立体几何中的折叠、最值、取值范围问题——综合能力提升篇(教师)

合集下载

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”解题策略(含详细解析)

立体几何中“折叠问题”的解题策略[例题]如图1,在直角梯形ABCD中,AD∥BC,AB∥BC,BD∥DC,点E是BC边的中点,将∥ABD沿BD折起,使平面ABD∥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB∥平面ADC;(2)若AD=1,二面角C­AB­D的平面角的正切值为6,求二面角B­AD­E的余弦值.[解](1)证明:因为平面ABD∥平面BCD,平面ABD∩平面BCD=BD,BD∥DC,DC∥平面BCD,所以DC∥平面ABD.因为AB∥平面ABD,所以DC∥AB.又因为折叠前后均有AD∥AB,DC∩AD=D,所以AB∥平面ADC.(2)由(1)知AB∥平面ADC,所以二面角C­AB­D的平面角为∥CAD.又DC∥平面ABD,AD∥平面ABD,所以DC∥AD.依题意tan∥CAD =CDAD = 6. 因为AD =1,所以CD = 6. 设AB =x (x >0),则BD =x 2+1. 依题意∥ABD ∥∥DCB ,所以AB AD =CDBD , 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =BD 2+CD 2=3.以D 为坐标原点,射线DB ,DC 分别为x 轴,y 轴的正半轴,建立如图所示的空间直角坐标系D ­xyz ,则D (0,0,0), B (3,0,0), C (0,6,0), E (23,26,0), A (33,0,36), 所以DE ―→=(23,26,0),DA ―→=(33,0,36).由(1)知平面BAD 的一个法向量n =(0,1,0). 设平面ADE 的法向量为m =(x ,y ,z ),由⎩⎨⎧m·DE ―→=0,m·DA ―→=0,得⎩⎨⎧32x +62y =0,33x +63z =0.令x =6,得y =-3,z =-3,所以m =(6,-3,-3)为平面ADE 的一个法向量. 所以cos<n ,m>=n ·m |n |·|m |=-12.由图可知二面角B ­AD ­E 的平面角为锐角, 所以二面角B ­AD ­E 的余弦值为12. 解题策略:1.确定翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的位置和数量关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.2.确定翻折后关键点的位置所谓的关键点,是指翻折过程中运动变化的点.因为这些点的位置移动,会带动与其相关的其他的点、线、面的关系变化,以及其他点、线、面之间位置关系与数量关系的变化.只有分析清楚关键点的准确位置,才能以此为参照点,确定其他点、线、面的位置,进而进行有关的证明与计算.变式练习:1.如图1,在四边形ABCD 中,AD ∥BC ,∥BAD =90°, AB =23,BC =4,AD =6,E 是AD 上的点,AE =13AD , P 为BE 的中点,将∥ABE 沿BE 折起到∥A 1BE 的位置, 使得A 1C =4,如图2.(1)求证:平面A1CP∥平面A1BE;(2)求二面角B­A1P­D的余弦值.解:(1)证明:如图3,连接AP,PC.∥在四边形ABCD中,AD∥BC,∥BAD=90°,AB=23,BC=4,AD=6,E是AD上的点,AE=13AD,P为BE的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=23,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面A1BE.∥PC∥平面A1CP,∥平面A1CP∥平面A1BE.(2)如图4,以P 为坐标原点,PB 所在直线为x 轴,PC 所在直线为y 轴,过P 作平面BCDE 的垂线为z 轴,建立空间直角坐标系,则A 1(-1,0,3),P (0,0,0),D (-4,23,0), ∥P A 1―→=(-1,0,3), PD ―→=(-4,23,0), 设平面A 1PD 的法向量为m =(x ,y ,z ),则⎩⎨⎧m·P A 1―→=0,m·PD ―→=0,即⎩⎪⎨⎪⎧-x +3z =0,-4x +23y =0,取x =3,得m =(3,2,1).易知平面A 1PB 的一个法向量n =(0,1,0), 则cos 〈m ,n 〉=m ·n |m||n|=22. 由图可知二面角B ­A 1P ­D 是钝角, ∥二面角B ­A 1P ­D 的余弦值为-22.2.如图1,在高为2的梯形ABCD 中,AB ∥CD ,AB =2,CD =5,过A ,B 分别作AE ∥CD ,BF ∥CD ,垂足分别为E ,F .已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE ­BCF ,如图2.(1)若AF ∥BD ,证明:DE ∥BE ;(2)若DE ∥CF ,CD =3,在线段AB 上是否存在点P ,使得CP 与平面ACD 所成角的正弦值为3535?并说明理由.解:(1)证明:由已知得四边形ABFE 是正方形,且边长为2, ∥AF ∥BE .∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面BDE . 又DE ∥平面BDE ,∥AF ∥DE .∥AE ∥DE ,AE ∩AF =A ,∥DE ∥平面ABFE . 又BE ∥平面ABFE ,∥DE ∥BE .(2)当P 为AB 的中点时满足条件.理由如下: ∥AE ∥DE ,AE ∥EF ,DE ∩EF =E ,∥AE ∥平面DEFC . 如图,过E 作EG ∥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA ―→,EF ―→,EG ―→分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D (0,21-,23), AC ―→=(-2,1,3),AD ―→=(-2,21-,23).设平面ACD 的法向量为n =(x ,y ,z ),则⎩⎨⎧ n ·AC ―→=0,n ·AD ―→=0,即⎩⎨⎧-2x +y +3z =0,-2x -12y +32z =0,令x =1,得n =(1,-1,3).设AP ―→=λPB ―→,则P (2,λλ+12,0),λ∥(0,+∞),可得CP ―→=(2,λλ+-11,-3).设CP 与平面ACD 所成的角为θ,则sin θ=|cos<CP ,n>|=52)11(7111⨯+-++---λλλλ=3535,解得λ=1或λ=-25(舍去),∥P 为AB 的中点时,满足条件.。

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

向量法求立体几何中的折叠探索及最值问题 高三数学一轮复习

巩固训练2 [2024·河南郑州模拟]在底面ABCD为梯形的多面体中.AB∥CD,
BC⊥CD,AB=2CD=2 2,∠CBD=45°,BC=AE=DE,且四边 形BDEN为矩形.
(1)求证:BD⊥AE; (2)线段EN上是否存在点Q,使得直线BE与平面QAD所成的角为60°? 若不存在,请说明理由.若存在,确定点Q的位置并加以证明.
(1)求证:OP⊥平面ABED;
(2)求二面角B-PE-F的正弦值.
题型二 探索性问题
例2 [2024·河北石家庄模拟]如图,四棱锥S-ABCD中,底面ABCD为
矩形且垂直于侧面SAB,O为AB的中点,SA=SB=AB=2,AD= 2.
(1)证明:BD⊥平面SOC;
(2)侧棱SD上是否存在点E,使得平面ABE与平面SCD夹角的余弦值
为1,若存在,求SE的值;若不存在,说明理由.
5
SD

题后师说
(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当 作条件,据此列方程或方程组,把“是否存在”转化为“点的坐标的 方程是否有解,是否有规定范围内的解”等.
(2)对于位置探究型问题,通常借助向量,引进参数,综合已知条件 和结论列出等式,解出参数.
高考大题研究课七 向量法求立体几何中的折叠、探索及最值问题
会用向量法解决立体几何中的折叠、角的存在条件及最值问题,提 高学生空间想象能力、数学运算能力.
关键能力·题型剖析 题型一 折叠问题 例1 [2024·江西景德镇模拟]如图,等腰梯形ABCD中,AD∥BC,AB=BC =CD=12AD=2,现以AC为折痕把△ABC折起,使点B到达点P的位置,且 PA⊥CD.
题型三 最值问题
例3 [2020·新高考Ⅰ卷]如图,四棱锥P-ABCD的底面为正方形, PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.

抓不变,巧构造,悟本质--例谈立体几何中的折叠问题

抓不变,巧构造,悟本质--例谈立体几何中的折叠问题

2021年第2期中学数学教学参考(上旬)抓不变,巧构造,悟本质—例谈立体几何中的折叠问题徐敏亚(江苏省梅村高级中学)摘要:折叠问题是立体几何的一个重要问题,是空间几何与平面几何问题互相转化的集中体现,处理这 类问题的关键就是抓住折叠前后图形的特征关系,弄清折叠前后哪些量和位置关系发生了变化,哪些量和 位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

关键词:立体几何;折叠问题;不变量文章编号:1002-2171 (2021)2-0037-03《普通高中数学课程标准(2017年版2020年修订)》在“课程性质与基本理念”一节中提道:把握数学 本质,启发思考,改进教学。

江苏省作为第二批实施新高考的省份,对立体几 何的考查提高了要求,其中就提高了对空间几何体的 图形变换的考查。

折叠(旋转)和展开是两种常见的 图形变换形式。

折叠问题是立体几何的一个重要内容,是空间几 何问题与平面几何问题相互转化的集中体现,处理这 类问题的关键就是抓住折叠前后图形的特征关系。

折叠问题是立体几何中考查学生的实践能力、创新能 力和空间想象能力的较好素材。

解答折叠问题的关 键在于画好折叠前后的平面图形和立体图形,并弄清 折叠前后哪些量和位置关系发生了变化,哪些量和位 置关系没有发生变化,这些未发生变化的已知条件就 是我们分析问题和解决问题的依据。

例1如图1是正四面体的平面展开图,G,H,分别是D£,B£,£F的中点,在这个正四面体中有以下结论:①B D与£F垂直;②B E与M N为异 面直线;③G H与A F所成角为60°;④M N//平面A D F。

其中正确的结论序号为________。

解:先把对应的正四面体画出来,如图2,对照选项就可知答案为①③④。

A(B,C)说明:根据平面图形的特征,想象平面图形折叠 后的图形进行判断,也可以利用手中的纸片画出相应 的图形进行实际操作。

2.立体几何中的折叠与最值问题(无解析)

2.立体几何中的折叠与最值问题(无解析)

立体几何中的折叠与最值问题-:折&申的垂直与距S?问题【例1】如图.△AC£>和ΔMBC都是直角三角形,ΛB=BC,ACAD30\把三角形八8C沿AC边折起,使AASC所在的平面与aACO所在的平面垂直.若A8=#⑴求证:平面八8。

_1.平面Ba);<2>求C点到平面A8。

的距离【拓1】设Af、N是直角梯形ABCD两腰的中点,DEJ.八8于E(如图).现将△八。

£沿DE折起,使二面角Λ-DE-B≠)45∖此时点Λ在平面8。

E内的射影恰为点B,求W、N的连线与八E所成角的值.【拓2】如图,在4A8C中.AD1BC.£0=24£,过£作FG//BC.且将AAfG沿FG折起,使ZA,ED=CM o,求证:4'£1平面A,BC a{拓3]如图.在平行四边形八8C。

中.八8=AC=I,ZΛCD9(Γ,将它沿对角线AC折起,使八8与CO成6(尸角,求8,。

之间的距离。

二:折叠中的角度问即【例2]:在长方形AA38中,Λβ=2∕M,=4.C.G 分别是A8,八四的中点(如图1).将此长方形沿CC 对折,使二面角A-CG-8为直二面角,。

.£分别是A4,CG的中点(如图2).⑴**求证:G 。

〃平面ABE ;(2:△求直线8G 与平面八声£所成角的正弦值【拓1】如图.巳知A8C/)是上.下底边长分别为2和6.轴"Q 折成直二面角⑴证明:ΛC±BO 1; (2)求二面角O-AC-Q 的正弦值【拓2】在正ZUSC 中,E 、F 、户分别是AB 、AG8C 边上的点.涧足A£:E8=CF:8=CT:P8=I:2.将AAEF 沿EF 折起到尸的位置,使二面角A-EF-H 成直二面角,连结八昆A 1P.(1)求证:A £,平面8£P;(2)求直线AE 与平面AB 尸所成向的大小;(3)求二面角B-AP-F 的余弦值大小,三:立体几何中的体积最值问题高为&的等禊梯形.将它沿对称 OO.C【例3】设四梭锥〃-A8C/)中,底面A8C/)是边长为1的正方形,且PAI面A8C?)⑴•♦求证PCkBD;⑵A过8。

立体几何的最值问题

立体几何的最值问题

立体几何最值问题立体几何是数学中的一个重要分支,它研究的是空间图形的性质和数量关系。

在立体几何中,我们经常遇到最值问题,即寻找某个量的最大值或最小值。

本文将介绍立体几何中最值问题的几个方面:1.立体几何位置关系立体几何中的位置关系是指空间中点、线、面之间的相对位置。

解决位置关系问题需要运用空间想象和逻辑推理。

在立体几何中最值问题中,位置关系往往与距离、角度等问题交织在一起,需要综合考虑多种因素。

2.立体几何中的距离立体几何中的距离是指空间中两点之间的直线距离,或者是点与线、线与面之间的距离。

在解决最值问题时,我们需要考虑如何利用距离公式来计算最短路径、最大距离等。

3.立体几何中的体积立体几何中的体积是指空间中封闭图形的体积,或者是两个平面图形之间的距离。

计算体积需要运用体积公式,而解决最大或最小面积问题则需要考虑如何调整图形的形状和大小。

4.立体几何中的最短路径立体几何中的最短路径问题是指寻找空间中两点之间的最短距离。

解决这类问题需要运用距离公式和几何定理,有时还需要借助对称、旋转等技巧。

5.立体几何中的最大/最小面积立体几何中的最大/最小面积问题通常涉及到平面图形在空间中的展开和折叠。

解决这类问题需要运用面积公式和平面几何定理,同时要注意图形的对称性和边长之间的关系。

6.立体几何中的角度问题立体几何中的角度问题是指空间中两条直线或两个平面之间的夹角。

解决这类问题需要运用角度公式和空间向量,同时要注意图形的对称性和边长之间的关系。

7.立体几何中的轨迹问题立体几何中的轨迹问题是指一个点或一条线在空间中按照一定规律移动所形成的轨迹。

解决这类问题需要运用轨迹方程和运动学原理,同时要注意轨迹的形状和大小随时间的变化情况。

立体几何中的折叠问题含解析

立体几何中的折叠问题含解析

高考热点问题:立体几何中折叠问题一、考情分析立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等.二、经验分享(1)立体几何中的折叠问题主要包含两大问题:平面图形的折叠与几何体的表面展开.把一个平面图形按照某种要求折起,转化为空间图形,进而研究图形在位置关系和数量关系上的变化,这就是折叠问题.把一个几何体的表面伸展为一个平面图形从而研究几何体表面上的距离问题,这就是几何体的表面展开问题.折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现,展开与折叠问题就是一个由抽象到直观,由直观到抽象的过程.此类问题也是历年高考命题的一大热点. (2) 平面图形通过折叠变为立体图形,就在图形发生变化的过程中,折叠前后有些量(长度、角度等)没有发生变化,我们称其为“不变量”.求解立体几何中的折叠问题,抓住“不变量”是关键.(3)把曲面上的最短路线问题利用展开图转化为平面上两点间距离的问题,从而使问题得到解决,这是求曲面上最短路线的一种常用方法.三、题型分析(一) 平面图形的折叠解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,抓住两个关键点:不变的线线关系、不变的数量关系.不变的线线关系,尤其是平面图形中的线线平行、线线垂直关系是证明空间平行、垂直关系的起点和重要依据;不变的数量关系是求解几何体的数字特征,如几何体的表面积、体积、空间中的角与距离等的重要依据.1. 折叠后的形状判断【例1】如下图,在下列六个图形中,每个小四边形皆为全等的正方形,那么沿其正方形相邻边折叠,能够围成正方体的是_____________(要求:把你认为正确图形的序号都填上)①②③④⑤⑥【分析】根据平面图形的特征,想象平面图形折叠后的图形进行判断.也可利用手中的纸片画出相应的图形进行折叠.【答案】①③⑥【解析】①③⑥可以.②把横着的小方形折起后,再折竖着的小方形,则最上方的小方形与正方体的一个侧面重合,导致正方体缺少一个侧面;④把下方的小方形折起后,则上方的小方形中的第1,2个重合,导致正方体的底面缺少,不能折成正方体;⑤把中间的小方形当成正方体的底面,则右下方的小方形折叠不起来,构不成正方体.【小试牛刀】下图代表未折叠正方体的展开图,将其折叠起来,变成正方体后的图形是()A. B. C. D.【例2】将图1中的等腰直角三角形ABC沿斜边BC的中线折起得到空间四边形ABCD(如图2),则在空间四边形ABCD中,AD与BC的位置关系是( )图1 图2A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【答案】C【解析】在图1中的等腰直角三角形ABC 中,斜边上的中线AD 就是斜边上的高,则AD ⊥BC ,折叠后如图2,AD 与BC 变成异面直线,而原线段BC 变成两条线段BD 、CD ,这两条线段与AD 垂直,即AD ⊥BD ,AD ⊥CD ,故AD ⊥平面BCD ,所以AD ⊥BC .【小试牛刀】如图,在正方形ABCD 中,点E,F 分别为边BC,AD 的中点,将沿BF 所在直线进行翻折,将沿DE 所在直线进行翻折,在翻折过程中( )A. 点A 与点C 在某一位置可能重合B. 点A 与点C 的最大距离为C. 直线AB 与直线CD 可能垂直D. 直线AF 与直线CE 可能垂直 3.折叠后几何体的数字特征折叠后几何体的数字特征包括线段长度、几何体的表面积与体积、空间角与距离等,设计问题综合、全面,也是高考命题的重点.解决此类问题的关键是准确确定折叠后几何体的结构特征以及平面图形折叠前后的数量关系之间的对应.【例3】(体积问题)如图所示,等腰ABC △的底边66AB =,高3CD =,点E 是线段BD 上异于点B D ,的动点,点F 在BC 边上,且EF AB ⊥,现沿EF 将BEF △折起到PEF △的位置,使PE AE ⊥,记BE x =,()V x 表示四棱锥P ACFE -的体积.(1)求()V x 的表达式;(2)当x 为何值时,()V x 取得最大值?PED F B CA【解析】(1)由折起的过程可知,PE ⊥平面ABC,96ABC S ∆=,V(x)= (036x <<)(2),所以(0,6)x ∈时,'()0v x > ,V(x)单调递增;636x <<时'()0v x < ,V(x)单调递减;因此x=6时,V(x)取得最大值126.【小试牛刀】【河北省五个一名校联盟2019届高三下学期一诊】在平面四边形 中,AB=BC=2,AC=AD=2,现沿对角线AC 折起,使得平面DAC平面ABC ,则此时得到的三棱锥D-ABC外接球的表面积为( ) A .B .C .D .【例4】(空间角问题)如左图,矩形ABCD 中,12AB =,6AD =,E 、F 分别为CD 、AB 边上的点,且3DE =,4BF =,将BCE ∆沿BE 折起至PBE ∆位置(如右图所示),连结AP 、EF 、PF ,其中25PF =.(Ⅰ)求证:PF ⊥平面ABED ; (Ⅱ)求直线AP 与平面PEF 所成角的正弦值.【解析】(Ⅰ)由翻折不变性可知, , ,在PBF ∆中, ,所以PF BF ⊥ 在图1中,易得,在PEF ∆中, ,所以PF EF ⊥又,BF ⊂平面ABED ,EF ⊂平面ABED ,所以PF ⊥平面ABED .. .ACDBEF图图ABCD PEF(Ⅱ)方法一:以D 为原点,建立空间直角坐标系D xyz -如图所示,则()6,0,0A ,,()0,3,0E ,()6,8,0F ,所以, ,,设平面PEF 的法向量为(),,x y z =n ,则0FP EF ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,解得560x y z ⎧=-⎪⎨⎪=⎩令6y =-,得,设直线AP 与平面PEF 所成角为θ,则81281427. 所以直线AP 与平面PEF 所成角的正弦值为81281427. 方法二:过点A 作AH EF ⊥于H ,由(Ⅰ)知PF ⊥平面ABED ,而AH ⊂平面ABED 所以PF AH ⊥,又,EF ⊂平面PEF ,PF ⊂平面PEF ,所以AH ⊥平面PEF ,所以APH ∠为直线AP 与平面PEF 所成的角. 在Rt APF ∆中,在AEF ∆中,由等面积公式得4861在Rt APH ∆中,所以直线AP 与平面PEF 所成角的正弦值为81281427. 【点评】折叠问题分析求解两原则:解法二图ABCD PEFHxy z 解法一图A BC D PEF(1)折叠问题的探究须充分利用不变量和不变关系;(2)折叠前后始终位于折线的同侧的几何量和位置关系保持不变.【小试牛刀】【广东省汕头市2019届高三上学期期末】如图,已知是边长为6的等边三角形,点D、E分别是边AB、AC上的点,且满足,如图,将沿DE折成四棱锥,且有平面平面BCED.求证:平面BCED;记的中点为M,求二面角的余弦值.(二) 几何体的展开几何体表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面距离的问题,解题时不妨将它展开成平面图形试一试.1.展开后形状的判断【例5】把正方体的表面沿某些棱剪开展成一个平面图形(如右下图),请根据各面上的图案判断这个正方体是()解析:这是图③模型,在右图中,把中间的四个正方形围起来做“前后左右”四个面,有“空心圆”的正方形做“上面”,显然是正方体C的展形图,故选(C).【小试牛刀】水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面.则“祝”、“你”、“前”分别表示正方体的______________________.2.展开后的数字特征——表面上的最短距离问题【例6】如图,已知圆柱体底面圆的半径为2π,高为2,AB CD,分别是两底面的直径,AD BC,是母线.若一只小虫从A点出发,从侧面爬行到C点,求小虫爬行的最短路线的长度.【解析】如图,将圆柱的侧面展开,其中AB为底面周长的一半,即,2AD=.则小虫爬行的最短路线为线段AC.在矩形ABCD中,.所以小虫爬行的最短路线长度为22.【点评】几何体表面上的最短距离需要将几何体的表面展开,将其转化为平面内的最短距离,利用平面内两点之间的距离最短求解.但要注意棱柱的侧面展开图可能有多种展开图,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.【小试牛刀】如图,在长方体中, ,求沿着长方体表面从A到1C的最短路线长.四、迁移运用1.【浙江省2019年高考模拟训练】已知四边形中,,,在将沿着翻折成三棱锥的过程中,直线与平面所成角的角均小于直线与平面所成的角,设二面角,的大小分别为,则()A. B. C.存在 D.的大小关系无法确定【答案】B【解析】如图,在三棱锥中,作平面于,连,则分别为与平面所成的角.∵直线与平面所成角的角均小于直线与平面所成的角,∴.过作,垂足分别为,连,则有,∴分别为二面角,的平面角,∴.在中,,设BD的中点为O,则为边上的中线,由可得点H在CO的左侧(如图所示),∴.又,∴.又为锐角, ∴.故选B .2.【四川省德阳市2018届高三二诊】以等腰直角三角形ABC 的斜边BC 上的中线AD 为折痕,将ABD ∆与ACD ∆折成互相垂直的两个平面,得到以下四个结论:①BD ⊥平面ACD ;②ABC ∆为等边三角形;③平面ADC ⊥平面ABC ;④点D 在平面ABC 内的射影为ABC ∆的外接圆圆心.其中正确的有( ) A. ①②③ B. ②③④ C. ①②④ D. ①③④ 【答案】C【解析】由于三角形ABC 为等腰直角三角形,故,所以BD ⊥平面ACD ,故①正确,排除B 选项.由于AD BD ⊥,且平面ABD ⊥平面ACD ,故AD ⊥平面BCD ,所以AD CD ⊥,由此可知,三角形为等比三角形,故②正确,排除D 选项.由于,且ABC ∆为等边三角形,故点D 在平面ABC 内的射影为ABC ∆的外接圆圆心, ④正确,故选C .3.已知梯形如下图所示,其中,,为线段的中点,四边形为正方形,现沿进行折叠,使得平面平面,得到如图所示的几何体.已知当点满足时,平面平面,则的值为( )A. B. C. D.【答案】C 【解析】因为四边形为正方形,且平面平面,所以两两垂直,且,所以建立空间直角坐标系(如图所示),又因为,,所以,则,,设平面的法向量为,则由得,取,平面的法向量为,则由得,取,因为平面平面,所以,解得.故选C.4.如图是棱长为1的正方体的平面展开图,则在这个正方体中,以下结论错误的是( )A .点M 到AB 的距离为22B .AB 与EF 所成角是90︒C .三棱锥C DNE -的体积是16D .EF 与MC 是异面直线 【答案】D【解析】根据正方体的平面展开图,画出它的立体图形如图所示,A 中M 到AB 的距离为222MC =,A 正确;AB 与EF 所成角是90︒,B 正确;三棱锥C DNE -的体积是,C 正确;//EF MC ,D 错误.5.把正方形ABCD 沿对角线AC 折起,当以四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( )度A .90B .60C .45D .30 【答案】C【解析】折叠后所得的三棱锥中易知当平面ACD 垂直平面ABC 时三棱锥的体积最大.设AC 的中点为O ,则DBO ∠即为所求,而DOB ∆是等腰直角三角形,所以,故选C .6.【辽宁省辽阳市2018学届高三第一次模拟】如图,圆形纸片的圆心为O ,半径为6cm ,该纸片上的正方形ABCD 的中心为O , E , F , G , H 为圆O 上的点, ABE , BCF , CDG , ADH 分别以AB , BC , CD , DA 为底边的等腰三角形,沿虚线剪开后,分别以AB , BC , CD , DA 为折痕折起ABE , BCF , CDG , ADH ,使得E , F , G , H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为__________.【答案】500327π3cm【解析】如图:连接OE 交AB 于点I ,设E ,F ,G ,H 重合于点P ,正方形的边长为x ()0x >,则OI=2x , IE 62x =-. 因为该四棱锥的侧面积是底面积的2倍,所以,解得4x =,设该四棱锥的外接球的球心为Q ,半径为R ,则,,解得5R 3=,外接球的体积3cm7.【山东省济南市2019届高三上学期期末】在正方形中,点,分别为,的中点,将四边形沿翻折,使得平面平面,则异面直线与所成角的余弦值为__________.【答案】【解析】连接FC ,与DE 交于O 点,取BE 中点为N , 连接ON ,CN ,易得ON ∥BD ∴∠CON 就是异面直线与所成角设正方形的边长为2, OC=,ON=,CN=∴cos ∠CON==故答案为:8.如图所示,在四边形ABCD 中,,将四边形ABCD 沿对角线BD 折成四面体BCD A -',使平面⊥BD A /平面BCD ,则下列结论正确的是 .(1)BD C A ⊥'; (2);(3)A C '与平面BD A '所成的角为︒30; (4)四面体BCD A -'的体积为61. 【答案】(2)(4)【解析】平面⊥BD A /平面BCD CD ∴⊥平面'A BD ,/CA 与平面BD A /所成的角为'CA D ∠,四面体BCDA -/的体积为,,综上(2)(4)成立.9.如图,矩形ABCD 中,2AB AD =,E 为边AB 的中点,将ADE ∆沿直线DE 翻折成1A DE ∆,若M 为线段1AC 的中点,则在ADE ∆翻折过程中,下面四个选项中正确的是 (填写所有的正确选项)(1)||BM 是定值 (2)点M 在某个球面上运动(3)存在某个位置,使1DE A C ⊥ (4)存在某个位置,使//MB 平面1A DE 【答案】(1)(2)(4).【解析】取CD 中点F ,连接MF ,BF ,则1//MF DA ,//BF DE ,∴平面//MBF 平面1A DE , ∴//MB 平面1A DE ,故(4)正确;由,为定值,FB DE =为定值,由余弦定理可得,∴MB 是定值,故(1)正确;∵B 是定点,∴M 是在以B 为圆心,MB 为半径的圆上,故(2)正确;∵1AC 在平面ABCD 中的射影为AC ,AC 与DE 不垂直,∴存在某个位置,使1DE A C ⊥错误,故(3)错误.10.【四川省广元市高2018届第二次高考适应性统考】如图,在矩形ABCD 中, 4AB =, 2AD =, E 是CD 的中点,以AE 为折痕将DAE ∆向上折起, D 变为'D ,且平面'D AE ⊥平面ABCE .(Ⅰ)求证: 'AD EB ⊥; (Ⅱ)求二面角'A BD E --的大小. 【答案】(Ⅰ)证明见解析;(Ⅱ) 90. 【解析】(Ⅰ)证明:∵, AB 4=,∴,∴AE EB ⊥,取AE 的中点M ,连结MD ',则,∵ 平面D AE '⊥平面ABCE ,∴MD '⊥平面ABCE ,∴MD '⊥ BE , 从而EB ⊥平面AD E ',∴AD EB '⊥ (Ⅱ)如图建立空间直角坐标系,则()A 4,2,0、()C 0,0,0、()B 0,2,0、()D 3,1,2',()E 2,0,0,从而BA =(4,0,0),,.设为平面ABD '的法向量,则可以取设为平面BD E '的法向量,则可以取因此, 12n n 0⋅=,有12n n ⊥,即平面ABD ' ⊥平面BD E ', 故二面角的大小为90.11.【福建省龙岩市2019届高三下学期教学质量检查】如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.【解析】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,, 又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.12.【湖南省长沙市长郡中学2019届高三上学期第一次适应性考试(一模】如图,在多边形中(图1),为长方形,为正三角形,现以为折痕将折起,使点在平面内的射影恰好在上(图2).(Ⅰ)证明:平面;(Ⅱ)若点在线段上,且,当点在线段上运动时,求三棱锥的体积. 【解析】(Ⅰ)过点作,垂足为.由于点在平面内的射影恰好在上,∴平面.∴.∵四边形为矩形,∴.又,∴平面,∴.又由,,可得,同理.又,∴,∴,且,∴平面.(Ⅱ)设点到底面的距离为,则.由,可知,∴.又,∴.13.【江西省上饶市重点中学2019届高三六校第一次联考】如图所示,在边长为2的菱形中,,现将沿边折到的位置.(1)求证:;(2)求三棱锥体积的最大值.【解析】(1)如图所示,取的中点为,连接,易得,,又面(2)由(1)知,= ,当时,的最大值为1.14.【云南师范大学附属中学2019届高三上学期第一次月考】如图所示甲,在四边形ABCD中,,,是边长为8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如图所示乙所示,点O,M,N分别为棱AC,PA,AD的中点.求证:平面PON;求三棱锥的体积.【解析】如图所示,为正三角形,O为AC的中点,,平面平面ACD,平面平面,平面ACD,平面ACD,.,,,,即.,N分别为棱AC,AD的中点,,,又,平面PON;解:由,,,可得,点O、N分别是AC、AD的中点,,是边长为8的等边三角形,,又为PA的中点,点M到平面ANO的距离,.又,.15.【湖北省荆门市2019届高三元月调研】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体,如图.1若,证明:平面;2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.【解析】1由已知得四边形ABFE是正方形,且边长为2,在图2中,,由已知得,,平面又平面BDE,,又,,平面2在图2中,,,,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,,由勾股定理可得,则,,过E作交DC于点G,可知GE,EA,EF两两垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,.设平面ACD的一个法向量为,由得,取得,设,则m,,,得设CP与平面ACD所成的角为,.所以16.【山西省吕梁市2019届高三上学期第一次模拟】已知如图(1)直角梯形,,,,,为的中点,沿将梯形折起(如图2),使.(1)证明:平面;(2)求点到平面的距离.【解析】(1)由已知可得为直角三角形,所以.又,所以,所以平面.(2)因为平面,平面,所以,又因为,平面,平面,,所以,平面,又因为,所以平面,又因为平面,所以.在直角中,,设点到平面的距离为,由,则,所以.16.正△ABC的边长为4,CD是AB边上的高,,E F分别是AC和BC边的中点,现将△ABC沿CD翻折--.成直二面角A DC B(1)试判断直线AB与平面DEF的位置关系,并说明理由;--的余弦值;(2)求二面角E DF C(3)在线段BC 上是否存在一点P ,使AP DE ⊥?证明你的结论.【分析】(1)问可利用翻折之后的几何体侧面ABC ∆的中位线得到//AB EF ,便可由线面平行的判定定理证得;(2)先根据直二面角A DC B --将条件转化为AD ⊥面BCD ,然后做出过点E 且与面BCD 垂直的直线EM ,再在平面BCD 内过M 作DF 的垂线即可得所求二面角的平面角;(3)把AP DE ⊥作为已知条件利用,利用ADC ∆中过A 与DE 垂直的直线确定点P 的位置.【解析】(1)如图:在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF//AB,又AB ⊄平面DEF,EF ⊂平面DEF .∴AB ∥平面DEF .(2)∵AD ⊥CD,BD ⊥CD∴∠ADB 是二面角A —CD —B 的平面角∴AD ⊥BD ∴AD ⊥平面BCD取CD 的中点M,这时EM ∥AD ∴EM ⊥平面BCD过M 作MN ⊥DF 于点N,连结EN,则EN ⊥DF∴∠MNE 是二面角E —DF —C 的平面角,在Rt △EMN 中,EM=1,MN=23 ∴tan ∠MNE=233,cos ∠MNE=721(3)在线段BC 上存在点P,使AP ⊥DE. 证明如下:在线段BC 上取点P,使BC BP 31 ,过P 作PQ ⊥CD 与点Q, ∴PQ ⊥平面ACD∵, 在等边△ADE 中,∠DAQ=30°,∴AQ ⊥DE ∴AP ⊥DE.。

立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题--备战2022年高考数学配套word试题(创新设计版)

立体几何中的翻折、轨迹及最值(范围)问题)1.翻折问题是立体几何的一类典型问题,是考查实践能力与创新能力的好素材.解答翻折问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些发生了变化,哪些没有发生变化.解题时我们要依据这些变化的与未变化的量来分析和解决问题.而表面展开问题是折叠问题的逆向思维、过程,一般地,涉及多面体表面的距离问题不妨将它展开成平面图形试一试.2.在立体几何中,某些点、线、面按照一定的规则运动,构成各式各样的轨迹,探求空间轨迹与探求平面轨迹类似,应注意几何条件,善于基本轨迹转化.对于较为复杂的轨迹,常常要分段考虑,注意特定情况下的动点的位置,然后对任意情形加以分析判定,也可转化为平面问题.对每一道轨迹命题必须特别注意轨迹的纯粹性与完备性.3.立体几何中的体积最值问题一般是指有关距离的最值、角的最值或面积、体积的最值.其一般方法有:(1)几何法:通过证明或几何作图,确定图形中取得最值的特殊位置,再计算它的值;(2)代数方法:分析给定图形中的数量关系,选取适当的自变量及目标函数,确定函数解析式,利用函数的单调性、有界性,以及不等式的均值定理等求出最值.题型一立体几何中的翻折问题【例1】(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的二面角B-CG-A的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,且BE ∩BC =B ,BE ,BC ⊂平面BCGE , 所以AB ⊥平面BCGE .又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3. 以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG→=(1,0,3),AC →=(2,-1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0),所以cos 〈n ,m 〉=n ·m |n ||m |=32.因此二面角B -CG -A 的大小为30°.【训练1】 (2021·浙江名师预测卷四)在梯形ABCD 中,对角线AC 与BD 交于点O ,AD =2AB =2BC =2CD .将△BCD 沿BD 翻折至△BPD ,且满足平面ABP ⊥平面BPD .(1)求证:二面角P -BD -A 是直二面角;(2)(一题多解)求直线PD 与平面P AO 所成角的正弦值的大小.(1)证明由已知条件易得∠BAD=60°,∠BDA=30°,AB⊥BD.在△BPD中,过点D作DH⊥BP,交BP的延长线于点H.∵平面ABP⊥平面BPD,平面ABP∩平面BPD=BP,∴DH⊥平面ABP,∵AB⊂平面ABP,∴DH⊥AB.又∵BD∩DH=D,∴AB⊥平面BPD,∵AB⊂平面ABD,∴平面ABD⊥平面BPD.即二面角P-BD-A是直二面角.(2)解法一过点P作PG⊥BD,交BD于点G,则G是BD的中点.由(1)可知平面PBD⊥平面ABD,又∵平面PBD∩平面ABD=BD,∴PG⊥平面ABD.设OB=1,则OP=1,OA=2,AB=BP=3,∵AB⊥平面BPD,∴AB⊥BP,∴AP=AB2+BP2=6,由余弦定理得cos∠AOP=OA2+OP2-AP22OA·OP=-14,则sin∠AOP=15 4.设点D到△AOP的距离为h,∵V P-AOD=V D-AOP,∴13·PG·S△AOD=13·h·S△AOP,∵PG=32,S△AOD=12×2×2·sin2π3=3,S△AOP=12×1×2×154=154,∴h=215 5,∵PD =3,∴直线PD 与平面P AO 所成角θ的正弦值sin θ=h PD =255.法二 分别取BD ,AD 的中点E ,F ,连接EP ,EF ,则EF ∥AB .由(1)可知AB ⊥平面BPD ,∴EF ⊥平面BPD ,∴EF ⊥BD ,EF ⊥EP .∵PB =PD ,∴PE ⊥BD ,以点E 为坐标原点,EF→,ED →,EP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.设OB =1,可得P ⎝⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫0,32,0, A ⎝ ⎛⎭⎪⎫3,-32,0,O ⎝ ⎛⎭⎪⎫0,-12,0. ∴PD →=⎝ ⎛⎭⎪⎫0,32,-32,P A →=⎝⎛⎭⎪⎫3,-32,-32, AO→=(-3,1,0). 设平面P AO 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧P A →·n =0,AO →·n =0,即⎩⎨⎧3x -32y -32z =0,-3x +y =0, 令x =1,则n =(1,3,-1),∴直线PD 与平面P AO 所成角θ的正弦值为sin θ=|cos 〈n ,PD →〉|=|n ·PD →||n |·|PD →|=255. 题型二 立体几何中的轨迹问题【例2】 (1)已知在平行六面体ABCD -A 1B 1C 1D 1中,AA 1与平面A 1B 1C 1D 1垂直,且AD =AB ,E 为CC 1的中点,P 在对角面BB 1D 1D 所在平面内运动,若EP 与AC 成30°角,则点P 的轨迹为( )A .圆B .抛物线C .双曲线D .椭圆(2)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点P 是平面AC 内的动点, 若点P 到直线A 1D 1的距离等于点P 到直线CD 的距离,则动点P 的轨迹所在的曲线是()A.抛物线B.双曲线C.椭圆D.直线答案(1)A(2)B解析(1)因为在平行六面体ABCD-A1B1C1D1中,AA1与平面A1B1C1D1垂直,且AD=AB,所以该平面六面体ABCD-A1B1C1D1是一个底面为菱形的直四棱柱,所以对角面BB1D1D⊥底面ABCD,AC⊥对角面BB1D1D.取AA1的中点F,则EF∥AC,因为EP与AC成30°角,所以EP与EF成30°角.设EF与对角面BB1D1D 的交点为O,则EO⊥对角面BB1D1D,所以点P的轨迹是以EO为轴的一个圆锥的底面,故选A.(2)如图,以A为原点,AB为x轴、AD为y轴,建立平面直角坐标系.设P(x,y),作PE⊥AD于E、PF⊥A1D1于F,连接EF,易知|PF|2=|PE|2+|EF|2=x2+1,又作PN⊥CD于N,则|PN|=|y-1|.依题意|PF|=|PN|,即x2+1=|y-1|,化简得x2-y2+2y=0,故动点P的轨迹为双曲线,选B.【训练2】(1)在正方体ABCD-A1B1C1D1中,点M,N分别是线段CD,AB上的动点,点P是△A1C1D内的动点(不包括边界),记直线D1P与MN所成角为θ,若θ的最小值为π3,则点P的轨迹是()A.圆的一部分B.椭圆的一部分C.抛物线的一部分D.双曲线的一部分(2)如图,AB是平面α的斜线段,A为斜足,若点P在平面α内运动,使得△ABP 的面积为定值,则动点P的轨迹是()A.圆B.椭圆C.一条直线D.两条平行直线答案(1)B(2)B解析(1)延长D1P交底面ABCD的内部于点Q,连接QD,则∠D1QD为直线D1Q 与底面ABCD所成的角,也就是直线D1P与MN所成角θ的最小值,故∠D1QD=π3,从而∠DD1Q=π6,所以D1Q的轨迹是以D1D为轴,顶点为D1,母线D1Q与轴D1D的夹角为π6的圆锥面的一部分,则点P的轨迹就是该部分圆锥面与△A1C1D面(不包括边界)的交线,而△A1C1D面所在平面与轴D1D斜交,故点P 的轨迹是椭圆的一部分.(2)由于线段AB 是定长线段,而△ABP 的面积为定值,所以动点P 到线段AB 的距离也是定值.由此可知空间点P 在以AB 为轴的圆柱侧面上.又P 在平面内运动,所以这个问题相当于一个平面去斜切一个圆柱(AB 是平面的斜线段)得到的切痕是椭圆.P 的轨迹就是圆柱侧面与平面α的交线是椭圆.题型三 立体几何中的长度、面积、体积的最值(范围)问题【例3】 (1)如图,正三棱锥S -ABC 的底面边长为2a ,E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,则四边形EFGH 的面积的取值范围是( )A .(0,+∞) B.⎝ ⎛⎭⎪⎫33a 2,+∞ C.⎝ ⎛⎭⎪⎫36a 2,+∞ D.⎝ ⎛⎭⎪⎫12a 2,+∞ (2)(2021·“超级全能生”联考)在长方体ABCD -A 1B 1C 1D 1中,底面ABCD 是边长为4的正方形,侧棱AA 1=t (t >4),点E 是BC 的中点,点P 是侧面ABB 1A 1内的动点(包括四条边上的点),且满足tan ∠APD =4tan ∠EPB ,则四棱锥P -ABED 的体积的最大值是( )A.433 B .16 3 C.1633 D.6439答案 (1)B (2)C解析 (1)因为E 、F 、G 、H 分别为SA ,SB ,CB ,CA 的中点,∴EF 綉12AB ,HG綉12AB ,∴EF 綉HG ,同理,EH 綉FG ,所以EFGH 为平行四边形,又∵S -ABC 为正三棱锥,∴SC ⊥AB ,∴EF ∥AB ,FG ∥SC ,所以EF ⊥FG ,从而四边形EFGH 为矩形,其面积S =GH ·GF =12a ·SC ,当正三棱锥的高→0时,SC →正三角形ABC的外接圆的半径233a ,所以四边形EFGH 的面积→33a 2,选B.(2)作PF ⊥AB ,垂足为点F ,在长方体ABCD -A 1B 1C 1D 1中,DA ⊥平面ABB 1A 1,CB ⊥平面ABB 1A 1,在Rt △P AD 和Rt △PBC 中,所以tan ∠APD =AD AP ,tan ∠EPB=BE PB .因为tan ∠APD =4tan ∠EPB ,BE =12BC =12AD ,所以PB =2AP .因为平面ABB 1A 1⊥平面ABCD ,平面ABB 1A 1∩平面ABCD =AB ,PF ⊥AB ,所以PF ⊥平面ABCD .设PF =h ,AF =x ,则BF =4-x ,x ∈[0,4],由PB =2AP ,得h 2+(4-x )2=4(x 2+h 2),即h 2=-x 2-83x +163.因为函数y =-x 2-83x +163在[0,4]上单调递减,所以当x =0时,(h 2)max =163,即h max =433,所以四棱锥P -ABED 的体积的最大值(V P -ABED )max =13×12×(2+4)×4×433=1633,故选C.【训练3】 (1)在棱长为6的正方体ABCD -A 1B 1C 1D 1中,M 是BC 中点,点P 是平面DCC 1D 1所在的平面内的动点,且满足∠APD =∠MPC ,则三棱锥P -BCD 体积的最大值是( )A .36B .12 3C .24D .18 3(2)(2021·镇海中学模拟)已知棱长为1的正方体ABCD -A 1B 1C 1D 1,球O 与正方体的各条棱相切,P 为球O 上一点,Q 是△AB 1C 的外接圆上的一点,则线段PQ 长的取值范围是________.答案 (1)B (2)⎣⎢⎡⎦⎥⎤3-22,3+22 解析 (1)因为AD ⊥平面D 1DCC 1,则AD ⊥DP ,同理BC ⊥平面D 1DCC 1,则BC ⊥CP ,∠APD =∠MPC ,则△P AD ∽△PMC ,∵AD =2MC ,则PD =2PC ,下面研究点P 在面ABCD 的轨迹(立体几何平面化),在平面直角坐标系内设D (0,0),C (6,0),D 1(0,6),C 1(6,6),设P (x ,y ),因为PD =2PC ,所以x 2+y 2=2(x -6)2+y 2,化简得(x -8)2+y 2=16,该圆与CC 1的交点纵坐标最大,交点为(6,23),三棱锥P -BCD 的底面BCD 的面积为18,要使三棱锥P -BCD 体积最大,只需高最大,当P 在CC 1上且CP =23时棱锥的高最大,V =13·18·23=12 3.(2)因为球O 与正方体的各条棱相切,所以球心O 为正方体的中心,切点为各条棱的中点,则易得|OP |=22.△AB 1C 为边长为2的等边三角形,设其外接圆的圆心为M ,则易得|MB 1|=63.在正方体ABCD -A 1B 1C 1D 1中,易得BD 1⊥平面AB 1C ,则OM ⊥MB 1.又因为|OB |=32,|MB |=33,所以|OM |=36,则|OQ |=|OB 1|=|OM |2+|MB 1|2=32,所以|PQ |max =|OQ |+|OP |=3+22,|PQ |min =|OQ |-|OP |=3-22,即线段PQ 的取值范围为⎣⎢⎡⎦⎥⎤3-22,3+22一、选择题1.已知线段AB 垂直于定圆所在的平面,B ,C 是圆上的两点,H 是点B 在AC 上的射影,当C 运动时,点H 运动的轨迹( )A .是圆B .是椭圆C .是抛物线D .不是平面图形答案 A解析 设在定圆内过点B 的直径与圆的另一个交点为点D ,过点B 作AD 的垂线,垂足为点E ,连接EH ,CD .因为BD 为定圆的直径,所以CD ⊥BC ,又因为AB 垂直于定圆所在的平面,所以CD ⊥AB ,又因为AB ∩BC =B ,所以CD ⊥平面ABC ,所以CD ⊥BH ,又因为BH ⊥AC ,AC ∩CD =C ,所以BH ⊥平面ACD ,所以BH ⊥EH ,所以动点H 在以BE 为直径的圆上,即点H 的运动轨迹为圆,故选A.2.设P 是正方体ABCD -A 1B 1C 1D 1的对角面BDD 1B 1(含边界)内的点,若点P 到平面ABC 、平面ABA 1、平面ADA 1的距离相等,则符合条件的点P ( )A .仅有一个B .有有限多个C .有无限多个D .不存在答案 A解析 与平面ABC ,ABA 1距离相等的点位于平面ABC 1D 1上;与平面ABC ,ADA 1距离相等的点位于平面AB 1C 1D 上;与平面ABA 1,ADA 1距离相等的点位于平面ACC 1A 1上;据此可知,满足题意的点位于上述平面ABC 1D 1,平面AB 1C 1D ,平面ACC 1A 1的公共点处,结合题意可知,满足题意的点仅有一个.3.(2021·温州中学模拟)如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为4π3的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( )A.5+12B.5-12C.3+12D.3-12答案 D解析 因为蛋巢的底面是边长为1的正方形,所以过四个顶点截鸡蛋所得的截面圆的直径为1.又因为鸡蛋(球体)的体积为4π3,所以球的半径为1,所以球心到截面圆的距离d =1-14=32,则截面圆到球体最低点的距离为1-32,而蛋巢的高度为12,故鸡蛋(球体)到蛋巢底面的最短距离为12-⎝⎛⎭⎪⎫1-32=3-12,故选D. 4.(2021·温州适考)如图,在△ABC 中,点M 是边BC 的中点,将△ABM 沿着AM 翻折成△AB ′M ,且点B ′不在平面AMC 内,点P 是线段B ′C 上一点.若二面角P -AM -B ′与二面角P -AM -C 的平面角相等,则直线AP 经过△AB ′C 的( )A .重心B .垂心C .内心D .外心答案 A解析因为二面角P-AM-B′与二面角P-AM-C的平面角相等,所以点P到两个平面的距离相等,所以V P-AB′M=V P-ACM,即V A-PB′M=V A-PCM.因为两三棱锥的高相等,故S△PB′M =S△PCM,故B′P=CP,故点P为CB′的中点,所以直线AP经过△AB′C的重心,故选A.5.(2021·浙江名师预测卷一)如图,在四棱锥P-ABCD中,底面ABCD为正方形,侧面P AD为正三角形,且侧面P AD⊥底面ABCD,已知在侧面P AD内存在点Q,满足PQ⊥QD,则当AQ最小时,二面角A-CD-Q的余弦值是()A.2-34 B.2+34C.2-62 D.2+64答案 D解析取PD的中点M,因为四边形ABCD为正方形,所以CD⊥AD,又平面P AD⊥平面ABCD,且平面P AD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面P AD,所以CD⊥QD,则二面角A-CD-Q的平面角是∠ADQ,又因为点Q的轨迹是以M为圆心的圆,如图,当|AQ|最小时,∠ADQ=∠ADP-∠QDP=60°-45°=15°,即二面角A-CD-Q的余弦值为cos 15°=cos(60°-45°)=2+6 4,故选D.6.(2021·浙江新高考仿真卷二)如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别为BD1,BB1上的动点,则△C1PQ周长的最小值为()A.215 3B.4+2 2C.4+83 2D.213 3答案 B解析连接B1D1,BC1,由图易得△C1PQ的三边分别在三棱锥B-B1C1D1的三个侧面上,将三棱锥B-B1C1D1的侧面展开成平面图形,如图,可得四边形BC1D1C1′为直角梯形,当C1′,P,Q,C1四点共线时,△C1PQ的周长最小,最小值为C1′D21+D1C21=4+22,即△C1PQ的周长的最小值为4+22,故选B.7.(2021·上虞区期末调测)在棱长均为23的正四面体ABCD中,M为AC的中点,E为AB的中点,P是DM上的动点,Q是平面ECD上的动点,则AP+PQ的最小值是()A.3+112 B.3+ 2C.534D.2 3答案 A解析 如图,作MG ⊥CE 于点G ,连接DG .由已知得平面CDE ⊥平面ABC ,又平面CDE ∩平面ABC =CE ,则MG ⊥平面CDE ,故DG 为DM 在平面CDE 上的射影.将半平面ADM 沿DM 翻折至与半平面DMG 所成二面角为180°,记翻折后的点A 即A ′到DG 的距离为h A ,则h A 为△A ′DG 的边DG 上的高,且AP +PQ =A ′P +PQ ≥h A .因为MG =12AE =32,DM =DC 2-⎝ ⎛⎭⎪⎫AC 22=3,则sin ∠MDG=MG DM =36,故cos ∠MDG =336.又∠ADM =∠A ′DM =π6,所以sin ∠A ′DG =sin ⎝ ⎛⎭⎪⎫∠MDG +π6=336×12+36×32=3+3312,所以AP +PQ的最小值h A =A ′D sin ∠A ′DG =11+32.故选A. 二、填空题8.在正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,总有AP ⊥BD 1,则动点P 的轨迹为________. 答案 线段B 1C解析 易证BD 1⊥平面ACB 1,所以满足BD 1⊥AP 的所有点P 都在一个平面ACB 1上.而已知条件中的点P 是在侧面BCC 1B 1及其边界上运动,因此,符合条件的点P 在平面ACB 1与平面BCC 1B 1的交线上,故所求的轨迹为线段B 1C .9.已知正方体ABCD -A 1B 1C 1D 1的棱长为3,长为2的线段MN 的一个端点M 在DD 1上运动,另一个端点N 在底面ABCD 上运动,则MN 的中点P 的轨迹与正方体的面所围成的几何体的体积为________. 答案 π6解析 连接DP ,因为MN =2,所以PD =1,因此点P 的轨迹是一个以D 为球心,1为半径的球面在正方体内的部分,所以点P的轨迹与正方体的表面所围成的几何体的体积为球的体积的18,即V=18×43π×13=π6.10.已知在矩形ABCD中,AB=3,BC=a,若P A⊥平面AC,在BC边上取点E,使PE⊥DE,若满足条件的E点有两个时,则a的取值范围是________.答案(6,+∞)解析连接AE,由三垂线逆定理可知DE⊥AE,要使满足条件的E点有两个则须使以AD为直径的圆与BC有两个交点,所以半径长a2>3,∴a>6.11.如图,已知∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥D-AEF体积的最大值为________.答案2 6解析因为DA⊥平面ABC,所以DA⊥AB,AD⊥BC,∵AE⊥DB,又AD=AB=2,∴DE=2,又因为BC⊥AC,AC∩AD=A,所以BC⊥平面ACD,所以平面BCD⊥平面ACD,∵AF⊥DC,平面BCD∩平面ACD=CD,所以AF⊥平面BCD,所以AF⊥EF,BD⊥EF,所以BD⊥平面AEF,由AF2+EF2=AE2=2≥2AF·EF可得AF·EF≤1,所以S△AEF ≤12,所以三棱锥D-AEF体积的最大值为13×2×12=26.12.如图,在长方形ABCD中,AB=2,BC=1,E为DC的中点,F为线段EC(端点除外)上一动点.现将△AFD 沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK ⊥AB ,K 为垂足.设AK =t ,则t 的取值范围是________.答案 ⎝ ⎛⎭⎪⎫12,1解析 如图,在平面ADF 内过D 作DH ⊥AF ,垂足为H ,连接HK .过F 点作FP ∥BC 交AB 于点P.设∠F AB =θ,则cos θ∈⎝ ⎛⎭⎪⎫22,255.设DF =x ,则1<x <2, ∵平面ABD ⊥平面ABC ,平面ABD ∩平面ABC =AB ,DK ⊥AB ,DK ⊂平面ABD ,∴DK ⊥平面ABC ,又AF ⊂平面ABC ,∴DK ⊥AF . 又∵DH ⊥AF ,DK ∩DH =D ,DK ,DH ⊂平面DKH , ∴AF ⊥平面DKH ,∴AF ⊥HK ,即AH ⊥HK . 在Rt △ADF 中,AF =1+x 2,∴DH =x 21+x 2, ∵△ADF 和△APF 都是直角三角形,PF =AD , ∴Rt △ADF ≌Rt △FP A ,∴AP =DF =x . ∵△AHD ∽△ADF ,∴cos θ=11+x 2t =x1+x 2. ∴x =1t .∵1<x <2,∴1<1t <2,∴12<t <1. 三、解答题13.(2018·全国Ⅰ卷)如图,四边形ABCD 为正方形, E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(1)证明 由已知可得,BF ⊥PF ,BF ⊥EF ,又PF ∩EF =F ,PF ,EF ⊂平面PEF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD . (2)解 作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,分别以FB→,HF →,HP →的方向为x 轴、y 轴、z 轴的正方向,|BF →|为单位长,建立如图所示的空间直角坐标系H -xyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故EF 2=PE 2+PF 2,所以PE ⊥PF . 可得PH =32,EH =32.则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,DP →=⎝ ⎛⎭⎪⎫1,32,32,HP →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的一个法向量.设DP 与平面ABFD 所成角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪HP →·DP →|HP →||DP →|=343=34. 所以DP 与平面ABFD 所成角的正弦值为34.14.(2021·杭州二中仿真模拟)如图,平面四边形ABCD 关于直线AC 对称,∠A =60°,∠C =90°,CD =2.把△ABD 沿BD 折起.(1)若二面角A -BD -C 的余弦值为33,求证:AC ⊥平面BCD ; (2)若AB 与平面ACD 所成的线面角为30°时,求AC 的长. 解 (1)取BD 的中点E ,连接AE ,CE . 因为AB =AD ,CB =CD , 所以AE ⊥BD ,CE ⊥BD , 又AE ∩CE =E ,所以BD ⊥平面ACE ,所以BD ⊥AC , 所以∠AEC 是二面角A -BD -C 的平面角.在△AEC 中,AC 2=AE 2+CE 2-2AE ·CE cos ∠AEC =4,则AC 2+CE 2=AE 2, 所以AC ⊥CE .因为CE ∩BD =E ,CE ,BD ⊂平面BCD , 所以AC ⊥平面BCD .(2)由(1)得以点C 为坐标原点建立如图所示的空间直角坐标系,则C (0,0,0),B (2,0,0),D (0,2,0). 设A (m ,m ,n ),则BA→=(m -2,m ,n ),CA →=(m ,m ,n ),CD →=(0,2,0). 设平面ACD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·CA →=0,n ·CD →=0,即⎩⎨⎧xm +ym +zn =0,2y =0,取⎩⎨⎧x =n ,y =0,z =-m ,所以n =(n ,0,-m ), 因为BA =22,所以(m -2)2+m 2+n 2=8, 则|cos 〈BA→,n 〉|=|n (m -2)-mn |22m 2+n 2=12,解得m 2=n 2,解得m =2或m =-23, 所以AC =23或AC =23 3.。

初中折叠问题题型

初中折叠问题题型

初中数学中常见的折叠问题题型有以下几种:
折纸问题:给定一张矩形纸,将其沿着某些折痕折叠,问最后得到的图形是什么。

这类问题涉及到几何图形的变形和对称性质,需要掌握基本的折叠技巧和对称关系。

线段折叠问题:给定一条线段,将其沿着某些点折叠成一些角度,然后问折叠后的图形是什么。

这类问题涉及到三角函数和几何图形的变形,需要掌握基本的三角函数知识和折叠技巧。

立体图形折叠问题:给定一个立体图形的展开图,将其折叠成一个实体立体图形,然后问最终得到的图形是什么。

这类问题涉及到几何图形的空间变形和对称性质,需要掌握立体几何的基本概念和折叠技巧。

以上是初中数学中常见的折叠问题题型,需要注意的是,这些问题不仅考察计算能力,还要求学生具备一定的几何直观和空间想象能力。

立体几何解析几何最值问题

立体几何解析几何最值问题

立体几何解析几何最值问题立体几何和解析几何都是数学中的分支领域,它们在研究物体的形状、位置和运动等方面有着不同的方法和应用。

在解析几何中,最值问题是其中一个重要的问题类型,它涉及到找到函数在特定区域内的最大值或最小值。

在立体几何中,我们研究的是空间中的物体,比如点、线、面、体等。

解析几何则是研究平面几何与坐标系统之间的关系,通常使用坐标点来表示点、线、曲线等。

解析几何中最值问题的解决方法通常是通过求导来进行。

我们可以将问题转化为一个函数,然后求该函数的导数,找到导数为0的点,再通过比较得出最大值或最小值。

这种方法在求解平面最值问题时非常有效。

而在立体几何中,最值问题通常涉及到体积、面积或长度等量的最大化或最小化。

解决这类问题可以利用几何性质和定理来进行推导和求解。

比如,要求一个几何体的体积的最大值,我们可以通过寻找几何体的特定形状的体积公式以及几何性质来得出最优解。

具体地说,在立体几何中,最值问题的解决方法可以归纳如下:1.求解体积最大问题:对于已知形状的几何体,我们可以通过推导体积公式,并利用一些方法来求解体积的最大值。

例如,求解一个长方体在给定表面积约束条件下的最大体积,我们可以设长方体的长、宽、高分别为x、y、z,然后利用约束条件和体积公式写出等式,最后通过求解方程组可得到最优解。

2.求解表面积最小问题:类似地,我们可以通过推导表面积公式,并利用一些方法来求解表面积的最小值。

例如,求解一个包含给定体积的圆柱体的表面积最小值,我们可以设圆柱体的底面半径为r、高度为h,然后通过体积公式将h表示为r的函数,并利用表面积公式得到表面积的表达式,最后求解表面积的最小值。

3.求解长度最短问题:有时候我们需要找到连接两个点的最短路径,可以利用几何性质和定理求解。

例如,求解从一个点到直线的最短距离,我们可以利用点到直线的距离公式,并通过求导的方法求解最短距离的点。

总而言之,立体几何和解析几何最值问题的求解方法有所不同,但都可以通过推导公式、利用几何性质和定理以及求导等方法来解决。

变化中的不变量 --谈立体几何折叠问题的解题思路

变化中的不变量 --谈立体几何折叠问题的解题思路

变化中的不变量 --谈立体几何折叠问题的解
题思路
立体几何是大多数人都感到困惑的数学分支,尤其是涉及到三维
折叠问题时更是如此。

但是,在解决这类问题时,我们可以依赖一些“变化中的不变量”来帮助我们更好地把握问题的本质,从而更好地
解决它。

所谓“变化中的不变量”,就是在处理问题中,尽管其形状或尺
寸可能会发生变化,但某些特性却始终如一。

比如,对于一个长方体,无论它被拉伸、压缩、旋转、扭曲或扩张,它始终是由六个面、十二
个边和八个顶点组成。

这是一种不变量。

在解决折叠问题时,我们也可以找到一些类似的不变量,如每个
面角的和、每个面的面积、每个边的长度等等。

这些物理特征不会因
为折叠而发生变化,因此很容易用来解决问题。

另一个有用的概念是“连通性”。

一个立体的连通性指的是在不
改变其形状的情况下,如何把它分解为一些连通的部分。

例如一个圆环,可以看做两个相交的圆弧,或者可以看做一个圆和一个把圆环留
下来的线。

对于一些折叠问题,这种分解方式是非常有用的。

最后,最好的方法是“画图”。

可以在纸上画出数字化的立体模型,然后在纸上按需折叠。

这对于理解连通性和不变量等方面都有很
大帮助。

给自己买一些质量较好的专业的数学用纸也很有帮助。

总之,在解决立体折叠问题时,我们不仅需要掌握折叠的技巧,
还需要找到一些变化中的不变量,理解连通性,然后画出模型来帮助
我们更好地理解问题,最终得出正确的解决方案。

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题

立体几何中的折叠与展开问题知识点梳理:1.解决折叠问题最重要的就是对比折叠前后的图形,找到哪些线、面的位置关系和数学量没有发生变化,哪些发生了变化,在证明和求解的过程中恰当地加以利用.解决此类问题的步骤:考向导航2.展开问题是折叠问题的逆向思维、逆过程,是将空间问题转化为平面问题来处理.一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.目录类型一折叠问题 (1)类型二展开问题 (3)类型一折叠问题【例1】如图甲,在四边形ABCD中,23AD=2∆是边长为4的正三角形,CD=,ABC把ABC∆的位置,使得平面PAC⊥平面ACD;如图乙所示,点O、M、∆沿AC折起到PACN分别为棱AC、PA、AD的中点.(1)求证:平面PAD⊥平面PON;(2)求三棱锥M ANO-的体积.【例2】如图,在平面图形PABCD 中,ABCD 为菱形,60DAB ∠=︒,2PA PD ==,M 为CD 的中点,将PAD ∆沿直线AD 向上折起,使BD PM ⊥.(1)求证:平面PAD ⊥平面ABCD ;(2)若直线PM 与平面ABCD 所成的角为30︒,求四棱锥P ABCD -的体积.【变式1-1】如图甲的平面五边形PABCD 中,PD PA =,5AC CD BD ===,1AB =,2AD =,PD PA ⊥,现将图甲中的三角形PAD 沿AD 边折起,使平面PAD ⊥平面ABCD 得图乙的四棱锥P ABCD -.在图乙中(1)求证:PD ⊥平面PAB ;(2)求二面角A PB C --的大小;(3)在棱PA 上是否存在点M 使得BM 与平面PCB 所成的角的正弦值为13?并说明理由.类型二展开问题【例1】如图,已知正三棱柱111ABC A B C -的底面边长为2cm ,高为5cm ,则一质点自点A 出发,沿着三棱柱的侧面绕行两周到达点1A 的最短路线的长为()A .5cm B .12cm C .13cm D .25cm【例2】如图,正三棱锥S ABC -中,40BSC ∠=︒,2SB =,一质点自点B 出发,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为()A .2B .3C .3D .33【变式2-1】如图,在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点.(1)求此直三棱柱111ABC A B C -的表面积;(2)当1AD DC +最小时,三棱锥1D ABC -的体积.巩固训练1.把如图的平面图形分别沿AB 、BC 、AC 翻折,已知1D 、2D 、3D 三点始终可以重合于点D 得到三棱锥D ABC -,那么当该三棱锥体积最大时,其外接球的表面积为.2、如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==,(Ⅰ)若D 为线段AC 的中点,求证:AC ⊥平面PDO ;(Ⅱ)求三棱锥P ABC -体积的最大值;(Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.3.请从下面三个条件中任选一个,补充在下面的横线上,并作答.①()0BA PA PD ⋅+= ;②7PC =;③点P 在平面ABCD 的射影在直线AD 上.如图,平面五边形PABCD 中,PAD ∆是边长为2的等边三角形,//AD BC ,22AB BC ==,AB BC ⊥,将PAD ∆沿AD 翻折成四棱锥P ABCD -,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且____.(1)求证://FM 平面PAD ;(2)当EF 与平面PAD 所成角最大时,求平面ACE 与平面ABCD 所成的锐二面角的余弦值.4.如图,在矩形ABCD 中,2,23AB AD ==,ABPCDFEE ,F 分别为AD ,BC 的中点,以DF 为折痕把CDF ∆折起,点C 到达点P 的位置,使1PE =.(1)证明:平面PEF ⊥平面ABFD ;(2)求二面角P DF E --的正弦值.参考答案类型一折叠问题【例1】【分析】(1)证明PO ⊥平面ACD 可得PO AD ⊥,根据中位线定理和勾股定理可证AD ON ⊥,故而AD ⊥平面PON ,于是平面PAD ⊥平面PON ;(2)分别计算AON ∆的面积和M 到平面ACD 的距离,代入体积公式计算.【解答】(1)证明:PA PC = ,O 是AC 的中点,PO AC ∴⊥,又平面PAC ⊥平面ACD ,平面PAC ⋂平面ACD AC =,PO ∴⊥平面ACD ,又AD ⊂平面ACD ,PO AD ∴⊥,23AD = ,2CD =,4AC =,222AD CD AC ∴+=,AD CD ∴⊥,ON 是ACD ∆的中位线,//ON CD ∴,AD ON ∴⊥,又ON PO O = ,AD ∴⊥平面PON ,又AD ⊂平面PAD ,∴平面PAD ⊥平面PON .(2)PAC ∆ 是边长为4的等边三角形,3PO ∴=M ∴到平面ACD 的距离132d PO ==,ON 是ACD ∆的中位线,1113324422AON ACD S S ∆∆∴==⨯=,11131332322M ANO AON V S PO -∆∴==⨯⨯ .【点评】本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.【例2】【分析】(1)取AD 中点E ,连接PE ,EM ,AC ,可得PE AD ⊥,然后证明BD PE ⊥,可得PE ⊥平面ABCD ,进一步得到平面PAD ⊥平面ABCD ;(2)由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,求解三角形可得1PE =,再求出四边形ABCD 的面积,代入棱锥体积公式求解.【解答】(1)证明:取AD 中点E ,连接PE ,EM ,AC ,PA PD = ,得PE AD ⊥,由底面ABCD 为菱形,得BD AC ⊥,E ,M 分别为AD ,CD 的中点,//EM AC ∴,则BD EM ⊥,又BD PM ⊥,BD ∴⊥平面PEM ,则BD PE ⊥,PE ∴⊥平面ABCD ,而PE ⊂平面PAD ,∴平面PAD ⊥平面ABCD ;(2)解:由(1)知,PE ⊥平面ABCD ,连接EM ,可得30PME ∠=︒,设AB a =,则224a PE =-,322AC EM ==,故tan tan 30PE PME EM ∠=︒=,即2234332a a -=,解得2a =.故1PE =,3ABCD S =四边形.故23133P ABCD ABCD V S PE -=⋅⋅=四边形.【点评】本题考查平面与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题.【变式1-1】【分析】(1)推导出AB AD ⊥,AB ⊥平面PAD ,AB PD ⊥,PD PA ⊥,由此能证明PD ⊥平面PAB .(2)取AD 的中点O ,连结OP ,OC ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系,利用向量法能求出二面角A PB C --的大小.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,利用向量法能求出在棱PA 上满足题意的点M 存在.【解答】证明:(1)1AB = ,2AD =,5BD =222AB AD BD ∴+=,AB AD ∴⊥,平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,AB ∴⊥平面PAD ,又PD ⊂ 平面PAD ,AB PD ∴⊥,又PD PA ⊥ ,PA AB A= PD ∴⊥平面PAB .解:(2)取AD 的中点O ,连结OP ,OC ,由平面PAD ⊥平面ABCD 知PO ⊥平面ABCD ,由AC CD =知OC OA ⊥,以O 为坐标原点,OC 所在的直线为x 轴,OA 所在的直线为y 轴建立空间直角坐标系如图示,则(2C ,0,0),(0P ,0,1),(0D ,1-,0),(0A ,1,0),(1B ,1,0)∴(1,1,1)PB =- ,(2,0,1)PC =- ,(0,1,1)PD =-- ,设平面PBC 的法向量为(,,)m a b c = ,由00m PB m PC ⎧⋅=⎪⎨⋅=⎪⎩ ,得020a b c a c +-=⎧⎨-=⎩,令1a =得1b =,2c =,∴(1,1,2)m = ,PD ⊥ 平面PAB ,∴(0DP = ,1,1)是平面PAB 的法向量,设二面角A PB C --大小为θ,则123cos 2||||62m DP m DP θ⋅==⋅⋅ ,0θπ ,∴二面角A PB C --的大小6πθ=.(3)假设点M 存在,其坐标为(x ,y ,)z ,BM 与平面PBC 所成的角为α,则存在(0,1)λ∈,有AM AP λ= ,即(x ,1y -,)(0z λ=,1-,1),(0M ,1λ-,)λ,则(1,,)BM λλ=-- ,从而211sin ||3||||612m BM m BM αλ⋅==⋅⋅+ ,[0λ∈ ,1],103λ∴=-,∴在棱PA 上满足题意的点M 存在.【点评】本题考查线面垂直的证明,考查二面角的求法,考查满足线面角的正弦值点是否存在的判断与求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.类型二展开问题【例1】【分析】将三棱柱展开两次如图,不难发现最短距离是六个矩形对角线的连线,正好相当于绕三棱柱转两次的最短路径.【解答】解:将正三棱柱111ABC A B C -沿侧棱展开,再拼接一次,其侧面展开图如图所示,在展开图中,最短距离是六个矩形对角线的连线的长度,也即为三棱柱的侧面上所求距离的最小值.由已知求得矩形的长等于6212⨯=,宽等于5,由勾股定理2212513d =+=.故选:C .【点评】本题考查棱柱的结构特征,考查空间想象能力和思维能力,考查数学转化思想方法,是中档题.【例2】【分析】画出解答几何体的部分侧面展开图,利用三角形的边的关系容易解得边长的值,从而得出其中的最小值.【解答】解:将三棱锥S ABC -沿侧棱SB 展开,其侧面展开图如图所示,由图中红色路线可得结论.根据余弦定理得,沿着三棱锥的侧面绕行一周回到点B 的最短路线的长为:14422232++⨯⨯⨯=故选:C .【点评】本题考查多面体和旋转体表面上的最短距离问题,空间想象能力,几何体的展开与折叠,是基础题.【变式2-1】【分析】(1)直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形.(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABD V V --=,由此能求出结果.【解答】解:(1) 在直三棱柱111ABC A B C -中,1AB =,2BC =,13BB =,90ABC ∠=︒,∴此直三棱柱111ABC A B C -的表面积:1111112ABC ABB A BCC B ACC A S S S S S ∆=+++矩形矩形矩形121213231432=⨯⨯⨯+⨯+⨯++1135=+(2)将直三棱柱111ABC A B C -展开成矩形11ACC A ,如图,连结1AC ,交1BB 于D ,此时1AD DC +最小,1AB = ,2BC =,13BB =,90ABC ∠=︒,点D 为侧棱1BB 上的动点,∴当1AD DC +最小时,1BD =,此时三棱锥1D ABC -的体积:11D ABC C ABDV V --=1113ABD S B C ∆=⨯111132AB BD B C =⨯⨯⨯⨯1111232=⨯⨯⨯⨯13=.∴当1AD DC +最小时,三棱锥1D ABC -的体积为13.【点评】本题考查几何体的表面积、体积的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力、空间思维能力,考查数数结合思想、函数与方程思想、化归与转化思想,是中档题.巩固练习1.【分析】在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,然后根据三棱锥的性质求出外接球的半径,进而可以求解.【解答】解:在三棱锥D ABC -中,当且仅当DA ⊥平面ABC 时,三棱锥的体积达到最大,此时,设外接球的半径为R ,球心为O ,球心O 到平面ABC 的投影点为F ,则有2222R OA OF AF ==+,又1522OF AD ==,1522AF AC ==,所以2225525()()222R =+=,所以球的表面积为22544502S R πππ==⨯=,故答案为:50π.【点评】本题考查了三棱锥的外接球的表面积问题,考查了学生的空间想象能力以及运算能力,属于中档题.2、【分析】(Ⅰ)由题意可证AC DO ⊥,又PO AC ⊥,即可证明AC ⊥平面PDO .(Ⅱ)当CO AB ⊥时,C 到AB 的距离最大且最大值为1,又2AB =,即可求ABC ∆面积的最大值,又三棱锥P ABC -的高1PO =,即可求得三棱锥P ABC -体积的最大值.(Ⅲ)可求22112PB PC +==,即有PB PC BC ==,由OP OB =,C P C B '=',可证E 为PB 中点,从而可求2626OC OE EC +'=+'=,从而得解.【解答】解:(Ⅰ)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC DO ⊥,又PO 垂直于圆O 所在的平面,所以PO AC ⊥,因为DO PO O = ,所以AC ⊥平面PDO .(Ⅱ)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1,又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=,又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为:111133⨯⨯=.(Ⅲ)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC '=+'=+=.亦即CE OE +的最小值为:262.【点评】本题主要考查了直线与直线、直线与平面的位置关系、锥体的体积的求法等基础知识,考查了空间想象能力、推理论证能力、运算求解能力,考查了数形结合思想、化归与转化思想,属于中档题.3.【分析】(1)取CD 中点为G ,连接MG ,FG ,//GM PD ,//FG AD ,进而可证平面//MFG 平面PAD ,可证//FM 平面PAD ;(2)根据条件选择①:由已知可证BA ⊥平面PAD ,PO ⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,利用向量法平面ACE 与平面PAD 所成的锐二面角的余弦值.同理选择②,③可求平面ACE 与平面ABCD 所成的锐二面角的余弦值.【解答】(1)证明:取CD 中点为G ,连接MG ,FG ,则MG ,FG 分别为三角形CDE ,梯形ABCD 的中位线,//GM PD ∴,//FG AD ,MG FG G = ,∴平面//MFG 平面PAD ,FM ⊂ 平面MGF ,//FM ∴平面PAD ,(2)解:取AD 为O ,连接PO ,FG ,EG .选择①:因为()0BA PA PD ⋅+= ,2PA PD PO += ,所以0BA PO ⋅= ,即BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,则(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z =,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||17m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD 所成的锐二面角的余弦值为25117.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得2ER =,RK =,则EK =所以251cos 17RK EKR EK ∠==,所以平面ACE 与平面PAD.选择②:连接OC ,则2OC AB ==,OP =,因为PC =,222PC OP OC =+,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 的中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ,∴平面ABCD ⊥平面PAD ,平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则111130,220y x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,选择③:因为点P 在平面ABCD 的射影在直线AD 上,所以平面PAD ⊥平面ABCD .因为平面PAD ⋂平面ABCD CD =,OP ⊂平面PAD ,AD PO ⊥,所以OP ⊥平面ABCD ,所以BA PO ⊥.又BA AD ⊥,AD PO O = ,所以BA ⊥平面PAD .连接AE ,EF ,所以AEF ∠即为EF 与平面PAD 所成的角.因为1tan AF AEF AE AE∠==,所以当AE 最小时,AEF ∠最大,所以当AE PD ⊥,即E 为PD 中点,AE 最小.下面求二面角余弦值,法一:BA ⊂ 平面ABCD ⊥,∴平面ABCD ⊥平面PAD ,平面ABCD ⋂平面PAD ,平面ABCD ⋂平面PAD AD =,PO AD ⊥ ,PO ∴⊥平面ABCD ,以点O 为坐标原点,以OC 为x 轴,OD 为y 轴,OP 为z 轴,建立如图所示的空间直角坐标系,于是(0A ,1-,0),1(0,2E ,(2C ,0,0).所以3(0,2AE = ,(2,1,0)AC = .设平面CAE 的法向量为111(,,)m x y z = ,则1111330,2220y z x y ⎧+=⎪⎨⎪+=⎩,令1z =,得1(,2m =- .由题意可知:平面ABCD 的法向量为(0,0,1)n = ,所以cos ,||||m n m n m n ⋅〈〉==⋅ ,所以平面ACE 与平面PAD所成的锐二面角的余弦值为17.法二:在平面PAD 内,作ER AD ⊥,垂足为R ,则ER ⊥平面ABCD ,过R 作RK AC ⊥,连接EK ,由三垂线定理及逆定理知EKR ∠为平面ACE 与平面ABCD 所成的锐二面角的平面角,在EKR RT ∆中,易得ER =RK =,则EK =所以cos 17RK EKR EK ∠==,【点评】本题考查线面平行的证明,以及面面角的求法,属中档题.4.【分析】(1)推导出//EF AB 且3DE =,AD EF ⊥,DE PE ⊥,AD PE ⊥,由此能证明AD ⊥平面PEF ,从而平面PEF ⊥平面ABFD .(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,从而POH ∠为二面角P DF E --的平面角,由此能求出二面角P DF E --的正弦值.【解答】证明:(1)E 、F 分别为AD ,BC 的中点,//EF AB ∴且3DE =,在矩形ABCD 中,AD AB ⊥,AD EF ∴⊥,由翻折的不变性,2,3PD PF CF DE ===,7DF =又1PE =,有222PD PE DE =+,DE PE ∴⊥,即AD PE ⊥,又PE EF E = ,PE ,EF ⊂平面PEF ,AD ∴⊥平面PEF ,AD ⊂ 平面ABFD ,∴平面PEF ⊥平面ABFD .解:(2)过点P 作PH EF ⊥交EF 于H ,由平面垂直性质定理得PH ⊥平面ABFD ,过点P 作PO DF ⊥交DF 于O ,连结OH ,则OH DF ⊥,POH ∴∠为二面角P DF E --的平面角.222PE PF EF += ,90EPF ∴∠=︒,由等面积法求得322127PH PO ==.在直角POH ∆中,7sin 4PH POH PO ∠==,即二面角P DF E --的正弦值为74.【点评】本题考查面面垂直的证明,考查二面角的正弦值的求法,考查运算求解能力,考查函数与方程思想,考查化归与转化思想,是中档题.。

高中 立体几何中折叠问题的求解策略

高中 立体几何中折叠问题的求解策略

立体几何中折叠问题的求解策略折叠问题,是立体几何中的热点、同时也是难点问题.该类问题难的根源在于所研究的是“动态”空间图形,折叠后的图形中点、线、面的位置关系难以确定,需要联系折叠前后图形之间的关系,因此对空间想象、识图及分析能力都提出了较高要求.在考试中此类问题得分率普遍不高,分析其原因,首先是空间想象力不足,其次是对这类问题没有形成解题的模型和方法.解决折叠问题的关键在于抓住折叠前后图形的特征关系,弄清折叠前后哪些量发生了变化、哪些量没有发生变化,以及确定动点在底面上的投影位置,这是分析和解决问题的依据,也是求解此类问题的钥匙.首先要弄清楚空间中折叠的本质含义是什么?教材中并没有明确给出空间中折叠的定义,但是不难看出空间中的折叠是平面中的翻折的推广,所以不妨从平面翻折的定义来揣测空间中折叠的含义.翻折的定义:将一个图形沿着某一条直线翻折180︒,直线两旁的部分能够相互重合.其中这条直线就是它的对称轴,翻折前图形中的任意一点与翻折后的对应点关于对称轴对称.于是可以类似的给空间中折叠下一个定义:将一个平面图形沿着一条直线翻折某个角度θ(其中0180θ︒<<︒),直线两侧的部分能够相互重合.其中这条直线就是它的折线,过翻折前图形中的任意一点及翻折后的对应点分别向折线做垂线,所构成的图形就是翻折前后所成二面角的平面角,即为θ.由上述对空间中折叠的定义,可以得到以下几个结论.如图1,将ADE ∆沿AE 折起.结论1折起的面上任意一点在底面的投影在过该点折起前的对应点垂直于折线的射线上.例如,点'D 在底面ABCE 上的投影O 一定在射线DF 上;结论2折叠前后折线同侧的量不变.如'D A DA =,'D E DE =.对于折叠问题的求解难度在于确定折起后图形中动点的位置,该类问题在具体出题时并不会直接给出动点的位置,而往往是借助动点在底面的投影大概位置、线段长度、相应的角度等来刻画.这就需要通过给出的关系来确定动点在底面中投影的具体位置来确定动点的位置,然后再进一步求解.1已知动点在底面的投影在某线段上例1如图2,四边形ABCD 是矩形,沿对角线AC 将ACD ∆折起,使得点D 在平面ABC 内的投影恰好落在边AB 上.(1)求证:平面ACD ⊥平面BCD ;(2)当2AB AD =时,求二面角D AC B --的余弦值.ABCDEFH 图1ABCD'D H OF EABCDA BCD分析第一问由结论2,折线同侧的量不变,则AD DC ⊥,BC AB ⊥.又D 与它在底面的投影的连线垂直底面,则垂直BC ,从而BC ⊥平面ABD ,得BC AD ⊥,所以AD ⊥平面BCD ,于是得证.第二问关键是确定D 在底面的投影的位置,由结论1,可知D 在底面的投影为过D 垂直于折线AC 的垂线与AB 的交点,于是利用平面几何知识求解即可.解(1)略;(2)如图3,过点D 作AC 的垂线交AB 于H ,由结论1知H 即是折起后D 在底面的投影.设1AD =,由DAH CDA ∆∆ ,所以12AH =,折叠后32DH =.方法一:如图4,以B 为原点建立空间直角坐标系.那么(0,2,0)A ,(1,0,0)C,3(0,,22D,则1(0,,)22AD =- ,(1,2,0)AC =- .设平面ACD 的法向量为(,,)n x y z =,则00n AD n AC ⎧=⎪⎨=⎪⎩ ,即1302220y z x y ⎧-+=⎪⎨⎪-=⎩,令1z =,则y =,x =n =.易得平面ABC 的一个法向量为(0,0,1)m =.1cos ,4n m n m n m <>==,所以二面角D AC B --的余弦值为14.方法二:如图3,记DH 与AC 的交点为E ,有AHE CDE ∆∆ ,则14EH AH ED CD ==.由折叠的定义知,沿对角线AC 将ACD ∆折起之后,DEH ∠为二面角D AC B --的图2ABCD HE 图3ABC Dxy z图4平面角.在Rt DHE ∆中,1cos 4EH DEH ED ∠==,即二面角D AC B --的余弦值为14.评注已知动点在底面的投影在某条线段上,由结论1可得该动点在底面的投影就是折叠前过此点垂直于折线的射线与这条线段的交点,只需在平面图形中利用平面几何知识即可确定动点在底面投影的位置.例2如图5,设正方形ABCD 的边长为3,点E ,F 分别在AB ,CD 上,且满足2AE EB =,2CF FD =.将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,H 为EA 的中点.(1)证明:平面ABE ∥平面CDF ;(2)求二面角H BF C --的正弦值.图5ABCD E FA BC DEFGH分析由结论1,可知A 在底面的投影在过点A 垂直于折线EF 的垂线上.又由题意,点A 在平面BEFC 的投影G 恰好在BC 上,所以A 在底面的投影是过点A 垂直于折线EF 的垂线与BC 的交点,于是利用平面几何知识求解就可以确定G 在BC 上的位置,然后建系求解即可.解(1)略.(2)由题意将直角梯形AFED 沿EF 折起,使得点A 在平面BEFC 的投影G 恰好在BC 上,如图6,过A 作EF 的垂线,与BC 的交点即为G .作MF ∥BC ,且交AB 与M ,由平面几何知识易得ABG FME ∆≅∆,所以113BG AB ==,则AG ==.如图7,以G 为原点建立空间直角坐标系,则A ,(1,1,0)E -,则11(,,)222H -,(1,0,0)B -,(2,2,0)F ,所以(3,2,0)BF = ,112(,,)222BH = .设平面BFH 的法向量为(,,)n x y z =,A BCD E FGM 图6AB CD EFGH xyz 图7由由00n BF n BH ⎧=⎪⎨=⎪⎩,即320110222x y x y z +=⎧⎪⎨++=⎪⎩,令2x =,则3y =-,22z =,所以2(2,3,)2n =- ,易得平面BCF 的一个法向量为(0,0,1)m =,所以3cos ,9n m n m n m<>==,所以二面角H BF C --的余弦值39.例3如图8,在矩形ABCD 中,已知2AB =,4AD =,点E ,F 分别在AD ,BC上,且1AE =,3BF =,将四边形AEFB 沿EF 折起,使点B 在平面CDEF 上的射影H 在直线DE 上.(1)求证:CD ⊥BE ;(2)求直线AF 与平面EFCD 所成角的正弦值.分析由结论1,可知B 在底面的投影在过点B 垂直于折线EF 的垂线上.又由题意,点B 在平面CDEF 的投影H 恰好在DE 上,所以B 在底面的投影是过点B 垂直于折线EF 的垂线与DE 的交点,于是利用平面几何知识求解就可以确定H 在DE 上的位置,然后建系求解即可.解(1)略.(2)如图9,作BC 的中点M ,AD 的中点'H ,则四边形'ABMH 为正方形,所以'BH AM ⊥.又AM ∥EF ,则'BH EF ⊥,由题意有BH EF ⊥,所以H 与'H 为同一点,故1EH =,则2BH ==.如图10,以H 为原点建立空间直角坐标系,则(0,1,0)E -,(2,1,0)F ,(0,0,2)B ,所以(2,1,2)BF =-,由13AE BF =,得252(,,)333A --,则872(,,)333AF =- .ABCDEFA BCDEFH图8A BCDE F M'H 图9A BCDEFHxyz图10易得平面EFCD 的一个法向量为(0,0,1)n =,设直线AF 与平面EFCD 所成的角为θ,则sin cos ,39AF n AF n AF nθ=<>==.2已知线段长度例4如图11,平面多边形PABCD 中,PA PD =,224AD DC BC ===,AD ∥BC ,AP ⊥PD ,AD ⊥DC ,E 为PD 的中点,现将APD ∆沿AD 折起,使得PC =(1)证明:CE ∥平面ABP ;(2)求直线AE 与平面ABP 所成角的正弦值.ABCDPEABCDEP分析此题是通过线段PC 的长度来刻画APD ∆沿AD 折起的程度的,也就是折起后折面的位置,该题求解的突破口是如何利用线段PC 的长度来确定P 在底面投影的位置.由结论1知P 在底面投影在过P 垂直于折线AD 的射线PB 上,于是有两个思路来确定投影的位置:一是利用已知条件和线段PC 的长度确定PBO ∆的边长,利用解三角形确定投影位置;二是注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么就是OB 与CD 中垂线的交点.解(1)略;(2)方法一:如图12,作AD 的中点O ,连接BO 、PO ,易知2BO PO ==,由结论1,P 在底面ABCD 的投影在射线OB 上.设该投影为H ,连接PH ,则PH ⊥平面ABCD ,从而PH BC ⊥,又BC BO ⊥,所以BC ⊥平面PBO ,则BC PB ⊥.所以,2PB ===,故PBO ∆是等边三角形,则H 为BO的中点.以H 为坐标原点建立空间直角坐标系.那么,(1,2,0)A --,(1,0,0)B,P ,图11ABCD EPx yz HO图12(1,2,0)D -,则13(,1,)22E -,13(,3,)22AE = ,(2,2,0)AB =,(1,AP = .设平面ABP 的法向量为(,,)n x y z = ,则0n AB n AP ⎧=⎪⎨=⎪⎩,即22020x y x y +=⎧⎪⎨++=⎪⎩,令1x =,则1y =-,33z =,则3(1,1,)3n =- .设AE 与平面ABP 所成角为θ,则210sin cos ,35n AE n AE n AEθ=<>==.方法二:注意到PC PD =,于是P 在底面投影一定在平面ABCD 内CD 的中垂线上,那么P 在底面投影就是OB 与CD 中垂线的交点,即为BO 的中点,下同方法一.评注通过线段长度刻画折起后折面的位置的题型,可以通过将该线段长度转化到要确定动点和动点在底面投影所在线段构成的三角形,利用解三角形工具确定投影的位置;也可以利用线段相等,通过中垂线与动点在底面投影所在射线的交点来确定投影的位置.3已知相应角度例4(2018全国1理)如图13,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.分析:此题是利用PF BF ⊥刻画折起面的位置,可以考虑利用PF BF ⊥找到过P 且垂直于底面ABFD 的平面,则点P 在底面的投影就在这两个平面的交线上,然后再借助结论1即可确定点P 在底面投影的位置.解(1)因为PF BF ⊥,又BF EF ⊥,且PF EF F = ,,PF EF ⊂平面PEF ,所以BF ⊥平面PEF ,又因为BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)由(1)知平面PEF ⊥平面ABFD ,且平面PEF 平面ABFD EF =,则点P 在底面ABFD 的投影在直线EF 上.如图14,过C 作折线DF 的垂线交EF 于点H ,由结论1知,点H 即为点P 在底面ABFD 的投影.由CFH DCF ∆∆ ,则ABC D E F P图13ABCD E F H图1412HF CF CF CD ==,设AB a =,则12HF a =.那么32PH a ==.因为PH ⊥底面ABFD ,如图15,连接DH ,则PDH ∠为DP 与平面ABFD 所成角,所以32sin 24a PH PDH PD a ∠===.评注已知相应角度刻画折起面的位置,需将这个角度条件进行适当转化,最好是能够找到过动点且与底面垂直的平面,然后结合结论1,即可确定P 在底面投影的位置.对刻画折起面位置的角度条件的转化是解题的突破口.总结立体几何折叠问题的难点突破关键在于利用好结论1和结论2,搞清楚在折叠过程中哪些量是不变的以及动点在底面的投影在那条射线上运动,再结合已知条件,更多的时候需要对已知条件进行适当的转化,便可以确定动点在底面中的投影的位置,顺藤摸瓜就能确定动点在空间中的位置,从而使得问题迎刃而解.参考文献【1】周建平.变化中的不变量——谈立体几何中的折叠问题【J 】.中学教研(数学),2018.7.ABC D EFPH图15。

立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品

立体几何中折叠问题-高考数学大题精做之解答题题型全覆盖高端精品

高考数学大题精做之解答题题型全覆盖高端精品第三篇立体几何专题06立体几何中折叠问题类型对应典例折叠问题中的点线面位置关系典例1折叠问题中的体积典例2折叠问题中的线面角典例3折叠问题中的二面角典例4【典例1】如图,在直角梯形ABCD 中,//AB DC ,90BAD ∠=,4AB =,2AD =,3DC =,点E 在CD 上,且2DE =,将ADE 沿AE 折起,使得平面ADE ⊥平面ABCE (如图).G 为AE 中点.(1)求证:DG ⊥平面ABCE ;(2)求四棱锥D ABCE -的体积;(3)在线段BD 上是否存在点P ,使得//CP 平面ADE ?若存在,求BPBD的值;若不存在,请说明理由.【典例2】如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且14BF BC =.若将,AED CFD ∆∆分别沿,ED FD 折起,使,A C 两点重合于点M ,如图2.图1图2(1)求证:EF ⊥平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值.【典例3】如图1,已知菱形AECD 的对角线,AC DE 交于点F ,点E 为线段AB 的中点,2AB =,60BAD ∠=︒,将三角形ADE 沿线段DE 折起到PDE 的位置,2PC =,如图2所示.(Ⅰ)证明:平面PBC ⊥平面PCF ;(Ⅱ)求三棱锥E PBC -的体积.【典例4】如图,ABC 中,4AB BC ==, 90ABC ∠=︒,,E F 分别为 AB ,AC 边的中点,以EF 为折痕把AEF 折起,使点 A 到达点 P 的位置,且 PB BE =.(1)证明: BC ⊥平面 PBE ;(2)求平面 PBE 与平面 PCF 所成锐二面角的余弦值.1.在Rt ABC △中,90ABC ∠=︒,1tan 2ACB ∠=.已知E ,F 分别是BC ,AC 的中点.将CEF △沿EF 折起,使C 到'C 的位置且二面角'C EF B --的大小是60︒.连接C'B ,'C A ,如图:(Ⅰ)求证:平面'FA C ⊥平面'ABC ;(Ⅱ)求平面'AFC 与平面'BEC 所成二面角的大小.2.已知长方形ABCD 中,1AB =,AD =BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.3.如图,在平行四边形ABCM 中,3AB AC ==,90ACM ∠=︒,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.4.如图1,在矩形ABCD 中,AB =4,AD =2,E 是CD 的中点,将△ADE 沿AE 折起,得到如图2所示的四棱锥D 1—ABCE ,其中平面D 1AE ⊥平面ABCE .(1)证明:BE ⊥平面D 1AE ;(2)设F 为CD 1的中点,在线段AB 上是否存在一点M ,使得MF ∥平面D 1AE ,若存在,求出AMAB的值;若不存在,请说明理由.5.如图,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的中点,AC EF O ⋂=.沿EF 将△CEF 翻折到△PEF ,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且PB =.(1)求证:BD ⊥平面POA ;(2)求四棱锥P BFED -的体积.6.已知三棱锥P ABC -(如图一)的平面展开图(如图二)中,四边形ABCD的正方形,ABE ∆和BCF ∆均为正三角形,在三棱锥P ABC -中:(I )证明:平面PAC ⊥平面ABC ;(Ⅱ)若点M 在棱PA 上运动,当直线BM 与平面PAC 所成的角最大时,求二面角P BC M --的余弦值.图一图二参考答案【典例1】【思路引导】(1)证明DG AE ⊥,再根据面面垂直的性质得出DG ⊥平面ABCE ;(2)分别计算DG 和梯形ABCE 的面积,即可得出棱锥的体积;(3)过点C 作//CF AE 交AB 于点F ,过点F 作//FP AD 交DB 于点P ,连接PC ,可证平面//CFP 平面ADE ,故//CP 平面ADE ,根据//FP AD 计算BPBD的值.【详解】(1)证明:因为G 为AE 中点,2AD DE ==,所以DG AE ⊥.因为平面ADE ⊥平面ABCE ,平面ADE 平面ABCE AE =,DG ⊂平面ADE ,所以DG ⊥平面ABCE .(2)在直角三角形ADE 中,易求AE =则AD DEDG AE⋅==.所以四棱锥D ABCE -的体积为1(14)232D ABCE V -+⨯=⨯=.(3)过点C 作//CF AE 交AB 于点F ,则:1:3AF FB =.过点F 作//FP AD 交DB 于点P ,连接PC ,则:1:3DP PB =.又因为CF //A E ,AE ⊂平面,ADE CF ⊄平面ADE ,所以CF //平面ADE .同理//FP 平面ADE .又因为CF PF F ⋂=,所以平面CFP //平面ADE .因为CP ⊂平面CFP ,所以//CP 平面ADE .所以在BD 上存在点P ,使得//CP 平面ADE ,且34BP BD =.【典例2】【思路引导】(1)设正方形ABCD 的边长为4,由222DE EF DF +=,可得EF ED ⊥,结合MD EF ⊥,利用线面垂直的判定定理,即可得到EF ⊥平面MED .(2)建立空间直角坐标系,过点M 作MN ED ⊥,垂足为N ,求出向量EM和平面MFD 的一个法向量,利用向量的夹角公式,即可求解.【详解】(1)证明:设正方形的边长为4,由图1知,,,,,,即由题意知,在图2中,,,平面,平面,且,平面,平面,.又平面,平面,且,平面(2)由(1)知平面,则建立如图所示空间直角坐标系,过点作,垂足为,在中,,,从而,,,,,.设平面的一个法向量为,则,令,则,,.设直线与平面所成角为,则,.直线与平面所成角的正弦值为.【典例3】【思路引导】(Ⅰ)折叠前,AC ⊥DE ;,从而折叠后,DE ⊥PF ,DE ⊥CF ,由此能证明DE ⊥平面PCF .再由DC ∥AE ,DC =AE 能得到DC ∥EB ,DC =EB .说明四边形DEBC 为平行四边形.可得CB ∥DE .由此能证明平面PBC ⊥平面PCF .(Ⅱ)由题意根据勾股定理运算得到PF CF ⊥,又由(Ⅰ)的结论得到BC ⊥PF ,可得PF ⊥平面BCDE ,再利用等体积转化有13E PBC P BCE BCE V V S PF --∆==⨯⨯,计算结果.【详解】(Ⅰ)折叠前,因为四边形AECD 为菱形,所以AC DE ⊥;所以折叠后,DE PF ⊥,DE CF ⊥,又PF CF F ⋂=,,PF CF ⊂平面PCF ,所以DE ⊥平面PCF因为四边形AECD 为菱形,所以//,AE DC AE DC =.又点E 为线段AB 的中点,所以//,EB DC EB DC =.所以四边形DEBC 为平行四边形.所以//CB DE .又DE ⊥平面PCF ,所以BC ⊥平面PCF .因为BC ⊂平面PBC ,所以平面PBC ⊥平面PCF .(Ⅱ)图1中,由已知得32AF CF ==,1BC BE ==,60CBE ∠=︒所以图2中,2PF CF ==,又2PC =所以222PF CF PC +=,所以PF CF ⊥又BC ⊥平面PCF ,所以BC ⊥PF 又BC CF C ⋂=,,BC CF ⊂平面BCDE ,所以PF ⊥平面BCDE ,所以1113111sin6033228E PBC P BCE BCE V V S PF --∆==⨯⨯=⨯⨯⨯⨯⨯= .所以三棱锥E PBC -的体积为18.【典例4】【思路引导】(1)由E ,F 分别为AB ,AC 边的中点,可得EF BC ,由已知结合线面垂直的判定可得EF ⊥平面PBE ,从而得到BC ⊥平面PBE ;(2)取BE 的中点O ,连接PO ,由已知证明PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为x ,y ,z 轴建立空间直角坐标系,分别求出平面PCF 与平面PBE 的一个法向量,由两法向量所成角的余弦值可得平面PBE 与平面PCF 所成锐二面角的余弦值.【详解】(1)因为,E F 分别为AB ,AC 边的中点,所以EF BC ,因为90ABC ∠=︒,所以EF BE ⊥,EF PE ⊥,又因为BE PE E ⋂=,所以EF ⊥平面PBE ,所以BC ⊥平面PBE .(2)取BE 的中点O ,连接PO ,由(1)知BC ⊥平面PBE ,BC ⊂平面BCFE ,所以平面PBE ⊥平面BCFE ,因为PB BE PE ==,所以PO BE ⊥,又因为PO ⊂平面PBE ,平面PBE ⋂平面BCFE BE =,所以PO ⊥平面BCFE ,过O 作OM BC 交CF 于M ,分别以OB ,OM ,OP 所在直线为,,x y z轴建立空间直角坐标系,则(P ,()1,4,0C ,()1,2,0F -.(1,4,PC =,(1,2,PF =-,设平面PCF 的法向量为(),,m x y z=,则0,0,PC m PF m ⎧⋅=⎨⋅=⎩即40,20,x y x y ⎧+=⎪⎨-+-=⎪⎩则(m =-,易知()0,1,0n=为平面PBE的一个法向量,cos<,5m n >=== ,所以平面PBE 与平面PCF所成锐二面角的余弦值55.1.【思路引导】(Ⅰ)法一:由'AF C F =.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .而'BEC ∠即为二面角'C EF B --的平面角.'60BEC ∠=︒,推导出'EH BC ⊥.由'EF C E ⊥,EF BE ⊥,从而EF ⊥平面'BEC .由//EF AB ,得AB ⊥平面'BEC ∠,从而AB EH ⊥,即EH AB ⊥.进而EH ⊥平面'ABC .推导出四边形EHGF 为平行四边形.从而//FG EH ,FG ⊥平面'ABC ,由此能证明平面'AFC ⊥平面'ABC .法二:以B 为原点,在平面'BEC 中过B 作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能证明平面'AFC ⊥平面'ABC .(Ⅱ)以B 为原点,在平面'BEC 中过B .作BE 的垂线为x 轴,BE 为y 轴,BA 为z 轴,建立空间直角坐标系,利用向量法能求出平面'AFC 与平面'BEC 所成二面角大小.【详解】(Ⅰ)证法一:F 是AC 的中点,'AF C F ∴=.设'AC 的中点为G ,连接FG .设'BC 的中点为H ,连接GH ,EH .由题意得'C E EF ⊥,BE EF ⊥,'BEC ∴即为二面角'C EF B --的平面角.'60BEC ∴=︒,E 为BC 的中点.'BE EC ∴=,'BEC ∴∆为等边三角形,'EH BC ∴⊥.'EF C E ⊥ ,EF BE ⊥,'C E BE E ⋂=,EF ∴⊥平面'BEC .//EF AB ,AB ∴⊥平面'BEC ,AB EH ∴⊥,即EH AB ⊥.'BC AB B ⋂= ,EH ∴⊥平面'ABC .G ,H 分别为'AC ,'BC 的中点.////GH AB FE ∴,12GH AB FE∴==四边形EHGF 为平行四边形.//FG EH ∴,FG ⊥平面'ABC ,又FG ⊂平面'AFC .∴平面'AFC ⊥平面'ABC.法二:如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E,()'C .设平面'ABC 的法向量为(),,a x y z = ,()0,0,2BA =,()'BC =,20'0a BA z a BC x ⎧⋅==⎪∴⎨⋅=+=⎪⎩,令1y =,则()a = ,设平面'AFC 的法向量为(),,b x y z = ,()2,0,1AF =-,()'2AC =-,20'20b AF x z b AC x z ⎧⋅=-=⎪∴⎨⋅=+-=⎪⎩,取1x =,得()2b =.0a b ⋅= ,∴平面'AFC ⊥平面'ABC .解:(Ⅱ)如图,以B 为原点,BE 为x 轴,在平面'BEC 中过B 作BE 的垂线为y 轴,BA 为z 轴,建立空间直角坐标系,设2AB =.则()0,0,2A ,()0,0,0B ,()2,0,1F ,()2,0,0E ,()'3,0C .平面'BEC 的法向量()0,0,1m = 设平面'AFC 的法向量为(),,n x y z = ,()'3,2AC =- ,()2,0,1AF =- ,'32020n AC x y z n AF x z ⎧⋅=+-=⎪∴⎨⋅=-=⎪⎩ ,取1x =,得()3,2n = .设平面'AFC 与平面'BEC 所成的二面角的平面角为θ,2cos 2m n m nθ⋅∴==⋅ 由图形观察可知,平面'AFC 与平面'BEC 所成的二面角的平面角为锐角.∴平面'AFC 与平面'BEC 所成二面角大小为45 .2.【思路引导】(1)若AB ⊥CD ,得AB ⊥面ACD ,由于AB ⊥AC .,所以AB 2+a 2=BC,解得a 2=1,成立;(2)四面体A ﹣BCD 体积最大时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣CD ﹣B 的余弦值.【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D ,所以AB ⊥面ACD ⇒AB ⊥AC .由于AB=1,2,AC=a ,由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1(2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22,所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD .过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz -(如图),则易知,显然,面BCD 的法向量为,设面ACD 的法向量为n=(x ,y ,z ),因为所以,令y =2,得n=(1,2,2),故二面角A -CD -B 的余弦值即为|cos n OA ,.3.【思路引导】(1)首先根据题的条件,可以得到BAC ∠=90,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.详解:(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,且AC AD A = ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为111131332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒= .4.【思路引导】(1)先计算得BE ⊥AE ,再根据面面垂直性质定理得结果,(2)先分析确定点M 位置,再取D 1E 的中点L ,根据平几知识得AMFL 为平行四边形,最后根据线面平行判定定理得结果.【详解】(1)证明连接BE ,∵ABCD 为矩形且AD =DE =EC =BC =2,∴∠AEB =90°,即BE ⊥AE ,又平面D 1AE ⊥平面ABCE ,平面D 1AE ∩平面ABCE =AE ,BE ⊂平面ABCE ,∴BE ⊥平面D 1AE .(2)解AM =14AB ,取D 1E 的中点L ,连接AL ,FL ,∵FL ∥EC ,EC ∥AB ,∴FL ∥AB 且FL =14AB ,∴FL ∥AM ,FL =AM∴AMFL 为平行四边形,∴MF ∥AL ,因为MF 不在平面AD 1E 上,AL ⊂平面AD 1E ,所以MF ∥平面AD 1E .故线段AB 上存在满足题意的点M ,且AM AB =14.5.【思路引导】(1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF .∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥.∴EF AC ⊥.∴EF AO ⊥,EF PO ⊥.分∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O = ,∴EF ⊥平面POA .∴BD ⊥平面POA .(2)解:设,连接BO ,∵60DAB ︒∠=,∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =3HO PO ==.在R t △BHO 中,227BO BH HO =+=在△PBO 中,22210BO PO PB +==,∴PO BO ⊥.∵PO EF ⊥,EF BO O ⋂=,EF ⊂平面BFED ,BO ⊂平面BFED ,∴PO ⊥平面BFED .梯形BFED 的面积为()1332S EF BD HO =+⋅=∴四棱锥P BFED -的体积11333333V S PO =⋅=⨯=.6.【思路引导】(1)设AC 的中点为O,证明PO 垂直AC,OB,结合平面与平面垂直判定,即可.(2)建立直角坐标系,分别计算两相交平面的法向量,结合向量的数量积公式,计算夹角,即可.【详解】(Ⅰ)设AC 的中点为O ,连接BO ,PO .由题意,得2PA PB PC ===,1PO =,1AO BO CO ===.因为在PAC ∆中,PA PC =,O 为AC 的中点,所以PO AC ⊥,因为在POB ∆中,1PO =,1OB =,PB =222PO OB PB +=,所以PO OB ⊥.因为AC OB O ⋂=,,AC OB ⊂平面ABC ,所以PO ⊥平面ABC ,因为PO ⊂平面PAC ,所以平面PAC ⊥平面ABC.(Ⅱ)由(Ⅰ)知,BO PO ⊥,BO AC ⊥,BO ⊥平面PAC ,所以BMO ∠是直线BM 与平面PAC 所成的角,且1tan BOBMO OM OM ∠==,所以当OM 最短时,即M 是PA 的中点时,BMO ∠最大.由PO ⊥平面ABC ,OB AC ⊥,所以PO OB ⊥,PO OC ⊥,于是以OC ,OB ,OD 所在直线分别为x 轴,y 轴,z 轴建立如图示空间直角坐标系,则()0,0,0O ,()1,0,0C ,()0,1,0B ,()1,0,0A -,()0,0,1P ,11,0,22M ⎛⎫- ⎪⎝⎭,()1,1,0BC =- ,()1,0,1PC =- ,31,0,22MC ⎛⎫=- ⎪⎝⎭ .设平面MBC 的法向量为()111,,m x y z = ,则由00m BC m MC⎧⋅=⎨⋅=⎩得:1111030x y x z -=⎧⎨-=⎩.令11x =,得11y =,13z =,即()1,1,3m =.设平面PBC 的法向量为()222,,n x y z = ,由00n BC n PC ⎧⋅=⎨⋅=⎩ 得:222200x y x z -=⎧⎨-=⎩,令1x =,得1y =,1z =,即()1,1,1n =.cos ,33m n n m m n ⋅===⋅ .由图可知,二面角P BC M --的余弦值为33.。

专题16立体几何中范围和最值问题

专题16立体几何中范围和最值问题

专题16 立体几何中范围和最值问题专题16 立体几何中范围和最值问题立体几何中的最值与范围类问题,涉及几何体的结构特征以及空间线面关系,题目综合性强.解决此类问题一般可从三个方面思考:一是函数法,即利用传统方法或空间向量的坐标运算,建立所求的目标函数,转化为函数的最值问题求解;二是根据几何体的结构特征,化动态为静态,直观判断在什么情况下取得最值;三是将几何体平面化,如利用展开图,在平面几何图中直观求解.名师解读《普通高中数学课程标准》(2020年修订版)课标要求: 立体几何研究现实世界中物体的形状、大小与位置关系.本单元的学习,可以帮助学生以长方体为载体,认识和理解空间点、直线、平面的位置关系;用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证;了解一些简单几何体的表面积与体积的计算方法;运用直观感知、操作确认、推理论证、度量计算等认识和探索空间图形的性质,建立空间观念.内容包括:基本立体图形、基本图形位置关系、*几何学的发展.发展学生直观想象、逻辑推理、数学运算、数学建模核心素养.空间角的范围与最值问题【例1】(2021·全国·统考高考真题)1.已知直三棱柱111ABC A B C 中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE⊥;(2)当1B D为何值时,面【点评】第一问,方法一为常规方法,不过这道题常规方法较为复杂,方法二建立合适的空间直角坐标系,借助空间向量求解是最简单,也是最优解减法则及数量积的定义运算进行证明不常用,以开拓学生的思维.空间的角的问题,只要便于建立坐标系均可建立坐标系,应的目标函数,运用函数性质解决空间角的范围与最值问题质分析何时取得最大值.空间距离的范围最值问题【例1】(2018·全国·高考真题)A.217B.25【点评】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果【变3】7.如图所示,正四面体ABCD中,的最小值为14,则该正四面体的外接球表面积是求表面积与体积的范围与最值A.4π3B.8本题求体积的最值时,由于函数式较复杂,采用了换元法进行化简,进而利用导数法求最值,计算较为简便,换元时要注意新元的取值范围求截面周长与面积的范围与最值AD⊥平面α,∠AHD=θ=,△ABC在过其底边BC之间的关系:=.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F ABC -的体积.【点评】首先判断出三角形AFC 的面积最小时距离,从而求得三棱锥F ABC -的体积11DC D P ⊥①;②平面11D A P ⊥平面1A AP ;1APD ∠③的最大值为90︒;1AP PD +④的最小值为23+ACD;A.直线1B D⊥平面1ACD;B.1A P∥平面1AD所成角的范围是C.异面直线1A P与1-的体积不变D.三棱锥1D APCA.圆锥SO的侧面积为22π.-体积的最大值为B.三棱锥S ABC(2017·全国·高考真题)24.a,b为空间中两条互相垂直的直线,等腰直角三角形(1)若点A,B,C,D恰为长方体各侧面中心,求该八面体的体积;(2)求该八面体表面积S的取值范围.(2020·海南·统考高考真题)26.如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l参考答案:过E 作AB 的平行线分别与因为E ,F 分别为AC 和1CC 易证1Rt Rt BCF B BN ≅ ,则又因为1190BBN BNB ∠+∠=()()(0,0,0,2,0,0,0,2,0B A C ∴由题设(),0,2D a (02a ≤≤因为()(0,2,1,1BF DE ==-所以()012BF DE a ⋅=⨯-+[方法三]:因为1BF A B ⊥作1BH F T ⊥,垂足为H ,因为平面DFE 所成二面角的平面角.设1,B D t =[0,2],t ∈1B T =由111113C S C G SA A D ==得1C G =又1111B D BT C G C T=,即1(23t t -设()()4,0,04M a a ≤≤,()(12,4,0,N D ()()12,4,,2,4,4MN a D N =--=-设平面1D MN 的一个法向量为(,,n x y z =1240024400x x y az n MN x y z n D N y ⎧=⎪⎧-+-=⋅=⎧⎪⎪⇒⇒⎨⎨⎨+-=⋅=⎪⎩⎩⎪=⎪⎩令8z =,82,4x a y a =-=+,则(8n =【点睛】本题考查线段在平面上的射影的取值范围的求法,考查空间中线线、线面、面面间的位置关系以及等腰三角形的性质和线面垂直和判定定理,力,考查化归与转化思想、数形结合思想,是中档题由三角形两边和大于第三边得到,当点所以14BE =,设AE a =,则AB 在ABE 中,23π∠=BAE 由余弦定理得:224cos 2a a BAE a +∠=⨯⨯则该正四面体的外接球的直径为正方体的体对角线长,所以223R =即3R =故2412S R ππ==,故答案为:12π【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,[方法一]:导数法设正四棱锥的底面边长为2a ,高为则2222l a h =+,2232(3a =+所以26h l =,2222a l h =-所以正四棱锥的体积13V Sh =【详解】如图,圆锥任意两条母线为AB和AD,则截面为等腰三角形ABD,截面面积为:1sin2ABDS AB AD BAD=⋅⋅∠,由图可知,当截面为圆锥轴截面时,∠BAD最大,最大为120°,(0°,120°],∴sin∠BAD最大值为1,=224124AC BC+=+=为定值,故当sin∠BAD最大时截面面积最大,过点F作FH⊥BD1交BD1于因为长方体对面平行,所以截面BFD1E为平行四边形,则当h取最小值时四边形BFD易知h的最小值为直线CC1易知当F为CC1的中点时,过D1作D1H⊥l交l于H.连接DH,则34[方法二]:等体积转换AB BC = ,60ACB ∠=︒,2AB =ABC ∴∆是边长为2的等边三角形,3BE ∴=连接EFADB CDB AF CF∆≅∆∴=在11D A A △中,11135D A A ∠=2211112AD A A A D A =+-⋅【详解】连接BD ,根据正方体的性质,又∵BD AC ⊥,且1BD BB ⋂的性质,∵11A B ⊥平面11A D DA 1111A B A D A = ,∴1AD ⊥面1A如图:()1min SE CE S C +=.因为122S B BC ==,1S BC ∠=∴2221112S C S B BC S B =+-⨯⨯ABC 为等边三角形,∴∠心.设F 是AMN 的外心,作外接球的球心,且OF DE =222134R AF OF =+=,解得:的体积最大时,到平面1,+∞故答案为:()24.②③【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为|AC|=1,|AB|2=,斜边AB以直线AC为旋转轴,则C为圆心,1为半径的圆,以C坐标原点,以CD【名师点睛】(1)平移直线法是求异面直线所成角的常用方法,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形; 图1由对称性,不妨设'AA x =则1AG x =-,2AO AG =2222AE DE AO OE ==+= 图2则()2221222AD AH x x ⎛⎫==-+ ⎪⎝⎭()2222122EH AE AH x x =-=-所以()2221144ADE S AD EH =⋅= ()()21因为1PD AD ==,设(0,0,0),(0,1,0),D C 设(,0,1)Q m ,则有(0,1,0),DC DQ = 设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD在平面PQC 中,设PB QC E = .在平面PAD 中,过P 点作PF QD ⊥因为PD ⊥平面,ABCD DC ⊂平面又由,,DC AD AD PD D PD ⊥=⊂ PF ⊂平面PAD ,所以DC PF ⊥.又由QDC ,所以PF ⊥平面QDC ,从而答案第31页,共31页。

立体几何解答题中的取值范围问题

立体几何解答题中的取值范围问题

ʏ江苏省无锡市锡山区教师发展中心 姚敬东高考中的立体几何解答题侧重于考查逻辑推理能力和运算求解能力,其中的取值范围或者最值问题一直是考试的重点,也是难点㊂本文选取若干典型例题,归纳解决这类问题的方法,希望对同学们的复习迎考能有所帮助㊂考向一、求空间角的取值范围这类题目的特征是几何体含有动态元素(例如某点在线段上运动),需要求与此相关的空间角的取值范围㊂解决这类问题,需要先建立适当的空间直角坐标系,然后根据动态因素引入参数,最后把所求角的三角函数值表示为该参数的函数并求出其值域㊂值得注意的是,要根据题目条件给出参数的精确范围㊂图1例1 如图1所示,在三棱柱A B C -A 1B 1C 1中,平面A A 1C 1C ʅ平面A B C ,әA B C 为等边三角形,A C =C C 1=2,øA C C 1=60ʎ,D ,E分别是线段A C ,C C 1的中点㊂(1)求证:A 1C ʅ平面B D E ;(2)若P 为线段B 1C 1上的动点(不包括端点),求平面P B D 与平面B D E 夹角的余弦值的取值范围㊂解析:(1)连接A C 1,由题设可知四边形A A 1C 1C 为菱形,所以A 1C ʅA C 1㊂因为D ,E 分别是A C ,C C 1的中点,所以D E ʊA C 1,于是A 1C ʅD E ㊂又因为D 为A C 的中点,әA B C 为等边三角形,所以B D ʅA C ㊂又平面A A 1C 1C ʅ平面A B C ,平面A A 1C 1C ɘ平面A B C =A C ,B D ⊂平面A B C ,所以B D ʅ平面A A 1C 1C ㊂又A 1C ⊂平面A A 1C 1C ,所以B D ʅA 1C ㊂又B D ɘD E =D ,B D ,D E ⊂平面B D E ,所以A 1C ʅ平面B D E ㊂(2)因为C A =C C 1=2,øA C C 1=60ʎ,所以әA C C 1为等边三角形,于是C 1D ʅA C ㊂又因为平面A A 1C 1C ʅ平面A B C ,平面A A 1C 1C ɘ平面A B C =A C ,C 1D ⊂平面A A 1C 1C ,所以C 1D ʅ平面ABC ㊂图2以D 为坐标原点,D B ,D A ,D C 1所在直线分别为x 轴,y 轴,z 轴,建立如图2所示的空间直角坐标系D -x yz ,则B (3,0,0),E 0,-12,32,C 1(0,0,3),B 1(3,1,3),C (0,-1,0),A 1(0,2,3),所以D B ң=(3,0,0),D E ң=0,-12,32,C 1B 1ң=(3,1,0),C A 1ң=(0,3,3)㊂设C 1P ң=λC 1B 1ң=(3λ,λ,0)(0<λ<1),则P (3λ,λ,3),所以D P ң=(3λ,λ,3)㊂由(1)知,A 1C ʅ平面B D E ,所以平面B D E 的一个法向量为m =C A ң1=(0,3,3)㊂设平面P B D 的法向量为n =(a ,b ,c ),则D B ң㊃n =3a =0,D P ң㊃n =3λa +λb +3c =0,令b =3,则a =0,c =-λ,所以n =(0,3,-λ)㊂所以c o s <m ,n >=m ㊃n|m ||n |=33-3λ23ˑ3+λ2=3-λ23+λ2=12(3-λ)23+λ2㊂令3-λ=t ɪ(2,3),则λ=3-t ㊂所以c o s <m ,n >=12t212-6t +t2=82 解题篇 经典题突破方法 高考数学 2024年2月12112t2-6t +1㊂又1tɪ13,12,则12t2-6t +1ɪ13,1,所以c o s <m ,n >ɪ12,32㊂所以平面P B D 与平面B D E 夹角的余弦值的取值范围为12,32㊂点评:本题第一问先证明A 1C ʅD E 和A 1C ʅB D ,然后结合线面垂直的判定定理即可证明㊂第二问先证明点D 处的三条棱D B ,D A ,DC 1两两垂直,然后以D 为坐标原点建立空间直角坐标系,从而引入参数λ表示点P 的位置(C 1P ң=λC 1B 1ң),并把二面角的余弦值表示为f (λ)=3-λ23+λ2(0<λ<1),然后可求得范围㊂考向二、求线段长度比值的取值范围对于线段比值问题,解题时需要建立适当的空间直角坐标系,将几何问题代数化,然后利用题目中的条件和数据建立等量关系,从而表示出所求的线段长度之比㊂在动态问题中,还需根据动态过程求出该比值的取值范围㊂图3例2已知三棱锥P -A B C (图3)的平面展开图(图4)中,四边形A B C D 是边长为2的正方形,әA B E 和әB CF 均为正三角形,在三棱锥P -A B C图4中:(1)求二面角A -P C -B 的余弦值;(2)若点M 在棱P C 上,满足C M C P =λ,λɪ13,23,点N 在棱B P 上,且B M ʅA N ,求B N B P 的取值范围㊂解析:(1)设A C 的中点为O ,连接B O ,P O ㊂由题意知P A =P B =P C =2,P O =1,A O =B O =C O =1㊂在әP A C 中,因为P A =P C ,O 为A C的中点,所以P O ʅA C ㊂在әP O B 中,因为P O =1,O B =1,P B =2,即P B 2=P O 2+O B 2,所以P O ʅO B ㊂图5又O B ʅA C ,所以以O 为坐标原点,建立如图5所示的空间直角坐标系O -x yz ,则O (0,0,0),C (1,0,0),B (0,1,0),A (-1,0,0),P (0,0,1),所以B C ң=(1,-1,0),P C ң=(1,0,-1)㊂设平面P B C 的法向量为n =(x ,y ,z ),则n ㊃B C ң=x -y =0,n ㊃P C ң=x -z =0,令x =1,得y =1,z =1,所以n =(1,1,1)㊂由O B ʅ平面A P C ,所以平面A P C 的一个法向量为O B ң=(0,1,0),所以c o s <n ,O B ң>=n ㊃O B ң|n ||O B ң|=33㊂由二面角A -P C -B 是锐二面角,所以二面角A -P C -B 的余弦值为33㊂图6(2)如图6所示,设B N ң=μB P ң,0ɤμɤ1,则B M ң=B C ң+C M ң=B C ң+λC P ң=(1,-1,0)+λ(-1,0,1)=(1-λ,-1,λ),A N ң=A B ң+B N ң=A B ң+μB P ң=(1,1,0)+μ(0,-1,1)=(1,1-μ,μ)㊂令B M ң㊃A N ң=0,即(1-λ)㊃1+(-1)㊃(1-μ)+λ㊃μ=0,得μ=1-11+λ,μ是关于λ的单调递增函数㊂当λɪ13,23时,μɪ14,25,所以B N B P ɪ14,25㊂点评:本题的第一问在计算二面角之前,要根据题中所给的边长,证得O A ,O B ,O P 两两垂直,这样才能建立空间直角坐标系㊂第二问设B N ң=μB P ң,利用B M ʅA N ,以及对应向量的数量积等于0,得出μ与λ的关系式μ=1-11+λ,最后利用函数的单调性得到所求的取值范围㊂(责任编辑 王福华)92解题篇 经典题突破方法 高考数学 2024年2月。

立体几何中“折叠问题”解题策略

立体几何中“折叠问题”解题策略

立体几何中“折叠问题”的解题策略[ 例题 ]如图 1,在直角梯形 ABCD 中,AD∥BC,AB∥BC,BD∥DC,点 E 是 BC 边的中点,将∥ABD 沿 BD 折起,使平面 ABD∥平面BCD,连结 AE,AC, DE,获得如图 2 所示的几何体.(1)求证: AB∥平面 ADC;(2)若 AD=1,二面角 C-AB-D 的平面角的正切值为6,求二面角 B-AD-E 的余弦值 .[ 解] (1)证明:由于平面ABD∥平面 BCD,平面 ABD∩平面 BCD=BD,BD∥DC,DC∥平面 BCD,因此 DC∥平面 ABD.由于 AB∥平面 ABD,因此 DC∥AB.又由于折叠前后均有AD∥AB,DC∩AD=D,因此 AB∥平面 ADC.(2)由(1)知 AB∥平面 ADC,因此二面角 C-AB-D 的平面角为∥CAD.又 DC∥平面 ABD,AD∥平面 ABD,因此 DC∥AD.CD依题意 tan ∥CAD=AD= 6.由于 AD=1,因此 CD= 6.设 AB= x(x>0),则 BD=x2+1.AB CD依题意 ∥ABD ∥∥DCB ,因此 AD = BD ,x6 即1=x 2+1,解得x =2,故 AB = 2,BD = 3,BC = BD 2+CD 2=3.以 D 为坐标原点,射线 DB ,DC 分别为 x 轴,y 轴的正半轴,成立以下图的空间直角坐标系 D-xyz ,则 D(0,0,0), B( 3,0,0), C(0, 6,0), E( 3 , 6,0),2 2A( 3,0, 6),33―→ = ( 3 6), ―→ =( 3 6 ).因此 DEDA,0,2 , ,03 32由 (1)知平面 BAD 的一个法向量 n =(0,1,0).设平面 ADE 的法向量为 m =(x ,y ,z),―→ =0,3x + 6y =0,·22m DE得由―→ =0,3 6·m DA3 x + 3 z =0.令 x = 6,得 y =- 3,z =- 3, 因此 m =(6,- 3,- 3)为平面 ADE 的一个法向量.因此 cos<n ,m>= n ·m1=- .|n| ·|m 2由图可知二面角 B-AD-E 的平面角为锐角,1因此二面角 B-AD-E 的余弦值为2.解题策略:1.确立翻折前后变与不变的关系画好翻折前后的平面图形与立体图形,分清翻折前后图形的地点和数目关系的变与不变.一般地,位于“折痕”同侧的点、线、面之间的地点和数目关系不变,而位于“折痕”双侧的点、线、面之间的地点关系会发生变化;关于不变的关系应在平面图形中办理,而关于变化的关系则要在立体图形中解决 .2.确立翻折后重点点的地点所谓的重点点,是指翻折过程中运动变化的点.由于这些点的地点挪动,会带动与其有关的其余的点、线、面的关系变化,以及其余点、线、面之间地点关系与数目关系的变化.只有剖析清楚重点点的正确地点,才能以此为参照点,确立其余点、线、面的地点,从而进行有关的证明与计算 .变式练习:1.如图 1,在四边形 ABCD 中, AD∥BC,∥BAD= 90°,1 AB=2 3,BC=4,AD=6,E 是 AD 上的点, AE=3AD,P为 BE 的中点,将∥ABE 沿 BE 折起到∥A1BE 的地点,使得 A1C=4,如图 2.(1)求证:平面 A1CP∥平面 A1BE;(2)求二面角 B-A1P-D 的余弦值.解: (1)证明:如图 3,连结 AP,PC.∥在四边形 ABCD 中, AD∥BC,∥BAD= 90°,AB=2 3,BC=4,AD=6,E 是 AD 上的点,1AE=3AD,P 为 BE 的中点,∥BE=4,∥ABE=30°,∥EBC=60°,BP=2,∥PC=2 3,∥BP2+PC2=BC2,∥BP∥PC.∥A1P=AP=2,A1C=4,∥A1P2+PC2=A1C2,∥PC∥A1P.∥BP∩A1P=P,∥PC∥平面 A1BE.∥PC∥平面 A1CP,∥平面 A1CP∥平面 A1BE.(2)如图 4,以 P 为坐标原点, PB 所在直线为 x 轴,PC 所在直线为 y 轴,过 P 作平面 BCDE 的垂线为 z 轴,成立空间直角坐标系,则 A 1(-1,0, 3),P(0,0,0),D(-4,2 3,0),―→ =(-1,0, 3), ―→ =(-4,2 3,0), ∥1PD PA设平面 A 1的法向量为 = , , ,PDm (xy z)―→=0,-x + 3z =0,则m ·PA 1 ―→即=0, -4x +2 3y =0,· m PD取 x = 3,得 m =( 3,2,1).易知平面 A 1PB 的一个法向量 n =(0,1,0),m ·n2则 cos 〈m ,n 〉=|m||n|= 2 .由图可知二面角 B-A 1P-D 是钝角,2∥二面角 B-A 1P-D 的余弦值为- 2 .2.如图 1,在高为 2 的梯形 ABCD 中, AB ∥CD ,AB =2,CD =5,过 A ,B 分别作 AE ∥CD ,BF ∥CD ,垂足分别为 E ,F.已知 DE =1,将梯形 ABCD 沿 AE ,BF 同侧折起,得空间几何体ADE-BCF ,如图2.(1)若 AF ∥BD ,证明: DE ∥BE ;(2)若 DE ∥CF ,CD = 3,在线段 AB 上能否存在点 P ,使得 CP35与平面 ACD 所成角的正弦值为35 ?并说明原因.解: (1)证明:由已知得四边形 ABFE 是正方形,且边长为 2,∥AF ∥BE. ∥AF ∥BD ,BE ∩BD =B ,∥AF ∥平面 BDE.又 DE ∥平面 BDE ,∥AF ∥DE.∥AE ∥DE ,AE ∩AF = A ,∥DE ∥平面 ABFE.又 BE ∥平面 ABFE ,∥DE ∥BE.(2)当 P 为 AB 的中点时知足条件.原因以下:∥AE ∥DE ,AE ∥EF , DE ∩EF =E ,∥AE ∥平面 DEFC.如图,过 E 作 EG ∥EF 交 DC 于点 G ,可知 GE ,EA ,EF 两两垂直,以 E 为坐标原点,以 ―→ ―→, EA ,EF―→EG 分别为 x 轴, y 轴, z 轴的正方向成立空间直角坐标系,则 A(2,0,0),B(2,2,0),C(0,1, 3),D(0,1, 3),22―→ = (-2,1, ―→ =(-2, 1 , 3 ).AC 3), AD 2 2设平面 ACD 的法向量为 n =(x ,y ,z),―→ -2x +y + 3z =0, n ·AC = 0,则 即 1 3―→-2x -+= ,·=0,2 y2 z 0n AD令 x =1,得 n =(1,- 1, 3).―→―→ ,则 P(2, 2,λ∥ ,+ ∞),设 AP =λPB,0)1 (0―→= (2, 1,- 3).可得 CP1设 CP 与平面 ACD 所成的角为 θ,11 1则 sin θ=|cos<CP ,n> |=1)2 57 (35=35,12解得λ=1 或λ=-5(舍去 ),∥P 为 AB 的中点时,知足条件.。

【高考数学专题】立体几何中的翻折问题与最值问题 专题 高三一轮复习备考

【高考数学专题】立体几何中的翻折问题与最值问题  专题  高三一轮复习备考

立体几何中的翻折问题与最值问题一知识点导学1.解决折叠问题注意什么?折叠问题是立体几何的一个重要内容,是空间几何问题与平面几何问题相互转化的集中体现,处理这类问题的关键就是抓住折叠前后图形的特征关系。

解答折叠问题在于画好折叠前后的平面图形和立体图形,并弄清折叠前后哪些量和位置关系发生了变化,哪些量和位置关系没有发生变化,这些未发生变化的已知条件就是我们分析问题和解决问题的依据。

2立体几何常见的最值问题有哪些?如何解决?空间图形最值问题有线段、角、距离、面积、体积等最值问题,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径.3如何解决涉及几何体切接问题最值计算?求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;4解决折叠问题的步骤有哪些?二.考点典例考点一:面积、体积最值问题空间几何体的侧面积、表面积、截面面积、体积等最值问题,往往是几何体中有关几何元素如顶点、侧棱、侧面、截面等在运动变化过程中,达到某个特殊位置时所具有的度量性质。

因此,在解决此类问题时,要注意分析这些几何元素运动变化与所求量的联系,建立两者之间的数量关系。

实例演练1(2021•湖南模拟)如图所示,圆形纸片的圆心为O,半径为6cm,该纸片上的等边三角形ABC的中心为O,D,E,F为圆O上的点,DBC∆分别是∆,FAB∆,ECA以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC ∆,ECA ∆,FAB ∆,使得D ,E ,F 重合,得到三棱锥.则当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是( )A .(0,36)πB .(0,C .(0,45-D .(0,解:设三棱锥的底面边长为a ,则0a <<连接OD ,交BC 于点G ,则6OD =,OG ,6DG =,∴2,侧面积为213(6)92S a a =⨯⨯=,∴三棱锥的表面积9S a =,0a <<9(0S a ∴=∈,,∴当ABC ∆的边长变化时,三棱锥的表面积S 的取值范围是(0,.故选:D .实例演练2(2021•宜宾模拟)已知三棱锥A BCD -的各个顶点都在球O 的表面上,AD ⊥平面BCD ,BD CD ⊥,3BD =,CD =E 是线段CD 上一点,且3CD CE =.若球O 的表面积为40π,则过点E 作球O 的截面,所得截面圆面积的最小值为( )A .4πB .6πC .8πD .10π解:依题意,AD ,BD ,CD 两两互相垂直,取BC 中点M ,连接MD ,由对称性可知,球心O 在M 点正上方,且OM ⊥平面BCD ,OA OB OC OD R ====,3BD =,CD =6BC ∴=,则3BM CM DM ===,设球O 的半径为R ,则2440R ππ=,解得R由22222222()OM BM R OB AD OM DM R OA⎧+==⎨-+==⎩,解得12OM AD =⎧⎨=⎩,OM ⊥平面BCD ,OM ME ∴⊥,又13CE CD =cos CD BCD BC ∠==,∴在CEM ∆中,由余弦定理有2222cos 3ME CE MC CE MC BCD =+-⋅⋅∠=,故ME =,在OME ∆中,2OE =,要使过E 作圆O 的截面面积最小,则此时截面与OE垂直,设此时截面圆半径为r ,则r ==∴26min S r ππ==.故选:B .实例演练3.(2021•河南模拟)现有一批大小不同的球体原材料,某工厂要加工出一个四棱锥零件,要求零件底面ABCD 为正方形,2AB =,侧面PAD ∆为等边三角形,线段BC 的中点为E ,若1PE =,则所需球体原材料的最小体积为( )A B .283π C .9π D 解:所需原材料体积最小的球体即为四棱锥P ABCD -的外接球,如图,设F 为AD 中点,G 为正方形ABCD 中心,PAD ∆为边长为2的等边三角形,PF ∴,又1PE =,2EF =,60PEF ∴∠=︒1PE EB EC ===,E ∴是PBC ∆的外心,过E 作面PBC 的垂线与过G 与面ABCD 的垂线交于O ,则O 为四棱锥P ABCD -外接球的球心.906030OEG OEP FEP ∠=∠-∠=︒-︒=︒,又1GE =,∴在直角三角形OGE 中求出OG =,又直角OAG ∆中,AG ,OA ∴=,即球半径R =,得343V R π==球.由于此时四棱锥P ABCD -在球心同侧,不是最小球,可让四棱锥下移到面ABCD 过球心时,即球半径12R AC =时,原材料最省,此时343V π=⨯=球.故选:A .实例演练4(20211,O 为底面圆心,OA ,OB 为底面半径,且23AOB π∠=,M 是母线PA 的中点.则在此圆锥侧面上,从M 到B 的路径中,最短路径的长度为( )A B 1 C D 1解:由题意,在底面半径为1O 是底面圆心,P 为圆锥顶点,圆锥的侧面展开图是半圆,如图,A ,B 是底面圆周上的两点,23AOB π∠=,所以在展开图中,3APB π∠=2=,M 为母线PA 的中点,所以1PM =,所以从B 到M 的最短路径的长是BM A .考点2:角的最值问题立体几何中的角有异面直线所成角、线面角和二面角的平面角三种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题立体几何中的折叠、最值、取值范围问题——综合能力提升篇立体几何章节在历来的高考中分值占比重,以两小一大的形式出现较多.空间想象能力是对空间形式的观察、分析、抽象的能力.要在立体几何学习中形成.纵观近几年全国及各省高考试题,对立体几何中的折叠问题、最值问题和探索性问题的考查逐年加重,要求学生要有较强的空间想象力和准确的计算运算能力,才能顺利解答.从实际教学和考试来看,学生对这类题看到就头疼.分析原因,首先是学生的空间想象力较弱,其次是学生对这类问题没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段学习和考试出现这类问题加以总结的探讨.题型一:立体几何中的折叠问题折叠与展开问题是立体几何的两个重要问题,这两种方式的转变正是空间几何与平面几何问题转化的集中体现.处理这类题型的关键是抓住两图的特征关系.并弄清折叠前后哪些发生了变化,哪些没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.而表面展开问题是折叠问题的逆向思维、逆过程,一般地,涉及到多面体表面的问题,解题时不妨将它展开成平面图形试一试.1.如图1,在等腰梯形CDEF中,DE=CD=2,EF=2+2,将它沿着两条高AD,CB折叠成如图2所示的四棱锥E-ABCD(E,F重合).(1)求证:BE⊥DE;(2)设点M为线段AB的中点,试在线段CE上确定一点N,使得MN∥平面DAE.【解析】(1)证明:∵AD⊥EF,∴AD⊥AE,AD⊥AB.又∵AB∩AE=A,∴AD⊥平面ABE,∴AD⊥BE.由图1和题中所给条件知,AE=BE=1,AB=CD=2,∴AE2+BE2=AB2,即AE⊥BE.又∵AE∩AD=A,∴BE⊥平面ADE,∴BE⊥DE.(2)取EC 的中点G ,BE 的中点P ,连接PM ,PG ,MG . 则MP ∥AE ,GP ∥CB ∥DA ,∴MP ∥平面DAE ,GP ∥平面DAE . ∵MP ∩GP =P ,∴平面MPG ∥平面DAE .∵MG ⊂平面MPG ,∴MG ∥平面DAE ,即存在点N 与G 重合满足条件.2.(2015·四川卷)一个正方体的平面展开图及该正方体的直观图的示意图如图所示,在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角A ­EG ­M 的余弦值.【解析】(1)点F ,G ,H 的位置如图所示.(2)证明:连接AC ,BD 交于点O ,连接OH ,OM . 因为M ,N 分别是BC ,GH 的中点,所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD ,所以OM ∥HN ,OM =HN ,所以四边形MNHO 是平行四边形, 从而MN ∥OH .又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH .(3)方法一:过M 作MP ⊥AC 于P .在正方体ABCD ­EFGH 中,AC ∥EG ,所以MP ⊥EG . 过P 作PK ⊥EG 于K ,连接KM ,所以EG ⊥平面PKM , 从而KM ⊥EG ,所以∠PKM 是二面角A ­EG ­M 的平面角. 设AD =2,则CM =1,PK =2. 在Rt△CMP 中,PM =CM sin 45°=22.在Rt△PKM 中,KM =PK 2+PM 2=322.所以cos∠PKM =PK KM =223,即二面角A ­EG ­M 的余弦值为223.方法二:如图,以D 为坐标原点,分别以DA →,DC →,DH →方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系D -xyz .设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0), 所以GE →=(2,-2,0),MG →=(-1,0,2). 设平面EGM 的一个法向量为n 1=(x ,y ,z ),由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,得⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1).在正方体ABCD ­EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1·1+1+0=223,故二面角A ­EG ­M 的余弦值为223.题型二、立体几何中的最值问题结合近年来全国各省市的高考中,考查与空间图形有关的线段、角、距离、面积、体积等最值问题常常在高考试题中出现.在解决此类问题时,通常应注意分析题目中所有的条件,首先应该在充分理解题意的基础上,分析是否能用公理与定义直接解决题中问题;如果不能,再看是否可将问题条件转化为函数,若能写出确定的表意函数,则可用建立函数法求解;再不能,则要考虑其中是否存在不等关系,看是否能运用解等不式法求解;还不行则应考虑是否可将其体图展开成平面,这样依次顺序思考,基本可以找到解题的途径 .3.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→的最小值为( )A .52B .-14C .14D .-52【解析】建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),设P (0,0,z ),则PD →=(1,0,2-z ),PB 1→=(0,1,3-z ),∴PD →·PB 1→=0+0+(2-z )(3-z )=(z -52)2-14,故当z =52时,PD →·PB 1→取得最小值-14.【答案】B4.(2015·四川卷)如图所示,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,动点M 在线段PQ 上,E ,F 分别为AB ,BC 的中点.设异面直线EM 和AF 所成的角为θ,则cos θ的最大值为________.【解析】分别以AB ,AD ,AQ 为x 轴,y 轴,z 轴建立空间直角坐标系,并设正方形边长为2,QM =m (0≤m ≤2),则AF →=(2,1,0),EM →=(-1,m ,2), 所以cos θ=⎪⎪⎪⎪⎪⎪⎪⎪AF →·EM →|AF →|·|EM →|=2-m 5m 2+25(0≤m ≤2). 令f (m )=2-m5m 2+25(0≤m ≤2),则f ′(m )=-5m 2+25-(2-m )×10m25m 2+255m 2+25. 因为m ∈[0,2],所以f ′(m )<0,故f (m )max =f (0)=25,即cos θ的最大值为25.【答案】255.(2015·江苏卷)如图,在四棱锥P ­ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,PA =AD =2,AB =BC =1.(1)求平面PAB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长. 【解析】以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系A -xyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面PAB ,所以AD →是平面PAB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧m ·PC →=0,m ·PD →=0,,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0,令y =1,解得z =1,x =1.所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面PAB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1),又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ),又DP →=(0,-2,2), 从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2. 设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=错误!≤910. 当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.题型三、立体几何中的取值范围问题结合近年来全国各省市的高考中,考查与空间图形有关的线段、角、距离、面积、体积等取值范围问题常常在高考试题中出现.此类问题的解法与立体几何中各类最值问题的解法基本一致.6.(2014·四川卷)如图所示,在正方体ABCD ­ A 1B 1C 1D 1中,点O 为线段BD 的中点,设点P 在线段CC 1上,直线OP 与平面A 1BD 所成的角为α,则sin α的取值范围是( )A .⎣⎢⎡⎦⎥⎤33,1B .⎣⎢⎡⎦⎥⎤63,1C .⎣⎢⎡⎦⎥⎤63,223D .⎣⎢⎡⎦⎥⎤223,1 【解析】连接A 1O ,OP 和PA 1,不难知∠POA 1就是直线OP 与平面A 1BD 所成的角(或其补角)设正方体棱长为2,则A 1O =6.(1)当P 点与C 点重合时,PO =2,A 1P =23,且cos α=6+2-122×6×2=-33,此时α=∠A 1OP 为钝角,sin α=1-cos 2α=63; (2)当P 点与C 1点重合时,PO =A 1O =6,A 1P =22,且cos α=6+6-82×6×6=13,此时α=∠A 1OP为锐角,sin α=1-cos 2α=223; (3)在α从钝角到锐角逐渐变化的过程中,CC 1上一定存在一点P ,使得α=∠A 1OP =90°.又因为63<223,故sin α的取值范围是⎣⎢⎡⎦⎥⎤63,1.【答案】B 7.(2015·河北正定中学上期第六次月考)如图,在四棱锥P -ABCD 中,PA ⊥AD ,AB ∥CD ,CD ⊥AD ,AD =CD =2AB =2,E ,F 分别为PC ,CD 的中点,DE =EC .(1)求证:平面ABE ⊥平面BEF ;(2)设PA =a ,若平面EBD 与平面ABCD 所成锐二面角θ∈⎣⎢⎡⎦⎥⎤π4,π3,求a 的取值范围.【解析】(1)证明:∵AB ∥CD ,AD =CD =2AB =2,F 为CD 的中点,∴ABFD 为矩形,AB ⊥BF .∵DE =EC ,∴DC ⊥EF , 又AB ∥CD ,∴AB ⊥EF ,∵BF ∩EF =E ,∴AE ⊥面BEF ,又AE ⊂面ABE ,∴平面ABE ⊥平面BEF . (2) ∵DE =EC ,∴DC ⊥EF ,又PD ∥EF ,AB ∥CD ,∴AB ⊥PD , 又AB ⊥PD ,∴AB ⊥面PAD ,AB ⊥PA ,以点A 为坐标原点,AB 为x 轴,AD 为y 轴,AP 为z 轴建立空间直角坐标系A -xyz , 则B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,a ),E (1,1,a2).∴BD →=(-1,2,0),DE →=(1,-1,a 2).设平面EBD 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·BD →=0,m ·DE →=0,,即⎩⎪⎨⎪⎧-x +2y =0, x -y +a2z =0,令y =a ,得x =2a ,z =-2,则m =(2a ,a ,-2). 显然n =(0,0,1)是平面ABCD 的一个法向量.由θ∈⎣⎢⎡⎦⎥⎤π4,π3 ,知cos θ=|cos 〈AD →,m 〉|=|m ·n ||m ||n |=25a 2+4∈⎣⎢⎡⎦⎥⎤12,22, 解得a ∈⎣⎢⎡⎦⎥⎤255,2155.1(2012·浙江卷)已知矩形ABCD ,AB =1,BC =2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直【解析】对于AB ⊥CD ,因为BC ⊥CD ,由线面垂直的判定可得CD ⊥平面ACB ,则有CD ⊥AC ,而AB =CD =1,BC =AD =2,可得AC =1,那么存在AC 这样的位置,使得AB ⊥CD 成立.【答案】B2.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是BC 的中点,P ,Q 是正方体内部或面上的两个动点,则AM →·PQ →的最大值是( )A .12B .1C .32D .54【解析】以A 为坐标原点,分别以AD ,AB ,AA 1所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则A (0,0,0),M (12,1,0),所以AM →=(12,1,0).设PQ →=(x ,y ,z ),由题意可知⎩⎪⎨⎪⎧-1≤x ≤1,-1≤y ≤1,-1≤z ≤1.因为AM →·PQ →=12·x +1·y +0·z =12x +y ,又-1≤x ≤1,-1≤y ≤1,所以-12≤12x ≤12.所以-32≤12x +y ≤32.故AM →·PQ →的最大值为32.【答案】C3.(2015·浙江卷)如图所示,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,所成二面角A ′­CD ­B 的平面角为α,则( )A .∠A ′DB ≤α B .∠A ′DB ≥αC .∠A ′CB ≤αD .∠A ′CB ≥α【解析】当AC =BC 时,易知∠A ′DB =α,当AC ≠BC 时,作A ′E ⊥CD ,BF ⊥CD ,因为D 是中点,故DE =DF ,再作GF ∥A ′E ,GA ′∥EF ,则∠GFB =α,设A ′D =BD =m ,FD =DE =n ,则cos ∠A ′DB =m 2+m 2-A ′B 22mm=2m 2-A ′B 22m 2,cos α=(m 2-n 2)+(m 2-n 2)-BG 22m 2-n 2m 2-n 2=2m 2-2n 2-[A ′B 2-(2n )2]2(m 2-n 2)=2m 2+2n 2-A ′B 22(m 2-n 2),显然cos∠A ′DB <cos α,故∠A ′DB >α.【答案】B4.(2016·石家庄模拟)如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.【解析】如图建立空间直角坐标系,设AB =EF =CD =2,∵AE ∶DE ∶AD =1∶1∶2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1),∴AF →=(-1,2,0),EC →=(0,2,1),∴cos 〈AF →,EC →〉=45,∴AF 与CE 所成角的余弦值为45.【答案】455.(2014·浙江卷)如图所示,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若AB =15 m ,AC =25 m ,∠BCM =30°,则tan θ的最大值是________.(仰角θ为直线AP 与平面ABC 所成角)【解析】由勾股定理得BC =20 m .如图,过P 点作PD ⊥BC 于D ,连接AD ,则由点A 观察点P 的仰角θ=∠PAD ,tan θ=PDAD.设PD =x ,则DC =3x ,BD =20-3x ,在Rt △ABD 中,AD =152+(20-3x )2=625-403x+3x2,所以tanθ=x625-403x+3x2=1625x2-403x+3=1625⎝⎛⎭⎪⎫1x-203625+2725≤539,故tan θ的最大值为539.【答案】5396.(2012·上海卷)如图所示,AD与BC是四面体ABCD中互相垂直的棱,BC=2,若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是________.【解析】以空间四面体为载体,考查几何体的体积和代数式的最值问题,以及转化思想,解此题的关键是求出侧面三角形ABD的高的最大值.作BE垂直AD于E,连接CE,则CE也垂直AD,且BE=CE,所以四面体ABCD的体积V=13S△BCE·AD=23c BE2-1,在三角形ABD中,AB+BD=2a,AD=2c,所以AD边上的高BE等于以AD为焦点,长轴为2a的椭圆上的点到x轴的距离,其最大值刚好在点在短轴端点的时候得到,即BE≤a2-c2,所以V=23c BE2-1≤23c a2-c2-1.【答案】23c a2-c2-17.(2012·安徽卷)平面图形ABB1A1C1C如图(1)所示,其中BB1C1C是矩形,BC=2,BB1=4,AB=AC=2,A1B1=A1C1=5.现将该平面图形分别沿BC和B1C1折叠,使△ABC与△A1B1C1所在平面都与平面BB1C1C垂直,再分别连接A1A,A1B,A1C,得到如图(2)所示的空间图形.对此空间图形解答下列问题.(1)证明:AA1⊥BC;(2)求AA1的长;(3)求二面角A -BC -A 1的余弦值.【解析】(向量法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD .由BB 1C 1C 为矩形知,DD 1⊥B 1C 1,因为平面BB 1C 1C ⊥平面A 1B 1C 1,所以DD 1⊥平面A 1B 1C 1, 又由A 1B 1=A 1C 1知,A 1D 1⊥B 1C 1.故以D 1为坐标原点,可建立如图所示的空间直角坐标系D 1-xyz . 由题设,可得A 1D 1=2,AD =1.由以上可知AD ⊥平面BB 1C 1C ,A 1D 1⊥平面BB 1C 1C ,于是AD ∥A 1D 1. 所以A (0,-1,4),B (1,0,4),A 1(0,2,0),C (-1,0,4),D (0,0,4). 故AA 1→=(0,3,-4),BC →=(-2,0,0),AA 1→·BC →=0, 因此AA 1→⊥BC →,即AA 1⊥BC .(2)因为AA 1→=(0,3,-4),所以||AA 1→=5,即AA 1=5. (3)连接A 1D ,由BC ⊥AD ,BC ⊥AA 1,可知BC ⊥平面A 1AD ,BC ⊥A 1D , 所以∠ADA 1为二面角A -BC -A 1的平面角.因为DA →=(0,-1,0),DA 1→=(0,2,-4),所以cos 〈DA →,DA 1→〉=-21×22+-42=-55. 即二面角A -BC -A 1的余弦值为-55. (综合法)(1)证明:取BC ,B 1C 1的中点分别为D 和D 1,连接A 1D 1,DD 1,AD ,A 1D . 由条件可知,BC ⊥AD ,B 1C 1⊥A 1D 1, 由上可得AD ⊥面BB 1C 1C ,A 1D 1⊥面BB 1C 1C . 因此AD ∥A 1D 1,即AD ,A 1D 1确定平面AD 1A 1D . 又因为DD 1∥BB 1,BB 1⊥BC ,所以DD 1⊥BC . 又考虑到AD ⊥BC ,所以BC ⊥平面AD 1A 1D , 故BC ⊥AA 1.(2)延长A 1D 1到G 点,使GD 1=AD ,连接AG .因为AD ∥GD 1,且AD =GD 1,所以AG ∥DD 1∥BB 1,且AG =DD 1=BB 1. 由于BB 1⊥平面A 1B 1C 1,所以AG ⊥A 1G . 由条件可知,A 1G =A 1D 1+D 1G =3,AG =4, 所以AA 1=5.(3)因为BC ⊥平面AD 1A 1D ,所以∠ADA 1为二面角A -BC -A 1的平面角.在Rt△A 1DD 1中,DD 1=4,A 1D 1=2,解得sin∠D 1DA 1=55, 则cos∠ADA 1=cos ⎝ ⎛⎭⎪⎫π2+∠D 1DA 1=-55. 即二面角A -BC -A 1的余弦值为-55. 8.已知如图所示的平行四边形ABCD 中,BC =2,BD ⊥CD ,正方形ADEF 所在平面与平面ABCD 垂直,G ,H 分别是DF ,BE 的中点.(1)求证:GH ∥平面CDE ;(2)记CD =x ,V (x )表示四棱锥F -ABCD 的体积,求V (x )的表达式;(3)当V (x )取最大值时,求平面ECF 与平面ABCD 所成二面角的平面角的正弦值.【解析】(1)证法1:∵EF ∥AD ,AD ∥BC ,∴EF ∥BC 且EF =AD =BC .∴四边形EFBC 是平行四边形.∴H 为FC 的中点.又∵G 是FD 的中点,∴HG ∥CD .∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE .证法2:连接EA ,∵ADEF 是正方形,∴G 是AE 的中点.∴在△EAB 中,GH ∥AB .又∵AB ∥CD ,∴GH ∥CD .∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE .(2)解:∵平面ADEF ⊥平面ABCD ,交线为AD ,且FA ⊥AD ,∴FA ⊥平面ABCD .∵BD ⊥CD ,BC =2,CD =x ,∴FA =2,BD =4-x 2(0<x <2).∴SABCD =CD ·BD =x 4-x 2. ∴V (x )=13S ABCD ·FA =23x 4-x 2(0<x <2). (3)解:要使V (x )取得最大值,即使x 4-x 2=x 2(4-x 2)(0<x <2)取得最大值,∵x 2(4-x 2)≤⎝ ⎛⎭⎪⎫x 2+4-x 222=4,当且仅当x 2=4-x 2,即x =2时V (x )取得最大值.解法1:在平面DBC 内过点D 作DM ⊥BC 于M ,连接EM ,∵BC ⊥ED ,∴BC ⊥平面EMD .∴BC ⊥EM .∴∠EMD 是平面ECF 与平面ABCD 所成二面角的平面角,∵当V (x )取得最大值时,CD =2,DB =2,∴DM =12BC =1,EM =ED 2+DM 2=5.∴sin∠EMD =ED EM =255. 即平面ECF 与平面ABCD 所成二面角的平面角的正弦值为255. 解法2:以点D 为坐标原点,DC 所在的直线为x 轴建立空间直角坐标系如图所示,则D (0,0,0),C (2,0,0),B (0,2,0),E (0,0,2),∴DE →=(0,0,2),EC →=(2,0,-2),EB →=(0,2,-2),设平面ECF 与平面ABCD 所成的二面角为θ,平面ECF 的法向量n =(a ,b ,c ),由⎩⎪⎨⎪⎧n ·EC →=0,n ·EB →=0,,得⎩⎨⎧ 2a -2c =0,2b -2c =0.令c =1得n =(2,2,1).又∵平面ABCD 的法向量为DE →,∴cos θ=⎪⎪⎪⎪⎪⎪⎪⎪n ·DE →|n |·|DE →|=22×5=55,∴sin θ=255. 即当V (x )取最大值时,平面ECF 与平面ABCD 所成二面角的平面角的正弦值为255. 9.(2014·江西卷)如图,四棱锥P -ABCD 中,ABCD 为矩形.平面PAD ⊥平面ABCD .(1)求证:AB ⊥PD .(2)若∠BPC =90°,PB =2,PC =2,问AB 为何值时,四棱锥P -ABCD的体积最大并求此时平面BPC 与平面DPC 夹角的余弦值.【解析】(1)证明:因为四边形ABCD 为矩形,故AB ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,所以AB ⊥平面PAD ,又PD ⊂平面PAD ,故AB ⊥PD .(2)过P 作AD 的垂线,垂足为O ,过O 作BC 的垂线,垂足为G ,连接PG .故PO ⊥平面ABCD ,BC ⊥平面POG ,BC ⊥PG .在Rt△BPC 中,PG =233,GC =263,BG =63. 设AB =m ,则OP =PG 2-OG 2= 43-m 2, 故四棱锥P -ABCD 的体积为V =13·6·m ·43-m 2=m 3·8-6m 2. 因为m 8-6m 2=8m 2-6m 4= -6(m 2-23)2+83,故当m =63,即AB =63时,四棱锥P -ABCD 的体积最大. 此时,建立如图所示的坐标系, 则O (0,0,0),B (63,-63,0),C (63,263,0),D (0,263,0),P (0,0,63). 故PC →=(63,263,-63),BC →=(0,6,0),CD →=(-63,0,0). 设平面BPC 的一个法向量n 1=(x ,y,1),则由⎩⎪⎨⎪⎧ n 1·PC →=0,n 1·BC →=0,得⎩⎪⎨⎪⎧ 63x +263y -63=0,6y =0,解得x =1,y =0,n 1=(1,0,1).同理可求出平面DPC 的一个法向量n 2=(0,12,1). 从而平面BPC 与平面DPC 夹角θ的余弦值为cos θ=|n 1·n 2||n 1||n 2|=12·14+1=105. 10.(2012·湖北卷)如图(1)所示,∠ACB =45°,BC =3,过动点A 作AD ⊥BC ,垂足D 在线段BC 上且异于点B ,连结AB ,沿AD 将△ABD 折起,使∠BDC =90°(如图(2)).(1)当BD 的长为多少时,三棱锥A -BCD 的体积最大(2)当三棱锥A -BCD 的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.图(1) 图(2)【解析】(1)方法1:在题图所示的△ABC 中,设BD =x (0<x <3),则CD =3-x .由AD ⊥BC ,∠ACB =45°知,△ADC 为等腰直角三角形,所以AD =CD =3-x .由折起前AD ⊥BC 知,折起后,AD ⊥DC ,AD ⊥BD ,且BD ∩DC =D ,所以AD ⊥平面BCD .又∠BDC =90°,所以S △BCD =12BD ·CD =12x (3-x ). 于是V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=112·2x (3-x )(3-x )≤112⎣⎢⎡⎦⎥⎤2x +3-x +3-x 33=23.当且仅当2x =3-x ,即x =1时,等号成立,故当x =1,即BD =1时,三棱锥A -BCD 的体积最大.方法2:同方法1,得V A -BCD =13AD ·S △BCD =13(3-x )·12x (3-x )=16(x 3-6x 2+9x ). 令f (x )=16(x 3-6x 2+9x ),由f ′(x )=12(x -1)(x -3)=0,且0<x <3,解得x =1. 当x ∈(0,1)时,f ′(x )>0,当x ∈(1,3)时,f ′(x )<0,所以当x =1时,f (x )取得最大值. 故当BD =1时,三棱锥A -BCD 的体积最大.(2)方法1:以点D 为原点,建立如图(a)所示的空间直角坐标系D -xyz .由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =DC =2.于是可得D (0,0,0),B (1,0,0),C (0,2,0),A (0,0,2),M (0,1,1),E ⎝ ⎛⎭⎪⎫12,1,0,且BM →=(-1,1,1). 设N (0,λ,0),则EN →=⎝ ⎛⎭⎪⎫-12,λ-1,0.因为EN ⊥BM 等价于EN →·BM →=0, 即⎝ ⎛⎭⎪⎫-12,λ-1,0·(-1,1,1)=12+λ-1=0,故λ=12,N ⎝ ⎛⎭⎪⎫0,12,0. 所以当DN =12(即N 是CD 的靠近点D 的一个四等分点)时,EN ⊥BM . 设平面BMN 的一个法向量为n =(x ,y ,z ),且BN →=⎝⎛⎭⎪⎫-1,12,0, 由⎩⎪⎨⎪⎧ n ⊥BN →,n ⊥BM →,得⎩⎪⎨⎪⎧ y =2x ,z =-x .令x =1,则n =(1,2,-1).设EN 与平面BMN 所成角的大小为θ,则由EN →=⎝ ⎛⎭⎪⎫-12,-12,0,n =(1,2,-1), 可得sin θ=cos(90°-θ)=⎪⎪⎪⎪⎪⎪⎪⎪n ·EN →|n |·|EN →|=⎪⎪⎪⎪⎪⎪-12-16×22=32,即θ=60°. 故EN 与平面BMN 所成角的大小为60°.方法2:由(1)知,当三棱锥A -BCD 的体积最大时,BD =1,AD =CD =2. 如图(b),取CD 的中点F ,连结MF ,BF ,EF ,则MF ∥AD .由(1)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图(c),延长FE 至P 点使得FP =DB ,连BP ,DP ,则四边形DBPF 为正方形, 所以DP ⊥BF .取DF 的中点N ,连结EN ,又E 为FP 的中点,则EN ∥DP , 所以EN ⊥BF ,因为MF ⊥平面BCD ,又EN ⊂平面BCD ,所以MF ⊥EN . 又MF ∩BF =F ,所以EN ⊥面BMF ,又BM ⊂面BMF ,所以EN ⊥BM .因为EN ⊥BM 当且仅当EN ⊥BF ,而点F 是唯一的,所以点N 是唯一的.即当DN =12(即N 是CD 的靠近点D 的一个四等分点),EN ⊥BM . 连结MN ,ME ,由计算得NB =NM =EB =EM =52, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形.如图(d)所示,取BM 的中点G .连结EG ,NG ,则BM ⊥平面EGN ,在平面EGN 中,过点E 作EH ⊥GN 于H ,则EH ⊥平面BMN .故∠ENH 是EN 与平面BMN 所成的角.在△EGN 中,易得EG =GN =NE =22,所以△EGN 是正三角形, 故∠ENH =60°,即EN 与平面BMN 所成角的大小为60°.。

相关文档
最新文档