (1,2)=C 16C 24,f (0,3)=C 06C 34,因此f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,选C.6.解析:选C 由题意,不妨设g (x )=x 3+ax 2+bx +c -m ,m ∈(0,3],则g (x )的三个零点分别为x 1=-3,x 2=-2,x 3=-1,因此有(x +1)(x +2)(x +3)=x 3+ax 2+bx +c -m ,则c -m =6,因此c =m +6∈(6,9].7.解析:选D 当a >1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递增,且过点(1,0),由幂函数的图象性质可知C 错;当0<a <1时,函数f (x )=x a (x >0)单调递增,函数g (x )=log a x 单调递减,且过点(1,0),排除A ,又由幂函数的图象性质可知C 错,因此选D.8.解析:选D 对于min{|a +b |,|a -b |}与min{|a |,|b |},相当于平行四边形的对角线长度的较小者与两邻边长的较小者比较,它们的大小关系不定,因此A ,B 均错;而|a +b |,|a -b |中的较大者与|a |,|b |可构成非锐角三角形的三边,因此有max{|a +b |2,|a -b |2}≥|a |2+|b |2,因此选D.9.解析:选A 解法一(特值法) 取m =n =3进行计算、比较即可.解法二(标准解法) 从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P (ξ=0)=n m +n =P (ξ1=1),P (ξ=1)=m m +n =P (ξ1=2),所以E (ξ1)=1·P (ξ1=1)+2·P (ξ1=2)=m m +n +1,所以p 1=E (ξ1)2=2m +n2(m +n );从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P (η=0)=C 2n C 2m +n =P (ξ2=1),P (η=1)=C 1n C 1mC 2m +n=P (ξ2=2),P (η=2)=C 2mC 2m +n =P (ξ2=3),所以E (ξ2)=1·P (ξ2=1)+2P (ξ2=2)+3P (ξ2=3)=2m m +n +1,所以p 2=E (ξ2)3=3m +n3(m +n ),所以p 1>p 2,E (ξ1)<E (ξ2),故选A.10.解析:选B 显然f 1(x )=x 2在[0,1]上单调递增,可得f 1(a 1)-f 1(a 0)>0,f 1(a 2)-f 1(a 1)>0,…,f 1(a 99)-f 1(a 98)>0,所以I 1=|f 1(a 1)-f 1(a 0)|+|f 1(a 2)-f 1(a 1)|+…+|f 1(a 99)-f 1(a 98)|=f 1(a 1)-f 1(a 0)+f 1(a 2)-f 1(a 1)+…+f 1(a 99)-f 1(a 98)=f 1(a 99)-f 1(a 0)=⎝⎛⎭⎫99992-0=1.f 2(x )=2(x -x 2)在⎣⎡⎦⎤0,4999上单调递增,在⎣⎡⎦⎤5099,1上单调递减,可得f 2(a 1)-f 2(a 0)>0,…,f 2(a 49)-f 2(a 48)>0,f 2(a 50)-f 2(a 49)=0,f 2(a 51)-f 2(a 50)<0,…,f 2(a 99)-f 2(a 98)<0,所以I 2=|f 2(a 1)-f 2(a 0)|+|f 2(a 2)-f 2(a 1)|+…+|f 2(a 99)-f 2(a 98)|=f 2(a 1)-f 2(a 0)+…+f 2(a 49)-f 2(a 48)-[f 2(a 51)-f 2(a 50)+…+f 2(a 99)-f 2(a 98)]=f 2(a 49)-f 2(a 0)-[f 2(a 99)-f 2(a 50)]=2f 2(a 50)-f 2(a 0)-f 2(a 99)=4×5099×⎝⎛⎭⎫1-5099=9 8009 801<1.f 3(x )=13|sin 2πx |在⎣⎡⎦⎤0,2499,⎣⎡⎦⎤5099,7499上单调递增,在⎣⎡⎦⎤2599,4999,⎣⎡⎦⎤7599,1上单调递减,可得f 3(a 1)-f 3(a 0)>0,…,f 3(a 24)-f 3(a 23)>0,f 3(a 25)-f 3(a 24)>0,f 3(a 26)-f 3(a 25)<0,…,f 3(a 49)-f 3(a 48)<0,f 3(a 50)-f 3(a 49)=0,f 3(a 51)-f 3(a 50)>0,…,f 3(a 74)-f 3(a 73)>0,f 3(a 75)-f 3(a 74)<0,f 3(a 76)-f 3(a 75)<0,…,f 3(a 99)-f 3(a 98)<0,所以I 3=|f 3(a 1)-f 3(a 0)|+|f 3(a 2)-f 3(a 1)|+…+|f 3(a 99)-f 3(a 98)|=f 3(a 25)-f 3(a 0)-[f 3(a 49)-f 3(a 25)]+f 3(a 74)-f 3(a 50)-[f 3(a 99)-f 3(a 74)]=2f 3(a 25)-2f 3(a 49)+2f 3(a 74)=232sin 49π99-sin π99>232sin 5π12-sin π12=2326+224-6-24=6+326>1.因此I 2<I 1<I 3.二、填空题:本大题共7小题,每小题4分,共28分.11.解析:S =0,i =1;S =1,i =2;S =4,i =3;S =11,i =4;S =26,i =5;S =57,i =6,此时S >n ,所以i =6.答案:612.解析:由题意设P (ξ=由E (ξ)=1,可得p =35,所以D (ξ)=12×15+02×35+12×15=25.答案:2513.解析:由线性规划的可行域,求出三个交点坐标分别为(1,0),⎝⎛⎭⎫1,32,(2,1),都代入1≤ax +y ≤4,可得1≤a ≤32.答案:⎣⎡⎦⎤1,32 14.解析:分情况:一种情况将有奖的奖券按2张、1张分给4个人中的2个人,种数为C 23C 11A 24=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 34=24,则获奖情况总共有36+24=60(种).答案:6015.解析:结合图形(图略),由f (f (a ))≤2可得f (a )≥-2,可得a ≤ 2. 答案:(-∞,2)16.解析:联立直线方程与双曲线渐近线方程y =±b a x 可解得交点为⎝⎛⎭⎫am 3b -a ,bm 3b -a ,⎝ ⎛⎭⎪⎫-am 3b +a ,bm 3b +a ,而k AB=13,由|P A |=|PB |,可得AB 的中点与点P 连线的斜率为-3,即bm 3b -a +bm3b +a2-0am3b -a +-am 3b +a2-m=-3,化简得4b 2=a 2,所以e =52.答案:5217.解析:作PH ⊥BC ,垂足为H ,设PH =x ,则CH =3x ,由余弦定理AH =625+3x 2-403,tan θ=tan ∠P AH =PHAH =1625x 2-403x+3⎝⎛⎭⎫1x >0,故当1x=43125时,tan θ取得最大值,最大值为539.答案:539三、解答题(本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤) 18.解析:(1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B ,即32sin 2A -12cos 2A =32sin 2B -12cos 2B , sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6. 由a ≠b ,得A ≠B ,又A +B ∈(0,π),得2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310,所以,△ABC 的面积为S =12ac sin B =83+1825.19.解析:(1)由题意a 1a 2a 3…a n =(2)b n ,b 3-b 2=6,知a 3=(2)b 3-b 2=8.又由a 1=2,得公比q =2(q =-2,舍去), 所以数列{a n }的通项为a n =2n (n ∈N *). 所以,a 1a 2a 3…a n =2n (n +1)2=(2)n (n +1).故数列{b n }的通项为b n =n (n +1)(n ∈N *). (2)①由(1)知c n =1a n -1b n =12n -⎝⎛⎭⎫1n -1n +1(n ∈N *),所以S n =1n +1-12n (n ∈N *).②因为c 1=0,c 2>0,c 3>0,c 4>0; 当n ≥5时, c n =1n (n +1)⎣⎡⎦⎤n (n +1)2n-1, 而n (n +1)2n -(n +1)(n +2)2n +1=(n +1)(n -2)2n +1>0, 得n (n +1)2n≤5·(5+1)25<1, 所以,当n ≥5时,c n <0.综上,对任意n ∈N *恒有S 4≥S n ,故k =4.20.解析:(1)在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC = 2. 由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC . 又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE . 所以AC ⊥DE .又DE ⊥DC ,从而DE ⊥平面ACD .(2)法一:作BF ⊥AD ,与AD 交于点F .过点F 作FG ∥DE ,与AE 交于点G ,连接BG ,由(1)知DE ⊥AD ,则FG ⊥AD .所以∠BFG 是二面角B -AD -E 的平面角. 在直角梯形BCDE 中,由CD 2=BC 2+BD 2,得BD ⊥BC , 又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD ⊥AB . 由于AC ⊥平面BCDE ,得AC ⊥CD .在Rt △ACD 中,由DC =2,AC =2,得AD = 6. 在Rt △AED 中,由ED =1,AD =6,得AE =7.在Rt △ABD 中,由BD =2,AB =2,AD =6,得BF =233,AF =23AD .从而GF =23.在△ABE ,△ABG 中,利用余弦定理分别可得cos ∠BAE =5714,BG =23.在△BFG 中,cos ∠BFG =GF 2+BF 2-BG 22BF ·GF =32.所以,∠BFG =π6,即二面角B -AD -E 的大小是π6.法二:以D 为原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D -xyz ,如图所示.由题意知各点坐标如下:D (0,0,0),E (1,0,0),C (0,2,0),A (0,2,2),B (1,1,0). 设平面ADE 的法向量为m =(x 1,y 1,z 1),于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=33·2=32. 由题意可知,所求二面角是锐角,故二面角B -AD -E 的大小是π6.21.解析:(1)设直线l 的方程为y =kx +m (k <0),由消去y 得(b 2+a 2k 2)x 2+2a 2kmx +a 2m 2-a 2b 2=0.由于l 与C 只有一个公共点,故Δ=0,即b 2-m 2+a 2k 2=0,解得点P 的坐标为⎝⎛⎭⎫-a 2km b 2+a 2k 2,b 2m b 2+a 2k 2.又点P 在第一象限,故点P 的坐标为P -a 2kb 2+a 2k 2,b 2b 2+a 2k 2.(2)由于直线l 1过原点O 且与l 垂直,故直线l 1的方程为x +ky =0,所以点P 到直线l 1的距离d =⎪⎪⎪⎪⎪⎪-a 2k b 2+a 2k2+b 2k b 2+a 2k 21+k2,整理得d =a 2-b 2b 2+a 2+a 2k 2+b2k2,因为a 2k 2+b 2k2≥2ab ,所以a 2-b 2b 2+a 2+a 2k 2+b 2k2≤a 2-b 2b 2+a 2+2ab=a -b ,当且仅当k 2=ba时等号成立.所以,点P 到直线l 1的距离的最大值为a -b . 22.由于-1≤x ≤1,①当a ≤-1时,有x ≥a ,故f (x )=x 3+3x -3a ,此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a ,故M (a )-m (a )=(4-3a )-(-4-3a )=8.②当-1<a <1时,若x ∈(a,1),f (x )=x 3+3x -3a ,在(a,1)上是增函数;若x ∈(-1,a ),f (x )=x 3-3x +3a ,在(-1,a )上是减函数,所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此,当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2. ③当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a ,此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a ,故M (a )-m (a )=(2+3a )-(-2+3a )=4.因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立,即-2≤h (x )≤2对x ∈[-1,1]恒成立, 所以由(1)知,①当a ≤-1时,h (x )在(-1,1)上是增函数,h (x )在[-1,1]上的最大值是h (1)=4-3a +b ,最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾;②当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b ,所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13. 令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数,故t (a )≥t (0)=-2,因此-2≤3a +b ≤0;③当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2,所以a 3+b ≥-2是3a +b +2≤2,解得-2827<3a +b ≤0; ④当a ≥1时,h (x )在[-1,1]上的最大值是h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0.综上,得3a +b 的取值范围是-2≤3a +b ≤0.。
2014年高考浙江理科数学试题及答案
2014 年一般高等学校招生全国一致考试(浙江卷)数学(理科)第Ⅰ卷(选择题共50分)一、选择题:本大题共10 小题,每题 5 分,共50 分,在每题给出的四个选项中,只有一项切合题目要求.( 1)【 2014 年浙江,理1, 5 分】设全集 U { x N | x 2} ,会合 A{ x N | x25} ,则e U A()( A)(B) {2}( C) {5}( D) {2,5}【答案】 B【分析】 A { x25}{ x N | x5} , C U A { x N | 2x5}{2},应选 B.N | x【评论】本题主要考察全集、补集的定义,求会合的补集,属于基础题.( 2)【 2014 年浙江,理2, 5 分】已知i是虚数单位,a,b R ,则“ a b1”是“ ( a bi) 22i ”的()( A)充足不用要条件( B)必需不充足条件(C)充足必需条件( D)既不充足也不用要条件【答案】 A【分析】当 a b1时,(a bi) 2(1 i) 22i ,反之, (a bi) 22i,即 a 2b22abi 2i ,则 a 2b20 ,2 ab2a1a1解得或b ,应选 A.b11【评论】本题考察的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.( 3)【 2014 年浙江,理 3, 5 分】某几何体的三视图(单位:cm)以下图,则此几何体的表面积是()2(B) 129 cm 2( C)132 cm22( A)90 cm( D) 138 cm 【答案】 D【分析】由三视图可知直观图左侧一个横放的三棱柱右边一个长方体,故几何体的表面积为:S 2 4 6 2 3 4 3 633343 5 213 4138,应选 D.2【评论】本题考察了由三视图求几何体的表面积,依据三视图判断几何体的形状及数据所对应的几何量是解题的重点.( 4)【 2014 年浙江,理4,5 分】为了获取函数y sin3 x cos3x 的图像,能够将函数 y 2 cos3x 的图像()( A)向右平移个单位( B)向左平移4个单位( C)向右平移12个单位( D)向左平移个单位【答案】 C412【分析】 y sin3 x cos3x 2 sin(3x) 2 sin[3( x)] ,而 y 2 cos3x 2 sin(3 x) = 2 sin[3( x6)] ,4122由 3(x)3( x) ,即 x x12,故只要将 y 2 cos3x 的图象向右平移个单位,应选 C.61212【评论】本题考察两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考察.( 5 )【 2014年浙江,理 5,5分】在(1x)6 (1y) 4的展开式中 , 记 x m y n项的系数 f (m, n),则f (3,0) f (2,1) f (1,2) f (0,3) =()( A)45( B)60( C) 120( D) 210【答案】 C【分析】令 x y ,由题意知 f (3,0) f (2,1) f (1,2) f (0,3) 即为(1x)10睁开式中 x3的系数,故 f (3,0) f (2,1) f (1,2) f (0,3) =C107120 ,应选 C.【评论】本题考察二项式定理系数的性质,二项式定理的应用,考察计算能力.( 6)【 2014 年浙江,理6, 5 分】已知函数 f (x)x3ax2bx c ,且 0 f ( 1) f ( 2) f ( 3) 3 ()( A)c 3( B)3 c6( C)6 c 9( D)c 9【答案】 C【分析】由 f ( 1)f ( 2) f ( 3) 得1 a b c 8 4a 2b c ,解得 a 6 ,1 a b c 27 9a 3b cb 11 所以 f (x) x 3 6x 2 11xc ,由 0 f ( 1) 3,得 01 6 11 c 3 ,即 6 c9 ,应选 C .【评论】本题考察方程组的解法及不等式的解法,属于基础题.( 7)【 2014 年浙江,理 7,5 分】在同向来角坐标系中,函数f ( x) x a (x 0) , g( x) log a x 的图像可能是()( A )( B )(C )(D )【答案】 D【分析】函数 f (x)x a ( x 0) , g( x) log a x 分其他幂函数与对数函数答案 A 中没有幂函数的图像 , 不切合;答 案 B 中,( ) x a ( x 0) 中 a 1 ,g(x) log a x 中 0 a 1,不切合;答案 C 中,f (x) a(x 0) 中 0 a 1, fxx g(x) log a x 中 a 1 ,不切合;答案 D 中, f (x)x a (x 0) 中 0 a 1 , g( x) log a x 中 0a 1 ,切合,应选 D .【评论】本题考察的知识点是函数的图象,娴熟掌握对数函数和幂函数的图象和性质,是解答的重点. ( 8)【 2014 年浙江,理 8, 5 分】记 max{ x, y}r r r r min{| r r ( A ) min{| a b |,| a b |} a |,| b |} r r 2 r r 2 r 2 r 2 ( C ) max{| a b | ,| a b | } | a | |b | 【答案】 Dr【分析】由向量运算的平行四边形法可知 min{| a x, x y, min{ x, y} y, x r r y ,设 a,b 为平面向量,则( ) y, x y r x, x y r rr r r min{|( B ) min{| a b |,| a b |} a |,| b |}r r 2 r r 2 r 2 r 2( D ) max{| a b | ,| a b | } | a | | b | r r r r rb |,| a b |} 与 min{| a |,| b |} 的大小不确立,平行四边形法可知r r r r90r rr rrrmax{| ab |,| ab |} 所对的角大于或等于 ,由余弦定理知 max{| a b |2,| a b |2} | a |2|b |2,r r 2 r r r r r r r r r 2r 2| a b |2 | a b |2 2(| a |2 | b |2 ) 2 ),应选 D .(或 max{| a b | ,| a b | } 2 r 2| a | | b | r r r r r【评论】本题在办理时要联合着向量加减法的几何意义,将a ,b , a b , a b 放在同一个平行四边形中进行 比较判断,在详细解题时,本题采纳了清除法,对错误选项进行举反例说明,这是高考取做选择题的常用方法,也不失为一种迅速有效的方法,在高考选择题的办理上,未必每一题都要写出详细解答步骤,针对选择题的特色,有时“清除法”,“确立法”,“特别值”代入法等或许是一种更迅速,更有效的方法.( 9)【 2014 年浙江,理 9,5 分】已知甲盒中仅有1 个球且为红球,乙盒中有 m 个红球和 n 个篮球 ( m 3,n 3) ,从乙盒中随机抽取 i (i 1,2) 个球放入甲盒中. ( a )放入 i 个球后,甲盒中含有红球的个数记为i(i 1,2) ;( b )放入 i 个球后,从甲盒中取1 个球是红球的概率记为p i (i 1,2) .则()( A ) p 1 p 2 ,E( 1 )E( 2 ) ( B ) p 1p 2 , E( 1 ) E( 2 ) ( C ) p 1 p 2 , E( 1 ) E( 2 ) ( D ) p 1p 2 ,E( 1 ) E( 2 )【答案】 A【分析】解法一:p 1m n1 2m n, p 2C n 21 C m 1C n 1 2C m 2 =3m 23m 2mnn 2 n, m nmn 22( m n )2g2g 23(mn)(m n1)Cm n3Cm n3 Cm n∴ p 1p 22m n - 3m 23m 2mn n 2 n = 5mn n( n 1)1)0 ,故 p 1 p 2 .2( m n) 3(m n)( m n 1) 6(m n)( m n又∵P(11)m n,P(12) m ,∴ E( 1) 1 nn2m n 2m n ,nm n mm m n 又P( 2C n 2n(n 1), P(C n 1C m 12mn ,1)(m n)( m n 22)(mn)( m nC m 2 n 1)C m2n1) P (23)C m 2m (m1)C m 2( m n )( m n 1)n∴E( 2)1n( n 1)22mn n 1) 3 (m m(m 1)1) = 3m 2n 2 3m n 4mn( mn)(m n 1)( m n)( m n)( m n (m n)(m n 1)3m 2 n 23m n 4mn - 2m n = m( m 1)mnE( 2 ) E( 1)=0 ,所以 E( 2) E( 1) ,应选 A .(mn)(m n 1)n)( m n 1) m n ( m解法二:在解法一中取 mn3 ,计算后再比较,应选A .【评论】正确理解ii1,2 的含义是解决本题的重点.本题也能够采纳特别值法,不如令m n3 ,也能够很快求解.( 10)【 2014 年浙江, 理 10,5 分】设函数 f 1 ( x) x 2, f 2 ( x)2( x x 2) , f 3 ( x) 1 | sin 2 x |, a ii, i 0,1, 2 ,399 L , 99 ,记 I k | f k ( a 1 ) f k (a 0 ) | | f k (a 2 ) f k (a 1) | L| f k ( a 99 ) f k (a 98 ) | , k 1,2,3 ,则( )(A ) I 1I 2 I 3(B ) I 2I 1I 3(C ) I 1I 3I 2(D ) I 3I 2I 1【答案】 B【分析】解法一:221 135299 1 1 992由ii 11 g2i 1,故 I 1L(99 9999)g1 ,9999 99 9999 99 99 99ii 1 i2i 1 21 | 99 (2i 1)|,故 I 2150(98 0)98g 100 由 2222 1 ,9999999999 9999 2 9999 99I 31 1 ) | |sin(2 0 g 2 |sin(2 1 |sin(29998( |sin(2 g g ) | | sin(2 ) | g ) | L g ) | | sin(2 g ) |)3 99 99 99 999999 = 1 25 741,故 I 2I 1I 3,应选 B .[2sin(2 g ) 2sin(2 g)]3 9999解法二:估量法: I k 的几何意义为将区间 [0,1] 平分为 99 个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数f 1 (x)2的区间 [0,1] 平分为4 个小区间的情况,因f 1 (x) 在 [0,1] 上递加,此时xI 1 | f (a 1 ) f (a 0 ) | | f (a 2 ) f (a 1 ) | | f (a 3 ) f (a 2 ) | | f ( a 4 ) f ( a 3 ) |= A 1H 1A 2H 2 A 3H 3A 4H 4f (1)f (0)1,同理对题中给出的 I 1 ,相同有 I 1 1;而 I 2 略小于 21 ,11 42I 3 略小于 4,所以估量得 I 2 I 1I 3,应选 B .33【评论】本题主要考察了函数的性质,重点是求出这三个数与1 的关系,属于难题.第Ⅱ卷(非选择题共 100 分)二、填空题:本大题共 7 小题,每题4 分,共 28 分.( 11)【 2014 年浙江,理 11,5 分】若某程序框图以下图, 当输入 50 时,则该程序运算后输出的结果是.【答案】 6【分析】第一次运转结果S 1,i 2 ;第二次运转结果 S 4,i 3;第三次运转结果 S 11,i 4 ;第四次运转结果 S 26,i 5;第五次运转结果 S 57,i 6;此时 S 57 50 ,∴输出 i 6 .【评论】本题考察了直到型循环构造的程序框图,依据框图的流程模拟运转程序是解答此类问题的常用方法.( 12)【 2014 年浙江, 理 12,5 分】随机变量 的取值为 0,1,2 ,若 P( 0)1,E( )1,则D( )=.【答案】250 1251 时的概率为p ,P1p1 p1 【分析】设的散布列为:551 13由E( ) 0 1 p2 (1 p 1 ,解得 p5 ) 55 的散布列为即为 0 1 2P1315 55故E( ) (01) 2 1 (1 1) 2 3 (2 1) 2 12 . 5 55 5 【评论】本题综合考察了散布列的性质以及希望、方差的计算公式.x 2 y 4 0( 13)【 2014 年浙江,理 13, 5 分】当实数 x, y 知足 xy 1 0 时, 1 axy4 恒成立,则实数 a 的取值范x1围是__ .【答案】 [1,3]2【分析】解法一:x 2 y 4 0作出不等式组xy1 0所表示的地区如图,由1 axy4 恒成立,x 1故 A(1,0), B(2,1), C(1,3) ,三点坐标代入 11 a 43ax y 4 ,均成立得1 2a 1 4 解得 1 a,∴实数 a2321 a42的取值范围是 [1, 3 ] .解法二:2x 2 y 4 0作出不等式组xy1 0所表示的地区如图, 由 1 axy4 得,由图剖析可知, a0 且在 A(1,0) 点x 1a 1,得 1 a3,故实数 a 的取值范围是 [1, 3 ].获得最小值,在 B(2,1) 获得最大值,故12a 4 2 2 【评论】本题考察线性规划,考察了数形联合的解题思想方法,考察了数学转变思想方法,训练了不等式组得解法,是中档题.( 14)【2014 年浙江,理 14,5 分】在 8 张奖券中有一、二、三等奖各 1 张,其他 5 张无奖.将这 8 张奖券分派给 4 个人,每人 2 张,不一样的获奖状况有 种(用数字作答) .【答案】 60【分析】解法一:不一样的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有C 32 A 42 36 , 二是有三人各获取一张奖券,共有 A 43 24 ,所以不一样的获奖状况共有 36 24 60 种.解法二:将一、二、三等奖各 1 张分给 4 个人有 43 64 种分法,此中三张奖券都分给一个人的有 4 种分法, 所以不一样的获奖状况共有 64 4 60 种.【评论】本题考察摆列、组合及简单计数问题,考察学生的计算能力,属于基础题.x 2 x, x 0( 15)【 2014 年浙江,理 15,5 分】设函数 f ( x) 2x 若 f ( f (a)) 2 ,则实数 a 的取值范围是 .x , 0 【答案】 ( , 2] .【分析】由题意f (a ) 02 或 f (a) 0 ,解得 f (a) 2 ∴当 a 0 或 a0 ,解得 a 2 . f 2 (a) f (a) f 2 (a) 2 a 2 a 2 a 2 2【评论】本题主要考察分段函数的应用,其他不等式的解法,表现了数形联合的数学思想,属于中档题.2 2( 16)【 2014 年浙江,理 16, 5 分】设直线 x 3 y m0 ( m 0 ) 与双曲线xy1 ( a 0,b 0 )两条渐近a 2b 2线分别交于点 A , B .若点P( m,0)知足| PA | | PB |,则该双曲线的离心率是.【答案】 52【分析】解法一:由双曲线的方程可知,它的渐近线方程为ybx 和 ybx ,分别与直线 l :aax 3y m0 联立方程组,解得, A(a am , bm) , B ( am , bm ),设 AB 中3b a 3b a 3b a 3bam ambm bm点为 Q ,由 |PA| |PB|得,则 Q(a3ba 3b , a3b a3b) ,223b 2 m22122即 Q(a m,3b m 2 ), PQ 与已知直线垂直,∴ k PQ gk l1 ,即a9b1 ,22 29b2 m ga9b aa 3a 2 9b 2 m2即得 2a28b 2 ,即 2a28(c2a 2) ,即c 5,所以 ec52a. 解法二:a42不如设 a 1 ,渐近线方程为 x 2y 20 即 b 2 x 2 y 20 ,由 b 2 x 2 y 2 0 消去 x ,12b 2x 3 y m 0得 (9b 2 1) y 2 6b 2my b 2 m 0 ,设 AB 中点为 Q(x 0 , y 0 ) ,由韦达定理得: y 0 3b 2 m ① ,2 19b 3b 2m 3又 x 0 3y 0 m ,由 k PQ gk l 1得 y 0 1 1 ,即得 y 0 1 1 得 y 0 3m 代入①得 m ,x 0 g g 5 2m 33 y 0 2m 3 9b 1 5得 b 21 ,所以 c2 a 2 b 2 1 1 5,所以 c 5 ,得 e c c 5 .4 4 4 2 a 2【评论】本题考察双曲线的离心率,考察直线的地点关系,考察学生的计算能力,属于中档题.( 17)【 2014 年浙江,理 17, 5 分】如图,某人在垂直于水平川面ABC 的墙眼前的点 A 处进行射击训练.已知点 A 到墙面的距离为 AB ,某目标点 P 沿墙面上的射击线 CM 挪动,这人为了正确对准目标点 P ,需计算由点 A 察看点 P 的仰角 的大小.若 , 25m , BCM 30 ,则 tan 的最大值是(仰AB 15m AC角 为直线 AP 与平面 ABC 所成角).【答案】5 39【分析】解法一:∵ AB15cm , AC25cm , ABC90 ,∴ BC20cm ,过 P 作 PPBC ,交 BC 于 P ,1当 P 在线段BC 上时,连结AP ,则 tanPP',设 BPx ,则 CP20 x ,AP '(x 20 )由BCM30 ,得 PP'CP 'tan 303(20 x) .3在直角 ABP 中,2PP '3 20 x20 x,则函数在AP '225x∴ tanAP '3 g,令y225 x 2225 x 2x0,20 单一递减,∴x 0 时, tan 获得最大值为3 g 2020 3 4 33225 24592当 P 在线段 CB 的延伸线上时,连结AP ,则 tanPP',设 BPx ,AP '则 CP20 x ,( x0 )由BCM30 ,得 PP'CP 'tan 303 (20x) ,3在直角 ABP 中, AP '225x 2 ,∴ tanPP ' 3 g 20 x ,AP ' 3 225 x 2令 y20 x ,则 y '225 20x,当 0x 22545 时 y ' 0 ;当 x 45时 y ' 0 ,x 2 )225 x 2(225 225 x 2204420 45 5355 3所以当x 45时 y max 4 ,此时x45时, tan获得最大值为,33g 94225( 45 ) 2434综合 1, 2 可知 tan获得最大值为5 3 .9解法二:如图以 B 为原点, BA 、 BC 所在的直线分别为x , y 轴,成立以下图的空间直角坐标系,∵ AB15cm , AC25cm , ABC90 ,∴ BC 20cm ,由 BCM 30 ,可设 P(0, x,3x))(20x 20), P '(0, x,0) , A(15,0,0) ,3(此中3x)PP '(20320 x所以 tan3152 x 2g,AP '3225 x 2设 f (x)tan3 20xx20) , f '(x)3g225 20x,3 g(3 x 2 )225 x 2225x 2(225所以,当 x225 45 时 y '0 ;当 45x 20 时 y '0 ,20444545453 205 35 3所以当时 f ( x) max f ()4tan. x获得最大值为4 3 g9 ,所以94225 (45) 24解法三:剖析知,当 tan 获得最大时,即 最大,最大值即为平面ACM 与地面 ABC所成的锐二面角的胸怀值,如图,过B 在面 BCM 内作 BD BC 交CM 于D ,过B 作BH AC 于 H ,连 DH ,则 BHD 即为平面 ACM 与地面 ABC 所成的二面角的平面角,tan 的最大值即为tan BHD ,在 Rt ABC 中,gg20 3由等面积法可得 AB BC15 2012,DB BC gtan30,BHAC253DB2035 3所以(tan ) max tan BHD3 .BH12 9【评论】 本题考察利用数学知识解决实质问题,考察函数的单一性, 考察学生剖析解决问题的能力,属于中档题.三、解答题:本大题共 5 题,共 72 分.解答应写出文字说明,演算步骤或证明过程.( 18)【 2014 年浙江,理 18,14 分】在 ABC 中,内角 A , B , C 所对的边分别为 a , b , c .已知 a b,c3 ,cos 2 A cos 2 B 3sin AcosA 3sin BcosB .( 1)求角 C 的大小;( 2)若 sin A4 ,求 ABC 的面积.5解:( 1)由题得1 cos2 A1 cos2B3 sin 2 A 3 sin 2B ,即 3 sin 2 A 1 cos2 A 3 sin 2B 1 cos2B ,2222 2 2 2 2sin(2 A)sin(2B) ,由 a b 得 AB ,又 AB (0,) ,得 2 A2B 6,666即 AB 2 ,所以 C.33( 2) c3 , sin A4 ,a c ,得 a 8,由 ac 得 AC ,进而 cos A3 ,5sin AsinC55故 sin B sin( AC ) =sinAcosC cosAsinC43 3,所以,ABC 的面积为 S 1 ac sin B8 3 18 .102 25【评论】本题主要考察二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题.( 19)【 2014 年浙江,理 19,14 分】已知数列 { a n } 和 { b n } 知足 a 1a 2a 3 L a n ( 2) b n (n N *) .若 { a n } 为等比数列,且 a 1 2,b 3 6 b 2 .( 1)求 a n 与 b n ;( 2)设 c n1 1(n N *) .记数列 { c n } 的前 n 项和为 S n .a nb n(ⅰ)求 S n ;(ⅱ)求正整数 k ,使得对随意 nN * 均有 S kS n .解:( 1)∵ a 1a 2 a 3 L a n (2) b n(n N *)①,当 n2 , nN * 时, a 1a 2 a 3 L a n 1 (2) bn 1②,由①②知:当 n2 时, a n ( 2) b n b n 1,令 n 3,则有 a 3 ( 2) b 3b 2,∵ b 3 6 b 2 ,∴ a 3 8.∵ a n 为等比数列,且a 1 2 ,∴a n 的公比为q ,则 q 2a 3 4 ,由题意知a n 0 ,∴ q0 ,a 2∴.∴n*b n123nb nq2 a =2( nN )( 2)(nN*) ,得: 222L2( 2),n.又由 a 1a 2a 3 L a nn( n 1)* 即2b n2( 2),∴ b (n n1)( nN )n.( 2)(ⅰ)∵ c n1 1 11 1( 1 1 ) ,a nb n 2nn(n 1) 2 nnn1∴ S n c 1 c 2 c 31 1 1 1 1 1 1 1 1 ) L c n = () 2 ( ) L n( n 2 1 2 2 2 32n 1= 1 1L1(11 ) = 1 111 = 1 1 .2 222nn 12nn 1 n 1 2 n(ⅱ)因为 c 10 , c 20, c 30 , c 4 0 ;当 n5 时, c n 1 n(n 1)1] ,n(n 1) [ 2 n而 n (n 1)(n 1)(n2) (n 1)(n 2) 0 ,得n(n1)5g(5 1)1 ,2 n 2n 12n 12n25所以,当 n5 时, c n 0 ,综上,对随意nN * 恒有 S 4S n ,故 k 4 .【评论】本题考察了等比数列通项公式、乞降公式,还考察了分组乞降法、裂项乞降法和猜想证明的思想,证明能够用二项式定理,还能够用数学概括法.本题计算量较大,思想层次高,要修业生有较高的剖析问题解决问题的能力.本题属于难题.( 20)【 2014 年浙江,理 20,15 分】如图,在四棱锥 A BCDE 中,平面 ABC平面 BCDE , CDEBED 90 ,AB CD2, DE BE 1, AC2 . ( 1)证明: DE 平面 ACD ;( 2)求二面角 B AD E 的大小.解:( 1)在直角梯形BCDE 中,由DE BE 1 , CD 2,得 BD BC 2 ,由 AC 2 ,AB 2 得 AB 2 AC 2 BC 2,即 AC BC ,又平面 ABC 平面 BCDE ,进而 AC 平面 BCDE , 所以 AC DE ,又 DE DC ,进而 DE 平面 ACD .( 2)解法一:作 BF AD ,与 AD 交于点 F ,过点 F 作 FG//DE ,与 AB 交于点 G ,连结 BG ,由( 1)知 DE AD ,则 FG AD ,所以 BFG 就是二面角 B AD E 的平面角,在直角梯形 BCDE 中,由 CD 2 BC 2 BD 2 ,得 BD BC ,又平面 ABC 平面 BCDE ,得 BD 平面 ABC ,进而 BD AB ,因为 AC 平面 BCDE ,得 AC CD .在 Rt ACD 中,由 DC 2 , AC2,得 AD 6 ;在 Rt AED 中,由ED1, AD6得 AE7 ;在 Rt ABD 中,由 BD2 , AB 2, AD6 ,得 BF2 3 , AF2 3AD ,进而3GF2,在ABE ,ABG 中,利用余弦定理分别可得cos BAE5 7,BC2.在 BFG 中,3143cos BFGGF2BF 2 BG 23 ,所以,BFG,即二面角 BAD E 的大小为.2BF gGF26 6解法二:以 D 的原点,分别以射线DE , DC 为 x , y 轴的正半轴,成立空间直角坐标系D xyz ,如图所示.由题意知各点坐标以下: D(0,0,0) , E (1,0,0) , C (0,2,0) , A(0,2, 2) , B(1,1,0) .ADE 的法向量为 ur ABD 的法向量为 r设平面 m (x 1 , y 1 , z 1 ) ,平面 n ( x 2 , y 2 , z 2 ) ,uuur uuur uuur ur uuur 0(0, 2, 2, (1,1,0) ,由 mgAD ,可算得: AD 2) , AE (1, 2),DB ur uuur 0r uuur mgAEur2 y 1 2 z 1 0 (0,1, 2) ,由 n AD 0 2 y 2 2z 2 0即 ,可取 m r uuur 即 x 2 y 2 01 1 10 n BD 0 x 2 y 2z ur rrur r 33(0, 1, 2) ,于是 | cos | m n |可取 n m, n | ur r 3 2 .| m | | n | 2由题意可知,所求二面角是锐角,故二面角B AD E 的大小为 .6【评论】本题主要考察空间点、线、面地点关系,二面角等基础知识,同时考察空间想象能力,推理论证能力和运算求解能力.2 2( 21)【 2014 年浙江,理 21,15 分】如图,设椭圆 C: xy1(a b 0) 动直线 l 与椭圆 C 只有一个公共点 P ,且点 P 在第一象限.a 2b 2( 1)已知直线 l 的斜率为 k ,用 a,b, k 表示点 P 的坐标;( 2)若过原点 O 的直线 l 1 与 l 垂直,证明:点P 到直线 l 1 的距离的最大值为 a b .解:( 1)解法一:y kx m y 得: (b 2 a 2 k 2 )x 22a 2 kmx a 2 m 2 a 2b 2设 l 方程为 ykx m( k 0) ,x 2 y 2 ,消去 0 ,a 2b 2 1因为直线 l 与椭圆 C 只有一个公共点P ,故0 222 20 ,解得点 P 的坐标为,即 bma kP(a 2km 2 ,b 2 m2 ) ,又点 P 在第一象限,故点P 的坐标为 P( a 2k ,b 2) .222a 2kb 2a 2k 2b 2b a k ba 2 k 2解法二:xx 'x 2 y 2作变换a ,则椭圆C : 1(a b 0) 变成圆C ': x' 2y ' 21 ,切点 P(x 0 , y 0 ) 变成点y a 2 b 2y 'bP'( x'0 , y'0 ) ,切线 l : y y 0 k( x x 0 ) ( k0) ,变成 l ': by' y 0 k(ax'x 0 ) .x '01y ' mx '1 m 2在圆 C ' 中设直线O'P ' 的方程为y ' mx' ( m0 ),由,解得,x '2 y '21 y '0m1 m2即 P'(1 1 ,1 m ) ,因为 O' P'l ' ,所以 k O ' P ' gk l ' 1,得 m ak1 ,即 mb ,m 2m 2bak1bakbx'xaka代入得 P'(, ) ,即 P '(,) ,利用逆变换b 2 b 2 a 2k 2 b 2b 2 y1 1a 2 k 2y '( ak)2b( ak)2代入即得: P( a 2k , b 2 ) .a 2k 2b 2 a 2 k 2b 2( 2)因为直线l 1 过原点 O 且与直线l 垂直,故直线 l 1 的方程为x ky 0 ,所以点P 到直线 l 1 的距离|a 2 kb 2 k |222b2a 2 k2b2da 2 k2,整理得: da b,因为 a 2 k 2b 2ab ,1 k2b2b 2a 22k 22kak 2a2b2a2b2所以 da b ,当且仅当2b时等号成立.222k2aba2a 222bbaba k2k所以,点 P 到直线 l 1 的距离的最大值为 a b .【评论】本题主要考察椭圆的几何性质、点到直线间的距离、直线与椭圆的地点关系等基础知识,同时考察分析几何的基本思想方法、基本不等式应用等综合解题能力.( 22)【 2014 年浙江,理 22, 14 分】已知函数f x 33 x a (aR) .x( 1)若 f x 在1,1 上的最大值和最小值分别记为M ( a), m(a ) ,求 M ( a) m(a) ;( 2)设 bR, 若fx b 24 对 x1,1 恒成立,求 3a b 的取值范围.解:( 1)∵ f (x)x 3 3| xa |x 3 3 x 3a , xa,∴ f '(x) 3x 2 3, x a ,因为 1 x1 ,x 33x 3a , x a 3x 23, x a(ⅰ)当 a 1 时,有x a ,故 f ( x) x 33x 3a ,所以,f x 在 ( 1,1)上是增函数,所以 M ( a)f (1) 4 3a , m( a)f ( 1)4 3a ,故 M ( a) m(a) (4 3a) (4 3a ) 8 .(ⅱ)当1 a 1时,若 xa,1 , f ( x)x 3 3x 3a ,在 a,1 上是增函数;若x1,a, f ( x) x 3 3x3a ,在 1,a 上是减函数,∴M (a ) max{ f (1), f ( 1)} , m(a ) f (a ) a 3 ,因为 f (1)f ( 1)6a 2 ,所以当1 a1 时, M (a ) m( a)a 3 3a 4 ;3当 1a 1 时, M (a) m(a )a 3 3a 2 ;3x 3(ⅲ)当 a 1 时,有 x a ,故 f ( x)3 x 3a ,此时 f ( x) 在 ( 1,1)上是减函数,所以 M (a)f ( 1)2 3a , m( a) f (1)2 3a ,故 M ( a)m(a) 4 ;8 ,a 1a 3 3a 4 , 1 a 1综上, M (a)m( a)13 . a33a2 ,a 134 ,a 1( 2)令 h(x)f ( x)b ,则 h(x)x33x 3a b , x a , h '(x)3x23, x ax 33 x 3a b , x a3x 2,3, x a因为 f xb 2 4 对 x 1,1 恒成立,即 2 h( x) 2 对 x 1,1 恒成立,所以由(1)知,(ⅰ)当a 1 时, h( x) 在 ( 1,1)上是增函数, h(x) 在 [ 1,1] 上的最大值是h(1)4 3a b ,最小值 h( 1)4 3a b ,则 4 3a b2 且 4 3a b 2矛盾;(ⅱ)当1 a1时, h( x) 在 [ 1,1] 上的最小值是h( a) a 3 b ,最大值是h(1) 43a b ,33b 2 且 4 3ab2,进而2 33a3a b6a 2且 0 a1 ,所以 aa3令 t(a)2 a33a ,则 t '(a) 3 3a20 ,∴ t (a ) 在 (0, 1) 上是增函数,故t(a)t (0)2 ,2 3a b0 ;3所以(ⅲ)当 1 a 1 时, h( x) 在 [ 1,1] 上的最小值是h(a)a 3b ,最大值是h( 1) 3a b 2 ,3所以由a3b2且3a b22,解得283a b0 27(ⅳ)当 a1时,h(x)在[1,1] 上的最大值是 h(1)3a b 2 ,最小值是h(1) 3a b 2 ,所以由3a b22且3a b22,解得3a b0.综上,3a b 的取值范围是23a b0 .【评论】本题考察导数的综合运用,考察函数的最值,考察分类议论、化归与转变的数学思想,难度大.。
2014年普通高等学校招生统一考试数学试卷(浙江.理)
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大EA值 。
【精校】2014年普通高等学校招生全国统一考试(浙江卷)数学理
2014年普通高等学校招生全国统一考试(浙江卷)数学理一、选择题(每小题5分,共50分)1.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=( )A.B. {2}C. {5}D. {2,5}解析:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则C U A={x∈N|x<3}={2},答案:B.2.已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2-b2+2abi=2i”时,“a=b=1”或“a=b=-1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选A3.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A. 90cm2B. 129cm2C. 132cm2D. 138cm2解析:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).答案:D.4.为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象( )A. 向右平移个单位B. 向左平移个单位C. 向右平移个单位D. 向左平移个单位解析:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.答案:C.5.在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A. 45B. 60C. 120D. 210解析:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.答案:C.6.已知函数f(x)=x3+ax2+bx+c,其0<f(-1)=f(-2)=f(-3)≤3,则( )A. c≤3B. 3<c≤6C. 6<c≤9D. c>9解析:由f(-1)=f(-2)=f(-3)得,解得,f(x)=x3+6x2+11x+c,由0<f(-1)≤3,得0<-1+6-11+≤3,即6<c≤9,故选C.7.在同一直角坐标系中,函数f(x)=x a(x≥0),g(x)=log a x的图象可能是( )A.B.C.D.解析:当0≤a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D8.记max{x,y}=,min{x,y}=,设,为平面向量,则( )A. min{|+|,|-|}≤min{||,||}B. min{|+|,|-|}≥min{||,||}C. max{|+|2,|-|2}≤||2+||2D. max{|+|2,|-|2}≥||2+||2解析:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|-|}=,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|-|2}=|+|2=4,而不等式右边=||2+||2=2,显然不成立.由排除法可知,D选项正确.答案:D.9.已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则( )A. p1>p2,E(ξ1)<E(ξ2)B. p1<p2,E(ξ1)>E(ξ2)C. p1>p2,E(ξ1)>E(ξ2)D. p1<p2,E(ξ1)<E(ξ2)解析:,,,所以P1>P2;由已知ξ1的取值为1、2,ξ2的取值为1、2、3,所以,==,E(ξ1)-E(ξ2)=.答案:A10.设函数f1(x)=x2,f2(x)=2(x-x2),,,i=0,1,2,…,99.记I k=|f k(a1)-f k(a0)|+|f k(a2)-f k(a1)丨+…+|f k(a99)-f k(a98)|,k=1,2,3,则( )A. I1<I2<I3B. I2<I1<I3C. I1<I3<I2D. I3<I2<I1解析:由,故==1,由,故<1,+=,故I2<I1<I3,答案:B.二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.解析:由程序框图知:第一次循环S=1,i=2;第二次循环S=2×1+2=4,i=3;第三次循环S=2×4+3=11,i=4;第四次循环S=2×11+4=26,i=5;第五次循环S=2×26+5=57,i=6,满足条件S>50,跳出循环体,输出i=6.答案:6.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)= . 解析:设P(ξ=1)=p,P(ξ=2)=q,则由已知得p+q=,,解得,,所以.答案:13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.解析:由约束条件作可行域如图,联立,解得C(1,).联立,解得B(2,1).在x-y-1=0中取y=0得A(1,0).要使1≤ax+y≤4恒成立,则,解得:1.∴实数a的取值范围是.答案:.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).解析:分类讨论,一、二、三等奖,三个人获得,共有=24种;一、二、三等奖,有1人获得2张,1人获得1张,共有=36种,共有24+36=60种.答案:60.15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.解析:∵函数f(x)=,它的图象如图所示:由f(f(a))≤2,可得f(a)≥-2.由f(x)=-2,可得-x2=-2,即x=,故当f(f(a))≤2时,则实数a的取值范围是a≤,答案:(-∞,].16.(4分)设直线x-3y+m=0(m≠0)与双曲线(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是 .解析:双曲线(a>0,b>0)的两条渐近线方程为y=±x,则与直线x-3y+m=0联立,可得A(,),B(-,),∴AB中点坐标为(,),∵点P(m,0)满足|PA|=|PB|,∴=-3,∴a=2b,∴=b,∴e==.答案:.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A 到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15cm,AC=25cm,∠BCM=30°,则tanθ的最大值是 .(仰角θ为直线AP与平面ABC所成角)解析:∵AB=15cm,AC=25cm,∠ABC=90°,∴BC=20cm,过P作PP′⊥BC,交BC于P′,连接AP′,则tanθ=,设BP′=x,则CP′=20-x,由∠BCM=30°,得PP′=CP′tan30°=(20-x),在直角△ABP′中,AP′=,∴tanθ=•,令y=,则函数在x∈[0,20]单调递减,∴x=0时,取得最大值为=.答案:.三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A-cos2B=sinAcosA-sinBcosB.(Ⅰ)求角C的大小;(Ⅱ)若sinA=,求△ABC的面积.解析:(Ⅰ)△ABC中,由条件利用二倍角公式化简可得-2sin(A+B)sin(A-B)=2·cos(A+B)sin(A-B).求得tan(A+B)的值,可得A+B的值,从而求得C的值.(Ⅱ)由 sinA=求得cosA的值.再由正弦定理求得a,再求得 sinB=sin[(A+B)-A]的值,从而求得△ABC的面积为的值.答案:(Ⅰ)∵△ABC中,a≠b,c=,cos2A-cos2B=sinAcosA-sinBcosB,∴-=sin2A-sin2B,即 cos2A-cos2B=sin2A-sin2B,即-2sin(A+B)sin(A-B)=2•cos(A+B)sin(A-B).∵a≠b,∴A≠B,sin(A-B)≠0,∴tan(A+B)=-,∴A+B=,∴C=.(Ⅱ)∵sinA=<,C=,∴A<,或A>(舍去),∴cosA==.由正弦定理可得,=,即=,∴a=.∴sinB=sin[(A+B)-A]=sin(A+B)cosA-cos(A+B)sinA=-(-)×=,∴△ABC的面积为=×=.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.解析:(Ⅰ)先利用前n项积与前(n-1)项积的关系,得到等比数列{a n}的第三项的值,结合首项的值,求出通项a n,然后现利用条件求出通项b n;(Ⅱ)(i)利用数列特征进行分组求和,一组用等比数列求和公式,另一组用裂项法求和,得出本小题结论;(ii)本小题可以采用猜想的方法,得到结论,再加以证明.答案:(Ⅰ)∵a1a2a3…a n=(n∈N*) ①,当n≥2,n∈N*时,②,由①②知:,令n=3,则有.∵b3=6+b2,∴a3=8.∵{a n}为等比数列,且a1=2,∴{a n}的公比为q,则=4,由题意知a n>0,∴q>0,∴q=2.∴(n∈N*).又由a1a2a3…a n=(n∈N*)得:,,∴b n=n(n+1)(n∈N*).(Ⅱ)(i)∵c n===.∴S n=c1+c2+c3+…+c n====;(ii)因为c1=0,c2>0,c3>0,c4>0;当n≥5时,,而=>0,得,所以,当n≥5时,c n<0,综上,对任意n∈N*恒有S4≥S n,故k=4.20.(15分)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B-AD-E的大小.解析:(Ⅰ)依题意,易证AC⊥平面BCDE,于是可得AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;(Ⅱ)作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AB交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B-AD-E的平面角,利用题中的数据,解三角形,可求得BF=,AF=AD,从而GF=,cos∠BFG==,从而可求得答案.答案:(Ⅰ)在直角梯形BCDE中,由DE=BE=1,CD=2,得BD=BC=,由AC=,AB=2得AB2=AC2+BC2,即AC⊥BC,又平面ABC⊥平面BCDE,从而AC⊥平面BCDE,所以AC⊥DE,又DE⊥DC,从而DE⊥平面ACD;作BF⊥AD,与AD交于点F,过点F作FG∥DE,与AB交于点G,连接BG,由(Ⅰ)知DE⊥AD,则FG⊥AD,所以∠BFG就是二面角B-AD-E的平面角,在直角梯形BCDE 中,由CD2=BC2+BD2,得BD⊥BC,又平面ABC⊥平面BCDE,得BD⊥平面ABC,从而BD⊥AB,由于AC⊥平面BCDE,得AC⊥CD.在Rt△ACD中,由DC=2,AC=,得AD=;在Rt△AED中,由ED=1,AD=得AE=;在Rt△ABD中,由BD=,AB=2,AD=得BF=,AF=AD,从而GF=,在△ABE,△ABG中,利用余弦定理分别可得cos∠BAE=,BC=.在△BFG中,cos∠BFG==,所以,∠BFG=,二面角B-AD-E的大小为.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0,利用△=0,可求得在第一象限中点P的坐标;(Ⅱ)由于直线l1过原点O且与直线l垂直,设直线l1的方程为x+ky=0,利用点到直线间的距离公式,可求得点P到直线l1的距离d=,整理即可证得点P到直线l1的距离的最大值为a-b..答案:(Ⅰ)设直线l的方程为y=kx+m(k<0),由,消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于直线l与椭圆C只有一个公共点P,故△=0,即b2-m2+a2k2=0,解得点P的坐标为(-,),又点P在第一象限,故点P的坐标为P(,).(Ⅱ)由于直线l1过原点O且与直线l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得:d=,因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以,点P到直线l1的距离的最大值为a-b.22.(14分)已知函数f(x)=x3+3|x-a|(a∈R).(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b的取值范围.解析:(Ⅰ)利用分段函数,结合[-1,1],分类讨论,即可求M(a)-m(a);(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,则[f(x)+b]2≤4对x∈[-1,1]恒成立,转化为-2≤h(x)≤2对x∈[-1,1]恒成立,分类讨论,即可求3a+b的取值范围.答案:(Ⅰ)∵f(x)=x3+3|x-a|=,∴f′(x)=,①a≤-1时,∵-1≤x≤1,∴x≥a,f(x)在(-1,1)上是增函数,∴M(a)=f(1)=4-3a,m(a)=f(-1)=-4-3a,∴M(a)-m(a)=8;②-1<a<1时,x∈(a,1),f(x)=x3+3x-3a,在(a,1)上是增函数;x∈(-1,a),f(x)=x3-3x-3a,在(-1,a)上是减函数,∴M(a)=max{f(1),f(-1)},m(a)=f(a)=a3,∵f(1)-f(-1)=-6a+2,∴-1<a≤时,M(a)-m(a)=-a3-3a+4;<a<1时,M(a)-m(a)=-a3+3a+2;③a≥1时,有x≤a,f(x)在(-1,1)上是减函数,∴M(a)=f(-1)=2+3a,m(a)=f(1)=-2+3a,∴M(a)-m(a)=4;(Ⅱ)令h(x)=f(x)+b,则h(x)=,h′(x)=,∵[f(x)+b]2≤4对x∈[-1,1]恒成立,∴-2≤h(x)≤2对x∈[-1,1]恒成立,由(Ⅰ)知,①a≤-1时,h(x)在(-1,1)上是增函数,最大值h(1)=4-3a+b,最小值h(-1)=-4-3a+b,则-4-3a+b≥-2且4-3a+b≤2矛盾;②-1<a≤时,最小值h(a)=a3+b,最大值h(1)=4-3a+b,∴a3+b≥-2且4-3a+b≤2,令t(a)=-2-a3+3a,则t′(a)=3-3a2>0,t(a)在(0,)上是增函数,∴t(a)>t(0)=-2,∴-2≤3a+b≤0;③<a<1时,最小值h(a)=a3+b,最大值h(-1)=3a+b+2,则a3+b≥-2且3a+b+2≤2,∴-<3a+b≤0;④a≥1时,最大值h(-1)=3a+b+2,最小值h(1)=3a+b-2,则3a+b-2≥-2且3a+b+2≤2,∴3a+b=0.综上,3a+b的取值范围是-2≤3a+b≤0.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2014年普通高等学校招生考试浙江理数
2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出 的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,zxxk 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的 表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数zxxk x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球 ()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为zxxk ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的 结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,zxxk 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值三.解答题:本大题共5小题,共72分。
2014年浙江省普通高中学业水平考试参考卷及答案
2014年浙江省普通高中学业水平考试参考卷(此卷仅做参考)选择题部分一、选择题(共18题,每小题3分,共54分)1.下列词语中,加点字的读音全都正确的一项是A.召.唤(zhào)濒.临(bīn)独处.(chǔ)恪.尽职守(ɡè)B.唾.弃(tuò)堆砌.(qiè)刹.那(shà)惟妙惟肖.(xiào)C.焦灼.(zhuó)机杼.(zhù)赊.账(shē)殒身不恤.(xù)D.角.逐(jiǎo)桑梓.(zǐ)纨绔.(kuà)凝眸.远眺(móu)2. 下列句子中没有别字的一项是A.秋风忽至,一场早霜后,落叶或飘摇歌舞或坦然安卧,满园播撒着熨帖而微苦的味道。
B.文化传统的变化是缓慢而渐近的,不会一蹴而就,既使在社会急剧变幻的时期也如此。
C.脚下那条熟悉的小路,弯弯曲曲地伸向远方,象夜空里九曲的星河,给人无尽的暇想。
D.“智慧地球”的概念风糜世界,人们希望借此确立竞争优势,抢占未来发展的致高点。
3.依次填入下列句子横线处的词语,恰当的一项是①暗夜将尽,每一棵树都踮起脚来遥望着东方,▲着晨曦。
②在优秀的文学作品中,一滴眼泪也能▲出人性世界的多彩光辉。
③我▲一次跟同学讲过,要用学语文的方法学语文,可惜同学没有能够正确领会。
A.顾盼折射不只 B.企盼放射不只C.企盼折射不止 D.顾盼放射不止4.下列句子中加点的成语运用不恰当的一项是A.学生们参与“金点子”活动的热情之高、想象之奇、创意之新真是不堪设想....,大大出乎老师的意料。
B.不少网民认为,尽管网络无疆,然而言行应有界,因此加强网络道德教育,净化网络环境势在必行....。
C.文艺创作切忌远离观众孤芳自赏....,音乐剧《妈妈咪呀》就因通俗易懂、群众喜闻乐见而获得了成功。
D.某项调查显示,82﹪的被调查者认为今年的公务员考试是千军万马过独木桥........,“公务员热”仍在持续。
2014年普通高等学校招生全国统一考试(浙江卷)_数学(理)-推荐下载
π 4
a 6,
3x+cos
2
cos
3
D.210
x
因此需将函数
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线0产中不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资22负料,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看2与全22过,22度并22工且22作尽2下可护1都能关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编5试技写、卷术重电保交要气护底设设装。备备4置管高调、动线中试电作敷资高气,设料中课并3技试资件且、术卷料拒管中试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
浙江省2014年1月普通高中学业水平考试数学试题_Word版含答案
浙江省2014年1⽉普通⾼中学业⽔平考试数学试题_Word 版含答案2014年1⽉浙江省普通⾼中学业⽔平考试数学试题选择题部分⼀、选择题(共25⼩题,1-15每⼩题2分,16-25每⼩题3分,共60分.每⼩题给出的选项中只有⼀个是符合题⽬要求的,不选、多选、错选均不得分.)1、设集合M={0,1,2},则()A.1∈MB.2?MC.3∈MD.{0}∈M2、函数y=()A. [0,+∞)B.[1,+∞)C. (-∞,0]D.(-∞,1]3、若关于x的不等式mx-2>0的解集是{x|x>2},则实数m等于()A.-1B.-2C.1D.24、若对任意的实数k,直线y-2=k(x+1)恒经过定点M,则M的坐标是()A.(1,2)B.(1,-2)C.(-1,2)D.(-1,-2)5、与⾓-6π终边相同的⾓是()A.56π B.3π C.116π D.23π6、若⼀个正⽅体截去⼀个三棱锥后所得的⼏何体如图所⽰,则该⼏何体的正视图是()(第6题图)A. B. C. D.7、以点(0,1)为圆⼼,2为半径的圆的⽅程是()A.x2+(y-1)2=2B. (x-1)2+y2=2C. x2+(y-1)2=4D. (x-1)2+y2=48、在数列{ a n }中,a1=1,a n+1=3a n(n∈N*),则a4等于()A.9B.10C.27D.819、函数y=()xxxA. B. C. D.10、设a,b是两个平⾯向量,则“a=b”是“|a|=|b|”的()A.充分⽽不必要条件B.必要⽽不充分条件C.充要条件D.既不充分也不必要条件11、设双曲线C:2221(0)3yx aa-=>的⼀个顶点坐标为(2,0),则双曲线C的⽅程是()A.221163yx-= B. 221123yx-= C.22183yx-= D.22143yx-=12、设函数f(x)=sinxcosx,x∈R,则函数f(x)的最⼩值是()A.14-B.12-C. D.-1 13、若函数f(x)=21x a x ++(a ∈R )是奇函数,则a 的值为()A.1B.0C.-1D.±1 14、在空间中,设α,β表⽰平⾯,m ,n 表⽰直线.则下列命题正确的是()A.若m ∥n ,n ⊥α,则m ⊥αB. 若α⊥β,m ?α,则m ⊥βC.若m 上有⽆数个点不在α内,则m ∥αD.若m ∥α,那么m 与α内的任何直线平⾏ 15、在△ABC 中,若AB=2,AC=3,∠A=60°,则BC 的长为()C.316、下列不等式成⽴的是() A.1.22>1.23 B.1.2-3<1.2-2C. log 1.2 2>log 1.2 3D.log 0.2 2() A.1 B.2 C.3D.418、下列命题中,正确的是()A. ? x 0∈Z ,x 02<0B. ?x ∈Z ,x 2≤0C. ? x 0∈Z ,x 02=1D.?x ∈Z ,x 2≥119、若实数x,y 满⾜不等式组{020x y x y -≥+-≤,则2y -x 的最⼤值是()A.-2B.-1C.1D.220、如图,在正⽅体ABCD -A 1B 1C 1D 1中,E 为线段A 1C 1的中点,则异⾯直线DE 与B 1C 所成⾓的⼤⼩为() A.15° B.30° C.45° D.60°1A A(第20题图)21、研究发现,某公司年初三个⽉的⽉产值y (万元)与⽉份n 近似地满⾜函数关系式y=an 2+bn+c (如n=1表⽰1⽉份).已知1⽉份的产值为4万元,2⽉份的产值为11万元,3⽉份的产值为22万元.由此可预测4⽉份的产值为() A.35万元B.37万元 C.56万元 D.79万元 22、设数列{ a n },{ a n 2} (n ∈N *)都是等差数列,若a 1=2,则a 22+ a 33+ a 44+ a 55等于()A.60B.62C.63D.6623、设椭圆Γ:22221(0)y x a b a b+=>>的焦点为F 1,F 2,若椭圆Γ上存在点P ,使△P F 1F 2是以F 1P 为底边的等腰三⾓形,则椭圆Γ的离⼼率的取值范围是()A. 1(0,)2B. 1(0,)3C. 1(,1)2D.1(,1)324、设函数()f x =,给出下列两个命题:①存在x 0∈(1,+∞),使得f(x 0)<2;②若f(a)=f(b)(a≠b),则a+b>4.其中判断正确的是() A.①真,②真 B. ①真,②假 C. ①假,②真 D. ①假,②假 25、如图,在Rt △ABC 中,AC=1,BC=x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程中存在某个位置,使得CB ⊥AD ,则x 的取值范围是()A.B.C.D.(2,4]C(第25题图)⾮选择题部分⼆、填空题(共5⼩题,每⼩题2分,共10分)26、设函数f(x)={2,232,2x x x x ≤->,则f(3)的值为 27、若球O 的体积为36πcm 3,则它的半径等于 cm.28、设圆C :x 2+y 2=1,直线l: x+y=2,则圆⼼C 到直线l 的距离等于 .29、设P 是半径为1的圆上⼀动点,若该圆的弦AP AB ?的取值范围是30、设ave{a,b,c}表⽰实数a,b,c 的平均数,max{a,b,c}表⽰实数a,b,c 的最⼤值.设A= ave{112,,122x x x -++},M=max{112,,122x x x -++},若M=3|A -1|,则x 的取值范围是三、解答题(共4⼩题,共30分)31、(本题7分)已知3sin ,052παα=<<,求cos α和sin()4πα+的值.32、(本题7分,有(A ),(B )两题,任选其中⼀题完成,两题都做,以(A )题记分.)(A )如图,已知四棱锥P -ABCD 的底⾯为菱形,对⾓线AC与BD 相交于点E ,平⾯PAC 垂直于底⾯ABCD ,线段PD 的中点为F.(1)求证:EF ∥平⾯PBC ;(2)求证:BD ⊥PC.(第32题(A )图)(B )如图,在三棱锥P -ABC 中,PB ⊥AC ,PC ⊥平⾯ABC ,点D ,E 分别为线段PB ,AB 的中点.(1)求证:AC ⊥平⾯PBC ;(2)设⼆⾯⾓D -CE -B 的平⾯⾓为θ,若PC=2,cosθ的值.BA(第32题(B )图)33、(本题8分)如图,设直线l(k ∈R )与抛物线C :y=x 2相交于P ,Q 两点,其中Q 点在第⼀象限.(1)若点M 是线段PQ 的中点,求点M 到x 轴距离的最⼩值;(2)当k>0时,过点Q 作y 轴的垂线交抛物线C 于点R ,若PQ PR =0,求直线l 的⽅程.x(第33题图)34、(本题8分)设函数f(x)=x 2-ax+b,a,b ∈R ..(1)已知f(x)在区间(-∞,1)上单调递减,求a 的取值范围;(2)存在实数a ,使得当x ∈[0,b]时,2≤f(x)≤6恒成⽴,求b 的最⼤值及此时a 的值.解答⼀、选择题(共25⼩题,1-15每⼩题2分,16-25每⼩题3分,共60分.每⼩题给出的选项中只有⼀个是符合题⽬要求的,不选、多选、错选均不得分.)25题解答(1)由题意得,BC=x,取BC中点E,翻折前,在图1中,连接DE,CD,则DE=12AC=12,翻折后,在图2中,此时CB⊥AD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年1月浙江省普通高中学业水平考试数 学 试 题 卷学生须知:1、本试卷分选择题和非选择题两部分,共6页,满分100分,考试时间110分钟.2、考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.3、选择题的答案须用2B 铅笔将答题纸上对应题目的答案标号涂黑,如要改动,须将原填涂处用橡皮擦净.4、非选择题的答案须用黑色字迹的签字笔或钢笔写在答题纸上的相应区域内,作图时可先使用2B 铅笔,确定后须用黑色字迹的签字笔或钢笔描黑,答案写在本试卷上无效.5、参考公式球的表面积公式:S=4πR 2球的体积公式:V=43πR 3(其中R 表示球的半径)选择题部分一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分.每小题给出的选项中只有一个是符合题目要求的,不选、多选、错选均不得分.) 1.设集合{0,1,2}M =,则(A )1M ∈ (B )2M ∉ (C )3M ∈ (D ){0}M ∈ 2.函数y =的定义域是(A )[0,)+∞ (B )[1,)+∞ (C )(,0]-∞ (D )(,1]-∞ 3.关于x 的不等式20mx ->的解集是{|2}x x >,则实数m 等于 (A )1- (B )2- (C )1 (D )24.对任意的实数k ,直线2(1)y k x -=+恒经过定点M ,则M 的坐标是 (A )(1,2) (B )(1,2)- (C )(1,2)- (D )(1,2)--5.与6π-角终边相同的角是(A )56π (B )3π(C )116π (D )43π 6.若一个正方体截去一个三棱锥后所得的几何体如图所示,则该几何体的正视图是(A ) (B ) (C ) (D )7.以点(0,1))为圆心,2为半径的圆的方程是 (A )22(1)2x y +-= (B )22(1)2x y -+= (C )22(1)4x y +-= (D )22(1)4x y -+= 8.在数列{}n a 中,111,3(*)n n a a a n N +==∈,则4a 等于(A )9 (B )10 (C )27 (D )819.函数y =(A ) (B ) (C ) (D )10.设,a b 是两个平面向量,则“a b = ”是“||||a b =”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件11.设双曲线222:1(0)3x y C a a -=>的一个顶点坐标为(2,0),则双曲线C 的方程是(A )221163x y -= (B )221123x y -= (C )22183x y -= (D )22143x y -=12.设函数()sin cos ,f x x x x R =∈,则函数()f x 的最小值是(A )14-(B )12- (C)2- (D )1-13.若函数2()()1x af x a R x +=∈+是奇函数,则a 的值为(A )1 (B )0 (C )1- (D )1±14.在空间中,设,αβ表示平面,,m n 表示直线.则下列命题正确的是 (A )若//,m n n α⊥,则m α⊥ (B )若,m αβα⊥⊂,则m β⊥(C )若m 上有无数个点不在α内,则//m α (D )若//m α,那么m 与α内任何直线平行15.在ABC ∆中,若2,3,60AB AC A ==∠=︒,则BC 的长为(A(B(C )3 (D16.下列不等式成立的是(A )231.2 1.2> (B )321.2 1.2--< (C ) 1.2 1.2log 2log 3> (D )0.20.2log 2log 3<17.设0x 是方程28xx +=的解.若0(,1)(*)x n n n N ∈+∈,则n 的值为 (A )1 (B )2 (C )3 (D )418.下列命题中,正确是(A )200,0x R x ∃∈< (B )2,0x R x ∀∈≤ (C )200,1x Z x ∃∈= (D )2,1x Z x ∀∈≥19.若实数y x ,满足不等式组⎩⎨⎧≤-+≥-020y x y x ,则x y -2的最大值是(A )2- (B )1- (C )1 (D )220.如图,在正方体1111D C B A ABCD -中,E 为线段11C A 的中点,则异面直线DE 与C B 1所成角的大小为(A )15︒ (B )30︒ (C )45︒ (D )60︒21.研究发现,某公司年初三个月的月产量y (万元)与月份n 近似地满足函数关系式c bn an y ++=2(如1=n 表示1月份).已知1月份的产量为4万元,2月份的产值为11万元,3月份的产值为22万元,由此可预测4月份的产值为(A )35万元 (B )37万元 (C )56万元 (D )79万元22.设数列2*{},{}()n n a a n N ∈都是等差数列.若21=a ,则23452345a a a a +++= (A )60 (B )62 (C )63 (D )6623.设椭圆)0(1:2222>>=+Γb a by a x 的焦点为21,F F ,若椭圆Γ上存在点P ,使21F PF ∆是以P F 1为底边的等腰三角形,则椭圆Γ的离心率的取值范围是(A )⎪⎭⎫ ⎝⎛21,0 (B )⎪⎭⎫ ⎝⎛31,0 (C )⎪⎭⎫ ⎝⎛1,21 (D )⎪⎭⎫ ⎝⎛1,3124.设函数1)(-=x xx f ,给出下列两个命题:①存在()+∞∈,10x ,使得2)(0<x f ; ②若))(()(b a b f a f ≠=,则4>+b a .其中判断正确的是(A )①真,②真 (B )①真,②假 (C )①假,②真 (D )①假,②假25.如图,在ABC Rt ∆中,AC=1,BC=x ,D 是斜边AB 的中点,将BCD ∆沿直线CD 翻折,若在翻折过程中存在某个位置,使得AD CB ⊥,则x 的取值范围是(A )(]3,0 (B )⎥⎦⎤⎝⎛2,22(C )(]32,3 (D )(]4,2非选择题部分二、填空题(共5小题,每小题2分,共10分)26.设函数⎩⎨⎧>-≤=2,232,)(2x x x x x f ,则)3(f 的值为______________.27.若球O 的体积为336cm π,则它的半径等于_________cm .28.设圆22:1C x y +=,直线2:=+y x l ,则圆心C 到直线l 的距离等于_____________. 29.设P 是半径为1的圆上一动点,若该圆的弦3=AB ,则⋅的取值范围是 . 30.记{,,}ave a b c 表示实数,,a b c 的平均数,max{,,}a b c 表示实数,,a b c 的最大值.设11{2,,1}22A x x x =-++,11max{2,,1}22M x x x =-++,若3|1|M A =-,则x 的取值范围是 .三、解答题(共4小题,共30分) 31.(本题7分)已知3sin ,052παα=<<,求cos α和sin()4πα+的值.32.(本题7分,有(A )、(B )两题,任选其中一题完成,两题都做,以(A)题计分.) (A )如图,已知四棱锥P ABCD -的底面为菱形,对角线AC 与BD 相交于点E ,平面PAC 垂直于底面ABCD,线段PD 的中点为F . (1)求证://EF 平面PBC ;(2)求证:BD PC ⊥.(B )如图,在三棱锥P-ABC 中,,PB AC PC ⊥⊥平面ABC ,点,D E 分别为线段,PB AB 的中点.(1)求证:AC ⊥平面PBC ;(2)设二面角D CE B --的平面角为θ,若2,2,PC BC AC ===cos θ的值.33.(本题8分)如图,设直线:)l y kx k R =∈与抛物线2:C y x =相交于P ,Q 两点,其中Q 点在第一象限.(1)若点M 是线段PQ 的中点,求点M 到x 轴距离的最小值;(2)当0k >时,过点Q 作y 轴的垂线交抛物线C 与点R ,若0PQ PR =,求直线l 的方程.34.(本题8分)设函数2()(,)f x x ax b a b R =-+∈. (1)已知()f x 在区间(,1)-∞上单调递减,求a 的取值范围;(2)存在实数a ,使得当[0,]x b ∈时,2()6f x ≤≤恒成立,求b 的最大值及此时a 的值.参考答案一、选择题(共25小题,1-15每小题2分,16-25每小题3分,共60分。
)二、填空题(共10分,填对一题给2分,答案形式不同的按实际情况给分)26. 7 27. 3 28. 33[+ 30. {x|x=-4或x≥2}三、解答题(共30分)31. (本题7分)已知3sin ,052παα=<<,求cos α和sin()4πα+的值.解:∵3sin ,052παα=<<∴4cos 5α===∴34sin()sin cos cos sin 44455πππααα+=+==32. (A )(1)证明:∵菱形对角线AC 与BD 相交于点E ∴AC 与BD 互相平分,即AE=CE ,BE=DE又∵线段PD 的中点为F ∴EF 为△PBD 的中位线∴EF ∥PB又EF ⊄平面PBC ,PB ⊂平面PBC ∴EF ∥平面PBC (2)证明:∵平面PAC ⊥底面ABCD ,平面PAC∩底面ABCD =AC ,菱形ABCD 中,AC ⊥BD ,BD ⊂平面ABCD ∴BD ⊥平面PAC ∴BD ⊥PC(B )(1)证明:∵PC ⊥平面ABC ∴PC ⊥AC ,又∵PB ⊥AC ,PC∩PB=P ∴AC ⊥平面PBC (2)解:∵PC ⊥平面ABC ∴PC ⊥AC ,PC ⊥BC ,又AC ⊥平面PBC ∴AC ⊥PC ,AC ⊥BC 即CA ,AB ,CP 互相垂直。
如图,取BC 的中点为F ,连接DF,EF ∵点D ,E 分别为线段PB ,AB 的中点 ∴EF ∥AC ,DE ∥PA ,DF ∥PC∴EF ⊥BC ,DF ⊥BC ,DF ⊥平面ABC ,且EF =12AC DF =12PC=1,CF =12CB=1∴2CE===,∴BC=CE=BE=2∴△BCE是等边三角形过F用FM⊥CE交CE于M,连接DM,FM∴122FM DM=====∴cos cos MFDMFDMθ=∠===33.解:(1)设112200(,),(,),(,)P x y Q x y M x y由{2y kx y x==y,整理得20x kx-=∴1212,x x k x x+==∴212000,222x x k kx y kx+====+≥点M到x(2)由题意得22(,)R x y-∴2 21212121212121(,)(,)()()() PQ PR x x y y x x y y x x x x y y ⋅=--⋅---=---+-=2222122112212121()()()(1)0 x x y y y y y y y y y y-+-=-+-=---=∴211y y-=,从而21()1k x x-=,故2221()1k x x-=∴222112[()4]1k x x x x+-=,22(1k k+=解得2231)k=-=(负根舍去)∵k>0∴1k=所以,直线l的方程为1)y x=+34.(本题8分)解:(1)由题意得12a≥∴a≥2(2)∵当x∈[0,b]时,2≤f(x)≤6恒成立∴2≤f(0)≤6,即2≤b≤6①当a≤0时,f(x)在区间[0,b]上单调递增,∴f(x)min=f(0),f(x)max=f(b) 故{226bb ab b≥-+≤即261ba bb≥⎧⎪⎨≥-+⎪⎩,而函数6()1g b b b=-+在[2,6]上是增函数,故g(b)min =g(2)=0,所以a ≥0,结合a ≤0得a=0②当a ≥b 时,f(x)在区间[0,b]上单调递减,∴f(x)min =f(b),f(x)max =f(0)故{226b ab b b -+≥≤即621b a b b ≤⎧⎪⎨≤-+⎪⎩, 而函数2()1h b b b=-+在[2,6]上是增函数,故h(b)min =h(2)=0,所以a ≥0,结合a ≤0得a=0第25题解答:(1)由题意得,,BC=x ,取BC 中点E ,翻折前,在图1中,连接DE,CD,则DE=12AC=12,翻折后,在图2中,此时 CB ⊥AD 。