人教版八年级上册 14.3 因式分解过关练习题(解析版)
人教版八年级数学上册《14.3因式分解》练习题-带参考答案
人教版八年级数学上册《14.3因式分解》练习题-带参考答案一、选择题1.使用提公因式法分解时,公因式是()A.B.C.2ab D.2.下列因式分解正确的是()A.B.C.D.3.把多项式分解因式等于()A.B.C.m(a﹣2)(m﹣1)D.m(a﹣2)(m+1)4.下列多项式因式分解的结果中不含因式的是()A.B.C.D.5.已知,那么代数式的值为()A.6 B.7 C.13 D.426.已知则的值为()A.57 B.120 C.D.7.如果多项式可分解为,则的值分别为()A.B.C.D.8.定义:两个自然数的平方和加上这两个自然数乘积的两倍即可得到一个新的自然数,我们把这个新的自然数称为“完全数”.例如:22+32+2×2×3=25,其中“25”就是一个“完全数”.则任取两个自然数可得到小于200且不重复的“完全数”的个数有()A.14个B.15个C.26个D.60个二、填空题9.分解因式:.10.把因式分解的结果是.11.若是多项式的一个因式,则k的值是.12.已知多项式P,Q的乘积为,若,则.13.生活中我们经常用到密码,如手机解锁、密码支付等为方便记忆,有一种用“因式分解”法产生的密码,其原理是:将一个多项式分解成多个因式,如:将多项式分解结果为当时,此时可得到数字密码将多项式因式分解后,利用题目中所示的方法,当时可以得到密码,则.三、计算题14.因式分解(1)(2)15.把下列各式因式分解(1)(2)(3)16.分解因式时,甲看错了a的值,分解的结果是,乙看错了b的值,分解的结果为.(1)求a、b的值.(2)分解因式的正确答案是什么?17.常用的分解因式的方法有提取公因式法、公式法及到了高中还要学习的十字相乘法,但有更多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式;(2)三边满足,判断的形状.参考答案:1.C2.C3.D4.D5.D6.D7.D8.B9.10.11.12.13.3014.(1)解:;(2)解:.15.(1)解:原式=6x2 (2x2-x-28) =6x2 (2x+7)(x-4)(2)解:原式=a5(2-3a)+2a3(2-3a)2+a(2-3a)3 =a(2-3a)[a4+2a2(2-3a)+(2-3a)2] =a(2-3a)(a2+2-3a)2 =a(2-3a)(a-1)2(a-2)2(3)解:原式=a4bc + a3(b3 + c3) + 2a2b2c2 + abc(b3+c3) + b3c3 =bc(a4+ 2a2bc+ b2c2) + a(b3 + c3)(a2 + bc) =bc(a2 + bc)2 + a(b3 + c3)(a2 + bc) =(a2 + bc)[bc(a2 + bc) + a(b3 + c3)] =(a2 + bc)[(bca2 + ab3)+(b2c2 + ac3)] =(a2 + bc)[ab(ca+b2)+ c2(b2+ac)] =(a2 +bc)(b2 +ac)(c2 +ab)16.(1)解:∵分解因式时,甲看错了a的值,分解的结果是∴甲没有看错b,即;∵分解因式时,乙看错了b的值∴乙没有看错a,即(2)解:∵,,∴17.(1)解:.(2)解:∵∴∴∴或∴的形状是等腰三角形。
人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)
人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。
人教版八年级数学上册《14.3 因式分解》提升训练(含答案解析)
人教版八年级数学上册《14.3 因式分解》提升训练1.下列从左边到右边的变形,是正确的因式分解的是( ) A. 2(1)(1)1x x x +-=- B. 224(4)(4)x y x y x y -=+- C. 2269(3)x x x -+=- D. 221(2)1x x x x -+=-+2.把多项式23()2()x y y x ---分解因式,结果正确的是( ) A. ()(322)x y x y --- B. ()(322)x y x y --+ C. ()(322)x y x y -+- D. ()(322)y x x y -+-3.分解因式22422x y xy xy -+-的结果是( )A. 2(21)xy x y --+B. 2(2)xy x y -+C. 2(21)xy xy y -+-D.2(21)xy x y -+- 4.已知x+y=2,xy=-5,则331133x y xy -- =_________. 5.已知22(3)9x m x -++是一个完全平方式,则m=_________.6.利用因式分解回答问题:已知x+y=3,x -y=-2,求()222224x y x y +-的值.(7分)7.将3a b ab -进行因式分解,正确的是( )A. ()2a a b b -B. 2(1)ab a -C. (1)(1)ab a a +-D. ()21ab a - 8.下列因式分解正确的是( )A. ()223632ax ax ax ax -=-B. 22()()x y x y x y +=-+--C. 22224(2)a ab b a b +-=+ D. 222(1)ax ax a a x -+-=--9.因式分解:2122x -+=__________. 10.因式分解:(3)3x x x --+=__________.11.分解因式:21222x x -+=__________.12.若a +b=2,a b=-3,则代数式32232a b a b ab ++的值为__________.13.若整式22x my +(m 为常数,且m ≠0)能在有理数范围内分解因式,则m 的值可以是__________(写一个即可).14.若a +b=4,a -b=1,则22(1)(1)a b +--的值为__________.15. 22()()()ax b cx d acx adx bcx bd acx ad bc x ++=+++=+++bd ,反过来可写成2()()()acx ad bc x bd ax b cx d +++=++.于是,我们得到一个关于二次三项式因式分解的新的公式.通过观察可知,公式左边的二次项系数为两个有理数的乘积,常数项也为两个有理数的乘积,而一次项系数恰好为这两对有理数交叉相乘再相加的结果,如图①所示,这种因式分解的方法叫十字交叉相乘法.示例:因式分解:21252x x --.解:由图②可知,21252(32)(41)x x x x --=-+. 请根据示例,对下列多项式进行因式分解: (1)2276x x ++;(2)2673x x --.16.阅读并解答下列问题.我们熟悉的两个乘法公式:①222()2a b a ab b+=++;②222()2a b a ab b-=-+.现将这两个公式变形,可得到个新的公式:③2222a b a bab+-⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭,这个公式形似平方差公式,我们不妨称之为广义的平方差公式.灵活、恰当地运用公式③将会使一些数学问题迎刃而解.例如:因式分解:2(1)(2)(2)ab a b a b ab-++-+-.解:原式=22(2)(2)(1)2a b a b abab+-++-⎡⎤-+⎢⎥⎣⎦2(2)(2)2a b a b ab+--+-⎡⎤-⎢⎥⎣⎦=222(1)(1)(1)ab a b ab ab-++----=2[(1)(1)]a b--=22(1)(1)a b--.你能利用公式(或其他方法)解决下列问题吗?已知实数a,b,c满足29ab c=+,且a=6-b,求证:a=b.参考答案1.答案:C解析:A 项不是因式分解,故本选项不符合题意;B 项等号两边不相等,因式分解不正确,故本选项不符合题意;C 项是正确的因式分解故本选项符合题意;D 项不是因式分解,故本选项不符合题意.故选C.2.答案:B解析:原式=23()2()()[32()]()(322)x y x y x y x y x y x y ---=---=--+,故选B.3.答案:A 解析:224222(21)x y xy xy xy x y -+-=--+.故选A.4.答案:703解析:原式=()22211()233xy x y xy x y xy ⎡⎤-+=-+-⎣⎦,当x+y=2,xy=-5时,原式=170(5)(410)33-⨯-⨯+=. 5.答案:-6或0 解析:∵22(3)9x m x -++是一个完全平方式, ∴m+3=±3,解得m=-6或m=0.6.解:()()()22222222222422())(x y x y x y xy x y xy x y x y +-=+++-=+-,当x+y=3,x -y=-2时,原式=223(2)9436⨯-=⨯=.7.答案:C 解析:()321(1)(1)a b ab ab a ab a a -=-=+-,故选C.8.答案:D 解析:A 项,2363(2)ax ax ax x -=-,故此选项错误;B 项,22x y +无法分解因式故此选项错误;C 项,2224a ab b +-无法分解因式,故此选项错误;D 项,222(1)ax ax a a x -+-=--,正确.故选D.9.答案:1(2)(2)2x x -+-解析:()2211124(2)(2)222x x x x -+=--=-+-. 10.答案:(x -1)(x -3) 解析:原式=x (x -3)-(x -3)=(x -1)(x -3).11.答案:2122x ⎛⎫- ⎪⎝⎭ 解析:原式22112242x x x ⎛⎫⎛⎫-+=- ⎪ ⎪⎝⎭⎝⎭. 12.答案:-12解析:∵a +b=2,a b=-3,∴()322322222()a b a b ab ab a ab b ab a b ++=++=+=-3×4=-12. 13.答案:-1(答案不唯一)解析:填写的这个数为负数,并且这个数的绝对值为一个数的平方,故可以填-1.14.答案:12解析:∵a +b =4,a -b =1,∴22(1)(1)a b +--=(a +1+b -1)(a +1-b +1) =(a +b )(a -b +2) =4×(1+2)=12.15.解:(1)由图1可知,2276(2)(23)x x x x ++=++.(2)由图2可知,2673(23)(31)x x x x --=-+.16.证明:已知a =6-b ,则a +b=6.222229,99222a b a b a b ab c c +--⎛⎫⎛⎫⎛⎫=-=+∴-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 2222,022a b a b c c --⎛⎫⎛⎫∴-=∴+= ⎪ ⎪⎝⎭⎝⎭, 0,2a ba b -∴=∴=.。
【精编】人教版八年级数学上册同步练习14.3因式分解(含答案解析).doc
14.3因式分解专题一因式分解1.下列分解因式正确的是()A.3x2-6x =x(x-6) B.-a2+b2=(b+a)(b-a)C.4x2-y2=(4x-y)(4x+y) D.4x2-2xy+y2=(2x-y)22.分解因式:3m3-18m2n+27mn2=____________.3.分解因式:(2a+b)2-8ab=____________.专题二在实数范围内分解因式4.在实数范围内因式分解x4-4=____________.5.把下列各式因式分解(在实数范围内)(1)3x2-16;(2)x4-10x2+25.6.在实数范围内分解因式:(1)x3-2x;(2)x4-6x2+9.专题三因式分解的应用7.如果m-n=-5,mn=6,则m2n-mn2的值是()A.30 B.-30 C.11 D.-118.利用因式分解计算32×20.13+5.4×201.3+0.14×2013=___________.9.在下列三个不为零的式子:x2-4x,x2+2x,x2-4x+4中,(1)请你选择其中两个进行加法运算,并把结果因式分解;(2)请你选择其中两个并用不等号连接成不等式,并求其解集.状元笔记【知识要点】1.因式分解我们把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式因式分解,也叫做把这个多项式分解因式.2.因式分解的方法(1)提公因式法:如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写出公因式与另一个因式的乘积的形式,这样分解因式的方法叫做提公因式法.(2)将乘法公式的等号两边互换位置,得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法. (3)平方差公式:a 2-b 2=(a+b)(a -b),两个数的平方差,等于这两个数的和与这两个数的差的积.(4)完全平方公式:a 2±2ab+b 2=(a ±b)2,两个数的平方和,加上(或减去)它们的积的2倍,等于这两个数的和(或差)的平方.【温馨提示】1.分解因式的对象必须是多项式,如把25a bc 分解成abc a ⋅5就不是分解因式,因为25a bc 不是多项式.2.分解因式的结果必须是积的形式,如21(1)1x x x x +-=+-就不是分解因式,因为结果(1)1x x +-不是积的形式.【方法技巧】1.若首项系数为负时,一般要提出“—”号,使括号内首项系数为正,但要注意,此时括号内的各项都应变号,如)2(22--=+-x x x x .2.有些多项式的特点与公式相比,只是某些项的符号不符,这时就需要先对符号进行变化,使之符合公式的特点.参考答案:1.B 解析:A 中,3x 2 - 6x=3x(x -2),故A 错误;B 中,-a 2+b 2=-(a -b)(a+b)=(b+a)(b -a),故B 正确;C 中,4x 2 - y 2=(2x)2-(2y)2=(2x -y)(2x+y),故C 错误;D 中,4x 2-2xy+y 2的中间项不是2×2x×y ,故不能因式分解,故D 错误.综上所述,选B .2.3m(m -3n)2 解析:3m 3-18m 2n+27mn 2=3m(m 2-6mn+9n 2)=3m(m -3n)2.3.(2a -b)2 解析:(2a+b)2-8ab=4a 2+4ab+b 2-8ab=4a 2-4ab+b 2=(2a -b)2.4.(x 2 解析:x 4-22-2)=(x 2.5.解:x -4);10x 2+25=(x 2-5)2)2(x 2.6.解:2-(2)x 4-6x 2+9=(x 2-3)2)2(x 2.7.B -n=-5,mn=6,∴m 2n -mn 2=mn (m -n )=6×(-5)=-30,故选B .8.2013 解析:32×20.13+5.4×201.3+0.14×2013=0.32×2013+0.54×2013+0.14×2013=2013×(0.32+0.54+0.14)=2013×1=2013.9.解:(1)答案不唯一,如:(x 2-4x )+(x 2+2x )=2x 2-2x=2x (x -1).(2) 答案不唯一,如:x 2-4x >x 2+2x ,合并同类项,得-6x >0,解得x <0.。
人教版八年级上册数学《14.3因式分解》同步测试(含答案解析)
14.3 因式分解基础闯关全练拓展训练1.下列从左边到右边的变形,是因式分解的是( )A.(a-1)(a-2)=a2-3a+2B.a2-3a+2=(a-1)(a-2)C.(a-1)2+(a-1)=a2-aD.a2-3a+2=(a-1)2-(a-1)2.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则( )A.b=3,c=-1B.b=-6,c=2C.b=-6,c=-4D.b=-4,c=-63.下列代数式3(x+y)3-27(x+y)因式分解的结果正确的是( )A.3(x+y)(x+y+3)(x+y-3)B.3(x+y)[(x+y)2-9]C.3(x+y)(x+y+3)2D.3(x+y)(x+y-3)24.已知(19x-31)(13x-17)-(17-13x)(11x-23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.5.因式分解:(1)x2-4(x-1);(2)(a+3)(a-7)+25;(3)(a2+1)2-4a2;(4)(x2-2xy+y2)+(-2x+2y)+1.能力提升全练拓展训练1.现有一列式子:①552-452;②5552-4452;③5 5552-4 4452;……,则第⑧个式子的计算结果用科学记数法可表示为( )A.1.111 111 1×1016B.1.111 111 1×1027C.1.111 111 1×1056D.1.111 111 1×10172.已知a=2 005x+2 004,b=2 005x+2 005,c=2 005x+2 006,则多项式a2+b2+c2-ab-bc-ac的值为( )A.0B.1C.2D.3三年模拟全练拓展训练1.(2018河南漯河临颍期末,7,★★☆)若y-x=-1,xy=2,则代数式-x3y+x2y2-xy3的值是( )A.2B.-2C.1D.-12.(2018山东威海文登期中,10,★★☆)如果257+513能被n整除,则n的值可能是( )A.20B.30C.35D.403.(2018福建泉州南安期中,16,★★☆)若x-2y+z=0,则代数式x2+2xz+z2-4y2-3的值为.五年中考全练拓展训练1.(2017辽宁盘锦中考,3,★☆☆)下列等式从左到右的变形,属于因式分解的是( )A.x2+2x-1=(x-1)2B.(a+b)(a-b)=a2-b2C.x2+4x+4=(x+2)2D.ax2-a=a(x2-1)2.(2016山东聊城中考,4,★★☆)把8a3-8a2+2a进行因式分解,结果正确的是( )A.2a(4a2-4a+1)B.8a2(a-1)C.2a(2a-1)2D.2a(2a+1)23.(2016江苏南京中考,9,★★☆)分解因式2a(b+c)-3(b+c)的结果是.核心素养全练拓展训练1.已知a=+2 015,b=+2 016,c=+2 017,则代数式2(a2+b2+c2-ab-bc-ac)的值是.2.一个三位正整数M,其各位数字均不为零且互不相等.若将M的十位数字与百位数字交换位置,得到一个新的三位数,我们称这个三位数为M的“友谊数”,如:168的“友谊数”为“618”;若从M的百位数字、十位数字、个位数字中任选两个组成一个新的两位数,并将得到的所有两位数求和,我们称这个和为M的“团结数”,如:123的“团结数”为12+13+21+23+31+32=132.(1)求证:M与其“友谊数”的差能被15整除;(2)若一个三位正整数N,其百位数字为2,十位数字为a、个位数字为b,且各位数字互不相等(a≠0,b≠0),若N的“团结数”与N之差为24,求N的值.14.3 因式分解基础闯关全练拓展训练1.B a2-3a+2=(a-1)(a-2)是因式分解.故选B.2.D 由多项式2x2+bx+c分解因式为2(x-3)(x+1),得2x2+bx+c=2(x-3)(x+1)=2x2-4x-6.所以b=-4,c=-6,故选D.3.A 3(x+y)3-27(x+y)=3(x+y)[(x+y)2-9]=3(x+y)(x+y+3)(x+y-3).4.解析(19x-31)(13x-17)-(17-13x)(11x-23)=(19x-31)(13x-17)+(13x-17)(11x-23)= (13x-17)(30x-54).∴a=13,b=-17,c=-54,∴a+b+c=-58.5.解析(1)原式=x2-4x+4=(x-2)2.(2)原式=a2-4a-21+25=a2-4a+4=(a-2)2.(3)原式=(a2+1+2a)(a2+1-2a)=(a+1)2(a-1)2.(4)原式=(x-y-1)2.能力提升全练拓展训练1.D 根据题意得:第⑧个式子为555 555 5552-444 444 4452=(555 555 555+444 444 445)×(555 555 555-444 444 445)=1.111 111 1×1017.2.D 由题意可知a-b=-1,b-c=-1,a-c=-2,原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ac+c2)]=[(a-b)2+(b -c)2+(a-c)2]=[(-1)2+(-1)2+(-2)2]=3.三年模拟全练拓展训练1.D ∵y-x=-1,xy=2,∴原式=-xy(x2-2xy+y2)=-xy(x-y)2=-1,故选D.2.B 257+513=514+513=513×(5+1)=513×6=512×30,则n的值可能是30.故选B.3.答案-3解析当x-2y+z=0时,x2+2xz+z2-4y2-3=(x+z)2-4y2-3=(x+2y+z)(x-2y+z)-3=0-3=-3.故答案为-3.五年中考全练拓展训练1.C A项,x2+2x-1≠(x-1)2,故A不是因式分解,B项是整式乘法,故B不是因式分解,D项,ax2-a=a(x2-1)=a(x+1)(x-1),故D分解不完全,故选C.2.C 8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2 ,故选择C.3.答案(b+c)(2a-3)解析2a(b+c)-3(b+c)=(b+c)(2a-3).故答案为(b+c)(2a-3).核心素养全练拓展训练1.答案 6解析∵a=+2 015,b=+2 016,c=+2 017,∴a-b=-1,b-c=-1,c-a=2, ∴2(a2+b2+c2-ab-bc-ac)=a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=(a-b)2+(b-c)2+(c-a)2=1+1+4=6.故答案为6.2.解析(1)证明:设M为100a+10b+c,则它的友谊数为100b+10a+c,(100a+10b+c)-(100b+10a+c)=100a+10b+c-100b-10a-c=100(a-b)+10(b-a)=90(a-b),∵-=6(a-b),∴M与其“友谊数”的差能被15整除.(2)由题意可得,N=2×100+10a+b=200+10a+b,N的团结数是10×2+a+10a+2+10×2+b+10×b+2+10a+b+10b+a=22a+22b+44, ∴22a+22b+44-(200+10a+b)=24,解得或故N是284或218.。
八年级上册数学第十四章 14.3因式分解 测试卷(含答案)
八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。
人教版八年级上册14.3《因式分解》同步练习卷 含答案
人教版2020年八年级上册14.3《因式分解》同步练习卷一.选择题1.下列多项式能用平方差公式分解的是()A.a2+a B.a2﹣2ab+b2C.x2﹣4y2D.x2+y22.下列各式从左到右的变形是分解因式的是()A.2a2﹣b2=(a+b)(a﹣b)+a2B.2a(b+c)=2ab+2acC.x3﹣2x2+x=x(x﹣1)2D.(x﹣1)(y﹣1)=xy﹣x﹣y+13.把2x2﹣2x+分解因式,其结果是()A.2(x﹣)2B.(x﹣)2C.(x﹣1)2D.(2x﹣)2 4.若多项式x2+mx+36因式分解的结果是(x﹣2)(x﹣18),则m的值是()A.﹣20B.﹣16C.16D.205.若x+y=﹣1,则x2+y2+2xy的值为()A.1B.﹣1C.3D.﹣36.下列多项式在实数范围内不能因式分解的是()A.x3+2x B.a2+b2C.D.m2﹣4n27.下列各式中,不含因式a+1的是()A.2a2+2a B.a2+2a+1C.a2+5a﹣6D.a2﹣5a﹣68.多项式6ab2+18a2b2﹣12a3b2c的公因式是()A.6ab2c B.ab2C.6ab2D.6a3b2c二.填空题9.分解因式:6xy2﹣8x2y3=.10.在实数范围内分解因式:ab3﹣5ab=.11.因式分解a(b﹣c)﹣3(c﹣b)=.12.把多项式3ax2﹣12a分解因式的结果是.13.把多项式ax2﹣4ax+4a因式分解的结果是.14.若实数a、b满足a+b=﹣2,a2b+ab2=﹣10,则ab的值是.15.已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是.三.解答题16.把下列多项式分解因式:(1)27xy2﹣3x(2)2x2+12x+18(3)(a﹣b)(a﹣4b)+ab.17.因式分解:(1)3ma2+18mab+27mb2(2)21a2b(2x﹣3y)2﹣14a(3y﹣2x)2.18.分解因式:(m﹣n)(3m+n)2+(m+3n)2(n﹣m)19.已知△ABC的三边长分别是a、b、c(1)当b2+2ab=c2+2ac时,试判断△ABC的形状;(2)判断式子a2﹣b2+c2﹣2ac的值的符号.20.观察“探究性学习”小组的甲、乙两名同学进行的分解因式:甲:x2﹣xy+4x﹣4y=(x2﹣xy)+(4x﹣4y)(分成两组)=x(x﹣y)+4(x﹣y)(直接提公因式)=(x﹣y)(x+4).乙:a2﹣b2﹣c2+2bc=a2﹣(b2+c2+2bc)(分成两组)=a2﹣(b﹣c)2(直接运用公式)=(a+b﹣c)(a﹣b+c)(再用平方差公式)请你在他们解法的启发下,把下列各式分解因式:(1)m2﹣mn+mx﹣nx.(2)x2﹣2xy+y2﹣9.21.对于二次三项式x2+2ax+a2可以直接用公式法分解为(x+a)2的形式,但对于二次三项式x2+2ax﹣3a2,就不能直接用公式法了,我们可以在二次三项式x2+2ax﹣3a2中先加上一项a2,使其成为完全平方式,再减去a2这项,使整个式子的值不变.于是有x2+2ax ﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣4a2.=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像上面这样把二次三项式分解因式的方法叫做添(拆)项法.(1)请用上述方法把x2﹣4x+3分解因式.(2)多项式x2+2x+2有最小值吗?如果有,那么当它有最小值时x的值是多少?。
人教版初中数学八年级上册 第十四章 14.3 整式的乘法 因式分解练习(含答案)
第十四章14.3整式的乘法因式分解练习1.因式分解:a2+2a+1=.2.因式分解:﹣3x2+6xy﹣3y2=.3.分解因式:a2b+4ab+4b=______.4.分解因式:2x2﹣8=_____________5.因式分解:4ax2﹣4ay2=_____.6.计算:20182﹣2018×2017=_____.7.把多项式9x3﹣x分解因式的结果是_____.8.把16a3﹣ab2因式分解_____.9.已知x2﹣4x+3=0,求(x﹣1)2﹣2(1+x)=_____.10.已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,则△ABC是_____三角形. 11.多项式3x﹣6与x2﹣4x+4有相同的因式是_________.12.已知m²-n²=16,m+n=5,则m-n=5 ___________________.二、解答题13.因式分解:(2x+y)2﹣(x+2y)2.14.因式分解(x﹣2y)2+8xy.15.利用因式分解计算:2022+202×196+98216.把下列多项式分解因式:(1)3a2﹣12ab+12b2 (2)m2(m﹣2)+4(2﹣m)17.分解因式:(1)3x2﹣12x (2)(3)18.已知n为整数,试说明(n+7)2﹣(n﹣3)2一定能被20整除.19.已知a=2017x+2016,b=2017x+2017,c=2017x+2018.求a2+b2+c2﹣ab﹣bc﹣ca的值.20.已知a,b,c是三角形ABC的三边的长,且满足a2+2b2+c2-2b(a+c)=0,试判断此三角形三边的大小关系.21.先化简,再求值:4xy+(2x ﹣y )(2x+y )﹣(2x+y )2,其中x=2016,y=1.22.先化简,再求值:2(x-y)2-(2x+y)(x-3y),其中x=1,y=51-.23化简,求值(1)已知代数式(x ﹣2y )2﹣(x ﹣y )(x+y )﹣2y 2①当x=1,y=3时,求代数式的值;②当4x=3y ,求代数式的值.(2)已知3a 2+2a+1=0,求代数式2a (1﹣3a )+(3a+1)(3a ﹣1)的值.24.已知x 4+y 4+2x 2y 2﹣2x 2﹣2y 2﹣15=0,求x 2+y 2的值参考答案1.(a+1)2 2.﹣3(x﹣y)2 3.b(a+2)24.2(x+2)(x﹣2)5.4a(x﹣y)(x+y)6.2018 7.x(3x+1)(3x﹣1)8.a(4a+b)(4a﹣b)9.-4 10.等边11.x﹣212. 16/513.3(x+y)(x﹣y).14.(x+2y)2.15.9000016.(1)3(a﹣2b)2;(2)(m﹣2)2(m+2).17.(1)3x(x-4) (2)-2(m-2n)2 (3)(x-1)(a+b)(a-b)18.∵(n+7)2﹣(n﹣3)2=[(n+7)+(n-3)][(n+7)﹣(n﹣3)]=20(n+2),∴(n+7)2﹣(n﹣3)2一定能被20整除.19.3.∵a=2017x+2016,b=2017x+2017,c=2017x+2018,∴a﹣b=-1,b﹣c=-1,a﹣c=-2,则原式=(2a2+2b2+2c2-2ab-2bc-2ac)=[(a-b)2+(b-c)2+(a-c)2]=×(1+1+4)=3.20.a=b,c=b21.﹣2y2,﹣2.22.,023.(1)①15;②0;(2)﹣2.24.x2+y2=5.。
人教版八年级数学上册《14.3因式分解》练习题-附带答案
人教版八年级数学上册《14.3因式分解》练习题-附带答案一、单选题1.因式分解:=()A.B.C.D.2.多项式分解因式时应提取的公因式是()A.B.C.D.3.下列各式从左到右的变形因式分解正确的是()A.B.C.D.4.若则的值为()A.13 B.18 C.5 D.15.当为自然数时一定能()A.被5整除B.被6整除C.被7整除D.被8整除6.已知则代数式的值是()A.9 B.18 C.20 D.247.篮子里有若干苹果可以平均分给名同学也可以平均分给名同学(x为大于3的正整数)用代数式表示苹果数量不可能的是()A.B.C.D.8.小东是一位密码爱好者在他的密码手册中有这样一条信息:、、、、、依次对应下列六个字:科、爱、勤、我、理、学现将因式分解其结果呈现的密码信息可能是().A.勤学B.爱科学C.我爱理科D.我爱科学二、填空题9.在实数范围内分解因式:.10.分解因式:.11.若多项式有两个因式和则.12.已知x+y=4 x+3y=2则代数式x2+4xy+4y2的值为.13.将一个二次三项式分解因式一位同学因看错了一次项系数而分解成3(x-1)(x-9)另一位同学因看错了常数项而分解成3(x-2)(x-4) 那么这个二次三项式正确的分解应是.三、计算题14.因式分解:(1)(2) .15.把下列各式分解因式:(1)(2)(3)(4)16.已知:求下列多项式的值.(1)(2)17.先阅读下列材料再解答下列问题:分解因式:将:将看成整体设则原式再将换回去得原式上述解题用到的是“整体思想”“整体思想"是数学解题中常用的一种思想方法请你仿照上面的方法将下列式子进行因式分解:(1)(2).参考答案:1.A2.C3.D4.A5.D6.C7.B8.C9.10.11.-312.913.3(x﹣3)2 14.(1)解:=(6+x)(6−x)(2)解:=-2a()=-2a(a−3)2. 15.(1)解:(2)解:(3)解:(4)解:.16.(1)解:原式(2)解:将代入原式17.(1)解:设则原式将换回去得:原式(2)解:设则原式将换回去得:原式。
人教版八年级上册 14.3因式分解综合训练(含答案)
人教版八年级上册 因式分解综合训练(含答案)1.分解因式:(1)(a 2+2a -2)(a 2+2a +4)+9; (2)(b 2-b +1)(b 2-b +3)+1.2.分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )23.分解因式:x 2-y 2-4x +6y -5.4.因式分解:222()14()24x x x x ---+.5.因式分解:a (n -1)2-2a (n -1)+a.6.因式分解(1) 2()3()x a b y b a -+- (2) 22222(16)64x y x y +-6.因式分解:22444x xy y --+.8.因式分解:(1)316x x - (2)221218x x -+9.因式分解:c(a-b)-2(a-b)2c+(a-b)3c.10.因式分解:()()()219a x y y x -+- ()532288ax ax ax ++11.分解因式:(1)18a 3-2a ; (2)ab(ab -6)+9; (3)m 2-n 2+2m -2n.12.因式分解:x 2﹣5x+4;13.因式分解:(1)x 2﹣5x ﹣6 (2)9a 2(x ﹣y )+4b 2(y ﹣x )(3)y 2﹣x 2+6x ﹣9 (4)(a 2+4b 2)2﹣16a 2b214.把下列各式因式分解:(1)224a b - (2)32269x x y xy -+(4)2()()m m n n m -+- (4)222(4)16x x +-15.对下列多项式进行分解因式:(1)(x ﹣y )2+16(y ﹣x ). (2)1﹣a 2﹣b 2﹣2ab .16.分解因式:(1)x 4﹣2x 2y 2+y 4; (2) 322a a a -+.17.分解因式:(1)()()36x a b y b a ---; (2)4224817216x x y y -+;18.因式分解:(1)3349x y xy - (2)222(6)6(6)9x x ---+19.因式分解:(1)-4(xy +1)2+16(1-xy )2; (2)(x 2-3)2+2(3-x 2)+1;(3) x 2-ax -bx +ab .19.因式分解:2()16()a x y y x -+-20.因式分解:()()222x 2x 7x 2x 8+-+-21.分解因式:(1)81x 4﹣16;(2)8ab 3+2a 3b ﹣8a 2b223.分解因式.(1)-2a 2+4a (2)3349x y xy - (3)4x 2-12x +9 (4)2()6()9a b a b +-++24.因式分解:(1)-2m+4m2-2m3;(2)a2﹣b2﹣2a+1;(3)(x-y)2-9(x+y)2;25.把下面各式分解因式:(1)4x2﹣8x+4 (2)x2+2x(x﹣3y)+(x﹣3y)2.26.分解因式:(a2+2a)2﹣7(a2+2a)﹣8.27.(1)分解因式:22222a b-4a b+8ab(2)分解因式:9a2(x—y)+4b2(y—x)(3)分解因式:(x2+y2)2-4x2y2(4)利用分解因式计算求值:2662-2342(5)利用分解因式计算求值:已知x-3y=-1,xy=2,求x 3y-6x 2y 2+9xy 3的值.28.分解因式:(1)222(4)16a a +-; (2)(2)(2)3a a a +-+.29.计算:32)(32)x y c x y c -+++(.30.分解因式:(1)-3x 2+6xy -3y 2; (2)2216()25()a b a b +--.参考答案1.(1)(a+1)4(2)(b2-b+2)2【解析】试题分析:(1) 设a2+2a=m,原式转化为: (m-2)(m+4)+9,然后先利用整式乘法法则展开可得: m2+4m -2m-8+9,即m2+2m+1,利用完全平方公式因式分解可得(m+1)2,最后将m替换为a2+2a即可,(2)设b2-b=n,原式转化为: (n+1)(n+3)+1,然后先利用整式乘法法则展开可得: n2+3n+n+3+1,即n2+4n+4,利用完全平方公式因式分解可得(n+2)2,最后将n替换为b2-b即可.试题解析:(1)设a2+2a=m,则原式=(m-2)(m+4)+9,=m2+4m-2m-8+9,=m2+2m+1,=(m+1)2,=(a2+2a+1)2,=(a+1)4.(2)设b2-b=n,则原式=(n+1)(n+3)+1,=n2+3n+n+3+1,=n2+4n+4,=(n+2)2,=(b2-b+2)2.2.(1)10a2(2a﹣3)(2)4(4x+y)(x+4y)【解析】分析:(1)利用提公因式法,找到并提取公因式10a2即可;(2)利用平方差公式进行因式分解,然后整理化简即可.详解:(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )] =(8x+2y )(2x+8y ); =4(4x+y)(x+4y) .点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).3.(x +y -5)(x -y +1)【解析】试题分析: 把-5拆成4-9 “凑”成(x 2-4x +4)和(y 2-6y +9)两个整体,然后利用完全平方公式进行因式分解即可.试题解析:原式=(x 2-4x +4)-(y 2-6y +9),=(x -2)2-(y -3)2,=(x +y -5)(x -y +1). 4.(x-2)(x+1)(x-4)(x+3) 【解析】分析:先把x 2-x 看做一个整体,然后根据十字相乘法的分解方法和特点分解因式.详解:原式=(x 2-x ﹣2)(x 2-x ﹣12)=(x -2)(x +1)(x -4)(x +3)点睛:本题考查了十字相乘法分解因式,用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程,难点在于要二次利用十字相乘法分解因式,整体思想的利用也比较关键. 5.a(n-2)2【解析】试题分析:根据题意,先提公因式a ,然后把n-1看做一个整体,利用完全平方公式分解即可.试题解析:原式=a[(n-1)2-2(n-1)+1]=a[(n-1)-1]2=a(n-2)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).6.(1) (2x-3y)(a ﹣b );(2)(x +4y)2(x -4y)2. 【解析】试题分析:(1)将b -a 转化为-(a -b ),然后提出公因式(a -b )即可; (2)先利用平方差公式分解,然后利用完全平方公式分解即可. 试题解析:(1)原式=2x(a -b)-3y(a -b) =(2x -3y )(a ﹣b )(2)原式=[(x 2+16y 2)+8xy ][(x 2+16y 2)-8xy ]=(x +4y )2(x -4y )2.7. (x-2y+2)(x-2y-2) 【解析】分析:将多项式第一、三、四项结合,利用完全平方公式分解因式,再利用平方差公式分解,即可得到结果.详解:原式=(x ﹣2y )2﹣4=(x ﹣2y ﹣2)(x ﹣2y +2).点睛:本题考查了因式分解﹣分组分解法,涉及的知识有:完全平方公式,平方差公式,熟练掌握公式是解答本题的关键.8.(1)(4)(4)x x x +-;(2)22(3)x - 【解析】试题分析:根据因式分解的方法步骤,一提(公因式)二套(平方差公式,完全平方公式)三检查(是否分解彻底),可直接进行因式分解.试题解析:(1)原式=()216x x - =()()44x x x +-(2)原式=()2269x x -+=()223x - 9.c(a-b)(a-b-1)2. 【解析】 【分析】首先提取公因式c(a-b),再利用完全平方公式进行分解因式即可得答案. 【详解】c(a-b)-2(a-b)2c+(a-b)3c. =c(a-b)[1-2(a-b)+(a-b)2] =c(a-b)(a-b-1)2. 【点睛】本题考查了因式分解,本题需要二次分解,先提公因式,然后再利用完全平方公式分解,一定要做到不能再分解因式为止.熟练利用提公因式,完全平方公式是解题关键.10.(1)()()() 33x y a a -+-;(2)()222ax x +.【解析】 【分析】(1)先提取公因式()x y -,再用平方差公式继续分解即可;(2)先提取公因式2ax ,再用完全平方公式继续分解即可. 【详解】()()()2 19a x y y x -+-()()29x y a =--()()()33x y a a =-+-;()532288ax ax ax ++()42244ax x x =++ ()222ax x =+.【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.11.(1)2a(3a +1)(3a -1)(2)(ab -3)2 (3)(m -n)(m +n +2)【解析】 【分析】(1)提公因式2a 后利用平方差公式二次分解即可;(2)整理后利用完全平方公式分解因式即可;(3)利用分组分解法分解因式即可. 【详解】(1)18a3-2a=2a(9a2-1)=2a(3a+1)(3a-1);(2)ab(ab-6)+9=a2b2-6ab+9=(ab-3)2;(3)m2-n2+2m-2n=(m+n)(m-n)+2(m-n)=(m-n)(m+n+2).【点睛】本题考查了因式分解,根据题目特点,灵活选用因式分解的方法是解本题的关键,解题时要分解到每一个因式都不能够再分解为止.12.(x﹣1)(x﹣4)【解析】【分析】利用“十字交叉”法因式分解;【详解】x2﹣5x+4=(x-1)(x-4)【点睛】考查了因式分解,对于mx +px+q形式的多项式,用a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c).13.(1)(x﹣6)(x+1);(2)(x﹣y)(3a+2b)(3a﹣2b);(3)(y+x﹣3)(y﹣x+3);(4)(a+2b)2(a﹣2b)2.【解析】【分析】(1)直接利用十字相乘法分解因式得出答案;(2)直接提取公因式(x﹣y),进而利用平方差公式分解因式即可;(3)直接将后三项分组进而利用公式法分解因式即可;(4)直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:(1)x2﹣5x﹣6=(x﹣6)(x+1);(2)9a2(x﹣y)+4b2(y﹣x)=(x﹣y)(9a2﹣4b2)=(x﹣y)(3a+2b)(3a﹣2b);(3)y2﹣x2+6x﹣9=y2﹣(x2﹣6x+9)=y2﹣(x﹣3)2=(y+x﹣3)(y﹣x+3);(4)(a2+4b2)2﹣16a2b2=(a2+4b2+4ab)(a2+4b2﹣4ab)=(a+2b)2(a﹣2b)2.【点睛】此题主要考查了公式法以及分组分解法和十字相乘法分解因式,正确应用公式是解题关键,因式分解要分解到每个因式都不能再分解为止.14.(1)(a+2b)(a-2b) ;(2)x(x-3y)2;(3)(m-n)(m+1)(m-1);(4)(x+2)2(x-2)2【解析】分析:(1)直接利用平方差公式进行分解即可;(2)首先提取公因式x,再利用完全平方公式进行分解即可;(3)首先提取公因式(m-n),再利用平方差公式进行分解即可;(4)首先利用平方差公式进行分解,再完全平方公式进行分解即可.详解:(1)原式=(a+2b)(a-2b);(2)原式=x(x2-6xy+9y2)= x(x-3y)2;(3)原式=(m-n)(m2-1)=(m-n)(m+1)(m-1);(4)原式=(x2+4x+4)(x2-4x+4)=(x+2)2(x-2)2点睛:此题主要考查了平方差公式分解,关键是掌握平方差公式:a2-b2=(a+b)(a-b).15.(1)(x﹣y)(x﹣y﹣16);(2)(1+a+b)(1﹣a﹣b).【解析】【分析】(1)先把第二项变形,然后把x﹣y看做一个整体,提取x﹣y即可;(2)先把后三项提取“-”号,并用完全平方公式分解,然后再用平方差公式分解即可. 【详解】解:(1)原式=(x﹣y)2﹣16(x﹣y)=(x﹣y)(x﹣y﹣16);(2)原式=1﹣(a2+b2+2ab)=1﹣(a+b)2=(1+a+b)(1﹣a﹣b).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.16.(1)(x ﹣y )2(x+y )2;(2)()21a a -【解析】分析:(1)先用完全平方公式,再用平方差公式即可.(2)先提取公因式,再用完全平方公式即可. 详解:(1)原式=()()()22222x y x y x y -=-+.(2)原式=()()222a 11a a a a -+=-.点睛:(1)考查了完全平方公式、平方差公式;(2)考查了提取公因式法、完全平方公式. 17.(1)()()32a b x y -+;(2)()()223232x y x y +-【解析】分析:(1)直接提取公因式3(a-b )即可;(2)先利用完全平方公式分解因式,再利用平方差公式继续分解因式即可. 详解:(1)原式=3x (a-b )+6y (a-b )=3(a-b )(x+2y ).(2)81x 4-72x 2y 2+16y 4,=(9x 2-4y 2)2,=(3x+2y )2(3x-2y )2.点睛:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.(1) (2)22(3)(3)x x +-【解析】试题分析:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).试题解析:(1)3349x y xy - =xy (2x-3y )(2x+3y ) (2)()()2226669x x ---+=(x 2-6-3)2 =(x+3)2(x-3)219.(1) 4(xy -3)(3xy -1);(2) (x +2)2(x -2)2;(3) (x -a )(x -b ). 【解析】 【分析】(1)先提取公因式﹣4,再利用平方差公式因式分解即可; (2)先配方成完全平方式,再利用平方差公式因式分解即可; (3)用提取公因式法因式分解即可. 【详解】(1)-4(xy +1)2+16(1-xy )2=-4[(xy +1)2-4(1-xy )2]=-4[(xy +1)+2(1-xy )][(xy +1)-2(1-xy )] =-4(xy +1+2-2xy )(xy +1-2+2xy ) =-4(-xy +3)(3xy -1) =4(xy -3)(3xy -1); (2)(x 2-3)2+2(3-x 2)+1=(x 2-3)2-2(x 2-3)+1=(x 2-3-1)2=(x 2-4)2=(x +2)2(x -2)2;(3)x 2-ax -bx +ab =x (x -a )-b (x -a ) =(x -a )(x -b ). 20.(x-y)(a+4)(a-4) 【解析】试题分析:根据因式分解的步骤和方法,根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),即解可求解.试题解析:原式=a²(x-y )-16(x-y) =(x-y )(a²-16) =(x-y)(a+4)(a-4)点睛:此题主要考查了因式分解,解题关键是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解),即可求解. 21.()()()2x 2x 4x 1-++ 【解析】 【分析】根据因式分解的方法即可解答.【详解】解:原式()()222821x x x x -=+++()()()2241x x x -=++【点睛】本题考查因式分解,掌握提公因式是解题关键.22.(1)(9x 2+4)(3x+2)(3x ﹣2);(2)2ab (a ﹣2b )2.【解析】 【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式2ab ,再利用完全平方公式分解因式得出答案. 【详解】(1)原式=(9x 2+4)(9x 2﹣4)=(9x 2+4)(3x+2)(3x ﹣2);(2)原式=2ab (4b 2+a 2﹣4ab )=2ab (a ﹣2b )2.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23.(1)-2a (a-2)(2)xy (2x+3y )(2x-3y )(3)(2x-3)2(4)(a+b-3)2【解析】分析:(1)提取公因式-2a 即可;(2)提取公因式xy 后,再运用平方差公式; (3)运用完全平方公式,进行因式分解即可; (4)运用完全平方公式,进行因式分解即可.详解:(1)-2a2+4a=-2a(a-2);()33-x y xy249()22=-49xy x y()()=+-xy x y x y2323()2-+x x34129=(2x-3)2(4)原式=(a+b-3)2点睛:本题考查了公式法、分组分解法分解因式,熟练掌握公式结构是解题的关键.24.(1)-2m(m-1)²;(2) (a﹣1+b)(a﹣1﹣b);(3) -4(2x+y)(x+2y).【解析】【分析】1、可将-2m提取出来即可得出.2、可以先将一个完全平方式提取出来,即可得出答案.3、可先将式子乘出来,再合并同类项,提出-4,即可得出答案.【详解】(1)原式=-2m(m-1)² .(2)解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).(3)原式=-4(2x+y)(x+2y).【点睛】本题考查了多项式化简合并,熟悉掌握多项式的花间合并是解决本题的关键.25.(1)4(x﹣1)2(2)(2x﹣3y)2【解析】分析:(1)首先提取公因式4,进而利用完全平方公式分解因式得出答案;(2)直接利用完全平方公式分解因式进而得出答案.详解:(1)4x2-8x+4=4(x2-2x+1)=4(x-1)2;(2)x2+2x(x-3y)+(x-3y)2=(x+x-3y)2=(2x-3y)2.点睛:此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.26.(a+4)(a﹣2)(a+1)2.【解析】【分析】将a2+2a看成一个整体,可将(a2+2a)2-7(a2+2a)-8分解为(a2+2a-8)(a2+2a+1)的形式,进而根据十字相乘法和公式法,可继续分解.【详解】(a2+2a)2﹣7(a2+2a)﹣8=(a2+2a﹣8)(a2+2a+1)=(a+4)(a﹣2)(a+1)2.【点睛】本题考查了因式分解,熟练掌握因式分解法中十字相乘法,公式法是解题的关键.27.(1)2ab(ab-2a+4b)(2)(x—y)(3a+2b)(3a—2b)(3)(x+y)2(x-y)2(4)16000(5)2.分析:(1)直接提公因式2ab 即可分解;(2)首先提公因式(x-y ),然后利用平方差公式分解;(3)利用平方差方公式即可分解;(4)直接利用平方差公式分解,再计算即可;(5)首先提公因式xy ,然后利用完全平方公式分解后,把x-3y=-1,xy=2代入即可求值.详解:(1)原式=2ab (ab-2a+4b )(2)原式=(x —y )(3a+2b )(3a —2b )(3)原式=(x +y)2(x-y)2(4)原式=(266+234)(266-234)=16000(5)原式=()()22xy x 3y 2-1=2-=⨯点睛:此题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.28.(1)22(2)(2)a a +-;(2)(1)(4)a a -+.【解析】试题分析:(1)先用平方差公式,再用完全平方公式分解即可;(2)先用整式乘法计算,再用十字相乘法分解即可.试题解析:解:(1)原式=22(44)(44)a a a a +++-=22(2)(2)a a +-; (2)原式=243a a -+=(1)(4)a a -+.29.x 2+4cx+4c 2-9y 2【分析】先提取公因式再去括号化简即可.【详解】解:原式=()()2323x c y x c y ⎡⎤⎡⎤+-++⎣⎦⎣⎦=()()2223x c y +-=222449x cx c y ++-.【点睛】本题考查了多项式,解题的关键是熟练的掌握多项式的运算法则.30.(1) -3(x-y )2 ;(2)(9a-b)(9b-a) 【解析】【分析】(1)先提取公因式,再用完全平方公式即可;(2)直接用平方差公式分解即可.【详解】(1)原式= -3(x 2-2xy+y 2)= -3(x-y )2 ;(2)原式 =[4(a+b )+5(a-b )][4(a+b )-5(a-b )]=(9a-b)(9b-a)【点睛】本题考查了提公因式法与公式法的综合运用,解题的关键是熟练的掌握提公因式法与公式法的综合运用.。
人教版八年级数学上册 14.3 因式分解复习(含答案和恶习)
14.3 因式分解专题过关1.分解因式(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y22.分解因式:(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)23.将下列各式分解因式(1)3p2﹣6pq (2)2x2+8x+84.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.5.因式分解:(1)2am2﹣8a (2)4x3+4x2y+xy26.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y27.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y28.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+19.分解因式:a2﹣4a+4﹣b210.分解因式:a2﹣b2﹣2a+111.把下列各式分解因式:(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+112.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.因式分解专题过关1.分解因式(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;(2)先利用平方差公式,再利用完全平方公式继续分解.解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.2.分解因式:(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.分析:(1)直接提取公因式x即可;(2)利用平方差公式进行因式分解;(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.解答:解:(1)2x2﹣x=x(2x﹣1);(2)16x2﹣1=(4x+1)(4x﹣1);(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.3.将下列各式分解因式(1)3p2﹣6pq;(2)2x2+8x+8分析:(1)提取公因式3p整理即可;(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)3p2﹣6pq=3p(p﹣2q),(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.4.将下列各式分解因式(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.5.因式分解:(1)2am2﹣8a;(2)4x3+4x2y+xy2分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.6.将下列各式分解因式:(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.分析:(1)先提公因式3x,再利用平方差公式继续分解因式;(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.7.因式分解:(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).8.对下列代数式分解因式:(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.分析:(1)提取公因式n(m﹣2)即可;(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.9.分解因式:a2﹣4a+4﹣b2.分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).11.把下列各式分解因式:(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x﹣a)(x2+1﹣x+a);(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1﹣y)]2=(1+y﹣x2+x2y)2(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.12.把下列各式分解因式:(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.分析:(1)需把﹣31x拆项为﹣x﹣30x,再分组分解;(2)把2a2b2拆项成4a2b2﹣2a2b2,再按公式法因式分解;(3)把x5+x+1添项为x5﹣x2+x2+x+1,再分组以及公式法因式分解;(4)把x3+5x2+3x﹣9拆项成(x3﹣x2)+(6x2﹣6x)+(9x﹣9),再提取公因式因式分解;(5)先分组因式分解,再用拆项法把因式分解彻底.解答:解:(1)4x3﹣31x+15=4x3﹣x﹣30x+15=x(2x+1)(2x﹣1)﹣15(2x﹣1)=(2x﹣1)(2x2+1﹣15)=(2x﹣1)(2x﹣5)(x+3);(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4=4a2b2﹣(a4+b4+c4+2a2b2﹣2a2c2﹣2b2c2)=(2ab)2﹣(a2+b2﹣c2)2=(2ab+a2+b2﹣c2)(2ab﹣a2﹣b2+c2)=(a+b+c)(a+b﹣c)(c+a﹣b)(c﹣a+b);(3)x5+x+1=x5﹣x2+x2+x+1=x2(x3﹣1)+(x2+x+1)=x2(x﹣1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3﹣x2+1);(4)x3+5x2+3x﹣9=(x3﹣x2)+(6x2﹣6x)+(9x﹣9)=x2(x﹣1)+6x(x﹣1)+9(x﹣1)=(x﹣1)(x+3)2;(5)2a4﹣a3﹣6a2﹣a+2=a3(2a﹣1)﹣(2a﹣1)(3a+2)=(2a﹣1)(a3﹣3a﹣2)=(2a﹣1)(a3+a2﹣a2﹣a﹣2a﹣2)=(2a﹣1)[a2(a+1)﹣a(a+1)﹣2(a+1)]=(2a﹣1)(a+1)(a2﹣a﹣2)=(a+1)2(a﹣2)(2a﹣1).。
人教版八年级数学上册《14.3 因式分解》练习题-附参考答案
人教版八年级数学上册《14.3 因式分解》练习题-附参考答案一、选择题1.下列式子从左到右的变形,属于因式分解的是()A.(x+1)(x−1)=x2−1B.x2+2x−1=x(x+2)−1C.a2b+ab2=ab(a+b)D.a(a+b)=a2+ab2.下列多项式能用平方差公式分解因式的是()A.4x2+y2B.-4x2-y2C.-4x2+y2D.-4x+y23.因式分解:x3﹣4x2+4x=()A.x(x−2)2B.x(x2−4x+4)C.2x(x−2)2D.x(x2−2x+4)4.将下列多项式因式分解,结果中不含有因式(x−2)的是()A.x3−4x2−12x B.(x−3)2+2(x−3)+1C.x2−2x D.x2−45.下列因式分解正确的是()A.15x2−12xz=3xz(5x−4)B.x2−2xy+4y2=(x−2y)2C.x2−xy+x=x(x−y)D.x2+4x+4=(x+2)26.已知n是正整数,则下列数中一定能整除(2n+3)2−25的是()A.6 B.3 C.4 D.57.设a,b,c是△ABC的三条边,且a3−b3=a2b−ab2+ac2−bc2,则这个三角形是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形8.若a+b=2,a−b=6则b2−a2的值是()A.-12 B.12 C.8 D.-8二、填空题9.请写出一个多项式,并用平方差公式将其分解因式:. 10.多项式12ab3c+8a3b的公因式是.11.分解因式:a2b−2ab2+b3=.12.在○处填入一个整式,使关于x的多项式x2+◯+1可以因式分解,则○可以为.(写出一个即可)13.已知一个长方形的长、宽分别为a,b,如果它的周长为10,面积为5,则代数式a2b+ab2的值为三、解答题14.因式分解:(1)16a 2−(a 2+4)2(2)3a 2m 2(x −y)+27b 2n 2(y −x)15.若△ABC 的三边长a 、b 、c ,满足a 2+b 2+c 2﹣ab ﹣bc ﹣ac=0,请你判断△ABC 的形状.16.仔细阅读下面例题,并解答问题:例题:已知二次三项式 x 2−4x +m 有一个因式为 x +3 ,求另一个因式以及 m 的值.解:设另一个因式为 x +n由题意得 x 2−4x +m =(x +3)(x +n)即 x 2−4x +m =x 2+(n +3)x +3n则有 {n +3=−43n =m ,解得 {m =−21n =−7所以另一个因式为 x −7 , m 的值是 −21 .问题:请仿照上述方法解答下面问题(1)若 x 2+bx +c =(x −1)(x +3) ,则 b = , c = ;(2)已知二次三项式 2x 2+5x +k 有一个因式为 2x −3 ,求另一个因式以及 k 的值.17.下面是某同学对多项式 (x 2−4x)(x 2−4x +8)+16 进行因式分解的过程:解:设 x 2−4x =y原式 =y(y +8)+16 (第一步)=y 2+8y +16 (第二步)=(y +4)2 (第三步)=(x 2−4x +4)2 (第四步).回答下列问题:(1)该同学第二步到第三步运用了________.A .提取公因式B .平方差公式C .两数差的完全平方公式D .两数和的完全平方公式(2)该同学因式分解的结果是否彻底? (填“彻底”或“不彻底”),若不彻底,则该因式分解的最终结果为 .(3)请你模仿上述方法,对多项式 (x 2−2x −1)(x 2−2x +3)+4 进行因式分解.参考答案1.C2.C3.A4.A5.D6.C7.D8.A9.a2-4=(a+2)(a-2)(答案不唯一) 10.4ab11.b(a−b)212.2x13.2514.(1)解:16a2−(a2+4)2=(4a+a2+4)(4a−a2−4)=−(4a+a2+4)(−4a+a2+4)=−(a+2)2(a−2)2(2)解:3a2m2(x−y)+27b2n2(y−x) =3a2m2(x−y)−27b2n2(x−y)=3(x−y)(a2m2−9b2n2)=3(x−y)(am+3bn)(am−3bn) 15.解:∵a2+b2+c2﹣ab﹣bc﹣ac=0∴2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=0a2+b2﹣2ab+b2+c2﹣2bc+a2+c2﹣2ac=0∴(a﹣b)2+(b﹣c)2+(c﹣a)2=0∴a﹣b=0,b﹣c=0,c﹣a=0∴a=b=c∴△ABC为等边三角形16.(1)2;-3(2)设另一个因式为x+p由题意得: 2x 2+5x +k =(x +p)(2x −3) 即 2x 2+5x +k =2x 2+(2p −3)−3p则有 {2p −3=5−3p =k,解得 {k =−12p =4 所以另一个因式为 x +4 , k 的值是 −12 .17.(1)D(2)不彻底;(x −2)4(3)解:设 x 2−2x =y原式 =(y −1)(y +3)+4=y 2+2y +1=(y +1)2=(x 2−2x +1)2=(x −1)4 .。
人教版八年级上数学14.3 因式分解 课后训练(含答案)
课后训练基础巩固1.下列各式从左到右的变形中,是因式分解的为().A.x(a-b)=ax-bx B.x2-1+y2=(x-1)(x+1)+y2C.x2-1=(x+1)(x-1) D.ax+bx+c=x(a+b)+c2.把x3-xy2分解因式,正确的结果是().A.(x+xy)(x-xy) B.x(x2-y2)C.x(x-y)2 D.x(x-y)(x+y)3.下列多项式能进行因式分解的是().A.x2-y B.x2+1C.x2+y+y2D.x2-4x+44.把多项式m2(a-2)+m(2-a)分解因式等于().A.(a-2)(m2+m) B.(a-2)(m2-m)C.m(a-2)(m-1) D.m(a-2)(m+1)5.下列各式中不能用平方差公式分解的是().A.-a2+b2B.-x2-y2C.49x2y2-z2D.16m4-25n26.下列各式中能用完全平方公式分解的是().①x2-4x+4;②6x2+3x+1;③4x2-4x+1;④x2+4xy+2y2;⑤9x2-20xy+16y2. A.①②B.①③C.②③D.①⑤7.把下列各式分解因式:(1)9x3y2-12x2y2z+3x2y2;(2)2a(x+1)2-2ax;(3)16x2-9y2;(4)(x+2)(x+3)+x2-4.能力提升8.若m-n=-6,mn=7,则mn2-m2n的值是().A.-13 B.13 C.42 D.-429.若x2+mx-15=(x+3)(x+n),则m的值为().A.-5 B.5 C.-2 D.210.若x2-ax-1可以分解为(x-2)(x+b),则a+b的值为().A.-1 B.1 C.-2 D.211.若16x2+mxy+9y2是一个完全平方式,那么m的值是().A.12 B.24 C.±12 D.±2412.分解因式(x-3)(x-5)+1的结果是().A.x2-8x+16 B.(x-4)2 C.(x+4)2 D.(x-7)(x-3) 13.分解因式3x2-3y4的结果是().A.3(x+y2)(x-y2) B.3(x+y2)(x+y)(x-y)C.3(x-y2)2 D.3(x-y)2(x+y)214.若a+b=-1,则3a2+3b2+6ab的值是().A.-1 B.1 C.3 D.-315.-6x n-3x2n分解因式正确的是().A.3(-2x n-x2n) B.-3x n(2+x n)C.-3(2x n+x2n) D.-3x n(x n+2)16.把下列各式分解因式:(1)x(x-5)2+x(-5+x)(x+5);(2)(a+2b)2-a2-2ab;(3)-2(m-n)2+32;(4)-x3+2x2-x;(5)4a(b-a)-b2;(6)2x3y+8x2y2+8xy3.17.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20这三个数都是神秘数.(1)28和2 012这两个数是神秘数吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?参考答案1.C 2.D 3.D 4.C 5.B 6.B7.解:(1)原式=3x2y2(3x-4z+1);(2)原式=2a(x2+x+1).(3)原式=(4x+3y)(4x-3y);(4)方法一:原式=(x+2)(x+3)+(x+2)(x-2)=(x+2)(x+3+x-2)=(x+2)(2x+1)方法二:原式=x2+5x+6+x2-4=2x2+5x+2=(x+2)(2x+1).8.C9.C10.D11.D12.B13.A14.C15.B16.解:(1)原式=x(x-5)2+x(x-5)(x+5)=x(x-5)[(x-5)+(x+5)]=2x2(x-5);(2)原式=a2+4ab+4b2-a2-2ab=2ab+4b2=2b(a+2b);(3)原式=-2[(m-n)2-16]=-2(m-n+4)(m-n-4);(4)原式=-x(x2-2x+1)=-x(x-1)2;(5)原式=4ab-4a2-b2=-(4a2-4ab+b2)=-(2a-b)2.(6)原式=2xy(x2+4xy+4y2)=2xy(x+2y)2.17.解:(1)因为28=82-62;2 012=5042-5022,所以28和2 012是神秘数.(2)因为(2k+2)2-(2k)2=4(2k+1),所以由2k+2和2k构造的神秘数是4的倍数.(3)由(2)知神秘数可表示为4的倍数,但一定不是8的倍数,设两个连续奇数为2k+1和2k-1(k取正整数),而(2k+1)2-(2k-1)2=8k,即两个连续奇数的平方差不是神秘数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq (2)2x2+8x+8
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x)(2)(x2+y2)2﹣4x2y2
4.分解因式:
(1)2x2﹣x (2)16x2﹣1 (3)6xy2﹣9x2y﹣y3 (4)4+12(x﹣y)+9(x﹣y)2
5.因式分解:
(1)2am2﹣8a (2)4x3+4x2y+xy2
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2
7.因式分解:(1)x2y﹣2xy2+y3 (2)(x+2y)2﹣y2
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m)(2)(x﹣1)(x﹣3)+1
9.分解因式:a2﹣4a+4﹣b2
10.分解因式:a2﹣b2﹣2a+1
11.把下列各式分解因式:
(1)x4﹣7x2+1 (2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;(3)x5+x+1;(4)x3+5x2+3x﹣9;(5)2a4﹣a3﹣6a2﹣a+2.
因式分解专题过关
1.将下列各式分解因式
(1)3p2﹣6pq;(2)2x2+8x+8
分析:(1)提取公因式3p整理即可;
(2)先提取公因式2,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)3p2﹣6pq=3p(p﹣2q),
(2)2x2+8x+8,=2(x2+4x+4),=2(x+2)2.
2.将下列各式分解因式
(1)x3y﹣xy (2)3a3﹣6a2b+3ab2.
分析:(1)首先提取公因式xy,再利用平方差公式进行二次分解即可;
(2)首先提取公因式3a,再利用完全平方公式进行二次分解即可.
解答:解:(1)原式=xy(x2﹣1)=xy(x+1)(x﹣1);
(2)原式=3a(a2﹣2ab+b2)=3a(a﹣b)2.
3.分解因式
(1)a2(x﹣y)+16(y﹣x);(2)(x2+y2)2﹣4x2y2.
分析:(1)先提取公因式(x﹣y),再利用平方差公式继续分解;
(2)先利用平方差公式,再利用完全平方公式继续分解.
解答:解:(1)a2(x﹣y)+16(y﹣x),=(x﹣y)(a2﹣16),=(x﹣y)(a+4)(a﹣4);
(2)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2.
4.分解因式:
(1)2x2﹣x;(2)16x2﹣1;(3)6xy2﹣9x2y﹣y3;(4)4+12(x﹣y)+9(x﹣y)2.
分析:(1)直接提取公因式x即可;
(2)利用平方差公式进行因式分解;
(3)先提取公因式﹣y,再对余下的多项式利用完全平方公式继续分解;
(4)把(x﹣y)看作整体,利用完全平方公式分解因式即可.
解答:解:(1)2x2﹣x=x(2x﹣1);
(2)16x2﹣1=(4x+1)(4x﹣1);
(3)6xy2﹣9x2y﹣y3,=﹣y(9x2﹣6xy+y2),=﹣y(3x﹣y)2;
(4)4+12(x﹣y)+9(x﹣y)2,=[2+3(x﹣y)]2,=(3x﹣3y+2)2.
5.因式分解:
(1)2am2﹣8a;(2)4x3+4x2y+xy2
分析:(1)先提公因式2a,再对余下的多项式利用平方差公式继续分解;
(2)先提公因式x,再对余下的多项式利用完全平方公式继续分解.
解答:解:(1)2am2﹣8a=2a(m2﹣4)=2a(m+2)(m﹣2);
(2)4x3+4x2y+xy2,=x(4x2+4xy+y2),=x(2x+y)2.
6.将下列各式分解因式:
(1)3x﹣12x3(2)(x2+y2)2﹣4x2y2.
分析:(1)先提公因式3x,再利用平方差公式继续分解因式;
(2)先利用平方差公式分解因式,再利用完全平方公式继续分解因式.
解答:解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1+2x)(1﹣2x);
(2)(x2+y2)2﹣4x2y2=(x2+y2+2xy)(x2+y2﹣2xy)=(x+y)2(x﹣y)2.
7.因式分解:
(1)x2y﹣2xy2+y3;(2)(x+2y)2﹣y2.
分析:(1)先提取公因式y,再对余下的多项式利用完全平方式继续分解因式;
(2)符合平方差公式的结构特点,利用平方差公式进行因式分解即可.
解答:解:(1)x2y﹣2xy2+y3=y(x2﹣2xy+y2)=y(x﹣y)2;
(2)(x+2y)2﹣y2=(x+2y+y)(x+2y﹣y)=(x+3y)(x+y).
8.对下列代数式分解因式:
(1)n2(m﹣2)﹣n(2﹣m);(2)(x﹣1)(x﹣3)+1.
分析:(1)提取公因式n(m﹣2)即可;
(2)根据多项式的乘法把(x﹣1)(x﹣3)展开,再利用完全平方公式进行因式分解.解答:解:(1)n2(m﹣2)﹣n(2﹣m)=n2(m﹣2)+n(m﹣2)=n(m﹣2)(n+1);
(2)(x﹣1)(x﹣3)+1=x2﹣4x+4=(x﹣2)2.
9.分解因式:a2﹣4a+4﹣b2.
分析:本题有四项,应该考虑运用分组分解法.观察后可以发现,本题中有a的二次项a2,a的一次项﹣4a,常数项4,所以要考虑三一分组,先运用完全平方公式,再进一步运用平方差公式进行分解.
解答:解:a2﹣4a+4﹣b2=(a2﹣4a+4)﹣b2=(a﹣2)2﹣b2=(a﹣2+b)(a﹣2﹣b).10.分解因式:a2﹣b2﹣2a+1
分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有a的二次项,a的一次项,有常数项.所以要考虑a2﹣2a+1为一组.
解答:解:a2﹣b2﹣2a+1=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b).
11.把下列各式分解因式:
(1)x4﹣7x2+1;(2)x4+x2+2ax+1﹣a2
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2(4)x4+2x3+3x2+2x+1
分析:(1)首先把﹣7x2变为+2x2﹣9x2,然后多项式变为x4﹣2x2+1﹣9x2,接着利用完全平方公式和平方差公式分解因式即可求解;
(2)首先把多项式变为x4+2x2+1﹣x2+2ax﹣a2,然后利用公式法分解因式即可解;
(3)首先把﹣2x2(1﹣y2)变为﹣2x2(1﹣y)(1﹣y),然后利用完全平方公式分解因式即可求解;
(4)首先把多项式变为x4+x3+x2++x3+x2+x+x2+x+1,然后三个一组提取公因式,接着提取公因式即可求解.
解答:解:(1)x4﹣7x2+1=x4+2x2+1﹣9x2=(x2+1)2﹣(3x)2=(x2+3x+1)(x2﹣3x+1);
(2)x4+x2+2ax+1﹣a=x4+2x2+1﹣x2+2ax﹣a2=(x2+1)﹣(x﹣a)2=(x2+1+x
﹣a)(x2+1﹣x+a);
(3)(1+y)2﹣2x2(1﹣y2)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+x4(1﹣y)2=(1+y)2﹣2x2(1﹣y)(1+y)+[x2(1﹣y)]2=[(1+y)﹣x2(1
﹣y)]2=(1+y﹣x2+x2y)2
(4)x4+2x3+3x2+2x+1=x4+x3+x2++x3+x2+x+x2+x+1=x2(x2+x+1)+x(x2+x+1)+x2+x+1=(x2+x+1)2.
12.把下列各式分解因式:
(1)4x3﹣31x+15;(2)2a2b2+2a2c2+2b2c2﹣a4﹣b4﹣c4;
(3)x5+x+1;(4)x3+5x2+3x﹣9;
(。